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Abstract The single spatial parameter in the spatial autoregressive model affects

both the estimation of spillovers and the estimation of spatial disturbances. Con-

sequently, the spatial autoregressive model has the undesirable property that if the

degree of spatial dependence in the disturbances differs from that in the spillovers,

neither may be estimated correctly. We show theoretically that the dependence

structure for the spillovers and disturbances can differ and conduct a Monte Carlo

experiment that verifies these findings. In contrast, estimates from a simple sepa-

rable model show little bias in all the scenarios. We also show differences between

the spatial autoregressive model and the separable model on five empirical

examples.
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1 Introduction

In terms of applications, the spatial error model (autoregressive disturbances) and

the spatial autoregressive model (autoregressive regressand) have been the most
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widely used spatial econometric models. Nonetheless, both models have desirable

and undesirable features.

The spatial error model (SEM) possesses the desirable feature that incorrect

specification of spatial dependence of the disturbances does not create bias in the

estimation of the regression parameters. However, the traditional form of the SEM

does not provide any information about positive or negative spatial externalities

(spillovers). To the degree that quantifying spillovers are necessary when dealing

with spatial data and often are the objective of interest (Elhorst 2010), the inability of

the traditional form of the spatial error model to handle spillovers reduces its appeal.

In contrast, the spatial autoregressive model (SAR) natively produces estimates

of spillovers, but the one parameter in the model affects both the estimation of

spillovers and the estimation of spatial disturbances. Consequently the spatial

autoregressive model has the undesirable property that if the degree of spatial

dependence in the disturbances differs from that in the spillovers, neither may be

estimated correctly. This has implications concerning the estimated magnitude of

spillovers from the SAR model. For example, disturbances that exhibit a high

degree of spatial dependence could lead to the SAR model overestimating the

magnitude of positive or negative externalities. Cressie (1988, p. 443) in his

discussion of the spatial autoregressive model succinctly summarized this problem

as ‘‘confounding large- and small-scale effects.’’

In this manuscript, we provide a theoretical development of why spatial

dependence may differ in the spillovers and the disturbances. One mechanism

leading to such a schism is that the spatial autoregressive model DGP emerges from

the long-run equilibrium of a spatiotemporal process where the underlying

innovations at each location are the same over time (persistent). However, an

assumption of independent innovations over time leads to a different long-run

equilibrium with a different specification of the disturbances. This specification will

typically result in lower estimates of spatial dependence in the disturbances.

As another consideration, omitted variables provide a commonly used justifica-

tion for spatial dependence in the disturbances. If the omitted variable is not

correlated with included variables and the omitted variable is spatially dependent,

the disturbances will also be spatially dependent. As shown later with 2010 Census

data, many economic explanatory variables exhibit high levels of autocorrelation

with autoregressive parameter estimates between 0.85 and 0.95. If such variables

were omitted, this could lead to a higher level of spatial dependence in the

disturbances relative to those in the spillovers.

Putting the spatiotemporal development together with omitted variables leads to

a long-run equilibrium where the disturbances can show either more or less spatial

dependence than the spillovers. We conduct a Monte Carlo experiment that verifies

these findings and shows that the spatial autoregressive model can perform badly in

various scenarios where the spatial dependence in the disturbances differs from the

spatial dependence in the spillovers. In contrast, estimates of a simple separable

model (a model where E(y) and the covariance involve totally separate parameters)

show little bias in all the scenarios.

We also examine five empirical examples and show that the estimates of the

autoregressive parameter from the spatial autoregressive model can materially differ
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from the estimates of the autoregressive parameter associated with the spillovers

provided by the separable model. Specifically, in three out of the five examples, the

estimated autoregressive parameter differed materially between the SAR and

separable estimators. However, in two examples, the estimates of the parameter

governing the spillover and the estimates of the spatial dependence of the

disturbances almost matched. However, in every example, the estimated spillovers

from the separable model were less than the spatial autoregressive model. This has

implications for applied practice.

Finally, we examine some possible alternatives to using the spatial autoregressive

model. In particular, we look at the spatial Durbin error model (SDEM) as proposed

by LeSage and Pace (2009, pp. 41–42). The SDEM has the robustness of the spatial

error model to incorrect specification of the disturbances, a simple and correct

means of measuring direct effects (own partial derivatives) and indirect effects

(cross-derivatives or spillovers), as well as the ability to have direct and indirect

effects with either the same or the different signs. We also discuss the spatial Durbin

model as well as using various lag specifications such as the Koyck, matrix

exponential, Shiller, and Almon in spatial models.

In terms of the organization of the paper, in Sect. 2, we review the common

spatial autoregressive and spatial error models to help motivate a simple separable

spatial model introduced in Sect. 3 Moreover, in Sect. 3, we develop some plausible

data generating processes that yield different levels of spatial dependence in the

spillovers and disturbances. In Sect. 4, we provide Monte Carlo and empirical

evidence showing the need for separable spatial models. In Sect. 5, we set forth

alternative separable spatial specifications, and Sect. 6 summarizes some key

findings and discusses some implications of this research.

2 Conventional spatial models

A wide variety of models have been used in spatial econometrics, but the two most

commonly employed are the spatial autoregressive model (SAR) and the spatial

error model (SEM). This section briefly reviews these conventional models in Sects.

2.1 and 2.2 to set up the separable models introduced in Sect. 3.

2.1 Spatial autoregressive dependent variable model

We begin with the SAR model which has the estimation form given in (1) and the data

generating process (DGP) form given in (2) and (3). In these equations, y represents a

vector containing n observations on the regressand, X represents a matrix containing n
observations on k exogenous explanatory variables (typically a column contains a

constant vector and the other p columns contain non-constant vectors), the vector e
contains n normal iid variates, and the scalar parameter q captures spatial dependence

associated with neighboring observations as specified by the n by n spatial weight

matrix W. The spatial weight matrix W contains positive elements in Wij if observation

j affects observation i (j is a neighbor to i) and 0 otherwise. By convention, observations

do not directly affect themselves and so Wii = 0. All the elements of W are exogenous
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non-negative scalars. For simplicity, we assume that W is symmetric (Wij = Wji)

and doubly stochastic so that each row and column sum to one. In this case, W will

have all real eigenvalues with the principal eigenvalue of one. We assume, as a

sufficient condition, that q 2 ð�1; 1Þ to ensure that ðIn � qWÞ�1
exists.

y ¼ Xbþ qWyþ e ð1Þ

y ¼ ðIn � qWÞ�1Xbþ ðIn � qWÞ�1e ð2Þ

e�Nð0; r2InÞ ð3Þ
The expected value of y for the SAR model appears in (4) while the covariance of

the SAR disturbances appears in (5).

EðyÞ ¼ ðIn � qWÞ�1Xb ð4Þ

XSAR ¼ r2ðIn � qWÞ�2 ð5Þ
A feature of the SAR model is that a change in xir for any non-constant variable

r ¼ 2. . .k for any observation i ¼ 1. . .n affects all the elements of y. Specifically,

oEðyÞ
oX0r

¼ SrðWÞ ¼ ðIn � qWÞ�1br ð6Þ

The own partials are found on the diagonal of Sr(W) and the cross-partials are

found on the off-diagonals of Sr(W). The cross-partials are the marginal effect of

changing the jth observation’s value of the rth variable xjr on E(yi) for i = j. These

represent the spillovers and estimating these is of great interest in many economic

contexts (Elhorst 2010). For example, how does reducing crime at business j affect

the insurance costs for business i? If reducing crime through mitigation effects such

as security lighting and cameras for a business leads to positive spillovers, the full

benefits of such improvements may not be realized by this business and such efforts

will be underutilized relative to a scenario where a business could fully capture the

positive externalities stemming from their investments.

As another perspective on the SAR model, (4) can be rewritten as a varying

parameter model (where a is an intercept parameter and in is a n by 1 vector of ones).

As shown in (7), variables do not have a constant impact over space, but instead have

a more local interpretation (Pace and LeSage 2010). Thus, in a global model

SrðWÞ / In, but in (7) SrðWÞ / ðI � qWÞ�1
and this is not constant on the diagonal.

EðyÞ ¼ ain þ S1ðWÞX1 þ S2ðWÞX2 þ � � � þ SkðWÞXk ð7Þ
An undesirable aspect of the SAR model, however, is that E(y) in (4) is a function

of q and the covariance in (5) is also a function of q. Therefore, misspecification of

either part potentially contaminates the estimation of the other part. In other words,

estimation of E(y) and the covariances are not separable.

To see this in more detail, assume the DGP in (8) and (9) where q1 governs the

spatial dependence in the spillovers and q2 governs the spatial dependence in the

disturbances. The process in (10) leads to the estimation model in (8) and (11).

y ¼ ðIn � q1WÞ�1Xbþ ðIn � q2WÞ�1e ð8Þ
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e�Nð0; r2InÞ ð9Þ
y ¼ AXbþ q2Wyþ e ð10Þ

A ¼ ðIn � q2WÞðIn � q1WÞ�1 ¼
X1

q¼0

pqWq ð11Þ

The matrix A will only equal In and the estimation model will only be the same as

SAR when q1 is the same as q2. When q1 diverges from q2, use of the SAR

estimation model omits the various powers of Wj (q ¼ 1. . .1) implied by the series

expansion of A (where pq are the coefficients associated with the expansion) and this

misspecification leads to bias in the estimated parameters.

2.2 Spatial error model

A version of the spatial error model appears in (12) with the disturbances specified

in a more general way such that the disturbances involves a matrix function F(W, k)

of the spatial weight matrix and a scalar parameter k. The most common

autoregressive error model comes from the assumption that FðWÞ ¼ ðIn � kWÞ�1

where k is a scalar parameter in (as a sufficient condition) the interval (-1, 1). For

any specification of F(W, k), the expected value of y equals Xb as shown in (13),

y ¼ Xbþ FðW ; kÞe ð12Þ
EðyÞ ¼ Xb ð13Þ

This desirable insensitivity of the error model expectation to specification of the

error dependence continues even when F(W, k) = In, which leads to OLS. Other

examples of F(W, k) include the matrix exponential (F(W, k) = ekW) or moving

average (F(W, k) = In ? kW). Pace and LeSage (2008) used the unbiasedness of

the error model in devising a spatial Hausman test for misspecification as all error

models specifications should have similar estimates for b in the presence of a correct

specification of the regression part of the model. Statistically significant deviations

in the estimated regression parameters point to misspecification.

An aspect of the error model is that it does not natively allow for modeling of

spillovers and is a global model where a change in an explanatory variable has the

same impact at each location. In other words, the derivatives for each variable are

the same globally as shown in (14) and (15).

oyi

oxir
¼ br global ð14Þ

oyi

oxjr
¼ 0ði 6¼ jÞ no spillovers ð15Þ

3 Separable models

Is there a way to obtain the spatial autoregressive model’s spillover estimation along

with the spatial error model’s robustness to specification of the disturbances?
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An obvious generalization of the two models to obtain both spillover and

robustness properties would be to fit (16) using maximum likelihood or Bayesian

methods,

y ¼ ðIn � qWÞ�1Xbþ FðW ; kÞe ð16Þ

where k represents a scalar parameter. As long as q is not a parameter in F(W, k),

this model has separable modeling of the spillovers and the disturbances.

The simplest separable specification would be to use F(W, k) = In which would

lead to (17), a single parameter model that could be fit using non-linear least

squares.

y ¼ ðIn � qWÞ�1Xbþ e ð17Þ
If the disturbances were spatially dependent, estimation of (17) could be quite

inefficient and that by itself could lead to indeterminant inferences. However, this

might not be a factor in large sample sizes. In addition, misspecification of the error

covariance could lead to incorrect standard errors.

Naturally, other models for spatial dependence such as the autoregressive,

moving average, or matrix exponential could be used for F(W, k) and these should

show greater efficiency and less biased inference. In addition, we discuss in Sect. 5

some more elaborate separable models. However, the focus here is not on estimation

efficiency, but on the biases that can occur due to incorrect specification of the

covariance structure in non-separable models. In this regard, the simple iid error

model in (17) provides the simplest model that illustrates the benefits of separable

modeling. Since F(W, k) = In is a dramatic misspecification of the covariance

matrices in the various Monte Carlo and empirical examples, the ability of (17) to

perform well demonstrates the advantages of separable modeling.

Having introduced the idea of separable modeling, we now turn to possible

motivations of such separable models. Viewing spatial dependence in cross-

sectional data as the equilibrium of a spatiotemporal process seems the most natural

way to motivate simultaneous spatial dependence. Section 3.1 develops some

possible data generating processes that stem from a spatiotemporal perspective.

Another natural way of motivating spatial dependence in cross-sectional data

comes from the omission of variables in models. Section 3.2 introduces an omitted

variable in the spatiotemporal process and shows additional plausible DGPs.

3.1 Spatiotemporal aspects of the DGP

Simultaneous spatial dependence arises whenever for some variable location i
affects location j and vice versa. Although this could happen instantaneously, it

seems more natural to assume that the interaction between the i and j locations

happens over time. The temporal autoregressive specification is the most widely

used model in time series analysis. The spatiotemporal equivalent in (18) and (19)

allows the current value of a variable to depend on past values of the variable at its

own location as well as neighboring locations. In (18) and (19), yt represents a

vector containing n observations on the regressand at period t, X represents the

matrix containing n observations on k exogenous that are constant over time, the
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vector of innovations et contains n normal iid variates, the scalar parameter s
captures own observation time dependence, and the scalar parameter qst captures

time dependence associated with neighboring observations as specified by the n by n
spatial weight matrix W. Despite the presence of t in the subscript, the parameter qst

does not vary over time, but serves as a reminder that it is a parameter in the

spatiotemporal DGP.

yt ¼ Gyt�1 þ Xbþ et ð18Þ
G ¼ sIn þ qstW ð19Þ

Naturally, one could make this spatiotemporal DGP more flexible. For example,

X could vary over time (Xt). However, the additional complexity would not change

the fundamental point that different assumptions about the spatiotemporal process

can lead to a divergence in the forms associated with the spillovers and the

disturbances in the resulting long-run, cross-sectional equilibrium.

Recursive substitutions of lagged values of (18) (i.e., yt�1 ¼ Gyt�2 þ Xbþ et�1)

as in Elhorst (2001) as well as LeSage and Pace (2009) lead to the state of the

dynamic system after t periods in (20) and (21).

yt ¼ In þ Gþ G2 þ � � � þ Gt�1
� �

Xbþ Gty0 þ v ð20Þ

v ¼ et þ Get�1 þ G2et�2 þ � � � þ Gt�1e1 ð21Þ
If t is sufficiently far in the future to ensure convergence of the spatiotemporal

process, Gty0 & 0 and ðIn � GÞ�1 � In þ Gþ G2 þ � � � þ Gt�1. In this case, (22)

will describe the cross-sectional values at yt. To avoid tedium, we will treat the

approximation from now on as an equality. Taking the expectation of (22) yields

(23) which shows the expected value of the cross-sectional values at yt.

yt ¼ ðIn � GÞ�1Xbþ v ð22Þ

EðytÞ ¼ ðIn � GÞ�1Xb ð23Þ
Expressing (23) in terms of the original temporal parameter s and spatiotemporal

parameter qst yields (24) where the cross-sectional spatial parameter qs is defined in

(25). Equation (25) is important because it describes the relation between the spatial

dependence in the spatiotemporal process qst relative to qs, the cross-sectional

spatial dependence in the long-term equilibrium of the spatiotemporal process.

Subject to the stability restrictions, it shows that a high level of spatial dependence

in a cross-sectional sample can come from either small amounts of spatiotemporal

dependence (low qst) in the presence of strong temporal dependence (high s) or

large amounts of spatiotemporal dependence (high qst) in the presence of weak

temporal dependence (low s). This means, for example, that running a spatiotem-

poral regression and finding small qst and high s is perfectly compatible with

running a spatial cross-sectional regression and finding large levels of spatial

dependence (qs).

EðytÞ ¼ ðIn � qsWÞ�1X
b

1� s

� �
ð24Þ
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qs ¼
qst

1� s
ð25Þ

Turning attention to the distribution of the disturbances v from (21) leads to at

least two possibilities. First, suppose that the innovations were persistent or

permanent so that et ¼ e for all t. In that case, v ¼ ðIn � GÞ�1e and the disturbances

would be distributed as Nð0;XSARÞ as in (26).

XSAR ¼ Eðvv0Þ ¼ r2ðIn � GÞ�2 ð26Þ
The importance of (26) is that it provides a rationale for using the SAR model

since (22) coupled with (26) describe the DGP for the SAR model (c.f., (4)–(5)).

An alternative assumption is that the innovations et are iid over space and over

time so that EðeitejqÞ ¼ 0 as long as the subscripts it and jq are not the same. In that

case, as LeSage and Pace (2009, p. 198) show that the disturbances would be

distributed as Nð0;XiidÞ as in (26).

Xiid ¼ Eðvv0Þ ¼ r2ðIn � GÞ�1ðIn þ GÞ�1 ð27Þ
The importance of the alternative specification in (27) is that the DGP defined by

(22) coupled with (27) does not equal the SAR model and using the SAR model in

conjunction with this DGP could result in inconsistent estimates. Both are plausible,

but mutually exclusive, DGPs. Note, the cancelation of some of the spatial terms

makes Xiid less singular than XSAR.

3.2 Omitted variables and the DGP

Omitted variables constitute another mechanism that can produce spatial depen-

dence. Suppose a variable zt follows the autoregressive spatiotemporal process in

(28) and (29) where d is the level of temporal dependence and /st is the level of

spatiotemporal dependence. Also, suppose that s in (28), which is persistent or

permanent, is independent of et.
1 Following repeated recursive substitutions and

simplifications yields (30).

zt ¼ Hzt�1 þ s ð28Þ
H ¼ dIn þ /stW ð29Þ

zt ¼ ðIn � HÞ�1s ð30Þ
This leads to a spatial equilibrium for E(zt) in (31) and (32).

EðztÞ ¼ ðIn � /sWÞ�1s
b

1� d

� �
ð31Þ

/s ¼
/st

1� d
ð32Þ

What are levels of /s found for typical explanatory variables? Fitting a SAR

model with an intercept, but no other regressors to some common explanatory

1 To maintain simplicity, we keep s as permanent and do not explore letting s be independent over time

and space as that would create more scenarios to examine. However, this could certainly be done.
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variables at the tract and block group geography out of the 2010 Census for

Louisiana yields the results shown in Table 1.2

Table 1 documents that many explanatory variables manifest high levels of

spatial dependence (/s between 0.85 and 0.95). Consequently, missing variables

could display high levels of dependence as well.

Given some idea of the magnitude of spatial dependence for zt from Table 1,

suppose that zt is truly part of the DGP for yt as shown in (33),

yt ¼ Gyt�1 þ Xbþ zt þ et ð33Þ

where (33) is an extension of (18) and (19).

Recursive substitutions of lagged values of (33) (i.e., yt�1 ¼ Gyt�2þ
Xbþ zt�1 þ et�1) lead to the state of the dynamic system after t periods in (34),

(35), and (36).

yt ¼ In þ Gþ G2 þ � � � þ Gt�1
� �

Xbþ Gty0 þ uþ v ð34Þ

u ¼ zt þ Gzt�1 þ G2zt�2 þ � � � þ Gt�1z1 ð35Þ

v ¼ et þ Get�1 þ G2et�2 þ � � � þ Gt�1e1 ð36Þ

Since u and v are independent of each other, Eððuþ vÞðuþ vÞ0Þ ¼
Eðuu0Þ þ Eðvv0Þ. Previously, (26) and (27) gave the form for E(vv0) for the case

of persistent and iid disturbances over time and E(uu0) appears in (37),

Eðuu0Þ ¼ r2
z ðIn � GÞ�2ðIn � HÞ�2 ð37Þ

where the order of H and G does not matter here since both are functions of the

same symmetric W. The scalar constant rz
2 is the variance of s from (28). Note, the

covariance matrix for the disturbance term related to the omitted variable is more

singular or spatially dependent than the covariance matrix for the disturbance term

related to the other sources of error. This happens since the omitted variable term

combines omitting a spatially dependent variable, and this is further amplified by

the usual mechanism caused by a lagged dependent variable. This suggests that

disturbance terms could have an even more complicated spatial structure than

spillovers.

Table 1 Spatial autocorrelation

of selected variables from

census 2010

Variable Census tract Block group

White 0.919 0.946

Black (%) 0.910 0.943

Hispanic (%) 0.894 0.902

Age 18? 0.872 0.865

Land 0.953 0.950

Occupied unit (%) 0.906 0.916

n 1,112 3,360

2 We used Louisiana because it is one of the first states with data releases in the 2010 Census and because

more effort than normal was spent in data collection due to concerns about population loss after Katrina.
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Therefore, the overall disturbances follow either a Nð0;XoSARÞ or Nð0;XoiidÞ
distribution,

XoSAR ¼ r2ðIn � GÞ�2 þ r2
z ðIn � GÞ�2ðIn � HÞ�2 ð38Þ

Xoiid ¼ r2ðIn � GÞ�1ðIn þ GÞ�1 þ r2
z ðIn � GÞ�2ðIn � HÞ�2 ð39Þ

and E(y) is still given by (23).

In other words, whether a spatiotemporal DGP involves iid innovations

(innovations over space and time) or permanent innovations (innovations over

space, but not time) and various levels of omitted variables that are independent of

included variables, the resulting DGP can have SAR type spillovers in the mean as

given by (23) and disturbances that materially differ.

Various components of, for example, XoSAR display lesser or greater singularity.

Although one could define singularity in various ways, the norm of the variance–

covariance matrix provides one measure of singularity. Specifically, a large norm

would indicate a more singular variance–covariance matrix. In terms of norms, the

maximum absolute row sum norm of the variance–covariance matrix is a convenient

method when using a row-stochastic W. For example, this norm for r2ðIn � GÞ�2
is

r2ðIn � s� qstÞ�2
. If s ? qst approach one, this norm becomes quite large.

Similarly, the norm associated with r2
z ðIn � GÞ�2ðIn � HÞ�2

is r2
z ðIn � s� qstÞ

�2

ðIn � d� /stÞ�2
. The part affected by r2 displays less singularity than the part

affected by rz
2. Therefore, the overall singularity the various variance–covariance

matrices will likely depend on the relative magnitudes of r2 and rz
2.

Note, one could imagine that a number of omitted variables exist for any given

problem and that these omitted variables may take on various magnitudes and levels

of spatial dependence. Aggregation of such random variables could lead to a long

memory process such as discussed by LeSage and Pace (2009) in conjunction with

their fractional differencing estimator.

4 Monte Carlo and empirical support for separable specifications

Section 4.1 examines the effects of these various DGPs on the SAR and separable

estimators via a Monte Carlo experiment while Sect. 4.2 estimates separable and

conventional SAR models for five models that use different data and/or specifi-

cations and shows that in some situations the separable specification provides

materially different results than the conventional models.

4.1 Monte Carlo performance

To obtain some idea of the performance of the separable estimator (17) versus the

SAR estimator, we ran a simple Monte Carlo experiment. We generated yt using

(33) with assumptions on the various parameter values. Specifically, we set

qst = 0.6, s = 0.25, d = 0, and /s = 0.9. The level of /s = 0.9 is motivated by

Table 1. This meant that the equilibrium cross-sectional spatial dependence
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qs = 0.6/(1 - 0.25) = 0.8. The equilibrium spatial dependence for zt was 0.9. The

explanatory variable matrix X had two columns. The first column was a constant

and the second was an iid random uniform and each had a b = 1. The symmetric,

doubly stochastic spatial weight matrix was based on contiguity. We simulated 500

periods each with 1,000,000 observations. Given the large sample size of 1,000,000

observations, the reported results are from one draw for each case. However, we

repeated the experiment several times and found little variation in these results.

The large number of periods guaranteed convergence (for these parameter values)

and the large number of observations per cross-section reduce the effects of

efficiency on estimation so that this exercise focuses on the demonstration of bias.

In terms of the simulation, we looked at eight scenarios differing by the level of

noise in e (re), the importance of the omitted variable rz, and whether disturbances

over time were permanent (the same over time) or whether these were iid over time

(iid).

We estimated the cross-sectional models using the separable approach (qSEP) in

(40) and the SAR model (qSAR) in (41). For the SAR model, we employed the

traditional maximum likelihood procedure. For the separable approach, we fit (40)

using non-linear least squares so that the estimate q̂SEP was the value of qSEP that

minimized the sum-of-squared residuals. Note, y is not transformed in the separable

approach, and this avoids the need for a determinant term.

y ¼ ðIn � qSEPWÞ�1Xbþ eSEP ð40Þ
y ¼ qSARWyþ Xbþ eSAR ð41Þ

Table 2 shows the results of the experiment. In cases where the DGP was correct

(cases 5 and 7), the SAR estimator returned 0.800 and 0.800 (true value 0.8).

However, for some of the other scenarios, the SAR estimator performed poorly.

Specifically, for cases 2 and 6 which had a large omitted variable component, the

SAR estimator returned estimates of 0.976. On the other hand, for the iid errors with

a large standard deviation (without the omitted variable), the SAR estimate of 0.391

was very low.

In contrast the separable estimator performed well in terms of estimating q with a

maximum deviation of -0.006 across all eight cases, even without any modeling of

the spatial disturbances (variance–covariance matrix of r2In).

The problem for the SAR estimator is that it leans on correct specification of the

disturbances to arrive at its estimates of dependence for both spillovers and

disturbances and when this is misspecified, it can perform poorly. All else equal, iid
disturbances over time have less singular spatial dependence than those from

temporally persistent disturbances, and this tends to lead the SAR estimator to

underestimate q. On the other hand, the high spatial dependence in the omitted

variable leads the SAR model to overestimate q. Combining iid disturbances and

omitted variables means that the SAR model has the potential for biases of unknown

direction.
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4.2 Empirical examples

To see whether any difference exists between the estimated spillover parameter qSEP

from the separable model in (17) and the dependence parameter in the SAR model

qSAR, we estimated five models that use different data and/or specifications. First,

we estimated the election model in Pace and Barry (1997) which uses 3,107 county

level observations on voter participation as a function of number of voters,

education, homeownership, and income. Second, we estimated tract level housing

prices (n = 62,226) in year 2000 as a function of 1990 house age, number of

households, median income, median years of education, and tract size. Third, we

estimated the same housing model augmented with the level of house prices in

1990. Fourth, we estimated median incomes in year 2000 as a function of 1990

number of households, median years of education, and tract size. Fifth, we estimated

the same income model augmented with the level of median incomes in 1990. All

the variables were logged.

Table 3 shows the results from estimating the separable and the SAR model. In

all five cases, the separable parameter estimate qSEP was less than the parameter

estimate of the SAR model qSAR. Specifically, in three out of the five examples

(election and housing examples), the separable parameter estimate qSEP was

materially less than the parameter estimate of the SAR model qSAR. However, for

the two income examples, the estimated parameters were similar in magnitude.

Therefore, use of a separable model has the potential to make a difference in

empirical work.

Table 2 Performance of the

separable and SAR estimators
re rz q̂SEP ~qSAR

iid 0.1000 0.0000 0.8000 0.7720

iid 0.1000 0.1000 0.7970 0.9760

iid 1.0000 0.0000 0.8010 0.3910

iid 1.0000 0.1000 0.7940 0.6530

Persistent 0.1000 0.0000 0.8000 0.8000

Persistent 0.1000 0.1000 0.7970 0.9760

Persistent 1.0000 0.0000 0.8030 0.8000

Persistent 1.0000 0.1000 0.8000 0.8350

Table 3 Separable and SAR

estimates on empirical data
Empirical

example

q̂SEP ~qSAR

Election 1 0.18 0.53

Housing sans temporal lag 2 0.66 0.78

Housing with temporal lag 3 0.31 0.54

Income sans temporal lag 4 0.75 0.78

Income with temporal lag 5 0.32 0.36
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5 Alternative separable specifications

Although it is possible to use the separable estimator introduced earlier in (17), this

estimator suffers from low efficiency in the presence of spatially dependent

disturbances. Like the SAR model, it suffers from an implicit restriction that the

direct effects (own partials) have the same signs as the indirect effects (cross-

partials). This is an undesirable feature of the SAR model (Elhorst 2010). Also, it

requires some care in the interpretation of the estimates as the b parameters are

often incorrectly treated like those from OLS by many applied researchers (LeSage

and Pace (2009).

For these reasons, the Spatial Durbin Error Model (SDEM), introduced by

LeSage and Pace (2009, pp. 41–42), provides a simpler and more useful estimator

that has separable spillover and disturbance modeling. The DGP for the SDEM

appears in (42) and (43) while (44) provides a form suitable for estimation.

y ¼ inaþ XbþWXhþ ðIn � kWÞ�1e ð42Þ

e�Nð0; r2InÞ ð43Þ
ðIn � kWÞy ¼ ina

� þ ðIn � kWÞ XbþWXh½ � þ e ð44Þ
In (42), a and a* are intercept parameters, in is an n element column vector of

ones, k is the separable dependence parameter governing the spatial dependence

among disturbances, and X contains only non-constant variables. The expected

value of y appears in (45) and the covariance matrix of the disturbances XSDEM

appears in (46).

EðyÞ ¼ inaþ XbþWXh ð45Þ

XSDEM ¼ r2ðIn � kWÞ�2 ð46Þ
The SDEM has the very attractive property that b measures the direct effect and h

measures the indirect effect of a change in Xr for r ¼ 1. . .p (where p is the number

of non-constant columns in X) as shown in (47) and (48). Also, br and hr can have

the same or differing signs (unlike the SAR model). In fact, the SAR model not only

has indirect effects that are the same signs as the direct effects, but the magnitude of

the indirect effects to the direct effects are always a constant ratio across variables

(SrðWÞ / ðIn � qWÞ�1
). The SDEM does not share this inflexibility. However, the

SDEM is a global model and does not have the varying parameter interpretation of

the SAR model.

oEðyiÞ
oxir

¼ br ð47Þ

oEðyiÞ
oxjr

¼ Wijhr ði 6¼ jÞ ð48Þ

Estimation of the SDEM can proceed using the usual error model routines by

maximum likelihood or Bayesian methods. Of course, it also has the attractive

separable property and so mistakes in specification of the disturbances do not create

bias in the estimation of the direct effect and indirect effect (spillovers). Naturally,
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mistakes in the specification of the disturbances lower the efficiency of the estimator

and create potential bias in the standard errors. However, with larger sample sizes

neither of these drawbacks is as important as reducing bias in the estimation of the

regression parameters b and h.

Another possibility is to use the spatial Durbin model (SDM) where (49) and (50)

define the data generating process, (51) is the expectation of the DGP, and (52)

defines an estimation form.

y ¼ inaþ ðIn � qWÞ�1 XbþWXh½ � þ ðIn � qWÞ�1e ð49Þ

e�Nð0; r2InÞ ð50Þ

EðyÞ ¼ inaþ ðIn � qWÞ�1 XbþWXh½ � ð51Þ
y ¼ ina

� þ XbþWXhþ qWyþ e ð52Þ
Although E(y) depends on parameters that are used in modeling the disturbances,

since the inverse of that form appears in the model through X and WX, the SDM can

successfully handle some types of misspecification in the disturbances. For

example, the SDM subsumes the spatial error model with spatial autoregressive

disturbances. Thus, if the DGP is the SEM, then the SDM will produce (for large

enough n) estimates of h = -qb which will allow the model part to have the

conditional mean of Xb. Therefore, the SDM can handle the conditional mean part

differently than the disturbance part of the model.

An extended SDM that includes higher order variables WqX for q [ 1 can handle

even more complicated spillovers without being affected by misspecification of the

disturbances. LeSage and Pace (2009) discuss extensively some of the properties of

the SDM and the extended SDM.

Another alternative separable specification would be to fit a model with a

geometric lag (Koyck 1954) term WðIn � qKWÞ�1X as in (53) using any desired

error specification for d.

y ¼ XbþWðIn � qKWÞ�1Xhþ d ð53Þ
If h = b, the regression part of the model would match the SAR specification of

the regression part of the model. However, unlike the SAR model, this allows for

the variable and its lags to differ in signs and magnitudes and hence allows for the

possibility of having direct effects (own partials) of opposite signs as the indirect

effects (cross-partials).

Alternatively, one could implement a separable model with a matrix exponential

lag term as in (54),

y ¼ XbþWeqeW Xhþ d ð54Þ

where qe is a scalar real parameter. LeSage and Pace (2007) as well as LeSage and

Pace (2009) discussed the properties of matrix exponentials.

Naturally, one could look at other lag specifications such as those from Almon

(1965) or Shiller (1973) within the context of an error model. The regression model

part would focus on accurately estimating spillovers and the disturbance part would

focus on maximizing efficiency and validity of inference.
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As mentioned above, one could use maximum likelihood or Bayesian methods to

estimate these models. However, in the case where there are multiple parameters in

the concentrated log-likelihood, residual maximum likelihood (REML) which

matches the marginal likelihood may perform better (Pace et al. 2010, pp. 29–30).

Another alternative is for any model parameterized by k to treat each level or choice

of k as an individual model and to perform Bayesian or frequentist model averaging

over the individual models. See LeSage and Pace (2009, pp. 173–184) and LeSage

and Pace (2007) for some examples of model averaging in a spatial context.

6 Conclusion

The two most commonly used spatial econometrics in the literature, the spatial error

model and the spatial autoregressive model, have complementary strengths and

weaknesses. Specifically, estimation of the regression parameters in the spatial error

model is robust to misspecification in spatial dependence, but does not natively

produce estimates of spillovers while the spatial autoregressive model natively

produces estimates of spillovers but is sensitive to misspecification in the spatial

dependence in the disturbances. We propose a separable model that could natively

produce estimates of spillovers while maintaining robustness to misspecification of

the spatial dependence in the disturbances.

We show that plausible data generating processes based on spatiotemporal

processes and omission of spatially dependent regressors can lead to a divergence in

the spatial dependence in the spillovers and spatial dependence in the disturbances.

We use a Monte Carlo experiment to show that the spatial autoregressive model is

sensitive to misspecification of the disturbances while the separable model performs

well in this setting. We also look at five empirical examples where the separable

model indicates that the spatial dependence in the spillovers and disturbances

differs.

We discussed some possible separable specifications. Specifically, we discussed

the spatial Durbin error model (SDEM), the extended spatial Durbin model, and

spatial error models that use richer specifications of spillovers based on geometric,

matrix exponential, Almon, and Shiller spatial lags.

There are some aspects of separable models that we did not explore here, but may

help in other contexts. For example, a possible benefit of the separable approach is

that computationally it may be easier to estimate a model with dependence in the

disturbances than in the dependent variable in some cases. For example, the probit

approach with spatially structured random effects (tantamount to a spatial error

term) using the approach of Smith and LeSage (2004) may be easier to implement

and better computationally than spatial probit with a lagged latent dependent

variable as in LeSage and Pace (2009).

As another example, the multiple spatial weight matrix problem (i.e.,

W ¼ a1W1 þ � � � aqWq), such as discussed in Pace and LeSage (2002), may be

easier to address by just estimating the multiple W as spillovers and using some W
of convenience to help with the disturbances. Specification of the multiple W in the

spillovers and using a separate W for the disturbances avoids the need to compute
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the log-determinant which poses a problem in the traditional multiple W model. In

many applications, the W1 and W2 are mutually exclusive (border counties, interior

counties). A simple SDEM model y ¼ XbþW1hþW2nþ e has an easy interpre-

tation as b measures the direct effects, h measures the indirect effects or spillovers

stemming from W1 (border counties), and n measures the indirect effects or

spillovers from W2 (interior counties).

Finally, even though spatial dependence in the regressand emerges as a natural

outcome of spatiotemporal processes, philosophically some researchers prefer not to

use the spatial autoregressive model. However, many of the same researchers will

use the spatial error model. The separable model is still an error model with

specification in terms of the exogenous explanatory variables that captures

spillovers and so may be more appealing to this group.

References

Almon S (1965) The distributed lag between capital appropriations and expenditures. Econometrica

33(1):178–196

Cressie N (1993) Statistics for spatial data, revised edition. Wiley, New York

Elhorst JP (2001) Dynamic models in space and time. Geogr Anal 33(2):119–140

Elhorst JP (2010) Applied spatial econometrics: raising the bar. Spatial Econ Anal 5(1):9–28

Koyck LM (1954) Distributed lags and investment analysis. North-Holland

LeSage JP, Pace RK (2007) A matrix exponential spatial specification. J Econ 140(1):190–214

LeSage JP, Pace RK (2009) Introduction to spatial econometrics. CRC Press, UK

Pace RK, Barry RP (1997) Quick computation of spatial autoregressive estimators. Geogr Anal

29(3):232–246

Pace RK, LeSage JP (2002) Semiparametric maximum likelihood estimates of spatial dependence. Geogr

Anal 34(1):76–90

Pace RK, LeSage JP (2008) A spatial Hausman test. Econ Lett 101(3):282–284

Pace RK, LeSage JP (2010) Spatial econometrics. Handbook of spatial statistics. CRC Press, UK

Pace RK, LeSage JP, Zhu S (2010) Spatial dependence in regressors and its effect on estimator

performance (manuscript)

Shiller RJ (1973) A distributed lag estimator derived from smoothness priors. Econometrica

41(4):775–788

Smith TE, LeSage JP (2004) A Bayesian probit model with spatial dependencies. In: LeSage JP, Pace RK

(eds) Advances in econometrics: vol 18: spatial and spatiotemporal econometrics. Elsevier, Oxford,

pp 127–160

90 R. K. Pace, S. Zhu

123


	Separable spatial modeling of spillovers and disturbances
	Abstract
	Introduction
	Conventional spatial models
	Spatial autoregressive dependent variable model
	Spatial error model

	Separable models
	Spatiotemporal aspects of the DGP
	Omitted variables and the DGP

	Monte Carlo and empirical support for separable specifications
	Monte Carlo performance
	Empirical examples

	Alternative separable specifications
	Conclusion
	References


