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Abstract In this article, a novel observation-to-generalization place model is

proposed. It is shown how this model can be used to formally define the problem of

finding geographically similar places. The observation-to-generalization model dif-

ferentiates between observations of phenomena in the environment at a specific

location and time, and generalizations about places that are inferred from these

observations. A suite of operations is defined to find similar places based on the

invariance of generalized place properties, and it is demonstrated how these functions

can be applied to the problem of finding similar places based on the topics that people

write about in place descriptions. One use for similar-place search is for exploratory

research that will enable investigators to perform case–control studies on place data.

Keywords Place � Gazetteer � Similarity � Geographic information retrieval
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1 Introduction

In the first chapter of his book, Changes in the Land, William Cronon writes that as an

ecological historian he is ‘‘always faced with the problem of generalizing from a local

description to a regional landscape...’’ (Cronon 2003, p. 6). This process of

generalizing a property of a place from individual observations is a common one

found in nearly every discipline where there is need to operationalize information

about places or regions (e.g., ecology, climate science, and geopolitics). However,
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place knowledge bases, such as digital gazetteers, rarely if ever explicitly model the

distinction between individual observations of the environment and the generaliza-

tions about places that are derived from these observations. A generalization is here

defined as a property of a place, represented in a gazetteer or geographic information

system, which has been generated from a set of individual environmental observations

via an inferential mechanism. An example of a generalization is an aggregate attribute,

such as a geodemographic or an environmental quality index, associated with an

administrative region that is represented geometrically by a polygon in a geographic

information system (Montero et al. 2010; Petersen et al. 2011).

In this article, a new observation-to-place model is proposed to organize geographic

information in a manner that records the relationship between observations and

generalized properties of places. The proposed model serves as a foundation to

formally define the problem of similar-place search. Two places are similar if they are

invariant (or similar) with respect to a set of properties. An example in the climate

domain relates to two temperate places with wet winters and dry summers. Often

geographic categories are defined as sets of similar places, e.g., in the above example,

those two places are instances of class C places in Köppen climate classification

system (Peel et al. 2007). Geographic analogs are not restricted to the physical

sciences, however. For example, social scientists commonly differentiate between

countries with ‘developed’ and ‘developing’ economies based on various measures.

Likewise, laypeople will find places that are analogous based on factors.

The search for similar places is an underdeveloped issue in geographic information

science. Recently, there has been progress in developing some systems that search for

similar places for specific applications (see, e.g., JournalMap).1 However, identifi-

cation of similar places from an information science perspective is a nascent field. One

step in this direction is made by a recent dissertation on the development of a

geographic analog engine where ‘‘place-analog search [is] regarded as an application

of entity similarity measurement’’ (Banchuen 2008). Although systems such as

JournalMap and the geographic analog engine attend to the idea of finding similar

places for a given task, there is little that is systematic in how they approach the

problem of figuring out which properties are relevant for comparing places. An

inherent problem is the conflation of spatially referenced observation data and place-

based properties—a problem that also harkens back to the traditional space and place

dichotomy. A proposal is made here to more clearly model the distinction between

observations of phenomena and place properties that are generalized from these

observations. As a demonstration of this model, a suite of similar-place reasoning

functions is presented, and it is shown how these operations can be used to find similar

places based on written descriptions.

Organizing geographic information in a tiered ontology that separates geographic

data that are observations from generalized objects is a key requirement for building

geographic information systems that interoperate with human users (Frank 2001;

Couclelis 2010). Clearly, delineating the difference between observation-based data

and generalized place-based data is important not just as an ontological question. It

is important because the conflation of these two types of data is easily done when

1 http://journalmap.org/.
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geographic data (e.g., on the Linked Open Data web) about places and sensor

observations are treated as the same thing. This is a relevant problem today as we

get more and more location-based sensor data while also wanting to find patterns

and find common causes for effects seen in geographic regions. Equating location

data with place data, without describing the inference mechanism that leads from

one to the other, leads to erroneous claims about the equalities between places. This

is not a new concept in spatial analysis—the modifiable areal unit problem and other

ecological fallacies that can arise from spatially aggregated data are well studied

(Selvin 1958; Fotheringham and Wong 1991).

Thus, this model is first and foremost a practical guide for organizing data to

clarify what types of inferences we can make based on the comparison of place

properties. Furthermore, we make the claim that places can only be thought of as

similar in as much as they are invariant based on generalized properties. Otherwise,

we are led to the idiographic perspective that all places are unique. We do not claim

that it will not be useful in some cases to compare two locations based on single

observation values, but seeking evidence for hypotheses about why places are the

way they are rarely benefit from such comparisons.

The rest of this paper is organized as follows. The next section provides

background material on place and observational models. Section 3 introduces the

observation-to-generalization place model. Section 4 defines similar-place search

operation templates modeled with the observation-to-generalization model, and the

use of similar-place search for case–control studies is discussed. In Sect. 5, the

application of these functions is demonstrated with a use case, and finally, we

conclude with discussing future work.

2 Background

In this section, an overview of previous work on the representation of places in

computer systems is provided.

2.1 Computing place

Computational models of place tend to be simple when compared to the ways in

which place has been conceptualized in geography, environmental psychology, and

related disciplines. Part of the reason is simply that places are not crisp canonically

defined entities, and instead, they are vague with ill-defined spatial footprints

(Montello et al. 2003). Perhaps more important, however, is that place is an

experience-based, dynamic construct that is socially mediated, and therefore, it is

highly contextual (Tuan 1977; Relph 1976; Cresswell 2004).

A recent special issue of the journal Spatial Cognition and Computation was

dedicated to the problem of modeling place in computational systems. In the

introductory editorial of the issue, the editors state:

Modeling place involves, among other issues, finding computational models to

capture and express the meaning of a place name.... Research on computational

place modeling will have a substantial impact on several application areas, such
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as spatial recommender systems, urban planning, marketing, and on informa-

tion retrieval in general (Winter et al. 2009, pp. 1–2).

The prototypical example of a place model in information systems is the digital

gazetteer, a dictionary of named places formally defined as a set of place name,

feature type, and geographic footprint triples (Hill 2006). Each triple defines a

relation that maps a place name to a feature type and geographic footprint.

Additional relations can be defined between place names and other attributes (e.g., a

population field). Although research on digital gazetteers began as an academic

endeavor (e.g., the Alexandria Digital Library), a plethora of commercial,

governmental, and open-source digital gazetteer variants have been developed,

such as Geographic Names Information System (GNIS) from the United States

Geological Survey, OpenStreetMap, Geonames.org, Google Maps, and Bing Maps

(Hill 2006). These gazetteers are populated from authoritative data sources as well

as, more recently, volunteered information crowdsourced from a large group of

users. Keßler et al. (2009) have proposed a new generation of digital gazetteer that

takes the next step by combining formal semantics of geographic types using

description logics with user-generated content from non-authoritative sources.

Much of the work on modeling place in gazetteers has focused on the appropriate

way to represent the spatial profile of a place. This is a natural outcome of the

existing geographic information system emphasis on vector/raster representations

(Couclelis 1992). Representing the spatial footprint of places as crisp points,

polylines, and polygons has the advantage that well-defined and efficient spatial

operations can be used to query the gazetteer. Raster (and other non-vector) data

formats can be used to represent field-based attribute data and uncertain/fuzzy

regions in a gazetteer, although these data are used less often in online gazetteers

due to the added computational overhead (Goodchild et al. 1998).

While gazetteers are traditionally built from structured knowledge about places,

knowledge can also be discovered from unstructured data. This semantic enrichment

of place knowledge can be done by inferring knowledge about places from web

pages, social media, and mobile systems that refer to them (Alves et al. 2009).

Attributes of locations can be identified from examining photos tagged to a

proximate location (Leung and Newsam 2010). In line with research on place

identity and the role of social relations in the formation of place, one can use

information about the people (e.g., their user profiles in online social networks) who

visit a place to develop a model of that place (Graham and Gosling 2011). Location

context is often used as a proxy for place to personalize results in information

retrieval and recommender systems, and this location information is easily acquired

on mobile devices.

2.2 Observation and measurement models

To aid semantic enablement of geospatial services and sensor interoperability, a

number of formal models for observations and measurements have been developed

in recent years. The OGC Observations and Measurements (O & M) ISO standard

defines an observation schema when an observation is an action that results in a
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measurement value of a property of a feature of interest through a procedure.2 OGC

O & M has been formally mapped to the Descriptive Ontology for Linguistic and

Cognitive Engineering (DOLCE) upper ontology (Probst 2008; Gangemi et al.

2002). The Science Environment for Ecological Knowledge (SEEK) Extensible

Observation Ontology (OBOE) has many commonalities with OGC O & M, but it

adds a context relationship that enables modeling how observations are related to

one another (Madin et al. 2007). With the advent of the notion of human sensors

providing observation data in the form of volunteered geographic information, a

stimulus-centric approach to observation modeling has also been developed (Stasch

et al. 2009; Goodchild 2007).

3 Observation-to-generalization place model

In this section, an abstract model is defined for representing place information that

extends the standard gazetteer entry model with an observation-to-generalization

model for representing place properties (Hill 2006). A distinction is made between

generalized place attributes, assigned holistically to a place, and observed attributes

of the environment, tied to specific observation events located in space. This

distinction helps to delineate between properties of places and properties of spatially

referenced phenomena, so that geographic knowledge reasoning systems can handle

these two types of information in distinct manners. We use this distinction to help

define a set of operations for finding geographical place analogs in Sect. 4.

At minimum, a gazetteer entry will have three elements, \N; t; g [ , where N is

the name of the feature (i.e., place name or toponym), t is the type or class of the

feature in typology, and g is the spatial footprint, often represented as a point or

polygon (Hill 2006). There are several ways in which one can extend this model,

including with temporal information and linked data (Keßler et al. 2009). Here an

observation-to-generalization approach is proposed for modeling the properties of

places. The observation component of this model is similar to the Observations and

Measurements ISO standard schema for encoding observations of a feature of

interest, but in contrast to that model it differentiates between observations and

generalizations (i.e., the interpretations of the observations).

One advantage of this observation-to-generalization model for places is that it

sidesteps the objective versus subjective debate on place representation. Because

general properties of places can be linked via inferential mechanisms to observations,

including those performed by individuals, it is possible to generate heterogenous and

even individualized representations of a single place from different sets of

observation data. Implicitly, this model makes the claim that the characteristics of

places are derived from observations of the environment, which tallies with

phenomenological theories of place (Tuan 1977; Cresswell 2004). The model does

not have an explicit framing of the subjective nature of observations and

generalizations, but does preclude reification statements being asserted over the

process used to make the observations or the inference mechanism used for

generalization.

2 http://www.iso.org/iso/catalogue_detail.htm?csnumber=32574.
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3.1 Place attributes

In the observation-to-generalization place model shown in Fig. 1, a place entity is

defined by a 6-tuple: a set of toponyms, type, a set of spatial footprints, a set of

associated observations, a set of generalizations, and a set of relations to other

places. The particular choice of interplace relationships, typology of places, and

geometric representations of the spatial footprints remains unspecified in the model

to allow for different application-dependent solutions. In the latter case, it is indeed

possible to represent a ‘‘spatial’’ footprint in terms of networked relations, leading to

alternative models of place, such as contrast sets Winter and Freksa (2012).

Observations result in information entities that record properties of environmen-

tal phenomena, and generalizations describe properties of a place (Probst 2006).3

To avoid confusion, in the following text, the term attribute refers to the type of

property and property to the value assigned to the attribute. Thus, attribute value

and property are synonyms. For example, color is an attribute and red is a property
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1      exactly one

aggregation (part-of relation)
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Fig. 1 UML schematic of the observation-to-generalization place model

3 The meaning of the term ‘generalization’ here should not be confused with the meanings used in either

cartography or logic.
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or attribute value. As described in more detail below, the data structure associated

with a property need not be restricted to a scalar. That is, the attribute data structure

can be complex, e.g., an attribute space with semantically defined quality

dimensions. Using the previous example, color can be modeled as an attribute

space made up of three quality dimensions: hue, value, and saturation. The hue

attribute describes the direction on the color wheel, value characterizes the

brightness of the color, and the saturation attribute captures the degree to which the

color is pure or more ‘washed out’ (i.e., mixed with white). The color property red

can be modeled as a vector or region within that attribute space depending on the

application need.

3.2 Observed property

An observed property is the result of a measurement of the environment by a sensor,

whether it be a mechanical sensor such as a temperature gauge or a human sensor

who records a written description of a place, at a specific location and time. A

liberal reading of the term measurement is used here to involve not only observation

methods that generate signals in the form of quantitative results but also other kinds

of annotations about places as well as complex data structures. While there exist

philosophical debates about whether the observation results from ‘‘human sensors’’

should be equated with those from instrument sensors, the main purpose of the

observation-to-generalization model is to act as a practical guide for organizing

place-based geographic information systems that deal with both space- and place-

based data. It is not intended to fully address the problem of semantic

interoperability, which may require a more nuanced understanding of the ontology

of observation and measurement (Kuhn 2003; Probst 2006; Schade et al. 2012).

Examples of observations include temperature readings, ozone measurements,

crime reports, photographs, and georeferenced tweets. As in the observation and

measurement standard, multiple observations can be made of the same attribute, and

the location of the observation can have a different representation than the spatial

footprint of the feature of interest (i.e., the place).

An observation has multiple components: the observation location, time of result,

valid time period, the phenomenon being observed, the process used to produce the

result, and the result of the observation (i.e., the attribute value). In accordance with

the observation and measurement standard, an observation which has a location that

extends in one or more dimensions and varies in value along that spatial extent can

be modeled as a coverage attribute. An example of such a coverage observation is a

satellite image. An observation may have zero or more evidenceFor associations

with place generalizations if it is used as evidence in the generalization inference.

An observation can also be related to other observations. As with places, these types

of relations remain undefined in the model.

3.3 Generalized attribute values

A generalized property is a place property that is assigned to the place as a whole.

Generalized attribute values result from some kind of inferential process, such as a
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statistical inference on a sample, simulation, or algorithm, performed on place

observations or other interpreted data. In many cases, this inferential process will be

opaque, as in the case when place attributes are incorporated into the knowledge

base without any provenance information (e.g., linked data from government

sources).

The key distinction between generalized and observed attributes is that

generalizations are directly associated only with places, not with locations. These

generalized attributes are indirectly associated with locations in two manners: 1) by

the relation of the place to its spatial footprint and 2) when relations are defined

between a generalized attribute value and the observations (with locations) used to

derive it. However, spatial statistical analyses of place generalizations based on

these indirect associations to spatial location should be interpreted as more uncertain

than similar analyses on direct observation data. Although we do not focus on data

quality here, this last point is related to the issue of quality standards and error

propagation in GISs (Heuvelink 1998).

Examples of generalized attributes for a place are population counts, temperature

seasonality, and median income. A spatial footprint for a place can be a special case

of a generalized property. In most cases in gazetteers, the spatial footprints are

assigned to places independently of other attributes, but deriving the spatial

footprint from observations has been explored in the literature (Montello et al.

2003). Spatial relationships with other places can also be thought of as generalized

attributes, but they can also be directly inferred from spatial footprints, so modeling

them in this way is most likely an overkill.

A generalization is similar to an observation with the following exceptions. A

generalization is associated with one and only one place, unlike observations which

can have multiple place associations. Instead of an observation procedure, a

generalization is generated by an inference mechanism. Generalizations do not have

a location, only a place association.

Although an argument can be made to model all measured attributes as

generalized attributes due to implied inference mechanisms built into the use of

scientific instruments as well as human cognition, from a pragmatic perspective, it

seems reasonable to consider georeferenced data that come directly as output from

sensors (including human sensors) as non-generalized data [(a similar distinction is

made by Frank (2001) and Couclelis (2010)]. Both observed and generalized

attributes can be used for comparing places, but the main utility for making this

distinction in the model derives from the claim that when finding similar geographic

places, similarity based on keeping generalized attribute values invariant will be of

primary interest. For example, finding similar places by comparing individual

observations such as temperature readings at a specific times and locations is much

less useful than comparing the places based on generalized climactic variables.

Furthermore, directly comparing two sets of observation data for similarity, e.g., in

point pattern analysis, might be better characterized as a form of spatial analog

(based on spatial similarity measurements) rather than place-based geographic

analog (Gatrell et al. 1996).
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3.4 Similarity across multiple properties

There exists a wealth of heterogeneous knowledge about places that is readily

available, including structured data about population and climate, physical structure,

affordance properties, spatial relations with other places (e.g., contained inside), and

distance relationships. All of these properties become different dimensions on which

the similarity of two places can be judged. A system that enables to explore

geographic knowledge should be able to integrate these different kinds of

knowledge into a common, flexible framework.

Using the terminology from conceptual space theory, each of these attributes

constitutes a separable domain on which places can be compared (Gärdenfors 2000).

In some cases, these domains can be defined by a set of quantitative quality

dimensions, but in contrast to conceptual space theory no restriction is made here

that the structure of these domains must be represented geometrically. Rather, the

only requirement is that for each attribute domain, the similarity function takes the

form P� P! ½0; . . .; 1�, where P is the set of all property values in the domain.

This restriction that the result is a value in ½0; . . .; 1� ensures that the different

similarity measures can be combined (Janowicz et al. 2011). A similarity value of

one means maximally similar, and zero means maximally dissimilar. The similarity

function needs not be symmetric.

The similarity of two places is defined as a multiparameter weighted measure of

the similarities of different attributes. A weighted product measure is defined in

Eq. (1).

Yn

i¼1

Simið Þ
wi
n ð1Þ

where n is the number of attributes being compared, Simi is the similarity result for

the ith attribute, wi is the weight on the attribute. The product measure has the

property that if one attribute similarity is zero, then the whole product goes to zero.

A weighted sum measure is an alternative approach that does not have this property

[see Eq. (2)].

Xn

i¼1

Simið Þwi: ð2Þ

The resulting compound similarity values are only commensurable with other

similarity values given the same weighting. Therefore, there is no need to normalize

the compound value.

The weights provide a means to introduce context into the similarity judgment

(Janowicz et al. 2011). For many cases, the weights on the dimensions will be

standardized based on a theoretical model with well-defined weights on the

variables. For example, such models include socioeconomic indices, such as the

Human Development Index and the Ocean Health Index (United Nations

Development Programme 1990; Halpern et al. 2012). The weights can also

generate personalized similarity results, where the weights are highly context-
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dependent. For example, the weights can be inferred based on previous knowledge

about user preferences (Janowicz et al. 2010).

4 Operationalizing place similarity for geographic research

Place information systems that can identify potential target places which are similar

to a source would be a valuable resource for many different kinds of studies that aim

to make inferences and predictions about places via similarity reasoning. One key

aspect of similarity search is that it is context-dependent, and while the target places

should be similar with respect to a small set of properties, they will undoubtedly

differ with respect to other properties. Furthermore, it might be that those

differences can be a useful constraint in the search. For example, someone might be

interested in finding climatic analogs to Santa Barbara that differ with respect to a

specific ecological variable in order to test a hypothesis.

This example illustrates that scientists can use the idea of similar places to

identify a set of ‘‘case’’ places for use in case–control studies. A case–control study

is a retrospective study based on existing data. Case–control studies have been used

effectively by epidemiologists, most notably in showing the link between smoking

and lung cancer (Schulz and Grimes 2002). Figure 2 shows a schematic of how

case–control study design can be adopted for research on a population of places

rather than human subjects. A common type of research problem involves

hypothesizing a cause for a place property (a consequent property). Another place

property can be hypothesized to be a precursory property, i.e., its presence at an

earlier time is indicative of causal process leading to the consequent property. One

way this hypothesis can be tested is by examining two sets of other places. One set

shares the property with the source place and the other set does not. By examining

the presence or lack of the presence of the precursory property (the ‘‘exposure’’ in

Sample
of cases

Consequent
property

Precursory 
property:

yes

Precursory 
property:

no

Population
with 

consequent
property
(cases)

Sample
of controls

No 
consequent

property

Population
without

consequent
property
(controls)

Time

Precursory 
property:

yes

Precursory 
property:

no

Fig. 2 Case–control study design for place-based research, derived from Schulz and Grimes (2002)
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an epidemiological context) in the case and control places, the hypothesis can be

supported or rejected. As in epidemiology, when selecting control places, it is

important that ‘‘controls should represent the population at risk of becoming cases’’

(Schulz and Grimes 2002, p. 432). This need for representativeness in the control

places can be specified in terms of constraints on the types of places being

investigated. For example, we might limit the control places to only cities if

appropriate for the study. Rather than matching based on type, another method for

finding appropriate control places is to find places that are similar with respect to a

set of background properties but which differ in terms of the consequent property

being investigated.

In geographic research, a case–control study can be particularly efficacious

because it is based on available observation data and does not require an

investigator to obtain data for a fully randomized controlled study, which can be

difficult or even impossible for geographic-scale problems. Use of spatial analytic

techniques in epidemiological case–control studies has been successful due to

supporting tools and methods (Jacquez 2000; Bivand and Gebhardt 2000), and

place-based case–control studies hold promise given appropriate infrastructure. This

kind of data-driven scientific research has gained attraction in other domains as well

in recent years (Kell and Oliver 2004; Hey et al. 2009).

4.1 Finding similar places

In this section, a series of operations is presented for finding geographically similar

places. The problem of similar-place search is framed generally, so that it can be

applied to many types of place properties. The operations operate on a set of places

defined using the observation-to-generalization place model. The following are

some examples of the kinds of similar-place searches that this framework aims to

facilitate:4

• Places similar to Vienna based on Wikipedia text topics,

• The European analog of the Grand Canyon,

• The warm version of Dublin,

• What place best matches New York City with beaches,

• What place best matches Santa Barbara with civil war history.

The general approach for finding similar places is to specify the source place and the

set the invariant properties to get a candidate set of target places. The similar-place

search problem is defined as follows. Let X be a set of places modeled using the

observation-to-generalization place model and let s 2 X be a source place. Let AI be

the set of attributes that should have invariant values. The invariant properties

comprise a set of attributes, AI , over which the source place and each target place

should have generalization results of those attributes that are similar. The template

4 The search functions are based on place entities in a knowledge base. These examples are illustrative

shorthand. To perform natural language searches like these, one would also need to disambiguate places

with the same toponym and integrate exonyms.
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of a similar-place search operation has s and AI as parameters. Additional

parameters are added for specific sub-types of similar-place search operations.

Every operation returns a finite ordered set (in terms of a greater than similarity

relation) of target places, T ¼ ft1; t2; . . .; tng, such that T � X.

Following is a set of two general place similar-place search operations. The first

function is a weighted similarity measure based on the attributes of the places. For

the second function (of which there are two variations), the notion of a contrast

property is introduced. The idea of a contrast property is derived from the idea of

the contrast class in conceptual space theory (Gärdenfors 2000). In conceptual

spaces, it is proposed that non-monotonic property–concept combinations such as

white wine can be modeled using geometric operations on quality dimensions as

opposed to set theoretic intersection or union operations on classes defined in terms

of necessary and sufficient features. The combination white wine is non-monotonic

in the case that the wine category is defined as having a range of colors from reddish

to yellow, and therefore, the intersection of all white things with all wine things is an

empty set. Instead, using geometric structures, an instance of white wine can be

classified as falling within a modified ‘‘yellowish’’ region in the attribute space. The

basic approach is to modify the representation of the property (e.g., white) by

stretching it over the region representing the color property for wine. The notion of

contrast class was formalized in (Adams and Raubal 2009; Adams and Janowicz

2011). Herein, a contrast property takes a similar approach; however, the

implementation is more flexible given different kinds of attribute representations.

SF1: Similar places to source based on set of properties Let AI be a set of n

generalized place attributes, A ¼ fa1; a2; . . .; ang, where a1 is the first attribute and

so on. Let W be a set of weights, one for each attribute. The similarity function for

each attribute, simi, will be determined by its type. The overall similarity measure

for the places [see Eq. (3)] is a weighted combination of these similarity measures

(sim1; . . .; simn) according to the weights in W [see Eqs. (1)–(2)]. The resulting set

of target places are the top-K most similar based on this overall similarity measure.

SF1ðX; s;A;WÞ ! T ð3Þ

An example of this search function is to find the best match to New York City based

on a combination of climate and demographic variables.

SF2a: Similar places to source, modified by quantitative scalar contrast property

The goal of SF1 is to find a set of target places that are similar to a source place. In

contrast, function SF2a [see Eq. (4)] finds a set of target places that are similar

overall to the source place in terms of a set of relevant properties, but differ in terms

of a contrast property, a�. The manner in which it differs is determined by the

modifier parameter m 2 fþ; logþ;�; log�; ng. A ‘‘þ’’ or ‘‘logþ’’ modifier means

that targets are desired that have a higher value for property a�, and a ‘‘�’’ or

‘‘log�’’ modifier means that targets are desired that have a lower value for topic a�.
The log modifiers will often be preferable when the property value is on a ratio

scale. The ‘‘n’’ modifier means that the target has a dissimilar value for topic a�. Let
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y be a threshold parameter with value in ½0; . . .; 1� that is used in conjunction with

the modifier.

SF2aðX; s;A;W ; a�;m; yÞ ! T ð4Þ

As in the case of SF1, a candidate set T 0 of target places is found based on A

similarity. T 0 is then filtered to a subset T based on the given contrast property. Let

sim� be the similarity function for attribute a�. Let rs be the value of a� for the

source, and rt be the value of a� for the target.

If m is ‘‘þ’’, then let rMAX be equal to the maximum value for a� in T 0. Using this

let y0 ¼ yðrMAX � rsÞ þ rs. The target place is included in T only if rt [ rs ^ rt [ y0.

If m is ‘‘logþ’’, then these conditions are the same but rMAX, rs, and rt are log-

scaled: y0 ¼ yðlog rMAX þ log rsÞ þ log rs.

If m is ‘‘�’’, then let rMIN be equal to the minimum value for a� in T 0. Using this

let y0 ¼ rs � yðrs � rMINÞ. The target place is included in T only if rt\rs ^ rs\y0. If

m is ‘‘log�’’, then these conditions are the same but rMIN, rs, and rt are log-scaled:

y0 ¼ yðlog rMAX � log rsÞ þ log rs.

An example of this search function is to find the best match to warm Anchorage,

where warm is a contrast property defined using the ‘‘?’’ modifier for the mean

annual temperature attribute.

SF2b: Similar places to source based on description, modified by categorical

contrast property This function given by Eq. (5) is similar to SF2a, except that

the contrast property is a categorical property, such as place type or spatial relation.

Let aC be a place attribute, v a valid attribute value for aC, and m be the modifier

parameter, such that m 2 fþ;�g.

SF2bðX; s;A;W ; aC;m; vÞ ! T ð5Þ

The candidate target set, T 0, is found as in SF1. If m is ‘‘þ’’, then a target place in T 0

is only included in T if the value of aC is v. If m is ‘‘�’’, it is only included if aC is

not equal to v. Rather than a Boolean check, this function can easily be extended to

use a threshold value based on semantic similarity measurements between attribute

values (as in SF2a) (Janowicz and Wilkes 2009).

An example of this search function is to find the best match to New York City in

Europe, where in Europe is defined using the ‘?’ modifier and ‘Europe’ value for a

spatial inclusion relation.

4.2 Using similar-place search for a case–control study

The similar-place search functions described above can be applied to the task of

finding sets of case and control places for a case–control study. The ‘‘effect’’

property in a case–control study, pe, is a generalized attribute value for the attribute

ae. Thus, a set of case places are places that have the ‘‘effect’’ property (i.e., they are

invariant with respect to ae). In the case of quantitative attributes, this invariance
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can be defined in terms of being within a specified distance threshold, rather than

having an exact value, whereas for categorical attributes it is a Boolean measure.

A set of control places can be found by using pe as a negative contrast property

(see functions SF2a and SF2b) and finding a set of target places to a source place

that have the property pe. In order to reduce sampling bias, once we have candidate

sets of case and control places, we want to choose control places such that they are

most representative of the types of places in the case set. One potential approach is

to use propensity score matching, so that the distribution of baseline properties in

the control places matches the distribution of those properties in the case places

(Rosenbaum and Rubin 1983). In this way, a more representative subset of the target

places is used as control places. However, this approach will require that the

baseline properties be categorical; otherwise, an appropriate implementation of the

property matching criteria will need to be developed. Once an investigator has sets

of case and control places, then the presence or absence of the consequent property

in the case and controls can be used to support or refute the hypothesis.

5 Application to natural language observations and generalizations

In this section, we demonstrate how the similar-place search operations described in

the previous section can be applied to the case of finding similar places based on

what people write about them. Natural language descriptions represent a large

amount of the crowdsourced volunteered geographic information on the web. For

example, the English version of Wikipedia contains over 600,000 place articles each

with natural language text describing a place on the earth (Lehmann et al. 2009).

Recently, a number of text mining techniques have been developed that allow us to

operationalize these data through statistical means.

One particularly popular approach to discovering the latent topics in a corpus of

documents is the latent Dirichlet allocation (LDA) model, which is a generative

statistical model that describes the creation of a text document as a kind of random

process (Blei et al. 2003). Each word in a document is selected by first picking a

topic and then selecting a word from that topic. The data mining inference that we

make using the model is to go backward from the observed words that we see in the

corpus to the most likely topics to have generated those words. In order to do this

inference a number of techniques have been developed including expectation

maximization, variational Bayes, and Gibbs sampling Markov chain Monte Carlo

(Blei et al. 2003; Griffiths and Steyvers 2004). As LDA is modular, it is easy to

extend the model, and several extensions to LDA have been developed to

characterize the mixture of topics associated with a place (Wang et al. 2007;

Ramage et al. 2009; Eisenstein et al. 2010; Hao et al. 2010; Sizov 2010; Yin et al.

2011; Hong et al. 2012; Adams and Janowicz 2012). Figure 3 illustrates sample

topics that are automatically discovered in a corpus of 275,000 travel blog entries

(Adams and McKenzie 2013).

The operationalized knowledge about a place that is extracted using these topic

modeling approaches has the data representation of a vector in an n-dimensional

topic space. Each topic value is a probability of that topic ½0; . . .; 1�, where all the
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values sum to one. Once we identify a vector of topic probabilities for each place,

we can calculate their similarity using a variety of techniques, such as Euclidean

distance, relative entropy, and Jensen Shannon (JS) divergence. The JS divergence

is a symmetric measure of the distance between two multinomial probability

distributions, derived from the Kullback–Leibler divergence DKL (or relative

entropy measure) shown in Eq. (6). Let P and Q be discrete probability vectors over

i 2 f1; . . .; ng values (e.g., topic vectors for two places) and M ¼ 1
2
ðPþ QÞ. The JS

divergence measure is given in Eq. (7).

DKLðPjQÞ ¼
X

i

PðiÞ log
PðiÞ
QðiÞ ð6Þ

JSðPjQÞ ¼ 1

2
DKLðPjMÞ þ

1

2
DKLðQjMÞ: ð7Þ

Because the dimensions of this topic space are semantically interpretable, it means

that reasoning operations are not limited solely to similarity measurement between

places; we can use the term distributions associated with each dimension (i.e., topic)

to do automated reasoning to find real-world entities that best match novel com-

binations of terms with other places, such as London ? beach, using contrast

Fig. 3 Sample latent topics discovered from running the latent Dirichlet allocation text mining technique
on 275,000 travel blog entries. The size of each word in a topic is indicative of its relative probabilistic
weight of being generated when that topic is selected. Each document in the corpus (and in turn place) is
characterized as a probability vector over all 200 topics
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properties. Furthermore, because different text corpora generate different topic

spaces and vectorial representations of places, each corpus presents a different

domain by which the similarity of places can be judged. For example, Los Angeles

as described in travel blog entries is very different from Los Angeles as described in

Wikipedia or in historical literature.

5.1 Topic space-generalized attributes

The abstract observation-to-generalization place model does not predefine the types

of attributes associated with observations and general properties, and it is possible to

have complex-valued attributes that are represented with compound data structures,

such as vectors, records, and objects. One example of a complex attribute is a topic

space that is generated from a corpus of place descriptions using the techniques

described previously.

A georeferenced natural language document can be modeled as an observation of

a place by a human sensor. In particular, the attribute type is a textual description

with the data-type structure of a term vector. Topic modeling is one inference

mechanism for taking a set of these observations and producing a generalized

attribute value, which can be assigned to a whole place. In this case, the generalized

attribute is the place’s topic mixture with the complex data-type structure of a topic

space and result as topic vector in that space.

5.2 Thematically similar-place search operations

Using the templates defined in Sect. 4.2, we can define a set of specific similar-place

search functions based on the topics derived from LDA.

TSF1: Similar places based on descriptions from one corpus Let HI be a

singleton set containing a topic space attribute, aTS, from a set of place descriptions

[see Eq. (8)].

TSF1ðX; s; aTSÞ ! T ð8Þ

Let JS2 be the JS divergence function with base 2 logarithm, which is used because

it produces a result in ½0; . . .; 1�. The similarity function, simTS, for aTS is defined as

1� JS2. The set of target places are the top places based on simTS.

An example of this search function is to find the most similar places to Sydney,

Australia based on travel blog topics.

The exploratory potential of applying this and the subsequent functions to

discover relations between places is demonstrated by the following result. Using the

travel blog corpus described in Fig. 3 as the input data, TSF1 was tested to find the

most similar locations to Baghdad, Iraq, in terms of travel blog topics. An

unexpected result was that Potsdam, Germany, was returned as the fourth most

similar location by this measure. Although Al Asad Airbase in Iraq and Kandahar in

Afghanistan (the top two most similar places) intuitively make sense as similar

places, the high ranking of Potsdam is perhaps surprising. However, upon
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investigation of the topics in the relevant entries, it can be seen that both Potsdam

and Baghdad share topics related to war, war-related conferences (Potsdam was a

meeting point for the Allied powers soon after the end of World War II), and

palaces.

TSF2: Similar places with respect to a single topic In the previous example,

target analogs are found based on invariance with respect to a whole mixture of

topics, but the topic space attribute is itself a complex attribute made up of

individual topics. Here a function [see Eq. (9)] is described for finding places that

are similar to a source place based on invariance of one topic. Let aTS be a topic

space attribute where q denotes the qth dimension of the topic space.

TSF2ðX; s; aTS; qÞ ! T ð9Þ

Let r be the result along the qth dimension in the aTS value for a place; thus, r is the

probability that the topic will generate a particular word in a description of that

place. From this, we can define a binomial distribution r ¼ ½r; 1� r� for this place;

that is the probability of q and :q for a place. Let rs be r for the source place s and

rt be r for a candidate target place t. The similarity, simq, of s and t is defined as

1� JS2 rs; rtð Þ. The set of target analogs are the top places based on simq.

An example of this search function is to find the most similar places to Santa

Barbara with respect to ‘beaches, sand, sun’ topic.

TSF3: Similar places based on descriptions from multiple corpora Let PI be a set

containing n topic space attributes, ATS ¼ faTS
1 ; a

TS
2 ; . . .; aTS

n g, such that n [ 1. Let W

be a set of weights, one for each topic space attribute. The similarity function for

each topic space attribute is simTS ¼ 1� JS2 as above. The overall similarity

measure [see Eq. (10)] uses Eq. (1) to do a weighted combination of these similarity

measures based on the weights in W , and the set of target places are the topmost

similar based on this measure.

TSF3ðX; s;ATS;WÞ ! T ð10Þ

An example of this search function is to find the topmost similar places to Seattle in

terms of Wikipedia and travel blog entry topics.

TSF4: Similar places to source based on description, modified by contrast topic

In the previous examples, the goal was to find a set of target places that are similar

to a source place based on descriptions or other properties. This function [see

Eq. (11)] finds a set of target places that are similar overall to the source place in

topic space, but which differ in terms of a contrast topic, qCON. The manner in

which it differs is determined by the modifier parameter m 2 fþ;�; ng. A ‘‘þ’’

modifier means that targets are desired that have a higher value for topic qCON and a

‘‘�’’ modifier means that targets are desired that have a lower value for topic qCON.

The ‘‘n’’ modifier means that the target has a dissimilar value for topic qCON. Let y

be a threshold parameter ½0; . . .; 1� used in conjunction with the modifier.
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TSF4ðX; s; aTS; qCON;m; yÞ ! T ð11Þ

A candidate target set T 0 is first found using the technique in TSF1, but these results

are then filtered based on the contrast topic. Let rs, rt, rs, and rt be defined for qCON

as in function TSF2.

If m is ‘‘þ’’, then let rMAX be equal to the maximum value for qCON in T 0. Using

this, let y0 ¼ yðrMAX � rsÞ þ rs. The target place is included only if

rt [ rs ^ rt [ y0.

If m is ‘‘�’’, then let rMIN be equal to the minimum value for qCON in T 0. Using

this, let y0 ¼ rs � yðrs � rMINÞ. The target place is included only if rt\rs ^ rs\y0.
If m is ‘‘n’’, then the target place is included only if JS2ðrs; rtÞ[ y.

Examples of this search function include to find the most similar places to

Denver ? ‘beaches, sand, surf’ or Anchorage � ‘snow, cold, wind’.

6 Closing remarks

Future work will explore the efficacy of the observation-to-generalization place

model for place-based analog search engines. This includes evaluating its value for

several domains of place knowledge, using socioeconomic, environmental, and

historical data. Finding places similar to arbitrarily shaped regions on the earth is

another interesting extension to the similar-place search functions that is worth

exploring. For example, rather than finding a place similar to a named place, a user

might wish to find places similar to a region that is defined by an arbitrarily drawn

polygon. In addition, the target places might also be arbitrarily shaped regions.

Solving this problem is difficult because it would require repeated re-calculation of

generalized attribute values from observation data. Furthermore, understanding the

search space for target places of this kind is difficult because there are infinitely

many ways to subdivide the space into candidate regions.
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