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Abstract
Being a hot topic in recent years, many studies have been conducted with spatial 
data containing massive numbers of observations. Because initial developments for 
classical spatial autocorrelation statistics are based on rather small sample sizes, in 
the context of massive spatial datasets, this paper presents extensions to efficiency 
and statistical power comparisons between the Moran coefficient and the Geary ratio 
for different variable distribution assumptions and selected geographic neighbor-
hood definitions. The question addressed asks whether or not earlier results for small 
n extend to large and massively large n, especially for non-normal variables; impli-
cations established are relevant to big spatial data. To achieve these comparisons, 
this paper summarizes proofs of limiting variances, also called asymptotic vari-
ances, to do the efficiency analysis, and derives the relationship function between 
the two statistics to compare their statistical power at the same scale. Visualiza-
tion of this statistical power analysis employs an alternative technique that already 
appears in the literature, furnishing additional understanding and clarity about these 
spatial autocorrelation statistics. Results include: the Moran coefficient is more effi-
cient than the Geary ratio for most surface partitionings, because this index has a 
relatively smaller asymptotic as well as exact variance, and the superior power of 
the Moran coefficient vis-à-vis the Geary ratio for positive spatial autocorrelation 
depends upon the type of geographic configuration, with this power approaching 
one as sample sizes become increasingly large. Because spatial analysts usually cal-
culate these two statistics for interval/ration data, this paper also includes comments 
about the join count statistics used for nominal data.
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1  Introduction

Because georeferenced data, some of which are real time, containing locational 
information have been continuously returned by a variety of sensors (e.g., public 
transport vehicles equipped with a global position system, remote sensing satel-
lites, and smartphones) and obtained from more and more open sources (such as 
government health statistical data and demographic data), the amount of spatial 
data is increasing at an explosive rate. This kind of data is called big spatial data 
or big geospatial data. Compared with traditional spatial data, these data have a 
much bigger volume, much more variety, and much higher velocity, and the tools 
for processing and analyzing them are more complex (van Zyl 2014; Lee and 
Kang 2015; Li et al. 2016, Haynes et al. 2018). One feature of this kind of data is 
massive sample sizes, which is accompanied by the basic problem of still being 
able to detect the latent spatial autocorrelation (SA) across different geographi-
cal structures, and, furthermore, whether or not statistical properties for small-to-
medium size datasets pertain to large-to-massive datasets.

For a traditional analysis, two typical statistics that have been devised to quan-
tify the nature and degree of SA are the Moran coefficient (MC) and the Geary 
ratio (GR), which employ different metrics according to their mathematical 
expressions. The MC contains a cross-product term in its numerator pertaining 
to deviations from the mean [see Eq.  (1)]; this construction is similar to Pear-
son’s product moment correlation coefficient, r, whose spatial counterpart may 
be a SA parameter of a spatial autoregressive model, which is widely employed 
by researchers across a range of disciplines. In other words, the MC corresponds 
to the spatial autoregressive perspective. The GR contains a paired comparison 
term in its numerator, one in which differences are between observation attribute 
values [see Eq. (2)]; this quantity is similar to that used to construct a semivari-
ogram in which the geographic variation between two locations is expressed as a 
difference between two observation attribute values. In other words, the GR cor-
responds to the geostatistical semivariogram perspective (Legendre and Fortin 
1989). Spatial autoregression works with the inverse covariance matrix, whereas 
geostatistics works directly with the spatial covariant matrix.

Therefore, the comparison is not only for two single statistics, but for two dif-
ferent conceptualizations. Although these two indices were introduced many dec-
ades ago by Moran (1950) and Geary (1954), respectively, they were not widely 
employed in terms of SA indexes until Cliff and Ord (1973, 1981) published their 
fundamental and pioneering works, in which these two statistics’ distributional 
properties, including their asymptotic normal sampling distributions and power 
(i.e., the probability of rejecting the null hypothesis when it is not true) compari-
sons for positive SA of small sample sizes were established in detail. Thereafter, 
various researches related to these SA statistics began to appear. For example, 
Griffith (1987, p. 44) first pointed out the relationship function expressing the 
MC in terms of the GR. Tiefelsdorf and Boots (1995) derived the exact distribu-
tion of the MC for small samples, which is a seminal work that helped to estab-
lish the novel Moran eigenvector spatial filtering spatial statistics methodology 
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(Griffith 1996). Anselin (1995, 1996) introduced local indicators of spatial asso-
ciation (LISA) and the Moran scatter plot, which visualizes SA with a regression 
trend line superimposed on those geographical attribute points appearing in the 
numerator of the MC distributed across the four quadrants of the plane. Boots 
(2003) also furnished local SA indices for categorical data. Lee (2001) developed 
a bivariate spatial correlation coefficient as well as its local form by integrating 
Pearson’s r and the MC. Boots and Tiefelsdorf (2000) investigated the behavior of 
SA test statistics in three regular tessellations; Bivand et al. (2009) implemented 
the saddlepoint approximation instead of the normal approximation, and the exact 
distribution of the MC in the R spdep package, which makes power analysis 
easier because many geographic information system (GIS) software packages do 
not have this function. Chun (2008), Cheng et al. (2012), Bavaud (2013), and de 
la Mata and Llano (2013) discussed issues relating to network spatial autocor-
relation. More recently, Carrijo and da Silva (2017) devised a modified MC to 
solve the problem of underestimating real SA when sample size is small; Anselin 
(2018) extended the Local GR to a multivariate context. Except for those theo-
retical studies on the statistical properties of these two statistics, the MC and GR 
often are used as tools in explanatory works for descriptive and visualization pur-
poses. In addition, the MC is used as a tool for the diagnosis of SA in regression 
modeling (Cliff and Ord 1969, 1970).

For a massive spatial data analysis, the mathematical or statistical properties of 
the MC and the GR need to be extended to much larger sample sizes on the basis of 
Cliff and Ord’s (1973, 1981) pioneering works. One question asks why a researcher 
still uses SA coefficients to describe large sample size datasets. Being similar to 
those summary statistics (e.g., the mean, variance, and median) that portray data 
from different angles, and that are computed as initial descriptions when a researcher 
obtains his or her dataset, an SA coefficient can be seen as a summary statistic as 
well in spatial statistics. Thus, regardless of the sample size, knowing the degree 
of SA is useful so that researchers can have a first impression of the spatial data at 
hand. Moreover, calculating this statistic is not the target in a spatial data analysis 
experiment. Rather, it is a tool for determining subsequent treatments, such as the 
selection of a spatial model for describing data when a MC value indicates strong 
positive SA. Otherwise, the selection may be a nonspatial model if the MC is not 
calculated, or ignored. Consequently, extension of small sample size results to large 
or massive sample sizes is necessary and is the major purpose of this paper. Specifi-
cally, we derive the mathematical proofs of the asymptotic variances of the MC and 
the GR for different types of random variables, through which the MC is shown to 
be more efficient than the GR for large sample sizes. We also develop an analytical 
approach to compare the statistical power of the two statistics for any size dataset.

This article substantiates the findings in Luo et  al. (2017), with detailed math-
ematical derivations and interpretations. It includes a methodology part in Sect. 2, 
followed by a mathematics section. Section  4 analyzes efficiency in terms of dif-
ferent surface partitionings and distribution conditions. Section 5 compares statisti-
cal power. Section 6 discusses relationships between the MC, the GR, and the join 
count statistics based on the work of Cliff and Ord (1973). This paper also provides 
results in Sect. 7 for two massive spatial dataset examples to verify the findings of 
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the previous sections. Finally, this paper states conclusions and presents discussions 
in its last section. Its contributions beyond the 2017 paper are the following: detailed 
proofs for theorems, an alternative visualization of statistical power, a comment on 
the join count statistics that are applicable to nominal data, and two empirical exam-
ples to validate results.

2 � Methodology

Most spatial analysts deal with only a few of the many possible types of random 
variables (e.g., normal, binomial, Poisson). Furthermore, the geospatial literature 
suggests that a particular set of geographic configurations furnishes useful insights 
into, and understanding of, many spatial statistics concepts. These are the topics of 
this section.

2.1 � Distributional assumptions and geographic configurations

Throughout this paper, the following two aspects of postulates are set: one pertains 
to the types of random variable (i.e., distributional assumptions) and the other per-
tains to geographic configuration, or surface partitioning. These foci are inspired by 
Cliff and Ord’s (1973, 1981) work, in which the moments of the MC and the GR 
are derived under normality and randomization assumptions, and power curves have 
been drawn for several geographical configurations (i.e., circular, rook, queen, queen 
on torus, and an empirical surface partitioning).

This paper analyzes not only the normal distribution, but also three other spe-
cific distributions (i.e., uniform, beta with equal scale parameters less than one, and 
exponential). It also includes six additional geographical configurations (i.e., linear, 
hexagonal, maximum planar, the two versions of maximum hexagonal, and rook on 
torus). Essentially, different distributions render different kurtosis terms, and differ-
ent geographical configurations produce different connectivity matrices. The follow-
ing subsections describe details about these cases.

2.1.1 � Four types of random variables

The four selected distributions are for continuous random variables; those for dis-
crete random variables are not discussed in this paper. Figure 1 portrays their prob-
ability density function plots with their respective kurtosis terms ( b2).

These distributions are selected because they furnish a representative sample 
of the full range of probability distributions. Specifically, the normal family is the 
most typical case. Each of the other three distributions has no direct connection with 
the normal distribution, although the exponential distribution can be subjected to a 
Box–Cox power transformation that approximates a normal distribution, and none of 
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these three non-normal distributions has a connection with either of the other two as 
well.1 More specifically, the normal distribution represents a non-skewed and proper 
kurtosis distribution, the uniform distribution depicts a flat distribution within 
a finite interval, the beta distribution with � = � = 0.5 (this is the case employed 
throughout this paper) represents a sinusoidal distribution within a confined interval, 
and the exponential distribution depicts a skewed and leptokurtic distribution.

2.1.2 � Geographic configurations

Ten geographic partitionings are employed: three of them, namely the maximum 
planar connectivity case, and the two maximum hexagonal cases (with odd and even 
columns), are theoretically constructed. These settings furnish a relatively com-
prehensive representation of possible realistic and theoretical configurations. For 
example, a square rook and a square queen articulation are common in the surface 
partitioning for remotely sensed images, whereas a hexagonal partitioning often is 
employed in spatial sampling designs (e.g., Chun and Griffith 2013, pp. 24–29). The 
linear [each of the internal areal units has two geographic neighbors, while each of 
the two end areals units has only one neighbor], the circle [a two-dimensional (2-D) 
counterpart to the linear case], and the torus [a 3-D counterpart to the square rook 
or queen case] do not relate to empirical landscapes; these 2-D and 3-D cases are 
configurations in which each areal unit has the same number of neighbors (e.g., for 

Fig. 1   Probability density function (PDF) plots. a Normal distribution, b
2
= 3 . b Uniform distribution, 

b
2
= 9∕5 . c Beta distribution ( � = � = 0.5 ), b

2
= 3∕2 . d Exponential distribution, b

2
= 9

1  Refer to Univariate distribution relationships: http://www.math.wm.edu/~leemi​s/chart​/UDR/UDR.
html.

http://www.math.wm.edu/%7eleemis/chart/UDR/UDR.html
http://www.math.wm.edu/%7eleemis/chart/UDR/UDR.html
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a circle, every areal unit has two neighbors, whereas for a torus with rook adjencacy, 
each cell has four neighbors, and for a torus with queen adjacency, each has eight). 
And the maximum planar case (Tait and Tobin 2017) can be seen as one possible 
realization of a planar graph that has the maximum number of edges 3(n − 2) , where 
n (i.e., the number of areal units) is the number of nodes in a graph. Furthermore, to 
gain a better understanding of this partitioning, maximum hexagonal cases with dif-
ferent numbers of columns have been designed (the internal linear units of a maxi-
mum planar case are replaced with hexagonal cells). Figure 2 portrays three of these 
situations, and Table 1 lists their corresponding neighbor sums, where P and Q are 
the number of rows and columns, respectively, in a configuration, n = P × Q is the 
number of areal units under study, and C =

(

cij
)

n×n
 is the connectivity matrix, where 

cij = 1 if areal units i and j are adjacent (i.e., they have a common edge or point, and 
hence are neighbors), and 0 otherwise; matrix C is symmetric. 

In the hexagonal cases, the number of areal units n is no longer P × Q , but rather 
P × Q + 2 , where the additional two areal units are those surrounding the outside 
of the geographic landscape. These connections between internal hexagons and the 
outer two areal units are designed to attain the maximum neighbor sums.

To illustrate the variation in different geographic connections and sample sizes, 
Table 2 presents the extreme eigenvalues of matrix C for each configuration, as well 
as their corresponding extreme MC and GR values. Discussion of the relationship 
between these matrix C eigenvalues, � , and the MC as well as the GR appears in 
subSect. 5.2.

The analyses for Table 2 employed essentially two different sample sizes, n ≈ 100 
and 10,000. For L and CN-C, n = 1 × 100 or 1 × 10, 000 ; for SR, SQ, H, CN-TR, 
and CN-TQ, n = 10 × 10 or 100 × 100 ; for MPC, n = 1 × 100 + 2 or 1 × 10, 000 + 2 ; 
for MH-O and MH-E, n = 10 × 11 + 2 or 100 × 101 + 2 , and n = 10 × 10 + 2 or 

b ca

Fig. 2   Selected surface partitionings. a A regular square rook configuration. b A maximum hexagonal 
configuration with an odd Q. c A maximum hexagonal configuration with an even Q

Table 1   Neighbor sums of selected geographic configurations

Neighbor sum Regular square rook 
adjacency
(n = P × Q)

Maximum hexagonal partitioning 
with an odd Q
(n = P × Q + 2)

Maximum hexagonal partitioning 
with an even Q
(n = P × Q + 2)

∑n

i=1

∑n

j=1
cij 2(2PQ − P − Q) 6PQ 6PQ

∑n

i=1

�

∑n

j=1
cij

�2

2(8PQ − 7P − 7Q + 4) 2
(

P2 + Q2 + 20PQ − 11P − 10Q + 6
)

2
(

P2 + Q2 + 20PQ − 11P − 10Q + 8
)
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100 × 100 + 2 , respectively. Except for MPC, MH-O, and MH-E, all calculated SA 
index values are well behaved, in that MC + GR ≈ 1 , and the maximum eigenvalue 
is within the interval of the minimum row sum and the maximum row sum of matrix 
C . For example, for the linear case with a smaller sample size, because n − 2 of the 
row sums of matrix C are two, and only the first and last rows have a sum of one, 
the maximum eigenvalue is close to, but slightly less than, two, and also because of 
the symmetry of those eigenvalues2 and the zero trace,3 the minimum eigenvalue 
is minus the maximum. Furthermore, the summation of the strongest positive SA 
is MCmax + GRmin = 1.00815 + 0.00186 = 1.01001 , and its negative counterpart 
is MCmin + GRmax = −1.00961 + 1.99950 = 0.98989 . However, this appeal-
ing property no longer holds when the distribution of ones is highly skewed toward 
two rows that represent connectivities of the outer two units (i.e., MPC, MH-O, 
and MH-E). This skewness is more serious in the maximum planar case because 
the peripheral two cells are not only connected with each other, but also with all 
inner cells; in other words, each of these two rows contains n − 1 ones, because they 
are adjacent to every cell except themselves. Hence, a severe unevenly structured 
adjacency matrix yields considerably large extreme eigenvalues, and MC and GR 
values; but these undesirable values appear only for the first and last few eigenval-
ues. Table 6 in Appendix 1 reports the first ten positive and last ten negative � , and 
MC and GR values for these three anomalous configurations. It reveals a big dif-
ference between selected extreme values (marked with red) and other values in the 
same row; this difference seems most conspicuous for the MPC case, especially with 
10,002 samples. Reasons for these discrepancies include: (1) the number of ones in 
matrix C for at least one areal unit increases as n increases, and (2) the diameter of 
the affiliated graph is relatively small.

2.2 � Efficiency and variance

There are two “efficiency” measures in statistics. One is used as a criterion that qual-
ifies an estimator—for two unbiased estimators; the one with the smaller variance 
is more efficient. The other is used in hypothesis testing—when comparing two test 
procedures; the one that needs fewer observations for a given power is more effi-
cient. This paper uses the first “efficiency” measure, but for another purpose, namely 
comparing two statistics rather than estimators.

An additional reason for pursuing this efficiency comparison is that Cliff and Ord 
(1969, p. 45) point out that the variance of the MC is “less affected by the distribu-
tion of the sample data” than the variance of the GR. This paper seeks to prove their 
finding from a more general perspective; the asymptotic variance is employed to 
achieve this goal.

2  This property also holds for the SR, CN-C, and CN-TR cases.
3  The diagonal entries are zeros; i.e., c

ii
= 0, i = 1, 2,… , n.



245

1 3

Spatial autocorrelation for massive spatial data: verification…

2.3 � Statistical power and its visualization

Because hypothesis tests are conducted on the basis of samples, they do not always 
yield correct conclusions. Consequently, considering both Type I (rejecting a 
true null hypothesis) and Type II (failing to reject a false null hypothesis) errors 
in hypothesis testing is important. The probability of committing a Type I error is 
denoted as � , which also is known as the significance level and preset at the begin-
ning of a test procedure; the probability of committing a Type II error is denoted as 
� , which depends on the sample size, the significance level, and the probability dis-
tribution under the null hypothesis. As originally devised, power = 1 − � , which is 
the probability of rejecting a false null hypotheses. The power of a hypothesis test is 
between zero and one, with a value closer to one indicating a better ability to reject a 
false null hypothesis. For illustrative purposes, Fig. 11 (Appendix 2) portrays power 
and is accompanied by description furnishing an intuitive impression about this sta-
tistical concept. In a spatial data analyzing procedure, testing for SA in (large) spa-
tial datasets is crucial; accordingly, an obvious question asks about the quality of a 
test. A formal way or a “standard approach” (Cliff and Ord 1973, p. 131) to evaluate 
a test is to calculate its statistical power. As Weiss (2017, p. 449) states: “even more 
helpful is a visual display of the effectiveness of the hypothesis test, obtained by 
plotting points of power against various values of the parameter and then connecting 
the points with a smooth curve.” This notion of power can be applied to a two-sided 
(or two-tailed) as well as a one-sided (or one-tailed) situation, in keeping with the 
type of hypothesis test.4 For convenience and comparison purposes, Sect. 5 presents 
the critical values in terms of the MC so that all power curves, including those for 
the GR and the join counts, can be shown with a single plot. To do so requires estab-
lishing theoretical relationship functions linking the MC, the GR, and the join count 
statistics.

3 � Notation and theorems

This section presents necessary notation and limit theorems about variances of the 
MC and the GR.

Let X be the georeferenced variable of interest distributed over a tessellation. 
Its observations are x1, x2,… , xn . The average of these observations is denoted by 
x̄ =

∑n

i=1
xi∕n . C =

(

cij
)

n×n
 is the connectivity matrix denoted in Sect.  2.1.2. The 

sample MC and GR for variable X are defined as follows:

(1)MC =
n
∑n

i=1

∑n

j=1
cij
�

xi − x̄
��

xj − x̄
�

∑n

i=1

∑n

j=1
cij

∑n

i=1

�

xi − x̄
�2

,

4  Given a random variable x , for a two-sided test, power = 1 − probability(x < right critical value)

+probability(x > left critical value) ; for a right-sided test, power = 1 − probability(x < critical value) , 
whereas for a left-sided test, power = probability(x > critical value).
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and

The GR can be rewritten as (Griffith 1987)

Derivation of this formula appears as proof 1 in Appendix 3.
Cliff and Ord (1973) establish the exact variances of these two statistics. In the fol-

lowing, the subscript N denotes normality and R denotes randomization:

and

where S0 =
∑n

i=1

∑n

j=1
cij , S1 =

1

2

∑n

i=1

∑n

j=1

�

cij + cji
�2 , S

2
=

∑n

i=1

�

∑n

j=1

�

c
ij
+ c

ji

�

�2

 , 

and for zi = xi − x̄ , b2 =
1

n

∑n

i=1
z4
i
∕
�

1

n

∑n

i=1
z2
i

�2

 defines kurtosis. Again, because 
matrix C is symmetric and binary, S1 = 2

∑n

i=1

∑n

j=1
cij = 2S0 , and 

S2 = 4
∑n

i=1

�

∑n

j=1
cij

�2

.
Griffith (2010) proposes simplifying Eqs. (4)–(7) through asymptotics, assuming a 

normal distribution, producing

(2)
GR =

(n − 1)
∑n

i=1

∑n

j=1
cij
�

xi − xj
�2

2
∑n

i=1

∑n

j=1
cij

∑n

i=1

�

xi − x̄
�2

.

(3)n − 1

2
∑n

i=1

∑n

j=1
cij

2
∑n

i=1

�

xi − x̄
�2
�

∑n

j=1
cij

�

∑n

i=1

�

xi − x̄
�2

−
n − 1

n
MC.

(4)VarN(MC) =
n2S1 − nS2 + 3S2

0

(n − 1)(n + 1)S2
0

−
1

(n − 1)2
,

(5)

VarR(MC) =
n
[(

n2 − 3n + 3
)

S1 − nS2 + 3S2
0

]

− b2
[(

n2 − n
)

S1 − 2nS2 + 6S2
0

]

(n − 1)(n − 2)(n − 3)S2
0

−
1

(n − 1)2
,

(6)VarN(GR) =

[(

2S1 + S2
)

(n − 1) − 4S2
0

]

2(n + 1)S2
0

,

(7)
Var

R(GR) =
(n − 1)S1

[

n
2 − 3n + 3 − (n − 1)b2

]

−
1

4
(n − 1)S2

[

n
2 + 3n − 6 −

(

n
2 − n + 2

)

b
2

]

n(n − 2)(n − 3)S2
0

+
S
2

0

[

n
2 − 3 − (n − 1)2b2

]

n(n − 2)(n − 3)S2
0

,

(8)VarA(MC) =
2

∑n

i=1

∑n

j=1
cij

=
2

S0
,
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and

where subscript A denotes asymptotic.
Theorems 1 and 2 indicate that the asymptotic variance for the MC is insensitive 

to swapping the normality and randomization assumptions. They also reveal that the 
asymptotic variance of the MC approximates the exact variances well for both of 
these cases.

Theorem 1  lim
n→∞

VarN(MC) = VarA(MC).

Theorem 2  lim
n→∞

VarR(MC) = VarA(MC).

Theorems 3 and 4 discuss the convergence of the GR exact variance for differ-
ent probability assumptions when sample size approaches infinity. An analogous 
result has not been obtained for the variance of the GR for permutation sampling; 
the asymptotic version of this latter index depends on distributional assumptions.

Theorem 3  lim
n→∞

VarN(GR) = VarA(GR).

Theorem 4  lim
n→∞

VarR(GR) depends on b2 , the kurtosis of a distribution.

Proofs for Theorems 1 to 4 appear in Appendix 3. For normal, uniform, beta, and 
exponential distributions, b2 has the values 3, 9/5, 3/2, and 9, respectively. Thus,

and

where the subscripts AN, AU, AB, and AE, respectively, denote the asymptotic vari-
ance of the normal, uniform, beta, and exponential distribution. That is to say, the 
asymptotic variance of the GR is sensitive to distributional assumptions.

Equation (10) coincidences with Griffith’s (2010) result [Eq. (9)].

4 � Efficiency analysis

This section summarizes results for both asymptotic and exact variances.

(9)VarA(GR) =
2

∑n

i=1

∑n

j=1
cij

+
2
∑n

i=1

�

∑n

j=1
cij

�2

�

∑n

i=1

∑n

j=1
cij

�2
=

2

S0
+

S2

2S2
0

,

(10)VarAN(GR) = 2∕S0 + S2∕2S
2
0
,

(11)VarAU(GR) = 2∕S0 + S2∕5S
2
0
,

(12)VarAB(GR) = 2∕S0 + S2∕8S
2
0
, (� = � = 0.5),

(13)VarAE(GR) = 2∕S0 + 2S2∕S
2
0
,



248	 Q. Luo et al.

1 3

4.1 � Asymptotic variance ratios

Considering that a statistic with a smaller variance is more efficient, suppose the vari-
ance ratio of the MC and the GR is rexact = Varexact(MC)∕Varexact(GR) , where sub-
script “exact” denotes the exact MC and GR variances, given by Eqs. (4) and (6), or 
by Eqs. (5) and (7). If rexact < 1 , then the MC is more efficient than the GR; otherwise, 
rexact > 1 , then the GR is more efficient. The following asymptotic variances also are of 
interest:

where A* denotes AN, AU, AB, or AE and S denotes Eqs. (10), (11), (12), or (13). 
Similarly, if r < 1 , then the MC is more efficient than the GR; if r > 1 , then the 
GR is more efficient. Equation (14) indicates that S0 , the sum of ones in matrix C , 
and S2 , the sum of the squared row sums of matrix C , are needed to calculate the 
variance ratio; these two quantities have different values with different geographical 
configurations, values of S0 and S2 of selected geographical configurations are listed 
in Table 1. More values can be found in Tables 1 and 2 of Luo et al. (2017).

Table 3 presents selected asymptotic variances. Figure 3 portrays their respective 
ratio curves.

Term k in the last column of Table 3 is the number of constant neighbors; for 
example, k may be 2, 4, and 8 for the circle, torus rook, and torus queen cases, 
respectively. Thus, all ratios are less than one, and especially for the maximum pla-
nar connectivity case, the values go to zero, which indicates that the MC is more 
efficient in terms of the asymptotic variances. This property can be seen more 
clearly from Fig. 3 because its curves have convergent trends whose trajectory val-
ues are less than one before n is 100. The CN case is not shown because when k is 
2, 4, and 8, its ratios become the same values as those for the L, SR, and SQ cases.

4.2 � Exact variance ratios

Section 4.1 presents discussion of asymptotic variance ratios as well as the efficiency 
priority (i.e., r < 1 ) of the MC versus the GR for the selected probability distribu-
tions. One remaining question asks whether or not identical results can be obtained 
when their exact variances [Eqs. (4) to (7)] are considered. Fortunately, by substitut-
ing appropriate S0 and S2 values into these formulae, and using some mathematical 
calculation software (e.g., Wolfram Mathematica 10.2, which has been used for this 

(14)r = VarA(MC)∕VarA∗(GR) =
2∕S0

S
,

Table 3   Asymptotic variance 
ratios of the MC and the GR

L SR SQ H MPC MH CN

Normal 1/3 1/5 1/9 1/7 0 3/25 1/(k + 1)
Uniform 5/9 5/13 5/21 5/17 0 15/59 5/(2k +5)
Beta 2/3 ½ 1/3 2/5 0 6/17 4/(k +4)
Exponential 1/9 1/17 1/33 1/25 0 3/91 1/(4k +1)
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paper), these exact variance ratios are not difficult to compute. Table 3 in Luo et al. 
(2017) already summarizes them. That table reveals that all exact variance ratios 
of the MC versus the GR are one except those for the MPC and MH cases. More 
specifically, all exact ratios for the MPC case are zero, and they are (approximately) 
0.4286, 0.6522, 0.75, and 0.1579 for the MH cases for the selected normal, uniform, 
beta, and exponential distributions, respectively. These results indicate that the MC 
is only more efficient than the GR based on the exact variances for the MPC and 
MH cases. Because the MPC exact ratio is the same as its asymptotic counterpart 
(both are zero), and because all other asymptotic variance ratios are not one, then 
these latter asymptotic versions need to be adjusted in order for the ratios to become 
one. Furthermore, calculating ratios of asymptotic and exact variances of the MC 
and the GR reveals that the GR’s asymptotic variances are the ones that need to be 
adjusted. The necessary GR adjustment factors equal those exact ratios divided by 
their asymptotic ratios. For the MPC case, the MC asymptotic variance needs to 
be adjusted such that it should be multiplied by 1/3 for all probability distributions. 
This adjustment assessment furnishes quantitative evidence that the GR is far more 
sensitive to the underlying frequency distribution of an attribute variable.

Luo et  al. (2017) present the exact variance ratio curves as well as values 
for 184 specimen5 irregular surface partitions. For illustrative and comparative 
purposes, Fig. 4 reproduces some of these plots more delicately (with a higher 
resolution and more distinguishable colors), which depict convergence in the 

Fig. 3   Asymptotic ratio curves. a Curves for normal distribution. b Curves for uniform distribution. c 
Curves for beta distribution. d Curves for exponential distribution

5  These data come from Griffith (2015); an initial 130 appeared in Griffith (2004), which was expanded 
to 144 in Griffith and Luhanga (2011).
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interval [13, 7250], [10, 7250], [8, 7250], and [23, 7250] for the normal, uni-
form, beta, and exponential probability distributions, respectively.

Figure 4 portrays that, except for the MPC (the purple curve) ratio converg-
ing on zero, and the MH (the pink curve) ratio converging on a specific value 
less than one for each probability distribution, these ratios converge on one. In 
addition, those specimen geographic landscapes, presented as black dots super-
imposed on the ratio curves, mostly scatter between the regular SQ (the green 
curve) and the MH (the pink curve) cases.

In this section, asymptotic as well as exact variance ratios of the MC and the 
GR are discussed. These asymptotic variances are far simpler in their expres-
sions than their exact counterparts. This simplicity motivates an exploration of 
how much the sample size (or threshold) above which those results obtained 
with asymptotic methods differ from those obtained with exact methods. More 
detailed work about these two statistics is included in Luo et al. (2017, p. 263, 
Table  4). One also is interested in these statistics in terms of their asymptotic 
variance, especially if they have better statistical properties when sample size 
goes to infinity. For example, for a 1000-by-1000 remotely sensed image, for 
which the size 1,000,000 far exceeds those thresholds above which asymptotic 
results are close to exact results (see the square rook row in Table 4 in Luo et al. 
2017), both asymptotic variances of the MC and the GR achieve good accuracy. 

Fig. 4   Exact variance ratio curves with 184 specimen points superimposed. a Curves for a normal distri-
bution. b Curves for a uniform distribution. c Curves for a beta distribution. d Curves for an exponential 
distribution
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Consequently, one question asks how to choose between these two indices; this 
section answers this particular question.

5 � Statistical power visualization

Cliff and Ord (1973) conduct simulation experiments to compare the power of the 
MC and the GR by employing 12-by-2, 4-by-3, 5-by-5, and 7-by-7 lattices in which 
both the SR and SQ cases are discussed, a 25-cell circle, and the 26 counties of 
Eire (an irregular surface partitioning), and conclude that the MC is more powerful. 
Subsequently, they (1981) updated the largest sample size to 81 (a 9-by-9 lattice) by 
referring to Haining’s (1978) work. Being different from the spatial Markov scheme 
that Cliff and Ord used, Haining introduces a two-dimensional moving average spa-
tial model as the alternative hypothesis, compares the power of the likelihood ratio 
(denoted by L.R. in his paper) and the MC, and draws the conclusion that the L.R. 
statistic is more powerful. Writing a year earlier, Bartels and Hordijk (1977) discuss 
the MC power by using three different error estimators (OLS, BLUS, and RELUS) 
in their four illustrative examples (the dataset for the first three is the Netherlands 
with 39 regions, but with a different number of variables for each example, whereas 
the dataset for the last case is Eire with 26 regions and three artificial variables). 
All OLS estimators achieve the highest power, except for a very few high (0.9) and 
low (0.1) SA values. More recently, Dray (2011) develops two new SA indexes to 
describe a more complex situation (positive and negative SA are involved simul-
taneously, and their summation is zero or nearly zero), uses a Monte Carlo method 
to test the significance of these new statistics as well as the MC, and concludes that 
these two new statistics are as powerful as the MC for purely positive or negative SA 
structures, but are more powerful than the MC for complex situations.

However, all of these power assessments are calculated based upon Monte Carlo 
simulations, and only for several selected positive SA values (a one-tailed test). 
Actually, in the spatial analysis literature, Monte Carlo approaches used for infer-
ence are widely adopted not only for areal unit data, but also for point data (Dig-
gle 2010) because of their flexibility, intelligibility, and extendibility. Although 
Hope (1968) suggests a simplified Monte Carlo test procedure to reduce the size 
of a reference set (i.e., the number of iterations), generating thousands or even mil-
lions of random numbers that are in keeping with a tested distribution still is time-
consuming. In addition, this procedure needs to include repetitions. Even reducing 
the number of iterations by a few in order to reduce the processing time can be at the 
expense of precision. In contrast, an analytical approach is more rapid and accurate. 
The following section presents various power curves for the MC and GR with dif-
ferent sample sizes and geographical configurations, which are plotted by an alterna-
tive method that appears in Luo et al. (2017).
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5.1 � A method for calculating statistical power

The definition of statistical power states that if 1 − 𝛽MC > 1 − 𝛽GR , then the MC is 
more powerful than the GR (i.e., the MC test is more likely than the GR test to reject 
a false null hypothesis, or the MC test is more likely to obtain a significant result to 
support the existence of a spatially autocorrelated phenomenon); otherwise, the GR 
is more efficient. Luo et  al. (2017) state an alternative hypothesis, H1 , of nonzero 
SA, which results in two-tailed tests for the MC and GR. But in order to parallel pio-
neering work and make a clearer comparison, this section focuses on the one-tailed 
counterpart.6 Thus, the null hypothesis, H0 , still is no SA, but H1 becomes a hypoth-
esis of positive SA; here � is set to 0.05.

Figure 5 displays the MC and GR power curves for positive SA and various sur-
face partitionings, where the horizontal axis presents the degree of SA, and the ver-
tical axis stands for the value of statistical power. Each plot shows two sample sizes, 
5-by-5 and 9-by-9 (except for the MH with an odd Q, which has two more cells 
than the other sample sizes), where the solid red–green lines represent the MC-GR 
power curves with 25 (or 27) cells, and the dashed pink–blue lines represent the 
MC-GR power curves with 81 (or 83) units. Several conclusions can be made: (1) 
power increases with increasing sample size (which is a standard result) and the 
degree of SA; (2) for the SR, SQ, and H cases, the MC is more powerful than the 
GR; (3) for the L and CN (circle, torus rook, and torus queen) cases, the GR is 
slightly more powerful than the MC for very small sample sizes (e.g., 5-by-5), but 
this small advantage disappears with increasing sample size (e.g., 9-by-9); and, (4) 
for the MH case, the MC is more powerful. Findings (1) to (3) are consistent with 
Cliff and Ord’s (1981) summaries, whereas the MH as well as the H case is newly 
shown here. Moreover, compared with the early power curves, these Fig. 5 curves 
are smoother because they are drawn with an analytical method rather than simula-
tion experiments employing only several specific sample sizes; any size power curve 
can be plotted this way.

5.2 � A theoretical evaluation

A key step in the method outlined in Sect. 5.1 is to evaluate the relationship function 
between the MC and the GR so that their power curves can be plotted with a com-
mon measurement scale. In the preceding power analysis, SA is quantified by the 
MC, so all the GR values are replaced by their respective MC expressions. Fortu-
nately, Eq. (3) furnishes a primary form that indicates a negative correlation between 
the MC and GR. Referring to this formula, theoretical equations can be constructed. 
However, in order to construct these equations, the MC and GR values need to be 
generated. One technique is to take advantage of the matrix 

(

I −
11T

n

)

C

(

I −
11T

n

)

 , 

6  Following the steps in the mentioned paper, the statistical power of the MC is assessed by replacing all 
1.96 values with 1.645 and retaining only the right-hand side of the standardized normal curve. Mean-
while, for the GR, because positive SA is in the interval [0, 1), the one-tailed test is the left-hand side 
rather than the right-hand side of the standardized normal curve; − 1.96 should be replaced with − 1.645, 
and the positive portions removed.
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which appears in the numerator of Eq.  (1) when the MC is written using matrix 
notation, where I is the identity matrix, 1 is an n-by-1 vector of ones, and T denotes 
the matrix transpose operation. Multiplying the eigenvalues of this matrix by n

1TC1
 

furnishes the complete set of distinct MC values for a geographic landscape, with 
the extreme values establishing the minimum and maximum possible MC values (de 
Jong et al. 1984). Corresponding GR values also can be calculated with the eigen-
vectors of this matrix: using matrix notation, the numerator of Eq.  (2) may be 

Fig. 5   The MC and GR positive power curves for various geographic configurations. a The L case. b The 
CN-C case. c The SR case. d The CN-TR case. e The SQ case. f The CN-TQ case. g The H case. h The 
MH case
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written as 2
(

(C1)�������� − C
)

 (de Jong et al. 1984; Griffith 2003), where (C1)�������� 
is a diagonal matrix whose diagonal entries are row sums of connectivity matrix C . 
The resulting theoretical relationship functions appear in Luo et al. (2017).

Figure  6 portrays selected scatter plots with fitted lines (shown in red) super-
imposed on them. These plots depict the relationship between the GR (the vertical 
axis) and the MC (the horizontal axis) for regular tessellations (the SR, SQ, and H 
cases for n = 10, 000 ) and the CN case. Overall, these scatter plots have a negative 
sloping trend line, although thick line portions appear in the SR, SQ, and H scatter 
plots. All of the fitted lines evaluated by the functions that have the same form as 
Eq. (3) closely correspond to their respective scatter plots.

6 � The MC and GR versus the join count statistics

As one type of test for SA, the join count statistics (Cliff and Ord 1973) apply to 
nominal (e.g., binary 0–1) data. Three different join count statistics exist: BB, 
WW, and BW, where BB denotes a one area adjacent to a one area, WW denotes 
a zero area adjacent to a zero area, and BW denotes a one adjacent to a zero area. 
Assignment of the value one or zero to the i th areal unit depends on the presence 

Fig. 6   MC versus GR scatter plots with superimposed fitted lines. a The SR case. b The SQ case. c The 
H case. d The CN-TR case. e The CN-TQ case. f The CN-C case
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or absence of some phenomenon in that unit. If it is present, then this unit has 
xi = 1 ; otherwise, it has xi = 0.

Cliff and Ord (1973) point out the similarity of the BB and MC, and the BW 
and GR, furnish an equation relating the BB and MC in which the attribute vari-
able X also is included, and derive WW as a linear combination of BB and BW. 
Although these join count statistics are less popular today than several decades 
ago, Chun and Griffith (2013) furnish equations relating the MC and BB + WW, 
and the GR and BW for nonfree sampling (sampling without replacement):

and

where n1 is the number of areal units with one, n2 is the number areal units with 
zero, n1 and n2 are preset, and n1 + n2 = n.

On one hand, Eq. (16) confirms the similarity between the GR and BW; on the 
other hand, Eq. (15) indicates that the MC is related not only to the BB but also to 
the WW. Cliff and Ord (1973) only considered the similarity between the MC and 
BB. Because WW can be written as a linear combination of BB and BW, the MC 
finally relates to BB and BW.

Again, using the technique suggested in Sect.  5, Fig.  7 portrays selected GR 
and BW power plots of two-tailed tests for the CN-C, SR, SQ, and H cases and the 
5-by-5 and 9-by-9 sample sizes. The solid red–green lines represent 5-by-5 GR-BW 

(15)MC =
2n

S0

(

BB

n1
+

WW

n2

)

− 1,

(16)GR =
n(n − 1)

S0

BW

n1n2
,

Fig. 7   The two-tailed test power plots of the GR versus the BW. a The CN-C case. b The SR case. c The 
SQ case. d The H case
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power plots, whereas the dashed pink–blue lines represent the 9-by-9 GR-BW power 
curves. Except the CN-C case, all plots depict a power priority of the BW versus the 
GR, which is counter to Cliff and Ord’s (1973) results.

7 � Two massive spatial data examples

Two remotely sensed images are employed to verify the findings furnished in the 
previous sections. For the continuous random variables, the normalized difference 
vegetation index (NDVI) was calculated for a Landsat 7 Enhanced Thematic Mapper 
Plus (ETM +) image of the Yellow Mountain region (Anhui, China) to illustrate the 
efficiency of the MC versus the GR. To illustrate a nominal data case, pixels con-
stituting an image of the Huairou Reservoir region (Beijing, China) captured from 
Map World are classified as water or not water to calculate the join count test as well 
as to indicate weaknesses of the GR versus the MC for this measurement scale.

7.1 � A continuous random variable case

A Yellow Mountain image (Fig. 8), downloaded from the USGS Earth Explore 
website (https​://earth​explo​rer.usgs.gov/), is for October 8, 2002, and forms a 
7811-by-7051 rectangular region with n = 55, 075, 361 pixels. It includes spec-
tral bands B1–B8, with B1–B7 having 30  m spatial resolution, and B8 hav-
ing 15  m spatial resolution. Considering there are some zero spectral value 
regions black areas in Fig.  8a), and the borders are indented, a 5140-by-4754 
( n = 24, 435, 560 ) pixels sub-image (Fig. 8b) was cropped and is the study area 
across which the NDVI is calculated. Figure 8b is the zoomed-in version of the 
area demarcated by the red border in Fig. 8a.

Fig. 8   The Yellow Mountain region remotely sensed image and the subarea extracted for analysis

https://earthexplorer.usgs.gov/
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The distribution of the NDVI is shown in Fig. 9; three normal distributions 
(denoted by red, green, and blue curves) are fitted to these data as components 
of a finite mixture distribution (black dotted line curve).

Table 4 includes the MC and GR values as well as some hypothesis testing 
statistics obtained with the normality assumption for the NDVI index. By setting 
rook adjacency and constructing the binary spatial weights matrix, the values 
of the MC and the GR are 0.9294 and 0.0705, respectively, which indicate very 
strong positive SA. Meanwhile, the expected values, variances, and Z-scores 
under the null hypothesis of zero SA are listed; the extremely large Z-scores 
imply rejection of the null hypothesis. The asymptotic variances as well as their 
ratio of 0.2 (this calculated value coincides with the theoretically derived value; 
see the entry of the normal row and the SR column in Table 3) support an effi-
ciency priority for the MC versus the GR. The power values go to one because 
of the large sample size, which is 24,435,560 here.

7.2 � A binary random variable case

The Huairou Reservoir region image is captured from Map World (http://www.tiand​itu.
cn/). It was obtained in the summer of 2010 by ZY-3 and covers a 6843-by-7895 rectan-
gle area comprising n = 54, 025, 485 pixels; it is an RGB image. However, for analysis 
purposes, this image is dichotomized, with pixels being classified as being water or not 
water. Specifically, those values of pixels with no water are set to 0 ( n2 = 45, 977, 103 ; 
85.10% of the total), and those values of pixels with water are set one ( n1 = 8, 048, 382 ; 
14.90% of the total). Figure 10 portrays the original image and its binary counterpart.

Fig. 9   Normal finite mixture distribution with three components for the Yellow Mountain subregion

Table 4   Selected statistics for the NDVI of the Yellow Mountain region sub-image

Value Expected 
value

Variance Z score Asymptotic 
variance

Exact 
variance 
ratio

Asymptotic 
variance  
ratio

Power

MC 0.9294 −4.0924e−8 2.0466e−8 6496.4809 2.0466e−8 0.9999 0.2000 1
GR 0.0705 1 2.0470e−8 6496.7667 1.0232e−7 1

http://www.tianditu.cn/
http://www.tianditu.cn/
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Table  5 summarizes results for statistical hypothesis tests conducted in terms 
of the join count statistics, the MC, and the GR for this binary image. Hypothesis 
testing with the join count statistics is under nonfree sampling, whereas hypothe-
sis testing with the other two statistics is under normality; all three utilize the rook 
adjacency. Statistics in Table 5 imply the present of significant positive SA because 
the counts of BB and WW joins are larger than their respective expectations, and 
the BW join count is significantly less than its expectation, both of which confirm 
the rejection of zero SA. Meanwhile, the MC and GR values are very close to their 
extreme positive values. In addition, the asymptotic variance ratio for the MC versus 
the GR also indicates a weakness of the GR for this large sample size. As an aside, 
these quantities together with the n1 and n2 values confirm Eqs. (15) and (16). The 
large sample size of 54,025,485 produces statistical powers of one.

8 � Conclusions and discussions

In its formative years, spatial statistics restricted much of its attention to small-to-
medium datasets mostly because of computer technology constraints; more recently, 
it commonly engages large-to-massive datasets because computer technology allows 
it to. Therefore, analyses of properties of SA statistics for massive spatial data are 

Fig. 10   The Huairou Reservoir remotely sensed image and its binary counterpart

Table 5   Selected statistics for the dichotomized Huairou Reservoir image

Value Expected 
value

Variance Z score Asymptotic 
variance

Exact vari-
ance ratio

Asymptotic 
variance ratio

Power

MC 0.9969 −1.8510e−8 9.2562e−9 1.0362e+4 9.2562e−9 0.9999 0.2000 1
GR 0.0032 1 9.2574e−9 −1.0361e+4 4.6277e−8 1
BB 16,052,502 2,397,669 1,736,584 1.0362e+4 – – – 1
WW 91,895,211 78,244,764 1,739,205 1.0351e+4 – – – –
BW 88,519 27,393,799 6,947,846 −1.0359e+4 – – – 1
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necessary. This paper focuses on the efficiency and statistical power of the MC and 
the GR for massively large sample sizes and draws two main conclusions. Firstly, 
the MC is more efficient than the GR in terms of asymptotic variances, but only for 
the MPC and the MH cases when exact variances are discussed. (The MC and the 
GR can be equally efficient for other geographical configurations.) This is a finding 
that alters our understanding of the MC and the GR.

Secondly, the statistical power of these two indexes goes to one when sample 
size is large, negating some results established with small datasets. A number of 
additional findings also are important. One is that the asymptotic variance of the 
MC is more stable across, and hence less sensitive to, distributional assumptions, 
a conclusion implied by Theorems 1 to 4, because the asymptotic variance of the 
MC may be uniformly expressed by the formula introduced by Griffith (2010), 
whereas the one for the GR is determined by an underlying distribution’s kurto-
sis. The second finding is that the relative efficiency positions of the 184 empirical 
irregular surface partitioning specimens indicate that realistic geographic surface 
partitionings are between the MH and the regular SR or SQ configurations. The 
third finding is that the relationship between the MC and the GR may be expressed 
by Eq. (3), which highlights a negative correlation between these two statistics, and 
allows them to be differentiated according to attribute variable and connectivity 
features. A final finding complements results obtained by Cliff and Ord (1973): the 
MC is not more powerful than the GR for all possible geographical configuration 
types (e.g., the L and CN cases) and relatively large sample sizes. These asymptotic 
variance, efficiency, and power comparison results for large sample sizes and vari-
ous spatial structures are relevant to especially massive spatial data analyses.

In addition, a comparative power visualization technique is presented in this 
paper that produces smoother power curves for any sample size. Plots appearing 
in Fig. 5 are generated by this technique; they contain more connectivity cases 
than those presented in Luo et  al. (2017) and reveal that the MC is not more 
powerful than the GR for positive SA when the connectivity criteria are L or 
CN. Instead of obtaining the p value by ranking the test criteria with those ran-
dom sample results (Hope 1968), this technique calculates the probability and 
the power through a formal inference protocol, and its significant results can 
lead to a rejection of the null hypothesis of zero SA, whereas the significant 
results of a Monte Carlo test can only indicate no spatial randomness. Finally, 
a discussion of the join count statistics reveals that Cliff and Ord (1973) might 
have focused on BB + BW rather than only on BB when considering the simi-
larity between the MC and the join count statistics. The GR-BW power plots 
appearing in Fig. 7 reveal a surprising conclusion that the BW is more powerful 
than the GR for the SR, SQ, and H cases.

Once again, the conclusion is that the MC is preferable to the GR for a big 
spatial data analysis that always contains massive samples and has complex geo-
graphical configurations because the asymptotic variance of the former is smaller 
and more stable than that of the latter. Furthermore, the statistical power of these 
two statistics as well as the join count statistics approach one under the situation 
of big spatial data, i.e., the power advantage of any statistic existing in small sam-
ples, is lost.
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In conclusion, this paper focuses on statistical properties of two SA coefficients in 
the background of big spatial data. These statistics need to be calculated no matter 
how big a sample size is–they emphasize different features of a spatial dataset and 
furnish input for choosing a proper model specification, which is a different issue 
from the meaningless statistical significance that arises from a massive sample size. 
The discussion of SA throughout this paper is from a global perspective; a local 
perspective that may relate to spatial heteroskedasticity also is relevant sometimes. 
This spatial heteroskedasticity refers to unstable/different means, variances, and 
possibly frequency distributions across a geographical landscape. Spatially vary-
ing means can be described with regression covariates. Spatially varying variances 
can be adjusted for along the lines of Oden (1995), Waldhör (1996), and Jackson 
et  al. (2010); this is a future research topic. Griffith and Chun (2016) address yet 
another aspect of varying variance, namely the uncertainty of the SA parameter in a 
simultaneous autoregressive (SAR) model; they describe it with a beta–beta mixture 
distribution. Spatially varying frequency distributions can be assessed with diagnos-
tic statistics (one goal here is sensitivity to specification error). Spatially varying 
SA can generate an outcome of different levels of local SA [i.e., LISA; (e.g., local 
Moran’s I), whose linear combination is proportional to the global SA coefficient]. 
Consequently, one manifestation for a given geographic landscape is that many sig-
nificant LISA average to approximately zero, implying their global SA measure is 
not significant. Spatial heteroskedasticity reflects the uneven changes of geographi-
cal phenomena, changes that may be attributable to geographic diversity. Thus, spa-
tial heteroskedasticity is a symptom of an inhomogeneous geographical landscape. 
Transcending this local perspective, SA also can be discussed in terms of a model 
perspective, because the MC can express the SA parameter rho in a SAR model, for 
example, as a sigmoid function (Griffith, 2003, p. 33); this link function provides a 
connection between the MC and spatial autoregressive models that contain many 
meaningful covariates. In this context, the SA term including rho in an SAR model 
represents missing spatially structured variables, hence substituting for uninclude 
covariates. These themes constitute topics for future research.

Acknowledgements  Funding was provided by The National Key Research and Development Program of 
China (Grant No. 2017YFB0503802) and China Scholarship Council (Grant No. 201406270075).

Appendix 1: Selected eigenvalues of binary connectivity matrices 
and corresponding MC and GR values for three theoretical 
configurations

See Table 6.
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Appendix 2: A descriptive introduction of statistical power

Figure  11 shows necessary elements of a hypothesis testing procedure. Suppose 
one is testing the null hypothesis mean = 0 whose underlying distribution is stand-
ard normal, setting the significance level � to 0.05, which results in the critical val-
ues ± 1.96. Suppose the true mean value is one, which is the alternative hypothe-
sis. The two green areas are critical regions in which the null hypothesis will be 
rejected; thus, the interval [− 1.96, 1.96] is the range across which the null will not 
be rejected. Because the true mean is one, failing to reject the null commits a Type II 
error, which is the area colored blue under the alternative distribution curve (the blue 
normal curve). Therefore, the statistical power of this hypothesis testing example is 
the areas under the blue curve that are restricted to [1.96, +∞) and (−∞, −1.96].

Appendix 3: Proofs for the relationship function between the MC 
and the GR and Theorems 1 to 4

Proof 1  Substituting Eq. (1) into Eq. (3) yields

Comparing this equation to Eq. (2), the proof requires only showing the equality of 
their numerators. Considering 

(

xi − xj
)2

=
[(

xi − x̄
)

−
(

xj − x̄
)]2 , and utilizing the 

symmetry of matrix C , yields

(n − 1)
�

2
∑n

i=1

�

xi − x̄
�2
�

∑n

j=1
cij

�

− 2
∑n

i=1

∑n

j=1
cij
�

xi − x̄
��

xj − x̄
�

�

2
∑n

i=1

∑n

j=1
cij

∑n

i=1

�

xi − x̄
�2

.

Fig. 11   An example of hypothesis testing
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∴GR = Eq. (3).� □

The following are proofs for Theorems 1 to 4 (T1 to T4).

Proof of T1 

where o(1) = 1∕n is an infinitesimal over n → ∞ , S2∕S20 is a constant (it is a positive 
constant for the maximum planar connectivity case; otherwise, it converges to zero), 
and o(1∕n) = 1∕n2 is the infinitesimal of higher order than 1∕n over n → ∞.� □

n
∑

i=1

n
∑

j=1

cij
(

xi − xj
)2

=

n
∑

i=1

n
∑

j=1

cij
(

xi − x̄
)2

− 2

n
∑

i=1

n
∑

j=1

cij
(

xi − x̄
)(

xj − x̄
)

+

n
∑

i=1

n
∑

j=1

cij
(

xj − x̄
)2

= 2

n
∑

i=1

n
∑

j=1

cij
(

xi − x̄
)2

− 2

n
∑

i=1

n
∑

j=1

cij
(

xi − x̄
)(

xj − x̄
)

= 2

n
∑

i=1

(

ci1 + ci2 +⋯ + cin
)(

xi − x̄
)2

− 2

n
∑

i=1

n
∑

j=1

cij
(

xi − x̄
)(

xj − x̄
)

= 2

n
∑

i=1

(

xi − x̄
)2

(

n
∑

j=1

cij

)

− 2

n
∑

i=1

n
∑

j=1

cij
(

xi − x̄
)(

xj − x̄
)

.

lim
n→∞

VarN(MC)

= lim
n→∞

n2(n − 1)S1 − n(n − 1)S2 + 3(n − 1)S2
0
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Proof of T2 

where b2 is a constant (an index of kurtosis) whose value may vary with the assumed 
distribution, and o

(

1∕ni
)

(i = 0, 1, 2 ) are infinitesimals (of higher order) over n → ∞. 
� □

Proof of T3 

∴ lim
n→∞
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� □
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