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Abstract Modelling autocorrelation structure among space–time observations is

crucial in space–time modelling and forecasting. The aim of this research is to

examine the spatio-temporal autocorrelation structure of road networks in order to

determine likely requirements for building a suitable space–time forecasting model.

Exploratory space–time autocorrelation analysis is carried out using journey time

data collected on London’s road network. Through the use of both global and local

autocorrelation measures, the autocorrelation structure of the road network is found

to be dynamic and heterogeneous in both space and time. It reveals that a global

measure of autocorrelation is not sufficient to explain the network structure.

Dynamic and local structures must be accounted for space–time modelling and

forecasting. This has broad implications for space–time modelling and network

complexity.
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1 Introduction

In today’s data-rich environment, time and location specific data are collected in

huge volumes and are often available in real time. The traditional challenges of data

sparsity and lack of computational power have been replaced with fresh challenges

in data storage, data mining and knowledge discovery. An example of such

voluminous data is traffic data. Traffic data are now collected on the urban road

systems of many major cities and if put to good use can provide vital information on

road network performance to be used in intelligent transportation systems (ITS) and

advanced traveller information systems (ATIS). Typical data collected on road

systems are traffic flows, journey times and speeds. One of the primary goals of ITS

is to forecast future conditions on the road network in order to provide up to date

information to travellers.

This has traditionally been accomplished through univariate time series

prediction using various techniques such as (seasonal) autoregressive integrated

moving average ([S]ARIMA, Williams and Hoel 2003) models, artificial neural

networks (Dougherty and Cobbett 1997; van Lint et al. 2005), support vector

regression (Wu et al. 2004), Kalman filtering (Liu et al. 2006) and non-parametric

regression (Smith et al. 2002) among others. Vlahogianni et al. (2004) provide a

good overview. More recently, researchers have begun to develop space–time

models for traffic forecasting. Various statistical methods for modelling space–time

data have been proposed over the years, including multivariate autoregressive

integrated moving average [(M)ARIMA] models, space time autoregressive

integrated moving average (STARIMA) models (Pfeifer and Deutsch 1980) and

variants (STAR models, STMA models), three-dimensional geostatistical models

and spatial panel data models, of which Griffith (2010) provides an overview.

The methodological development of each of these has been motivated by the

need to account for autocorrelation in spatial (Cliff and Ord 1969) and temporal

(Box and Jenkins 1970) data, and they represent a fusion of research from both

domains. Correctly identifying and quantifying the extent to which observations are

autocorrelated with each other in time and space is a necessity in the statistical

modelling of spatial and temporal relationships (Hackney et al. 2007), as to ignore it

can result in the underrepresentation of the variability present in data and

overassessment of significance implying non-compliance (Patil 2009). All current

models assume that the spatio-temporal autocorrelation in data can be adequately

described by globally fixed parameters, i.e. the extent to which observations are

autocorrelated with each other is fixed in space and/or time. For example, in

STARIMA models, space–time processes are stationarized through transformation

and differencing and autocorrelation is accounted for in the autoregressive (AR) and

moving average (MA) terms. The AR and/or MA orders are fixed globally both

spatially and temporally, and a single parameter is estimated for each. Although

STARIMA has been employed for traffic flow forecasting (Kamarianakis and

Prastacos 2005; Wang et al. 2010), these two assumptions (stationarity) and fixed

spatio-temporal neighbourhood are in fact very difficult to be satisfied for dynamic

network data such as a transport network.
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For instance, the current conditions on a section of road are influenced to some

extent by the previous conditions of adjacent road sections in both directions

(Chandra and Al-Deek 2008). Shockwave theory has long been used to model the

downstream to upstream (backward) progression of queues (Richards 1956), and the

movement of vehicles from upstream to downstream (forward) exerts influence in

the opposite direction. It follows that in congested conditions the influence will come

mainly from downstream whereas in free-flowing conditions the influence will come

from upstream. However, the progression from free flowing to congested traffic

conditions is continuous, which begs the question; at a given point in the time, how

many and how much of the upstream and downstream neighbours of a link

contribution to its current condition? Does the extent and the strength of neighbours’

contribution change with time? Does this vary spatially across a network?

The answers to these questions have broad implications for space–time modelling

of traffic data as representing this relationship too simply may cause poor

forecasting results, particularly in the presence of non-recurrent traffic conditions.

Given adequate spatial and temporal data granularity, the correlation between

locations can be an indicator of the extent and direction of influence between them

(Yue and Yeh 2008). On a transportation network, this equates to determining a

transfer function of traffic conditions from one road section to the next. Vehicles on

a road network do not remain at static points, they move between locations and the

time it takes for them to move from location to location depends on the current

traffic state. Therefore, the spatial neighbourhood of a link will effectively become

larger when traffic conditions are free flow and smaller when they are congested.

This changing structure should be accounted for in any space–time traffic model.

Yue and Yeh (2008) view this problem as one of determining the forecastability of

traffic data, which depends on two factors: the effective data range and the strength

of correlation. On a traffic network, the effective data range can be defined as the

number of links that can deliver traffic to the current link within a given time

interval (usually equal to the forecasting horizon). The strength of correlation can be

defined as weights of the influence of those links on the current link.

Recent studies have attempted to capture the dynamics of network process to basic

space–time models and can broadly be separated into two categories: those that aim

to capture the (dynamic) effective range of spatial neighbourhood (Elhorst 2003; Min

et al. 2007; Ding et al. 2011) and those that aim to capture the (dynamic) strength/

weight of correlation (Min et al. 2009, 2010). Among others, the most advanced

approach is Generalised STARIMA (GSTARIMA) proposed by Min et al. (2010). In

this model, spatially heterogeneous autocorrelation structures are captured by

allowing the AR and MA parameters to vary by location. The GSTARIMA model

outperforms traditional STARIMA in terms of forecasting accuracy. However, visual

inspection of the forecasting results suggests a temporal shift in the predictions,

indicating that the model is not functioning correctly. Additionally, although the

method allows for spatially dynamic parameter estimates, the spatial structure of the

model is still fixed to an extent as the size of the spatial neighbourhood considered is

the same for each location. Its temporal structure is also fixed.

Although progress has been made to capture spatio-temporal autocorrelation

structure effectively which provides the key to accurate forecasting of future traffic
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conditions, there is no model that is able to consider dynamic nature of

autocorrelation in two aspects: dynamic spatial range and dynamic strength of the

correlations. By providing insights into the actual autocorrelation structure of a real

road network, a systematic autocorrelation analysis helps to shed light on the

requirements for a given space–time model of traffic data. Consequently, the aim of

this research is to examine the spatio-temporal autocorrelation structure of networks

in order to determine likely requirements for building a suitable space–time

forecasting model. Exploratory space–time autocorrelation analysis is carried out

using journey time data collected on London’s road network. Through the use of

both global and local autocorrelation measures, we aim to explore how the

autocorrelation structure varies in both time and space. In doing so we aim to reveal

whether a global measure of autocorrelation is sufficient to explain the structure in

the data or whether more dynamic, local structures must be accounted for.

Different from other researches who use simulations to study autocorrelation of

networks (such as Neuman and Mizruchi 2010), we take an empirical approach to

study the autocorrelation structure of networks. Furthermore, most existing researches

focus on spatial autocorrelation of static networks; here, particular concern is given to

the dynamics of autocorrelation structure in time and space. This will also have broad

implications for network complexity theory. Understanding the spatial dynamics and

their influence on network behaviour and performance has profound impact of urban

networks and network theory (Castells 2010; Pflieger and Rozenblat 2010). We

acknowledge the achievement of network science in measuring and discovering the

heterogeneous topological structure of networks (Newman 2003; Jiang 2007; Xie and

Levinson 2007; Xu and Sui 2007). Such analyses are very useful for understanding the

influence of topological structure (Farber et al. 2009), but are not directly applicable to

space–time modelling and prediction of data collected on them. The emphasis of this

paper is not to discuss the complexity of the network topology (though it is very

relevant), but the space–time autocorrelation structure of phenomena occurring on the

network resulting from such topology given the importance of autocorrelation in

space–time prediction. Dynamics of network complexity is a broad issue (Watts and

Strogatz 1998), and here, we focus on the aspect of dynamic autocorrelation.

The structure of the paper is as follows. The next section exams the approach to

model autocorrelation of network data by using spatial weight matrices. Section 3

presents the global and local measures for space–time autocorrelation. Sections 4

and 5 present an empirical example of a subset of London’s road network, which is

used to illustrate the dynamic nature of the spatio-temporal autocorrelation structure

of the network. The findings are summarized in Sect. 6, and directions for further

research are also proposed.

2 Autocorrelation of network data

2.1 Autocorrelation and spatial weight matrices

The study of autocorrelation on networks became popular in the late 1970s and early

1980s and was facilitated by methodological developments in the spatial sciences
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both in terms of measuring spatial autocorrelation and modelling spatial processes.

A body of research in the new field of network autocorrelation analysis emerged

whereby spatial methods were extended to model network data and these have since

been applied in different ways to a diverse range of tangible and intangible networks

such as social networks (Doreian et al. 1984; Dow et al. 1984; Dow 2007; Dow and

Eff 2008; Leenders 2002), migration networks (Black 1992; Chun 2008) and

transportation networks (Black and Thomas 1998; Flahaut et al. 2003; Min et al.

2007). The extension of spatial methods to network data is made possible through

the modification of spatial weight matrices to account for the structure of networks.

A spatial weight matrix W is an N * N matrix, where N is the number of spatial

locations, which is used to incorporate a hierarchical ordering of space in

mathematical models. Two non-trivial issues must be tackled when defining a

spatial weight matrix. Firstly, the linkage structure must be defined, i.e. which pairs

of nodes have edges between them and the direction of dependence. Secondly, the

value of the weights wij must be decided. These issues have been shown to be very

important as different weight matrices can lead to different inferences being drawn

and can lead to bias in models. The effect of this has been explored in the spatial

literature (see Stetzer 1982; Florax and Rey 1995; Griffith 1996; Griffith and

Lagona 1998) and the network literature (Mizruchi and Neuman 2008; Páez et al.

2008; Farber et al. 2009; Neuman and Mizruchi 2010). We therefore discuss each of

the issues in turn below in the context of road networks.

2.2 Network structure and adjacency matrix

The definition of the linkage structure in a spatial weight matrix is very much

dependent on the type of data under study, for instance, in areal data, contiguity may

be used (bishop, rook, or queen); in point data, distance bands or nearest neighbours

may be used (Getis and Aldstadt (2004) list several alternatives). On intangible

networks, the task may be very difficult because linkages need not depend only on

spatial proximity but can be based on social, cultural and other factors. For instance,

in social networks, the units of analysis are individual social entities linked to other

individuals by affective, professional, assistance, and other types of social linkages

and deciding the nature of these linkages is a problem for the researcher (Páez et al.

2008). Leenders (2002) discusses the construction of weight matrices in such data.

On road networks, the task is more straightforward if the topology of the network

from which the data are collected is well defined. Drawing from graph theory, it is

convenient to view a network as a graph G = (N, E) with a set N of n nodes and a

set E of edges joining pairs of nodes. The incidence structure of the graph is defined

by the presence or absence of an edge (i, j) linking nodes i and j and can be

represented by an N * N binary [0, 1] adjacency matrix in which non-zero elements

signify edges (Peeters and Thomas 2009). Two nodes directly linked by an edge are

termed first-order neighbours. The adjacency matrix containing all first-order

relations between the nodes of a graph is termed its first-order adjacency matrix.

Second-order spatial neighbours of a node are the first-order neighbours of its first-

order neighbours (excluding itself) and so on and so forth. By following the paths
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between nodes in the graph, adjacency matrices W1, W2,…Wk of orders up to k can

be defined.

The incidence structure of networks can be viewed in one of two ways. Either the

nodes correspond to measurement locations of a variable with the edges

representing communication links between them, as is the norm in the spatial and

social networks literature (see, for instance, Dow 2007); or both i and j are edges

where a variable is observed and the nodes represent connections between them.

The latter formulation was devised by Black (1992) and has been applied to

transport networks (Black and Thomas 1998) and migration flows (Chun 2008)

among others. We use the latter formulation as we believe it better represents the

physical structure of road networks.

In addition to defining the incidence structure, the direction of influence must be

defined. Networks can be undirected or directed depending on the supposed

direction of influence between edges and different adjacency matrices result from

each case. In Fig. 1, as the network is undirected (Fig. 1a), all edges that share a

common node are considered to influence each other and this is reflected in the first-

order (Fig. 1b) and second-order (Fig. 1c) weight matrices. In a directed network

(Fig. 2a), the flow goes in one direction and an edge only influences its edges

downstream. Figure 2b and c shows the first- and the second-order weight matrix

for this standard directed network case, which is asymmetric since it allows

influence only in one direction (from upstream).

Conventionally, undirected graph structure has been adopted for networks in the

social and cultural research literature (see for instance, Dow (2007) for cultural data;

Chun (2008) for migration). Undirected (Black and Thomas 1998) and directed

structure (Kamarianakis and Prastacos 2005) have both been considered for road

networks. In our opinion, however, road networks fall somewhere between directed

and undirected networks in that the traffic only flows in one direction but the

influence between links can occur in both directions. However, a traffic link can

only be affected directly by its first-order adjacent downstream and upstream traffic,

whereas two links flowing into or out of the same link from the same direction will

be second-order rather than first-order neighbours.

This can be explained by the example given in Fig. 3 where link 1 and link 2 flow

into link 3; if an increase in traffic on link 2 contributes to congestion downstream

 

 1 2 3 4 5 

1 0 0 0 1 1 

2 0 0 0 1 1 

3 0 0 0 0 0 

4 1 1 0 0 0 

5 1 1 0 0 0 

 

 1 2 3 4 5 

1 0 1 1 0 0 

2 1 0 1 0 0 

3 1 1 0 1 1 

4 0 0 1 0 1 

5 0 0 1 1 0 

    (a) (b) (c)

Fig. 1 A simple undirected network and its spatial weight matrices based on connectivity of edges; a the
undirected network; b first-order weight matrix; c second-order weight matrix
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on link 3, then this congestion may propagate upstream to link 1. Therefore, link 2

and link 1 are not directly influenced by each other, but via link 3 in between—they

are not first but second-order spatial neighbours, and both are first-order spatial

  

 1 2 3 4 5 

1 0 0 1 0 0 

2 0 0 1 0 0 

3 0 0 0 1 1 

4 0 0 0 0 0 

5 0 0 0 0 0 

 

 1 2 3 4 5 

1 0 0 0 1 1 

2 0 0 0 1 1 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

 (a)  (c)  (b)  

Fig. 2 A simple directed network and its spatial weight matrices based on connectivity of edges; a the
directed network; b first-order weight matrix; c second-order weight matrix

Fig. 3 An example of the propagation of traffic conditions at a junction; arrows indicate flow direction,
light colour indicates low flow, dark colour indicates high flow a free-flowing situation, influence is
mainly from upstream b flow on link 2 increases c Increase in flow on link 2 contributes to congestion on
link 3, the direction of influence on links 2 and 3 reverses d congestion on link 3 causes congestion on
link 1
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neighbours of link 3. This is reflected in Fig. 4c, where link 1 and link 2, and link 4

and link 5, are second-order spatial neighbours. The second-order spatial weight

matrix is symmetric like the undirected graph in Fig. 1c, but with different values.

Figure 4b shows the first-order weight matrix with influences allowed in both

directions, which is symmetric like the undirected network shown in Fig. 1b, but

with different values. The implication of this structure is that it accounts for the

indirect influence between link 1 and link 2 as second-order spatial neighbours

through link 3. Similarly, it accounts for the indirect influence between link 4 and

link 5 as second-order spatial neighbours through link 3.

2.3 The spatial weights

Defining the weights wij of a spatial weight matrix again depends on the type of

data under investigation. The simplest weighting system is binary, i.e. wij = 1 if

an edge exists between nodes i and j and zero otherwise. Weight matrices defined

in this way will often be row standardized to distribute the contribution of each of

the nodes in the spatial neighbourhood of a node equally. However, more

sophisticated schemes can be defined that assign different weights to different

neighbours. For instance, in areal data, the weight may be defined as the length of

a shared border divided by the perimeter; in point data, the weight may be some

form of distance decay function (Getis and Aldstadt 2004). Readers are again

referred to Leenders (2002) for a discussion of weighting schemes in social

network data.

On transportation networks, binary (Kamarianakis and Prastacos 2005; De

Montis et al. 2011) and distance weighting (Wang et al. 2010) schemes have been

employed in the literature to represent the static physical structure of road

networks. More sophisticated schemes have also been employed that take into

account historical conditions on the road network at different times (Min et al.

2007). Here, we make use of a simple binary weighting scheme with row

standardization as it is easy to implement and interpret, and we do not want to

introduce assumptions about the relative influence of the spatial neighbourhood at

this stage.

 

 1 2 3 4 5 

1 0 1 0 1 1 

2 1 0 0 1 1 

3 0 0 0 0 0 

4 1 1 0 0 1 

5 1 1 0 1 0 

 

 1 2 3 4 5 

1 0 0 1 0 0 

2 0 0 1 0 0 

3 1 1 0 1 1 

4 0 0 1 0 0 

5 0 0 1 0 0 

  (a) (b) (c)

Fig. 4 A simplified transport network and its spatial weight matrices based on connectivity of edges;
a the directed network; b first-order weight matrix in the transportation case; c second-order weight
matrix in the transportation case

396 T. Cheng et al.

123



3 Measurement of autocorrelations in space–time

3.1 Autocorrelation

Various indices have been devised to quantify autocorrelation in spatial and

temporal data, most of which are based on Pearson’s familiar product moment

correlation coefficient (PMCC) (Soper et al. 1917) which, for two variables X and Y,

is defined as their covariance divided by the product of their standard deviations:

qX:Y ¼
E½ X � lXð Þ Y � lYð Þ�

rXrY
ð1Þ

where lX and lY and rX and rY are the means and standard deviations of variables X
and Y, respectively. The coefficient qX.Y is used as a measure of the strength of

linear dependence between variables and can fall in the range -1 to 1 with 1

indicating perfect positive correlation, -1 perfect negative correlation and 0 no

correlation. Rodgers and Nicewander (1988) provide an overview of some alter-

native formulations of the correlation coefficient that are not discussed here.

Autocorrelation can be measured simply by taking the correlation of a variable with

a lagged specification of itself; therefore, temporal autocorrelation can be measured

by modifying PMCC to include this lagged specification:

qk ¼
E½ zt � lð Þ zt�k � lð Þ�

r2
z

ð2Þ

The difference being that the covariance is measured between variable z at time

t and variable z at time t - k. If the process is stationary, then rz
2 can be used as the

standard deviation of z, which is assumed to be constant at all times.

Spatial autocorrelation is more complicated than temporal autocorrelation as it

can occur in any direction. Moran’s I (1950) is an extension of the PMCC to the

spatial domain that has been widely used in many spatial applications. It has a local

variant Ii that can be used to identify local clusters of spatial autocorrelation (1).

Moran’s I and other spatial indices such as Geary’s (1954) do not consider the

temporal dimension so they only provide a snapshot of autocorrelation and do not

capture dynamic autocorrelation properties. For this, indices are required that

measure spatial and temporal autocorrelation simultaneously.

A number of indices have been devised to this end, Hardisty and Klippel

(2010) proposed a spatio-temporal extension of local Moran’s I and applied it to

an analysis of the 2009 H1N1 flu pandemic. Space–time (semi) variograms have

also been proposed (see for example, Griffith and Heuvelink 2009) as well as

space–time eigenvector filtering (Griffith 2010). Two indices are borrowed here:

the space–time autocorrelation function (ST-ACF) that measures global space–

time autocorrelation and the cross-correlation function (CCF) that measures local

space–time autocorrelation between two locations. These indices are extensions of

the temporal autocorrelation function (Eq. 2) and are selected as they are easily

interpretable and have a practical application in established space–time modelling

frameworks.
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3.2 The global measure

The ST-ACF measures the N2 cross-covariances between all possible pairs of

locations lagged in both time and space (Pfeifer and Deutsch 1980). Given the

weighted lth order spatial neighbours of any spatial location at time t and the

weighted kth order spatial neighbours of the same spatial location s time lags in

the future, the space–time cross-covariance can be given as:

clk sð Þ ¼ E
W lð ÞzðtÞ
� �0

W kð Þzðt þ sÞ
� �

N

( )

ð3Þ

where N is the number of spatial locations, W ðlÞ and W kð Þ are the N * N spatial

weight matrices at spatial orders l, and k zðtÞ is the N * 1 vector of observations z at

time t, zðt þ sÞ is the N � 1 vector of observations z at time t þ s and the symbol 0

denotes matrix transposition. Based on Eq. 3, the ST-ACF can be defined as:

qlk sð Þ ¼ clk sð Þ
cll 0ð Þckkð0Þ½ �1=2

ð4Þ

ST-ACF has been used in STARIMA to calibrate the order of moving average

(MA), which define the range of spatial neighbourhoods that contribute to the

current location at a specific time lag (Pfeifer and Deutsch 1980). The MA orders

are fixed globally both spatially and temporally, and a single parameter is estimated

for it in practical application such as by Kamarianakis and Prastacos (2005).

3.3 The local measure

The cross-correlation function (CCF) (see, for example, Box and Jenkins 1970)

treats two time series as a bivariate stochastic process and measures the cross-

covariance coefficients between each series at specified lags. It provides a measure

of the similarity between two time series. Given two time series X and Y, the CCF at

lag k is given as:

qxy kð Þ ¼
E½ xt � lxð Þ ytþk � ly

� �
�

rxry
k ¼ 0;�1;�2;�. . . ð5Þ

The CCF is a lagged specification of PMCC that measures cross-correlations in

both directions, as denoted by subscript k; therefore, the temporal lag at which the

CCF peaks can be used to determine a transfer function between two series.

A simple way to interpret the CCF is by taking its squared value q2 to give the

coefficient of determination (CoD). Multiplying this value by 100 gives the

percentage of variance that two series share at a given time lag.

Yue and Yeh (2008) demonstrate through an empirical example that the cross-

correlation function (CCF) can be used to determine the spatio-temporal relation-

ship between a road link and its neighbours. This is, however, dependent on

sufficient spatial and temporal resolution in the data. A peak at lag zero indicates

that the current resolution does not capture the direction of influence of one location
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on another, but behave very similarly at the same time. In transport case, this usually

happens when the network is highly congested in the morning peak.

When measuring autocorrelation, it is important that the method employed

provides an unbiased indicator of the true autocorrelation in the data. Olden and

Neff (2001)used Monte Carlo simulation to develop formulas to quantify the bias in

cross-correlation measures as a function of sample size, true correlation between

series and the number of time lags examined. They examined series of length up to

100 observations and found that the bias introduced decreases with series length.

Although no literature yet exists on bias introduced by the ST-ACF, we consider the

series length in this study (�100) sufficiently long as to minimize the bias in the

autocorrelation calculations. Additionally, in the context of forecasting, we believe

that the misspecification of linkage (adjacency) structure (spatial orders) could be

corrected in cross-validation so that only valid orders are included in the models.

That’s why it is important to have validation test in space–time modelling (Box and

Jenkins 1970).

In the case study, the global (ST-ACF) and local (CCF) measures are applied to

journey time data in central London in order to gain an understanding of the

complexity of spatio-temporal autocorrelations on road networks.

4 Empirical example

4.1 The LCAP data and test network

The London Congestion Analysis Project (LCAP) network is a system of automatic

number plate recognition (ANPR) cameras maintained by Transport for London

(TfL) that collect journey time information on London’s road network (see Fig. 5).

The cameras operate in pairs; number plates are read as vehicles pass each camera

and the time taken between passing the first and second cameras is recorded. These

raw journey time observations are averaged over a 5-min period to give the journey

time data (in seconds) used in this study. The ANPR camera network was originally

installed to help enforce London’s congestion charging scheme so collecting

journey time data is a secondary use of the ANPR system; as such it was not

designed with this in mind. Therefore, there are a number of issues that must be

considered:

• Link lengths (distance between the first and the second cameras) are

heterogeneous. Links vary in length from 207.7 m to 15.5 km.

• The incidence structure of the ANPR network does not fully mimic that of the

real road network so many junctions may be included in one link and many

minor roads are omitted due to the limit of setting up the cameras.

• The links do not form a complete network, and many links are not connected to

each other or may overlap on the same road section in the same direction.

• Data quality depends on capture rates; during the night time period journey time

observations can be subject to error due to few vehicles on the road.
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Although data are available for the whole ANPR network, the aforementioned

reasons make a network-wide study infeasible at this stage. Therefore, a subsection

of the network is chosen (Fig. 6a). The test network comprises 22 links in central

London and was selected as its incidence structure can be well defined as in Fig. 6b.

It has variable link lengths, ranging from 473.4 m to 3.85 km with an average

length of 1.4 km.

After conversations with experts from TfL, data for 33 consecutive Tuesdays

from 6 January 2009 to 18 August 2009 were selected. Tuesday data only are chosen

as the behaviour of traffic that is known to be different on different days of the

week, and Tuesday is presumed to be close to an ‘average’ weekday, separate from

the influences of weekend traffic patterns. Nine days were removed (days 2–6 and

days 19–22) as the data for several links were replaced with profile data for the

whole day. Since the data are obtained at 5-min interval, there are 288 observations

per day. Therefore, taking into account the omitted data, the space–time series

comprises 24 * 22 * 288 = 152,064 observations. Due to the variable link lengths,

it is decided to convert the raw journey times into a relative measure of link

performance. Either speed or unit journey time (UJT, inverse of speed) would be

appropriate; in this case, UJT is preferred as it can be interpreted as a measure of

delay/congestion and hence is useful to traffic managers. The average unit journey

time between 7 am and 7 pm on a selection of links over these 24 Tuesdays is

presented in Fig. 7, which shows a very dynamic and heterogeneous traffic

situation, i.e. some links are smooth while others are congested.

Fig. 5 Spatial extent of the LCAP core links network in London (Open Street Map Mapnik base map)
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4.2 Experimental procedure

To examine how the autocorrelation structure changes throughout the day, the data

are divided into three distinct time periods: AM peak (7:00–10:00), interpeak

(10:00–16:00) and PM peak (16:00–19:00), as defined by TfL. It has been widely

accepted in transport studies that traffic behaves differently in each time period. Due

Fig. 6 Selected Road Network in Central London a spatial location of selected links in central London;
b network diagram of links, arrows represent traffic flow direction, integer numbers are link IDs, numbers
starting with tfl are ANPR camera IDs and numbers ending with m are link lengths in meters
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to the length of the links, it is considered unnecessary to examine spatial orders

higher than three as they will be outside the forecasting horizon of 5 min. Therefore,

only three spatial weight matrices W1, W2 and W3 are defined. The matrices are

defined based upon the network structure graph, which allows traffic flowing in one

direction and influence between links occurring in both directions, i.e. the immediate

upstream/downstream links are first-order spatial neighbours such as links R2007

and R1616 which have a value 1 in W1 as shown in Fig. 8, but link R1616 and link

R463 are only second-order spatial neighbour which has a value 1 in W2.

The analysis is threefold; firstly, the global STACF is calculated at spatial orders

zero, one, two and three for each of the time periods. Secondly, the pairwise cross-

correlations between individual links on a subset of the network are calculated and

compared with the global pattern. We then focus the cross-correlation analysis on a

subset of the network for a directional analysis. Finally, we examine the spatial

pattern of correlation in each of the time periods.

5 Experimental results

5.1 Global space–time autocorrelations

Figure 9 shows the ST-ACF between all links in the AM peak at spatial orders zero

to three. The horizontal axis shows the temporal lag, and the vertical axis shows the

value of the ST-ACF. Under the assumption of space–time stationarity, the ST-ACF

should be insignificant at all lags greater than zero, and hence, significantly positive

values indicate the presence of space–time autocorrelation. A cyclic pattern

indicates the presence of a seasonal pattern in the data. There is a clear seasonal

pattern present at all spatial lags with a period of 36, corresponding to the length of

Fig. 7 Average unit journey time profiles over 24 Tuesdays from 6 January 2009 to 18 August 2009
(9 weeks are omitted)
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the peak period. This indicates concurrent increases and decreases in unit journey

times as the AM rush hour traffic builds and then recedes towards the interpeak

period, which is to be expected. At spatial order zero (equivalent to the average

temporal autocorrelation), the strength of autocorrelation is very strong and shows

very slow decay. This is indicative of non-stationarity in the data and, combined

with the seasonal component, provides evidence of strong non-seasonal and

seasonal dependency. At spatial order one, the strength of autocorrelation decreases.

However, the periodic component is still evident indicating some spatio-temporal

dependency between locations. This pattern is replicated at spatial orders two and

three but the autocorrelations are insignificant at the 95% confidence level at these

orders.

The interpeak period (Fig. 10) shows a similar pattern to the AM peak at spatial

order zero, displaying strong significant positive autocorrelation with very slow

decay and a seasonal component corresponding to the length of the period (72

observations). However, the amplitude of the seasonal component is lower.

Theoretically, the interpeak period should capture a traffic state separating the two

peak periods characterized by a return to free-flowing conditions and therefore

should not display seasonal dependency. The presence of such dependency indicates

that the arbitrary division of the data into three time periods based on accepted

definitions is not sufficient to isolate the specific traffic states on the network.

R1025 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R2301 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R2007 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R1616 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R524 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R463 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R1593 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

R2324 
R2085 

0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

R432 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
R1592 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
R425 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 
R2140 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
R1384 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
R2079 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
R1419 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 
R474 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 
R1447 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 
R1623 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
R2052 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 
R448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
R2055 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Fig. 8 First-order adjacency matrix for the test network (column names correspond to row names)
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At spatial order one, the pattern of significant autocorrelation remains, but the

strength of autocorrelation decreases and the seasonal component is less apparent.

The strength of the ST-ACF is slightly higher than in the AM peak period.

Autocorrelations do become insignificant at spatial order two but then become

significantly negative at spatial order three, again in contrast to the AM peak.

In the PM peak period (Fig. 11), the autocorrelations are again strong, significant

and positive at spatial order zero. However, the strength of the seasonal component

is less than in the AM peak and interpeak periods. This is contrary to expectations

and suggests that the definition of the PM peak period (16:00–19:00) does not

isolate a particular traffic state. The presence of a stronger seasonal component in

the interpeak period suggests that the PM peak period may begin earlier than the

threshold time and may also end later. Therefore, the transition from free flowing to

congested and back to free-flowing conditions is not captured within this period. At

spatial orders one to three, the PM peak follows the same pattern as the interpeak.

Examining the global ST-ACF at each of the time periods reveals two main

findings. Firstly, the strength and pattern of spatio-temporal autocorrelation are

temporally dynamic, reflecting the different traffic patterns that occur in each period.

Secondly, the pattern of space–time autocorrelation remains broadly similar but

decreases in strength at increasing spatial orders in each of the time periods. The

implication of this is that the global effective data range can be determined from the

ST-ACF as the spatial order where autocorrelations become statistically insignif-

icant. In each of the time periods, this occurs at spatial order two. Intuitively, this

makes sense given the high average length of links on the network (the mean

journey time of the network is four and a half minutes, and the temporal resolution

is 5 min). The global ST-ACF reveals much about the global space–time

autocorrelation properties of the data but does not reveal anything about the local

properties. In the following section, the CCF is applied to examine the local

Fig. 9 ST-ACF for the AM peak at spatial orders 0, 1, 2 and 3
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cross-correlations between pairs of links. First, the overall picture is summarized

and then, a subset of the network is examined for a more detailed analysis.

5.2 Local cross-correlations

Examining the CCF between pairs of links gives a much more local view of the

autocorrelation structure of the road network. Determining if and how the local view

differs from the global view provided by the ST-ACF is important from a modelling

perspective as it gives an idea as to whether the autocorrelation structure is global or

local and whether global autocorrelation parameters are likely to be effective in a

Fig. 10 ST-ACF for the interpeak at spatial orders 0, 1, 2 and 3

Fig. 11 ST-ACF for the PM peak at spatial orders 0, 1, 2 and 3

Spatio-temporal autocorrelation of road network data 405

123



space–time model. Like the ST-ACF, the CCF is also a temporally global indicator.

Therefore, we first examine the CCF for the whole day and then for the AM peak,

interpeak and PM peak periods, respectively, to see how the autocorrelation

structure varies locally, both spatially and temporally. On each of the figures,

temporal lag zero is shown at the centre. Positive lags indicate the influence of

downstream links on upstream links, while negative lags indicate upstream

influence on downstream. The vertical axis shows the value of the CCF, and the

95% significance levels are shown as horizontal red lines. Although the CCF was

calculated between all pairs of links for all orders, we only show the first-order CCF

for 3 pairs of links for conciseness.

In terms of the daily pattern (Fig. 12), considerable heterogeneity in the strength

of the CCF between links is apparent. For instance, at temporal order zero and

spatial order one, the value of the CCF ranges from nearly zero to 0.50. This means

that some links are highly correlated with their neighbours, while others show no

significant correlation at all. This is particularly unexpected at spatial order one

given that the links are physically adjacent. The corresponding ST-ACF indicates

significant positive space–time autocorrelation, which is true for some links but not

for others. The same phenomenon is present at spatial orders 2 and 3, although the

overall strength of correlation falls, which is to be expected.

Between time periods, the results of the local CCF analysis mirror the results of

the global analysis in that the strength and pattern of correlation is different in each

period. This is masked by the temporally global CCF. Although the peak value of

the CCF is similar in each of the time periods; 0.51, 0.57 and 0.46 in the AM

(Fig. 13), inter (Fig. 14) and PM (Fig. 15) peaks, respectively, at spatial order one,

it occurs between different pairs of links in each case. In the AM peak the peak

correlation is between links R1593 and R2324, in the interpeak it is between links

R2140 and R1384 and in the PM peak it occurs between links R425 and R2140.

Although the peak occurs in the same area of the network in the interpeak and PM

peak periods, it is in a different area in the AM peak, indicating that the

autocorrelation structure is changing both spatially and temporally.

Fig. 12 CCF (a) and CoD (b) for daytime period
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Generally, the strength of correlation and periodic component is higher in the

AM peak period than the interpeak and PM peak periods, although there is wide

spatial variation between pairs of links. In the AM peak at spatial order one, the

general pattern of the CCF matches that of the global ST-ACF with a strong periodic

component of length 36 apparent between many pairs of links. However, there is

considerable spatial heterogeneity in the strength of autocorrelation, and some links

display insignificant cross-correlations. The situation is reversed at spatial order

two; although the ST-ACF indicates insignificant global spatio-temporal autocor-

relation at this order, the CCF reveals significant local spatio-temporal autocor-
relation between some pairs of links.

Insignificant ST-ACF values are indicative of a stationary space–time process;

however, these results demonstrate that local significant autocorrelation may be

masked by the global indicator. The impacts on modelling may be substantial and

difficult to detect. For instance, if a STARIMA model is built based on the

assumption of stationarity as indicated by the ST-ACF but the space–time process is

Fig. 13 CCF (a) and CoD (b) for AM peak period

Fig. 14 CCF (a) and CoD (b) for interpeak period
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in fact non-stationary, then modelling results are likely to be poor. The presence of

significant autocorrelation extends to spatial order three but the strength of the

pattern is diminished.

In the interpeak and PM peak periods, similar issues are apparent whereby the

cross-correlations broadly reflect the global pattern but display considerable

heterogeneity that the global indicator cannot account for. The implication of this is

that although the global indicator can capture the global autocorrelation structures

quite well it is inadequate in describing the local, dynamic autocorrelation structure

in the data. This goes some way towards explaining why space–time models of

traffic data based on global autocorrelation parameters exhibit unsatisfactory

performance.

5.3 Directional analysis

Thus far, we have neglected to discuss the direction of influence between

neighbouring links, and this issue is treated here based on the pairs of links shown in

Figs. 12, 13, 14. In the daytime period (Fig. 12), the asymmetry in the CCF is

immediately apparent, with the peak CCF being seen at negative lags between links

R1616 and R524 and R463 and R1593. The peak CCF between R1593 and R2324

occurs at lag zero but the pattern of decay is similar to the other pairs of links. This

demonstrates that over the course of a day, the direction of influence between these

links is predominantly upstream to downstream, which is not captured in the global

measure.

Examining the CCFs for each of the daytime periods separately provides

additional insights into the results. In the AM peak period (Fig. 13), each pair of

links displays a similar pattern to one another. The peak CCF occurs at lag zero, and

there is sharp decay at subsequent positive and negative lags, meaning that

neighbouring links are most correlated with each other contemporaneously. This

means that the direction of influence between links cannot be determined from the

data in its current form; this is in contrast to the daily pattern. The strength of the

periodic component is also apparent representing a recurrent daily traffic pattern,

which reflects the global pattern captured by the ST-ACF. However, the strength of

the CCF varies between pairs of links, with the most correlated being links R1593

and R2324.

The situation in the interpeak period (Fig. 14) is very different to the AM peak

and appears to reflect the daily picture in terms of the patterns that are evident. All

pairs of links display peak values of the CCF at negative lags indicating upstream to

downstream propagation of conditions with varying time lags. In the PM peak,

however (Fig. 15), the CCF between two pairs of links, R1616 and R524, and R463

and R1593 shows no clear pattern and fluctuates approximately around zero.

Although significant cross-correlations are observed between R1616 and R524, their

pattern appears random and the CCF between R463 and R1593 is insignificant at all

lags. The implication of this is that there is little or no spatial dependency between

these links in the PM peak. However, links R1593 and R2324 display an interesting

result. Compared with the interpeak period, the direction of influence has reversed,

with the influence now coming from downstream. It is likely that this shift in
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direction will be different depending on the characteristics of links, for instance
inbound and outbound links.

Also, surprising is the low overall level of correlation between locations.

Examining the CoD between the pairs of links (Figs. 12b, 13b, 14b, 15b), the shared

variance between first-order adjacent links on the subnetwork is a maximum of

7.8% in the interpeak period and 10.1% in the PM peak period. This rises to 26.1%

in the AM peak period. This also serves to highlight the increased strength of spatio-

temporal dependency in the AM peak.

5.4 Spatial pattern of correlation

The preceding section showed that the cross-correlations vary greatly between pairs

of links, but how do these correlations vary spatially, and can any pattern be

observed?

Figure 15 shows how the spatio-temporal dependency structure varies geograph-

ically in time. The network is more correlated in the AM peak than the interpeak

and PM peak; however, there is a noticeable divide to the north-west where the

cross-correlations between neighbours become weakly negative. The strongest

positive correlations occur to the south and north-east of the network. This pattern is

largely borne out in the interpeak and PM peak periods, although the negative

correlation extends further east with the links to the south remaining positively

correlated with their first-order neighbours. The magnitude of the negative

correlations also increases from the interpeak to the PM peak. The reasons for

this spatial pattern are not apparent and require further investigation (Fig. 16)

6 Discussion and conclusions

The space–time autocorrelation structure of London’s road network has been shown

to be dynamic in time and differs with traffic states. This is evident when observing

Fig. 15 CCF (a) and CoD (b) for PM peak period
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the differences between the AM peak, interpeak and PM peak periods. However,

although the AM peak traffic state appears reasonably well defined, this is not the

case in the interpeak and PM peak periods. The complex interactions and demand

patterns of urban traffic mean that spatially contemporaneous traffic states are not

evident to a large extent. The influence of links on their neighbours is local and

varies widely both in space and time; there is also evidence of changing direction of

influence that is not captured in the global autocorrelation measure.

The finding from the empirical case study shows that the spatio-temporal network

autocorrelation structure is dynamic in time and heterogeneous in space, which is a

direct reflection of dynamics and heterogeneity of network complexity. As

mentioned in the introduction, network science has gained progress in measuring

and discovering the topology structure of networks, which is more a measure of the

heterogeneity than the dynamics of network. They are useful for finding most

vulnerable or important links in the network. However, most existing finding are

based on static network or using static data or simulated data. The study of network

dynamics and their influence on network behaviour and performance is far from

mature. Our research presented here is an attempt for such purpose.

These findings have significant implications for space–time modelling of traffic

(and possibly other) data on networks. Firstly, the complexity of the spatio-temporal

autocorrelation structure means that extracting a stationary space–time process from

the data is likely to be difficult, especially in real time. This means that models such

as STARIMA that rely on such assumptions being fulfilled are likely to have low

Fig. 16 Average CCF between links and their first-order neighbours at temporal lag zero in a the AM
peak; b interpeak; and c PM peak
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predictive power. Additionally, the global parameter estimates that STARIMA and

other models rely on are likely to be insufficient to explain all the local variations in

the data; they assume a globally stationary space–time autocorrelation structure

exists, when in reality it may not. The recent effort to this problem that has been

examined in the literature (see for instance, Elhorst 2003; Min et al. 2007, 2009,

2010) is to create separate models for different traffic states but this relies on those

traffic states being identical and identifiable as those in the pre-defined state models.

For the reasons given elsewhere, this is likely to be difficult.

Balancing model complexity and parsimony is vital in building an effective

forecasting model that is capable of operating on real-time data and capturing the

dynamic autocorrelation structure that has been identified. The key to this is

leveraging the forecastability of the data in the model structure in order to capture

the dynamics of the network processes. Hence, a model is needed that accounts for

the instantaneous forecastability of traffic data. It is the opinion of the authors that

this can be achieved by defining a dynamic spatial neighbourhood based on the

instantaneous data range and a dynamic spatial weight based on the strength of local

autocorrelation. These can be incorporated into a model through the use of a

dynamic spatial weight matrix. The implementation of such a model will be the

focus of future research.
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