
ORIGINAL ARTICLE

Applicability of open-source web mapping libraries
for building massive Web GIS clients

Gábor Farkas1

Received: 30 August 2016 /Accepted: 19 March 2017 / Published online: 7 April 2017

� Springer-Verlag Berlin Heidelberg 2017

Abstract The increasing capabilities of web browsers and the growing spread of

JavaScript have an impact on the development of web-based GIS systems. While in

traditional Web GIS applications the client-side component is only responsible for

creating representation models, modern geographically enabled JavaScript libraries

have extended capabilities, making them capable of doing extensive tasks, like

complex geographical analyses. This paper identifies the most capable libraries for

being the basis of a Web GIS client (Cesium, Leaflet, NASA Web World Wind,

OpenLayers 2, and OpenLayers 3) and compares them. The libraries are compared

by their GIS feature coverage and some quality metrics. OpenLayers 3 is identified

for being the most capable library by supporting nearly 60% of the examined GIS

features, its small size, and moderate learning curve. For comparing the learning

curves of JavaScript libraries, a new metric named Approximate Learning Curve for

JavaScript is proposed, which is based on other software metrics.

Keywords Approximate Learning Curve for Javascript � Client-side library �
Comparison � Massive client � Software metrics � Web GIS

JEL Classification C44 � C61 � C88

1 Introduction

The development of web mapping and Web GIS technologies is a recent trend in

geoinformatics. After one and a half decade has passed since Google revolutionized

this field with Google Maps (Farkas 2015), there are matured toolkits or libraries, and

& Gábor Farkas

randal73@gamma.ttk.pte.hu

1 Doctoral School of Earth Sciences, University of Pécs, Ifjúság street 6, Pécs 7624, Hungary

123

J Geogr Syst (2017) 19:273–295

DOI 10.1007/s10109-017-0248-z

http://orcid.org/0000-0002-9871-3556
http://crossmark.crossref.org/dialog/?doi=10.1007/s10109-017-0248-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10109-017-0248-z&domain=pdf

frameworks (Ramsey 2007) to be utilized. Contrary to the slow reaction from the open-

source segment of geoinformatics to proprietary desktop solutions like SYMAP, or

ARC/INFO (Westervelt 2004), the field of web-based GIS in the Web 2.0 era was

quickly dominated by open-source projects and initiatives (Haklay et al. 2008).

This phenomenon can be broken down to various factors. Web mapping and web-

basedGIS are a recent segment of geoinformatics. Amore important factor is the nature

of the web and web-based applications. Server-side components can be written in a

compiled language, like C; however, client-side components must be written in a

browser compliant language. Themost feasible language for that purpose is JavaScript,

although its compilation is rather an optimization process. Consequently, client-side

codes and libraries can be studied, analyzed, and reused easily (Wang and Wu 2014).

The onlyway to protect client-side source code is via obfuscating, but the result can still

be reverse-engineered by the decently experienced with appropriate tools and methods.

Due to the inability of saving browser-generated data other than images—which

is a valid security restriction—every web-based GIS software consists of a server-

side and a client-side component. There are three types of architecture based on the

weight of these components (Doyle 2000). In a thin client architecture, every

operation is done on the server, only the results are sent to the client. The thick

client architecture is the contrary. In this architecture, the client is fully responsible

for rendering raw spatial data. The medium client is the compromise architecture,

where display elements (described features, and rasters) are sent to the client, which

is only responsible for drawing them on the screen.

These architectural definitions are useful, although they are outdated, as they

only consider the rendering process (Doyle 2000). This can be resolved with a

historical perception. When they were created, rendering was a serious bottleneck.

In modern browsers, harnessing the increased capability of modern computers (e.g.,

PCs, laptops, tablets, smartphones), client-side rendering is not a problem anymore.

As follows, modern clients can be supplied with more features, like minor

geoprocessing algorithms, in brief, client geoprocessing (Hamilton 2014).

Recently, several general-purpose web-based GIS frameworks and libraries

arose, both in the open source and in the commercial segments. Although they

vastly differ, there is one thing they mostly have in common: They are built with a

thick client architecture without geoprocessing capabilities. ESRI’s ArcGIS for

Server and CARTO’s CartoDB.js are two of the most popular Web GIS

frameworks, and both of them use a robust server-side component to do every

geoprocessing task (Hamilton 2014; Esri 2015). The purpose of this study is to

analyze the most matured open-source web mapping libraries in order to determine

their applicability of being the basis of a massive client architecture.

2 Materials and methods

2.1 Massive Web GIS clients

Massive Web GIS client (hereafter, massive client) is a term proposed in this paper

for identifying web clients, which resemble a general-purpose GIS in functionality.

274 G. Farkas

123

These clients are inherently thick clients, as they must receive raw data, which they

can not only render, but also analyze. Clearly, the set of features in a general-purpose

GIS can greatly vary (Maguire 1991, 2008), and there is a hint of subjectivity in

defining the compared features of such a system. On the other hand, the fundamental

features of a basic GIS are well outlined in the ‘‘classical’’ literature (Maguire 1991;

Meaden and Chi 1996; Thrall and Thrall 1999). A client does not have to support

every feature from this study to be considered a massive client, although it must be

able to perform some sort of client-side data processing and analysis. This study

defines the massiveness of a library by collecting those fundamental features, and by

evaluating the coverage of the libraries of most popular web-based standards and

services (Wendlik et al. 2011; Brackin and Gonçalves 2014).

The main purpose of the massive client architecture is balancing both traffic and

server resources. Contrary to the thick client architecture, a Web GIS with a massive

client can be deployed on weaker servers, or can dedicate the server’s resources to

more time-consuming tasks. To highlight some of the numerous possibilities of a

massive client architecture, one can port smaller geoprocessing tasks to the client’s

computer, while the server executes operations on larger datasets, or one can

dedicate a server to only serve data, while statistical analysis (e.g., aggregating,

interpolating) is done in the client’s browser.

There is an additional benefit for a massive client architecture. Traditional GIS

software can be strongly platform-dependent as they are usually written in

programming languages which has to be recompiled between different hardware

architectures and operating systems (e.g., C, C??). On the other hand, a massive

client, which can utilize server resources besides local geoprocessing, is platform-

independent. It works in browsers; therefore, only cross-browser support has to be

achieved. If it can harness the power of desktop applications (e.g., via Web

Processing Service), only one code base has to be maintained, and the product can

be used not only on different operating systems, but also on completely different

devices (e.g., smartphones, tablets, PCs).

2.2 Identifying the candidates

In order to identify the most competent subjects for building a massive client, a few

initial criteria must be set. The study only deals with open-source libraries capable

of web mapping, from which a massive client can be built. The main factor in

rejecting proprietary applications is the general interest in having maximum control

over the final application. While there are great proprietary web mapping libraries,

their license terms can be restrictive, and they cannot be modified for better

optimization, or increased extensibility. They act as a black box in the product. On

the other hand, FOSS (free and open-source software) libraries grant the four basic

freedoms of running, studying and adapting, redistributing, and releasing improve-

ments to the public (Steiniger and Hunter 2013).

The libraries must not be abandoned, which means there should be recent (i.e.,

less, than six months) releases, or at least recent development activities in their

repositories (e.g., bug fixes). Additionally, they should offer an API (application

programming interface) for creating interactive maps. As a final criterion, they

FOSS libraries for massive Web GIS clients 275

123

should be general-purpose libraries; thus, one can integrate them into different

frameworks without modifying their source code.

Prior to this study, web mapping libraries have been already compared for

various purposes. In 2014, a big-scale comparison took 16 open-source libraries in

account along some frameworks and closed APIs. The purpose of that study was

identifying the best technologies for teaching and web mapping (Roth et al. 2014).

This study extends that list with some new, emerging libraries developed since, and

attempts to identify the best of them for building massive clients.

2.3 GIS features

As massive clients have true GIS capabilities (e.g., spatial analysis) (Thrall and

Thrall 1999), the most accurate comparison would match the libraries against the

capabilities of a desktop GIS software. However, there are no standards about the

mandatory features of a desktop GIS. Luckily, as the field developed, there were

various contributions to the definition of geographical information systems

(Maguire 1991), and thus the most characteristic features of such a system are

well outlined.

For better clarity, one can group those features based on their specificity. First,

there are non-GIS-specific features, mostly adapted from computer-aided design,

computer cartography, database management, and remote sensing systems (Maguire

1991). These features are responsible for rendering vector and raster data, creating

representation models (e.g., styling raw spatial data), adding cartographic elements,

modifying geometries interactively, and organizing features in a database (DBMS),

which can gradually enhance attribute management.

The second group consists of GIS-specific features. GIS software needs to know

how to handle geographic data and data exchange formats. Reading and writing

these formats, as well as the capability of connecting to spatial databases, are GIS-

specific features. In order to narrow down the tremendous amount of data exchange

formats, the most trending ones were selected for comparison according to a recent

study (Orlik and Orlikova 2014). Furthermore, geographic data are in coordinate

reference systems, which must be handled by a GIS. Finally, a GIS should be able to

pre-process (e.g., validate, transform, warp), manipulate, and analyze geographical

data (Meaden and Chi 1996; Albrecht 1998; Thrall and Thrall 1999).

While the two groups discussed above should cover the minimal capabilities of a

desktop GIS software, a Web GIS software should also implement some web

mapping-specific features. As spatial databases occasionally hold voluminous

amount of data (Agrawal and Gupta 2014), in some cases it is more convenient to

convert, or filter that data on the server side, and send only a simplified subset to the

client. For this purpose, several standards were proposed. These standards include

interfaces for client–server communication, from which the implementation of the

most popular ones is checked as features. These features include some of the Open

Geospatial Consortium service standards collaboratively named OGC Web Services

(Percivall 2010; Brackin and Gonçalves 2014) and some of the most popular tiling

services. These tiling services include open-source specifications from OSGeo

276 G. Farkas

123

projects (e.g., OpenStreetMap’s slippy map), as well as proprietary REST APIs

(Wendlik et al. 2011).

Although these services (e.g., WMS, WFS) are not considered as formats in the

literal sense, they behave similarly in practice. They fetch data from a source based

on some parameters provided by the user or the developer. As from the perspective

of this study there is no real difference between services and traditional formats, this

study groups services in the formats category. Following this analogy, despite

images and rasters can be grouped in a single category in a desktop GIS, in a Web

GIS they should be distinguished. The visualization of images (RGBA matrices) is

natively supported in browsers, while rasters (matrices with arbitrary values) are not

recognized by them. Finally, despite tile services and tiling schemes technically

differ, their support in a client is similar. They only differ on the server side, as tile

services usually require some kind of software to provide tiles (e.g., WMTS), while

tiling schemes describe a template on accessing tiles directly from the server’s file

system (e.g., slippy map or MapBox’s vector tiles). Due to the similarities in their

client-side implementation, tiling schemes are discussed in the tile service category.

The implementation of the final set of features (Fig. 1) is examined for the

candidate libraries. For practical reasons, the grouping scheme was altered to fit the

modularity of a Web GIS client better, although it was striven to preserve the

original grouping schemes of the literature mentioned above1. The ratings are

moving on a scale between 0 and 1. If a library natively supports a feature, it gets a

rating of 1, while if a plugin is required, or only partial support is available, a score

of 0.5 is given. If a library does not support a given feature, therefore a workaround

is required, it gets a score of 0. This way, the final rating represents a percent of

coverage at the time of the analysis. Since the required features always depend on

the purpose of a given project, no weighting has been applied to the scoring scheme.

It shall be noted, as web mapping technologies are under rapid development, this

score is rather a snapshot, than an absolute value (Roth et al. 2014).

In qualitative terms, the achieved score is inversely proportional to the necessary

work to create a fully functional GIS with a library. The full support (100%) is a

theoretical optimum, which cannot be achieved with current web technologies. If a

library achieves this score in the future, it can be used as a basic stand-alone GIS

without or with minimal server-side support. The same rule applies to groups and

categories (e.g., rendering, data manipulation). The closer a library is to the total

coverage, the less work is needed for a complete implementation of the category as

a GIS module. There are 75 examined features; thus, complete support of a single

feature increases the overall coverage by 1.3%, while partial support increases it by

0.6%.

2.4 Static software metrics

As Roth et al. (2014) have pointed out, a pure capability matrix cannot characterize

a library alone. There are other important factors, like platform dependency, test

1 Of course, the items can be restructured or modified based on other aspects until they give an overall

picture of a functional GIS.

FOSS libraries for massive Web GIS clients 277

123

coverage (stability), documentation, examples, support, or difficulty to use a library.

Some of these attributes can be quantified easily, while others can be ascertained by

coding. One of the latter attributes (difficulty) is where an empirical study is

superior; however, the included subjectiveness should not be underestimated. In

order to minimize this subjectivity, this study tries to make assumptions about the

difficulty to use a library based on some of its quality metrics (Table 1).

These simple, sometimes addressed as crude metrics, which are around for nearly

half a decade, are often derived from LOC (lines of code), McCabe’s cyclomatic

complexity, andHalstead’s software sciencemetrics (Fenton andNeil 1999). From the

LOC family, LLOC (logical LOC) seems to be the most suitable, as new lines counted

in PLOC (physical LOC) can be used for formatting, guiding the reader’s eye, or

separating sections (Nguyen et al. 2007), which creates a distortion over the number of

imperative statements. Besides LLOC and physical size, the cyclomatic complexity is

Fig. 1 Possible features of a basic Web GIS application grouped by functionality. Triangles, crosses, and
diamonds denote GIS-specific features, non-GIS-specific features, and web mapping-specific features,
respectively

278 G. Farkas

123

also calculated. McCabe’s cyclomatic number (v(G)) is a graph-theoretic complexity

measure, which looks at a code as a control flow. It decomposes a program to a graphG

by breaking it to blocks (n vertices) delimited by statements (e edges) affecting control

flow (e.g., if-else clause, for loop). It also respects the number of subroutines

encountered (p connected components) (McCabe 1976):

vðGÞ ¼ e� nþ p ð1Þ

As a final metric, the number of exposed functions is collected. These are

constructors and functions accessible from the namespace of the analyzed library.

Furthermore, as the size of the library is already accounted for by introducing the

LLOC value, the latter two metrics are normalized to be independent from the size of

the project. As cyclomatic complexity is used as a weighting factor for the overall

complexity of the project, it is normalized with the number of functions F in the given

library. On the other hand, as the user only encounters exposed functions EF, which

can be directly invoked from the namespace of the library, the number of logical lines

per exposed function seems to have the most impact on the learning curve of a project

from the perspective of users (Fowler et al. 1999). Multiplying the metrics so far

would give a greatly biased result toward the size of a library; thus, a base ten

logarithmic transform is performed on the LLOCmetric. As the new number would be

slightly biased toward the weighted average size of exposed functions, a base-two

logarithmic transform is performed on that metric. As a final result, a novel metric

named ALCJS (Approximate Learning Curve for JavaScript) is introduced, which still

only gives a rough approximation on the difficulty of learning a library:

ALCJS ¼ log10 LLOC � log2
vðGÞ
F

� LLOC

EF

� �
ð2Þ

Table 1 Summary of the considered metrics for this study

Metric Description

Feature matrix Support of basic GIS features which can act as indicators for the massiveness of the

library

Size Physical size of the production version of the library

LLOC Logical lines of code in the production version of the library

CC/F Cyclomatic complexity of the library normalized with its number of functions

Exposed

functions

Functions which can be directly invoked from the namespace of the library

ALCJS Approximate learning curve derived from static metrics

Documentation Documentation quality derived from the library’s API, tutorials, and examples

Community

support

Quality of community support derived from number of answered questions on

StackExchange forums related to the library

Contributors The number of contributors and major contributors of the library

Open issues Number of open issues and their ratio to total issues in the library’s VCS

Release

frequency

Average number of days between releases

FOSS libraries for massive Web GIS clients 279

123

There are two mathematical limits to this metric. Due to the logarithmic

transformation, the LLOC value must be greater than or equal to 1 (i.e., empty

scripts cannot be measured for zero complexity). Furthermore, only libraries can be

measured with this metric, as there must be at least one function in the measured

code to prevent dividing by zero.

The candidates are measured with a tool named complexity-report, written for

measuring JavaScript software. The values are recorded for the release version of

the libraries. The LLOC value and the per function cyclomatic number are recorded

with complexity-report, while a small script was written for obtaining the number of

exposed functions (Appendix 1). It could have been obtained in a static style (i.e.,

from the outside); however, it is more convenient to collect it with JavaScript.

2.5 Other metrics

While static software metrics have the clear advantages of exact methodology and

producing values on a ratio scale (e.g., nor LLOC, neither cyclomatic complexity

can have negative values), it is hard—if not impossible—to describe usability or

stability with them. On the other hand, those aspects of a software are also very

important in an assessment and are often described with ordinal values evaluating

documentation, community, and support among other characteristics (Ramsey 2007;

Steiniger and Bocher 2009; Poorazizi and Hunter 2015).

To assess usability, the documentation and the community support are used. The

documentation quality of a library is evaluated from the existence of an API

documentation, the number of tutorials, and the number of examples. For evaluating

the community support, the number of answered questions is aggregated from two

well-known forums: GIS Stack Exchange and Stack Overflow.

The stability metrics (Table 1) are derived from statistics of the projects’ VCS

(version control system). From the numerous metrics, the number of contributors,

the number of open issues, and the release frequency are collected. To narrow down

those numbers, an arbitrary threshold of 1 000 lines contributed is set to identify

major contributors, while for open issues, their ratio to the total number of issues is

also calculated. The release frequency RF—in order to be comparable across

finished and active projects—is calculated from the days passed between the first

release DFR and the last release DLR, and the number of releases n:

RF ¼ DLR � DFR

n� 1
ð3Þ

3 Results and discussion

3.1 Subjects of comparison

Some of the libraries (Table 2), such as ka-Map, Modest Maps, or Polymaps, were

cutting-edge technologies in their times, but their support is discontinued.

280 G. Farkas

123

OpenScales is a special library, as its development is not yet completely abandoned,

but it uses Flash, a technology whose support will not be discontinued on desktop

platforms in the near future, but is not available on mobile platforms since 2012

(Adobe 2016). Some of them like D3, Raphaël, or Processing.js allow to create

maps and other vector-based graphics, but they are graphics libraries built for

advanced data visualization, rather than web mapping (Bostock et al. 2011). This

makes them exceptionally useful and convenient for rendering various vector

graphics, like interactive charts or static maps (Roth et al. 2014), but it would need

too much work to shape them into a web mapping library (e.g., projection, layer,

interaction, format support).

Since the study only considers open-source libraries, proprietary APIs, like

Google Maps API, and ArcGIS API for JavaScript, were also sorted out. Although

some of the libraries, like CartoDB.js, Mapbox JS, and WebGL Earth2 extend their

dependencies with valuable features, they are tailored to their respective

frameworks with an adapter pattern (Shalloway and Trott 2002). OpenStreetMap’s

iD is a preliminary example how D3 can be used for web mapping; however, it is

also tailored to the OpenStreetMap ecosystem, making it a special purpose library.

The last rejected project was Mapbox GL JS. It has a great potential, as it uses

hardware acceleration via WebGL (Eriksson and Rydkvist 2015). However,

similarly to Mapbox JS, it is developed to be compliant with other Mapbox

services; thus, it is not a general-purpose library, rather a very fast vector tile

renderer.

As a result of the analysis, five candidates were chosen for further research.

Although virtual globes are built for different purposes than web mapping libraries,

Cesium (Amato and Ring 2015) and NASA Web World Wind not only have

powerful 2D rendering engines, but they also have numerous GIS-specific features,

making them appropriate for the comparison. OpenLayers 2 has a completed status;

however, it is not abandoned. Minor updates are constantly delivered to this mature

library with rich functionality. Moreover, based on OpenLayers 2’s maturity and

OpenLayers 3’s young age, it should be assessed whether OpenLayers 3 is

competent enough to completely replace its predecessor. OpenLayers 3 is the

successor of OpenLayers 2, but it is a totally different library including cutting-edge

features to meet modern demands (e.g., TopoJSON, vector tile support). Last but not

least, Leaflet is the lightweight solution for creating web mapping applications.

Contrary to its small size, it is highly capable due to its extensibility, and vast

amount of third-party extensions developed.

3.2 Competitive analysis

As the result of the competitive analysis (Table 3; Appendix 2) shows, there are no

major differences between the GIS feature support of the libraries. The OpenLayers

libraries achieved the highest scores, showing that they were built with consider-

ations to provide a basic GIS structure. Additionally, OpenLayers 3 gaining the lead

2 Whether WebGL Earth is more of a façade due to its dependence on Cesium than an adapter is

debatable.

FOSS libraries for massive Web GIS clients 281

123

T
a

b
le

2
W
el
l-
k
n
o
w
n
li
b
ra
ri
es

u
se
d
fo
r
w
eb

m
ap
p
in
g

N
am

e
V
er
si
o
n

T
y
p
e

L
ic
en
se

a
D
ep
en
d
en
cy

L
as
t
re
le
as
eb

L
as
t
ac
ti
v
it
y
b

C
la
ss
ifi
ca
ti
o
n
c

A
rc
G
IS

A
P
I
fo
r
Ja
v
aS
cr
ip
td

4
.0

W
eb

m
ap
p
in
g

C
o
m
m
er
ci
al

N
/A

\
6
m
o
n
th
s

U
n
k
n
o
w
n

P
ro
p
ri
et
ar
y

B
in
g
M
ap
s
A
JA

X
C
o
n
tr
o
ld

7
.0

W
eb

m
ap
p
in
g

C
o
m
m
er
ci
al

N
/A

[
Y
ea
r

U
n
k
n
o
w
n

P
ro
p
ri
et
ar
y

C
ar
to
D
B
.j
s

3
.1
5
.1
0

W
eb

m
ap
p
in
g

B
S
D

3
-C
la
u
se

L
ea
fl
et

\
M
o
n
th

\
M
o
n
th

S
p
ec
ifi
c
p
u
rp
o
se

C
es
iu
m

1
.2
3

V
ir
tu
al

g
lo
b
e

A
p
ac
h
e
2
.0

N
/A

\
M
o
n
th

\
W
ee
k

C
an
d
id
at
e

D
3

4
.1
.1

D
at
a
v
is
u
al
iz
at
io
n

B
S
D

3
-C
la
u
se

N
/A

\
M
o
n
th

\
W
ee
k

V
ec
to
r
g
ra
p
h
ic
s

G
o
o
g
le

M
ap
s
Ja
v
aS
cr
ip
t
A
P
Id

3
.2
4

W
eb

m
ap
p
in
g

C
o
m
m
er
ci
al

N
/A

\
6
m
o
n
th
s

U
n
k
n
o
w
n

P
ro
p
ri
et
ar
y

H
E
R
E
M
ap
s
A
P
I
fo
r
Ja
v
aS
cr
ip
td

3
.0
.1
2
.4

W
eb

m
ap
p
in
g

C
o
m
m
er
ci
al

N
/A

\
Y
ea
r

U
n
k
n
o
w
n

P
ro
p
ri
et
ar
y

k
a-
M
ap

1
.0

W
eb

m
ap
p
in
g

M
IT

N
/A

[
Y
ea
r

U
n
k
n
o
w
n

A
b
an
d
o
n
ed

K
ar
to
g
ra
p
h

0
.8
.2

W
eb

m
ap
p
in
g

G
N
U

L
G
P
L

R
ap
h
aë
l

[
Y
ea
r

[
Y
ea
r

A
b
an
d
o
n
ed

L
ea
fl
et

1
.0
.0
-r
c2

W
eb

m
ap
p
in
g

B
S
D

2
-C
la
u
se

N
/A

\
M
o
n
th

\
W
ee
k

C
an
d
id
at
e

M
ap
b
o
x
JS

d
2
.4
.0

W
eb

m
ap
p
in
g

B
S
D

3
-C
la
u
se

L
ea
fl
et

\
6
m
o
n
th
s

\
M
o
n
th

S
p
ec
ifi
c
p
u
rp
o
se

M
ap
b
o
x
G
L
JS

d
0
.2
1
.0

W
eb

m
ap
p
in
g

B
S
D

3
-C
la
u
se

N
/A

\
M
o
n
th

\
D
ay

S
p
ec
ifi
c
p
u
rp
o
se

M
ap
Q
u
er
y

0
.1

W
eb

m
ap
p
in
g

M
IT

O
p
en
L
ay
er
s
2

[
Y
ea
r

[
Y
ea
r

A
b
an
d
o
n
ed

M
ap
Q
u
es
t
Ja
v
aS
cr
ip
t
M
ap
s
A
P
Id

7
.2

W
eb

m
ap
p
in
g

C
o
m
m
er
ci
al

N
/A

[
Y
ea
r

U
n
k
n
o
w
n

P
ro
p
ri
et
ar
y

M
o
d
es
t
M
ap
s

3
.3
.6

W
eb

m
ap
p
in
g

B
S
D

N
/A

[
Y
ea
r

[
Y
ea
r

A
b
an
d
o
n
ed

N
A
S
A

W
eb

W
o
rl
d
W
in
d

0
.0
.1

V
ir
tu
al

g
lo
b
e

N
O
S
A

N
/A

[
6
m
o
n
th
s

\
W
ee
k

C
an
d
id
at
e

O
p
en
L
ay
er
s
2

2
.1
3
.1

W
eb

m
ap
p
in
g

B
S
D

2
-C
la
u
se

N
/A

[
Y
ea
r

\
W
ee
k

C
an
d
id
at
e

O
p
en
L
ay
er
s
3

3
.1
7
.1

W
eb

m
ap
p
in
g

B
S
D

2
-C
la
u
se

N
/A

\
M
o
n
th

\
W
ee
k

C
an
d
id
at
e

O
p
en
S
ca
le
s

2
.2

W
eb

m
ap
p
in
g

G
N
U

L
G
P
L

N
/A

[
Y
ea
r

\
6
m
o
n
th
s

O
th
er

O
p
en
S
tr
ee
tM

ap
iD

1
.9
.7

W
eb

m
ap
p
in
g

IS
C

D
3

\
M
o
n
th

\
D
ay

S
p
ec
ifi
c
p
u
rp
o
se

O
p
en
W
eb
G
lo
b
e

U
n
k
n
o
w
n

V
ir
tu
al

g
lo
b
e

M
IT

N
/A

N
o
re
le
as
e

\
Y
ea
r

A
b
an
d
o
n
ed

P
o
ly
m
ap
s

2
.5
.1

W
eb

m
ap
p
in
g

B
S
D

3
-C
la
u
se

N
/A

[
Y
ea
r

[
Y
ea
r

A
b
an
d
o
n
ed

P
ro
ce
ss
in
g
.j
s

1
.6
.0

D
at
a
v
is
u
al
iz
at
io
n

M
IT

N
/A

\
M
o
n
th

\
M
o
n
th

V
ec
to
r
g
ra
p
h
ic
s

R
ap
h
aë
l

2
.2
.0

D
at
a
v
is
u
al
iz
at
io
n

M
IT

N
/A

\
6
m
o
n
th
s

\
M
o
n
th

V
ec
to
r
g
ra
p
h
ic
s

282 G. Farkas

123

T
a

b
le

2
co
n
ti
n
u
ed

N
am

e
V
er
si
o
n

T
y
p
e

L
ic
en
se

a
D
ep
en
d
en
cy

L
as
t
re
le
as
eb

L
as
t
ac
ti
v
it
y
b

C
la
ss
ifi
ca
ti
o
n
c

W
eb
G
L
E
ar
th

2
.4
.2

V
ir
tu
al

g
lo
b
e

G
N
U

G
P
L
v
3

C
es
iu
m

\
M
o
n
th

\
M
o
n
th

S
p
ec
ifi
c
p
u
rp
o
se

a
E
v
er
y
Ja
v
aS
cr
ip
t
li
b
ra
ry

li
st
ed

ab
o
v
e
is
fr
ee

to
u
se
.
T
h
e
m
ai
n
p
u
rp
o
se

o
f
th
is
co
lu
m
n
is
to

d
if
fe
re
n
ti
at
e
b
et
w
ee
n
o
p
en
-
an
d
cl
o
se
d
-s
o
u
rc
e
p
ro
je
ct
s

b
C
o
m
p
ar
ed

to
th
e
d
at
e
o
f
th
e
su
rv
ey

(J
u
ly

2
8
,
2
0
1
6
)

c
If
a
li
b
ra
ry

co
u
ld

b
e
re
je
ct
ed

b
as
ed

o
n
m
u
lt
ip
le

cr
it
er
ia
,
th
e
st
ro
n
g
es
t
o
n
e
w
as

ch
o
se
n
in

th
e
fo
ll
o
w
in
g
o
rd
er
:
p
ro
p
ri
et
ar
y
,
ab
an
d
o
n
ed
,
v
ec
to
r
g
ra
p
h
ic
s,
sp
ec
ifi
c
p
u
rp
o
se
,

o
th
er

d
R
eq
u
ir
es

an
A
P
I
k
ey

FOSS libraries for massive Web GIS clients 283

123

is a clear indicator for the maturity of the library. It has reached a development

level, where it should be the obvious choice among the two, if backward

compatibility is not a criterion. The other libraries are on a similar coverage level;

however, the support of different feature groups does differ; thus, in order to gain

better insight, a more detailed analysis is presented.

For rendering tasks, the engine of Cesium is the best. It does everything but

rendering raster data. From the rest of the libraries, NASA Web World Wind and

OpenLayers 3 are prominent, as they both support hardware acceleration through

WebGL. As a downside, OpenLayers 3’s support is only partial, as it cannot render

lines, and polygons with its WebGL renderer, which is inevitable for a massive Web

GIS client.

Regarding the format handling, all of the libraries have a similar coverage. They

support an adequate number of formats, which can be broken down to specific

subgroups (Table 4). Most of their differences are in their vector handling. The

support for vector formats is outstanding in the OpenLayers libraries. They can read

and write almost every examined format. Leaflet also has a rich vector format

support, although it achieves reading from most of them via third-party extensions,

and only has the capability to write features in GeoJSON format natively, and WFS

transactions with an extension. The raster and image support of the libraries are

uniform, as they do not support any of those formats. From the specified raster

formats, GeoTiff can be processed with a third-party library, and thus drawn as a

plain image on the map canvas. Image formats do not have to be supported, as they

are supported by the browsers themselves (except from WMS, which is supported

by all of the candidates). Finally, the coverage of the most popular tile services also

differ in the libraries. Both versions of OpenLayers offer a rich support for tile

providers even beyond the scope of the analysis. The other libraries have more

limited support; however, all of them implement the most basic ones, like the slippy

map tiling scheme, or WMTS.

There are two categories in the database section (Table 5). Similarly to image and

raster formats, the libraries have a uniform support in connecting to spatially

enabled databases. This is understandable, as supporting direct connection with

server-side DBMSs is undesirable even with modern web technologies, due to the

involved risk with removing a layer of security. For example, every access

information would be exposed to attackers, who could gather sensitive data from an

incautiously configured database more easily. Features grouped in the database

functionality category have a higher variance among the candidates due to the small

number of inspected features, and their varying support, or semi-support. Although

it is a small group, implementing an internal DBMS is a key step in building a GIS

software. It has a key role in efficient information processing and querying (Revesz

2008). A good DBMS implementation can also help in concatenating the data of a

layer in an attribute table, calculating layer-wise statistics and maintaining the

consistency of the data. None of the candidate libraries have implemented an

internal DBMS; however, OpenLayers 2 offers a solution for filtering and querying

attribute data layer-wise, while Leaflet supports filtering a layer.

The data section also comprise numerous features and can be broken down to

various subgroups (Table 6). In pre-processing data, OpenLayers 3 is outstanding

284 G. Farkas

123

with its native support for spatial indexing, four-dimensional coordinates, and

geometry simplification. On the other hand, it is only capable of warping raster

layers in an on-the-fly approach, although this capability is still unique among two-

dimensional web mapping libraries. The selected virtual globes, however, have a

complete implementation of on-the-fly transformation. Conversions, similarly to

other raster-related algorithms are not supported by any of the libraries, although an

immature form of interpolation is present in some of them, which can create heat

maps from point data. In data manipulation, the web mapping libraries excel, while

Table 3 GIS feature coverage of the candidate libraries

Feature group Cesium

(%)

Leaflet

(%)

NASA WWWa

(%)

OpenLayers 2

(%)

OpenLayers 3

(%)

Rendering 80 40 60 40 60

Formats 65 62 53 82 76

Database 0 8 0 17 0

Data 32 30 18 34 44

Projection 63 50 75 63 88

Interaction 33 50 33 83 72

Representation 22 44 33 56 56

Average 41 41 34 54 56

a Web World Wind

Table 4 Format support coverage of the candidate libraries

Format Cesium (%) Leaflet (%) NASA WWWa (%) OpenLayers 2 (%) OpenLayers 3 (%)

Vector 50 60 50 90 90

Raster 17 17 17 17 17

Image 100 100 100 100 100

Tile service 67 32 50 100 83

Average 65 62 53 82 76

a Web World Wind

Table 5 Database support coverage of the candidate libraries

Database Cesium

(%)

Leaflet

(%)

NASA WWWa

(%)

OpenLayers 2

(%)

OpenLayers 3

(%)

Connection 0 0 0 0 0

Functionality 0 17 0 33 0

Average 0 8 0 17 0

a Web World Wind

FOSS libraries for massive Web GIS clients 285

123

the virtual globes fall behind, as they do not offer methods for updating geometries,

or even attribute data programmatically. Typed layers have two different

interpretations, and the classification examines both of them. The first one can be

considered a weak criterion, as all of the compared libraries use constructors to

create layers; thus, their instances can be queried via native JavaScript. However,

these queries have to be made against every layer type; thus, storing the type in the

layer object is more convenient. The second one is a stronger one, as it examines

whether vector layers can be constrained to a single geometry type, which is a very

important feature in a GIS, as there are geoprocessing tools, which can only operate

on a single type. Data analysis has a poor overall coverage, because only writing

WPS requests is natively supported, and only in OpenLayers 2. Raster-based

geoprocessing algorithms are not present in any of the libraries, while vector-based

ones are uniform, as they are provided via third-party libraries, like Turf or JSTS.

Although none of the examined web mapping libraries utilize those modules, both

Turf and JSTS offer a common format: GeoJSON. Furthermore, JSTS has an

interface for reading and writing the native data model of OpenLayers 3.

Correct projection handling is another key aspect of a GIS. In this field,

OpenLayers 3 provides the best coverage, as it can transform vector features, and

warp rasters to any projection known by the JavaScript port of the PROJ.4

projection library. OpenLayers 2 and Leaflet also have decent capabilities; however,

warping rasters is not implemented in them. Virtual globes have a natural support

for on-the-fly transformations, vector transformations, and raster warping. On the

other hand, they have a major weakness, as their projection support is limited, and

the supported projections are hard coded in their source code.

The group of interactions contains features (e.g., draw, modify, snap), which

make interacting with the application made with a library more convenient. They

are functions mapped to GUI (Graphical User Interface) elements giving feedback

to-, or taking instructions from the user, and are mostly derived from CAD systems.

OpenLayers 2 excels in these features, as it not only supports every examined

feature, but provides the richest collection of native interactions among the

candidates. The other library worth highlighting is Leaflet. Although it does not

have a native support for any of the features, the huge number of third-party

extensions make its possible capabilities even wider, than OpenLayers 2’s. From the

Table 6 Data support coverage of the candidate libraries

Data Cesium

(%)

Leaflet

(%)

NASA WWWa

(%)

OpenLayers 2

(%)

OpenLayers 3

(%)

Pre-process 50 25 25 19 63

Conversion 0 0 0 0 0

Manipulation 50 67 25 83 67

Analysis 13 19 13 25 25

Average 34 32 20 34 46

a Web World Wind

286 G. Farkas

123

other candidates, OpenLayers 3 provides a decent coverage, while virtual globes

generally lack functions, or up-to-date extensions related to drawing.

Features designated to create rich representation models (e.g., styling, thematic

maps, scale bar) are grouped in the representation group (Table 7). In this final

collection, the results indicate some of the differences between web mapping

libraries and virtual globes, and how strongly the candidates affiliate to these

concepts. Styling is equally important for both of them; however, as most of the

functions related to cartographic elements are strongly related to digital cartography

and web mapping, the greater coverage of web mapping libraries is understandable.

On the other hand, NASA Web World Wind implements an adequate number of

cartographic elements; thus, it represents the otherwise missing step from the

continuous transition between web mapping libraries and virtual globes.

3.3 Metrical results

From the candidates’ static software metrics (Table 8), the difficulty of learning a

library cannot be directly identified; however, they still grant some valuable insight

into their nature. Web mapping libraries are not necessarily smaller or more

lightweight than virtual globes. Cesium is expected to have a large ALCJS value due

to its size and capabilities; however, NASA Web World Wind’s smaller value

compared to the OpenLayers libraries can be surprising. It can be explained with the

number of features implemented into the OpenLayers libraries, and the young age of

NASA Web World Wind. Leaflet is the smallest in both size and LLOC; however,

its capabilities are also limited without extensions, and they can gradually increase

the final application’s size. Finally, OpenLayers 3 is not only more capable than its

predecessor, but it is also smaller in size. This however is not caused by a smaller

code base, but a better compression method.

In order to validate ALCJS, a function with minimal complexity (Appendix 3)

was also measured along with jQuery, a library well known for its user friendliness

and calm learning curve (Lindley 2009; Król and Szomorowa 2015). The addNums

function received a score of 0.30, while jQuery received 16.55, fulfilling the

expectations about the metric. Furthermore, the metric nicely aligns with the ratio of

positive and negative moods experienced by developers in Roth et al.’s diary study

(Fig. 2; Table 9). The only exception is Google Maps API, which indicates this

Table 7 Representation support coverage of the candidate libraries

Representation Cesium

(%)

Leaflet

(%)

NASA WWWa

(%)

OpenLayers 2

(%)

OpenLayers 3

(%)

Styling 67 67 67 67 83

Carto. e.b 0 33 17 50 42

Average 22 44 33 56 56

a Web World Wind

b Cartographic elements

FOSS libraries for massive Web GIS clients 287

123

metric can only be used for a rough approximation for the time and effort needed to

learn a library. However, there are more or less quantifiable factors (e.g.,

documentation, support, personal qualities) which contribute to the real experience.

The usability of this static metric is limited, as it only involves a small set of

easily obtainable static metrics. A better object-oriented metric for learning

difficulty could also involve the proportion of private and public constructors,

methods, constructor arguments, and coupling factors. However, obtaining those

values is more cumbersome, and the methodology of calculating such a metric is yet

to be developed. Furthermore, in theory, ALCJS applies to every object-oriented

language; however, assessing its accuracy in other languages than JavaScript should

be done prior to nominating it as a general metric.

The non-code metrics (Table 10) show a greater variance among the candidates.

As of usability metrics, all of the libraries have good API documentations, and just

enough tutorials or examples to set the developer on the right track. Furthermore,

Cesium, Leaflet, and the OpenLayers libraries give enough help to create advanced

applications, while NASA Web World Wind leaves much space for fiddling in such

situations. The community support of virtual globes is relatively small, while there

Table 8 Static software metrics of the candidate libraries

Library Size (KB) LLOC CC/Fa EF ALCJS

Cesium 11 420 292 500 2.08 911 51.27

Leaflet 162 3 639 2.00 200 18.47

NASA Web World Wind 1 452 13 037 2.50 187 30.64

OpenLayers 2 872 23 702 2.82 207 36.46

OpenLayers 3 499 21 451 2.36 223 33.90

a Cyclomatic complexity per function

Fig. 2 ALCJS compared to ratio of moods experienced by developers during a diary study (Roth et al.
2014)

288 G. Farkas

123

are much more questions related to web mapping libraries. NASA Web World Wind

does not have a dedicated label, nor related questions on the examined forums;

however, it has a dedicated place on The NASA World Wind Forum with a small

amount of questions. The usability metrics were evaluated on an ordinal scale, as

the absolute numbers should be interpreted with caution. For example, Leaflet has

the most answered questions (4 370, about 80% of active questions), OpenLayers 3

has the most tutorials (23), and OpenLayers 2 has the most examples (210). To put

those numbers in contrast, D3 has 16 697 answered questions (about 78% of active

questions) on the aforementioned forums, offers 81 tutorials, and 978 examples.

The stability metrics of the candidates show all of them are maintained by an

adequate number of developers. More popular libraries (e.g., Leaflet) have gradually

more contributors; however, most of them did only make a small amount of

contributions. On the contrary, the number of major contributors (in parentheses)

seems to be increasing with the volume and complexity of the library. From the

number of open issues in contrast to their ratio to the total number of issues (in

parentheses), it can be determined, every library has a decent support level. Most of

the libraries have or had (OpenLayers 2) monthly releases, while Leaflet produces a

new release at an average of 2 months. The release frequency of NASA Web World

Wind could not been determined, as it only has a single release.

Table 9 Order of the libraries by ALCJS (lowest first), the ratio of positive moods (highest first), and the

ratio of negative moods (lowest first) experienced in the diary study (Roth et al. 2014)

Factor First Second Third Fourth

ALCJS Leaflet D3 Google Maps API OpenLayers 2

Positive moods Leaflet Google Maps API D3 OpenLayers 2

Negative moods Leaflet Google Maps API D3 OpenLayers 2

Table 10 Other properties of the candidate libraries

Property Cesium Leaflet NASA WWWa OL 2b OL 3b

Documentationc Good Good Decent Very good Very good

Communityc Decent Very good Poor Good Good

Contributors 89 (29) 236 (8) 12 (5) 98 (16) 154 (27)

Open issues 409 (25%) 225 (7%) 40 (56%) 383 (64%) 414 (21%)

RFd (days) 28 68 N/A 32 24

a Web World Wind

b OpenLayers

c Possible values: poor, decent, good, very good

d Release frequency

FOSS libraries for massive Web GIS clients 289

123

4 Conclusions

From the great amount of geographically enabled JavaScript libraries, there are

currently five projects, which should be paid special attention to. They are Cesium,

Leaflet, NASA Web World Wind, and the OpenLayers libraries. They can be

categorized into two groups based on their specific design concepts: web mapping

libraries and virtual globes. Virtual globes have the advantage of native real 3D and

2.5D visualization, and hardware accelerated 2D rendering, while web mapping

libraries are generally better at supporting GIS features.

Although the overall GIS feature coverage of Cesium is not outstanding, this

library should not be underestimated. It is the biggest of the candidates by orders of

magnitude. As a consequence, it has the steepest learning curve, but it pays off the

invested time, if its capabilities are sufficient for the given project. Its main

disadvantage is its lack of known projections. It can use the two most widely used

projections in web mapping though: the Web Mercator and the Plate Carrée.

NASA Web World Wind could be considered as a lightweight alternative of

Cesium; however, there is one major difference, which should be taken into account

for a given project. It supports eight (mostly polar) projections including the two

supported by Cesium, and as it is a virtual globe, it has a full support for on-the-fly

transformation. If a project needs an application, which can transform vector data

correctly between global and polar projections, this is the only suitable library. On

the other hand, if a project starts out as a simple application, but expected to be more

complicated in the future, the increased learning curve due to the lack of advanced

documentation makes Cesium a better choice.

Leaflet is known for its lightweight nature, and its mild learning curve, which

was confirmed by this study. Furthermore, it has a vast number of third-party

extensions; most of them are out of the scope of the study. Its low coverage value is

mostly the consequence of giving partial scores for features supported by an

extension. If every feature supported by a dedicated Leaflet extension received a

score of 1, the library’s coverage would have risen to 55%, slightly above

OpenLayers 2’s. This library should be the preferred choice for projects, where

scalability is not among the requirements, but a capable Web GIS is needed. As a

final point, its good documentation level and very good support makes it an

excellent starting library for learning web mapping.

Among the OpenLayers libraries, OpenLayers 3 outgrew its predecessor in

almost every aspect. It offers similar capabilities, but in a more advanced form.

However, there are still a few points, where OpenLayers 2 is stronger. If supporting

legacy browsers are a criterion for the application, it can be considered along

Leaflet. It also has a good support for building queries and filters; therefore, it could

act as a stronger foundation for an application with statistical capabilities.

From the perspective of building a massive Web GIS client based on the

parameters provided by this study, there is no trivial best choice. OpenLayers 3 has

the best GIS feature coverage and a moderate learning curve. However, its limited

WebGL support should be extended prior to using it as a massive Web GIS client.

Creating 3D visualizations and analyzing multidimensional spatial data have an

290 G. Farkas

123

increasing demand, and are a native feature in many desktop GIS software.

OpenLayers 3, however, is not only incapable of creating 3D visualizations on its

own, but it also has a limited support for even drawing one-, or two-dimensional

features on a two-dimensional plane with hardware acceleration. If 3D support is a

hard criterion, Cesium could be easier to extend, although it needs at least a custom

projection handling system implemented. Leaflet could also be considered;

however, besides the lack of WebGL support, one could argue the cohesion

between modules in the other libraries is stronger than between Leaflet and its third-

party extensions.

Acknowledgements I would like to thank the numerous anonymous reviewers for their precious time

dedicated to the evaluation of this paper, their valuable comments and suggestions, which helped me

shape it in its current, enhanced form. I would also like to thank my colleague, András Hervai, for sharing

his thoughts on software metrics, which can directly affect user experience.

Appendix 1: JavaScript routine for measuring the exposed functions
of a library

FOSS libraries for massive Web GIS clients 291

123

Appendix 2: Detailed support table of the candidate libraries

Category Cesium Leaflet NASA WWWa OL 2b OL 3b

Rendering

Hardware acceleration 1 0 1 0 0.5

Render geometry 1 1 1 1 1

Render raster 0 0 0 0 0

Render image 1 1 1 1 1

Blend layers 1 0 0 0 0.5

Formats—vector

ESRI shapefile 0.5 0.5 1 0.5 0.5

KML 1 0.5 0.5 1 1

GeoJSON 1 1 1 1 1

WFS 0 0.5 0 1 1

Write transaction 0 0.5 0 1 1

Formats—raster

GeoTiff 0.5 0.5 0.5 0.5 0.5

Arc/Info ASCII GRID 0 0 0 0 0

WCS 0 0 0 0 0

Formats—image

JPEG 1 1 1 1 1

PNG 1 1 1 1 1

WMS 1 1 1 1 1

Formats—image—tile service

WMTS 1 0.5 1 1 1

TMS 1 1 0 1 0.5

Slippy map 1 1 1 1 1

Google maps 0 0.5 0 1 0.5

ArcGIS REST API 1 0.5 0 1 1

Bing maps 1 0.5 1 1 1

Database—connection

PostGIS 0 0 0 0 0

SpatiaLite 0 0 0 0 0

MySQL 0 0 0 0 0

Database—functionality

Using DBMS 0 0 0 0 0

Query/filter 0 0.5 0 1 0

Query language 0 0 0 0 0

Data—pre-process

On-the-fly transformation 1 0 1 0 0.5

Read attribute data 1 1 0 1 1

Z, and M coordinates 1 0 0.5 0 1

292 G. Farkas

123

Category Cesium Leaflet NASA WWWa OL 2b OL 3b

Geometry types 0.5 0.5 0.5 0.5 0.5

Spatial indexing 0 0 0 0 1

Geometry validation 0 0 0 0 0

Geometry simplification 0.5 0.5 0 0 1

Attribute table 0 0 0 0 0

Data—conversion

Interpolate 0 0 0 0 0

Raster to vector 0 0 0 0 0

Vector to raster 0 0 0 0 0

Data—manipulation

Update attribute data 1 1 0 1 1

Update geometry 0 1 0 1 1

Field calculator 0 0 0 0 0

Add/remove layer 1 1 1 1 1

Change layer order 1 1 0.5 1 1

Typed layers 0 0 0 1 0

Data—analysis

Basic geoprocessing 0.5 0.5 0.5 0.5 0.5

Topological analysis 0.5 0.5 0.5 0.5 0.5

Modify image 0 0 0 0 0.5

Modify raster 0 0 0 0 0

Raster algebra 0 0 0 0 0

Classification 0 0 0 0 0

Convolutionc 0 0 0 0 0

Write WPS request 0 0.5 0 1 0.5

Projection

Transform vector 1 1 1 1 1

Warp raster 1 0 1 0 1

Well-known projectionsd 0.5 0.5 0.5 0.5 0.5

Custom projections 0 0.5 0.5 1 1

Interaction

Draw features 0 0.5 0 1 1

Modify features 0 0.5 0 1 1

Snap points 0 0.5 0 1 1

Modify viewe 1 0.5 1 0.5 1

Select features 1 0.5 0.5 1 1

Query 0 0.5 0.5 0.5 0.5

Measure 0 0.5 0 1 0

Change time 1 0.5 0 0.5 0

Mouse coordinates 0 0.5 1 1 1

Representation—styling

Style vector 1 1 1 1 1

FOSS libraries for massive Web GIS clients 293

123

Category Cesium Leaflet NASA WWWa OL 2b OL 3b

Style raster 0 0 0 0 0.5

Thematic mapsf 1 1 1 1 1

Representation—Carto. e.g

Scale bar 0 1 0 1 1

North arrow 0 0 1 0 0

Legend 0 0 0 0 0

Graticule 0 0.5 0 1 1

Text box 0 0 0 0 0

Overview

map

0 0.5 0 1 0.5

a Web World Wind

b OpenLayers

c Also known as moving window (GRASS) and focal statistics (ArcGIS)

d Projections in the EPSG database

e Ability to pan, zoom, and rotate the map

f Ability to create choropleth and proportional symbol maps from vector data

g Cartographic elements

Appendix 3: Example JavaScript function

References

Adobe (2016) Adobe�roadmap for the Flash�runtimes. Technical report

Agrawal S, Gupta RD (2014) Development and comparison of open source based Web GIS frameworks

on WAMP and Apache Tomcat Web Servers. Int Arch Photogramm Remote Sens Spat Inf Sci

XL(4):1–5

Albrecht J (1998) Universal analytical GIS operations—a task-oriented systematization of data structure-

independent GIS functionality. Transatl Perspect, Geogr Inf Res, 577–591

Amato M, Ring K (2015) Getting Serious with JavaScript. In: Cozzi P (ed) WebGL insights. CRC Press,

Boca Raton, pp 49–70 chapter 4

Bostock M, Ogievetsky V, Heer J (2011) D3: data-driven documents. IEEE Trans Vis Comput Graph

17(12):2301–2309

294 G. Farkas

123

Brackin R, Gonçalves P (2014) OGC OWS context conceptual model version 1.0.0. Technical Report

12-080r2, Open Geospatial Consortium

Doyle A (2000) OpenGIS Web Map server interface implementation specification revision 1.0.0.

Technical Report 00-028, Open Geospatial Consortium

Eriksson O, Rydkvist E (2015) An in-depth analysis of dynamically rendered vector-based maps with

WebGL using Mapbox GL JS. Master’s thesis, Linköpings Universitet, Linköping, Sweden

Esri (2015). ArcGIS 10.3.1 for server functionality matrix. Technical report

Farkas G (2015) Comparison of Web Mapping Libraries for Building WebGIS Clients. Master’s thesis,

University of Pécs, Pécs, Hungary

Fenton NE, Neil M (1999) Software metrics: successes, failures and new directions. J Syst Softw

47(2–3):149–157

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: improving the design of existing

code. Addison-Wesley Professional

Haklay M, Singleton A, Parker C (2008) Web Mapping 2.0: the neogeography of the GeoWeb. Geogr

Compass 2(6):2011–2039

Hamilton EL (2014) Client-side versus server-side geoprocessing. Master’s thesis, University of

Wisconsin—Madison, Madison, WI, USA

Król K, Szomorowa L (2015) The possibilities of using chosen jQuery JavaScript components in creating

interactive maps. Geomat Landmanag Landsc 2:45–54

Lindley C (2009) jQuery Cookbook: solutions and examples for jquery developers. O’Reilly Media, Inc,

Newton

Maguire DJ (1991) An overview and definition of GIS. Geogr Inf Syst Princ Appl 1:9–20

Maguire DJ (2008) ArcGIS: general purpose GIS software system. In: Shekhar S, Xiong H (eds)

Encyclopedia of GIS. Springer, New York, pp 25–31

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng SE–2(4):308–320

Meaden GJ, Chi TD (1996) Geographical information systems applications to marine fisheries. Technical

report, Food and Agriculture Organization of the United Nations, Rome

Nguyen V, Deeds-Rubin S, Tan T, Boehm B (2007) A SLOC counting standard. Technical Report USC-

CSSE-2007-737, Center for Systems and Software Engineering

Orlik A, Orlikova L (2014) Current trends in formats and coordinate transformations of geospatial data—

based on mygeodata converter. Cent Eur J Geosci 6(3):354–362

Percivall G (2010) Progress in OGC web services interoperability development. In: Di L, Ramapriyan HK

(eds) Standard-based data and information systems for earth observation. Springer, Berlin, pp 37–61

Poorazizi ME, Hunter AJ (2015) Evaluation of web processing service frameworks. OSGEO J 14:29–42

Ramsey P (2007) The state of open source GIS. Technical report, Refractions Research Inc., Suite

300–1207 Douglas Street Victoria, BC, V8W-2E7

Revesz P (2008) Constraint databases, spatial. In: Shekhar S, Xiong H (eds) Encyclopedia of GIS.

Springer, New York, pp 157–160

Roth R, Donohue R, Sack C, Wallace T, Buckingham T (2014) A process for keeping pace with evolving

web mapping technologies. Cartogr Perspect 78:25–52

Shalloway A, Trott JR (2002) Design patterns explained a new perspective on object-oriented design.

Addison-Wesley Professional, Boston

Steiniger S, Bocher E (2009) An overview on current free and open source desktop GIS developments. Int

J Geogr Inf Sci 23:1345–1370

Steiniger S, Hunter AJ (2013) The 2012 free and open source GIS software map—a guide to facilitate

research, development, and adoption. Comput Environ Urban Syst 39:136–150

Thrall SE, Thrall GI (1999) Desktop GIS software. In: Longley PA, Goodchild MF, Maguire DJ, Rhind

DW (eds) Geographical information systems abridged. Wiley, Hoboken, pp 331–345

Wang ZY, Wu WM (2014) Technique of Javascript code obfuscation based on control flow

tansformations. Appl Mech Mater 519–520:391–394

Wendlik V, Karut I, Behr F (2011) Tiling concepts and tile indexing in internet mapping APIs. In:

Applied geoinformatics for society and environment 2011—geoinformation for a better world,

pp 116–121

Westervelt J (2004) GRASS roots. In: Proceedings of the FOSS/GRASS users conference, pp 1–10

FOSS libraries for massive Web GIS clients 295

123

	Applicability of open-source web mapping libraries for building massive Web GIS clients
	Abstract
	Introduction
	Materials and methods
	Massive Web GIS clients
	Identifying the candidates
	GIS features
	Static software metrics
	Other metrics

	Results and discussion
	Subjects of comparison
	Competitive analysis
	Metrical results

	Conclusions
	Acknowledgements
	Appendix 1: JavaScript routine for measuring the exposed functions of a library
	Appendix 2: Detailed support table of the candidate libraries
	Appendix 3: Example JavaScript function
	References

