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Abstract Spatial interaction modelling and geodemographic analysis have each

developed as quite separate research traditions. In this paper, we present an inte-

grated model that harnesses the power of spatial interaction modelling to behavioural

insights derived from a geodemographic classification. This approach is applied to

the modelling of participation in higher education (HE). A novel feature of the paper

is the integration of national schools, colleges and HE data; a national model is then

calibrated and tested against actual recorded flows of students into HE. The model is

implemented within a Java framework and is presented as a first step towards pro-

viding a quantitative tool that can be used by HE stakeholders to explore policies

relating to such topics as widening access to under-represented groups.

Keywords Spatial interaction � Geodemographics � Higher education � GIS

1 Introduction

In this paper, we present the results from a research project that integrated a

geodemographic typology into a spatial interaction framework to model flow of

students from English schools and colleges into the HE system. Our motivation for

this work is that, despite a growth in the absolute numbers of students attending HE

over recent years, differentials in the rates of participation between societal groups

have remained persistently uneven (Comptroller and Auditor General 2008). Within
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the geography and GIS literature, inequality in HE access has been examined

separately using both spatial interaction (Wilson 2000) and geodemographic

approaches (Batey et al. 1999; Singleton 2010). However, hitherto, there has not

been a unified framework within which the relative benefits of both traditions can be

maximised. In this paper, we define our integrated model mathematically and then

demonstrate operational utility as a Java software application. Modelled results

from this tool are encouraging, and we illustrate this in two case studies looking at

the flows of students to the University of Manchester, and then to all institutions,

from Norfolk. The overarching aim for creating this model is to provide a robust

tool where various policy scenarios could be tested by key stakeholders to examine

potential outcomes in terms of aggregate student participation, and how these rates

may be disaggregated by institution and neighbourhood type.

Geodemographic modelling of neighbourhood conditions presents a successful

applied approach to understanding socio-spatial differentiation at the neighbour-

hood scale and is widely used in the public as well as the private sectors to predict

the consumption of products, services or resources. Often described as the ‘analysis

of people by where they live’ (Sleight 1997), these classifications assign small

geographical areas into a series of discrete types that are deemed to represent the

average characteristics of the local population. Although the origin of such

classification lies in public sector applications in urban deprivation targeting (Harris

et al. 2005), geodemographics are today best known for their commercial successes

in customer profiling and targeting (Birkin 1995; Birkin et al. 2002). There is

currently considerable interest in the use of these classifications in public sector

service delivery applications. This ‘‘renaissance of geodemographics’’ (Longley

2005) includes examples from policing (Ashby and Longley 2005), health (Aveyard

et al. 2002) and education (Batey et al. 1999; Singleton 2010; Tonks and Farr 2003).

The underlying statistical models used in the creation of geodemographic

classifications are founded upon social similarities and do not generally specify

geographical proximity (as opposed to general distance to features such as the coast

or town centres). The observed patterning of the resulting cluster types (see those

maps produced by Vickers and Rees 2007 for example) arise from the old adage

that ‘‘birds of a feather flock together’’ (Feng and Flowerdew 1998) and Tobler’s

classic observation that ‘‘everything is related to everything else, but near things

are more related than distant things’’ (Tobler 1970). As such, the clustering

algorithms that are used to create the classifications are essentially aspatial, with

similarity measured only in terms of the attribute space of the input dataset. Thus,

geodemographic classifications posit that residents in any neighbourhood assigned

to a specific type possess the exact same behavioural characteristics irrespective of

geographical location. Geodemographics have been viewed as ‘‘methodologically

unsatisfactory’’ (Twigg et al. 2000: 1111) because of their insensitivity to systematic

geographical variations in behaviour patterns. Voas and Williamson (2001: 74), for

example, found that despite broad-brush social similarities, ‘‘small areas are

different in many different ways’’ and that ‘‘[a] few dimensions, however complex

or carefully chosen, do not provide enough information to describe an area fully’’.

Yet despite this apparent methodological over-simplification, ‘‘[g]eodemographics

has had a robust and enduring pedigree’’ (Birkin et al. 2002: 207) in commercial
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applications and by extension are increasingly used by the public sector for social

marketing and service delivery. The enduring popularity of these techniques lies in

their usefulness in communicating salient patterns within complex multidimensional

datasets to end-users who are not professional statisticians or geographers.

However, the remit of such analysis is limited and there is a requirement to

refocus the geodemographic research agenda on ‘‘theory, model building, and

hypothesis testing’’ (Harris et al. 2007: 556).

Spatial interaction models represent and predict the size of spatial flows between

origins and destinations in geographical regions of interest. They can incorporate a

range of origin and destination constraints and take a number of forms according to

this constraint structure. This has a long history and was developed in the USA

during the 1950s and 1960s—see Bureau of Public Roads (1965). In this paper, we

use the family of entropy maximisation models (Wilson 1970). There are

alternatives such as discrete spatial choice or competing destinations models

(Fotheringham 1983) though the use of these would not change the character of the

argument presented here. Spatial interaction models remain ‘‘some of the most

applied geographical techniques’’ (Fotheringham et al. 2000: 214) and have

provenance in a range of application areas, including retailing (Birkin et al. 2003),

transport (Wilson 1998; Erlander and Stewart 1990) and migration (Stillwell 1978).

Early spatial interaction models were criticised for their ‘‘lack of behavioural

theory’’ (Han and Timmermans 2006: 195). However, the integration of geodemo-

graphic neighbourhood classifications can provide a convenient and behaviourally

plausible means of disaggregating the populations at origin zones of a spatial

interaction model. This specification of geodemographic classes will better

represent variability in the typical local aggregate behavioural characteristics of

individuals and their interactions with the HE system (Han and Timmermans 2006).

As such, a behaviourally informed spatial interaction model should not only provide

greater predictive power, but also offer greater flexibility to support decision-

making (Birkin and Clarke 1998).

2 Data sources and geodemographic integration

The data and models presented in this paper relate to England only, although this

could later be expanded if data were made available for other parts of the UK. The

schools’ data were derived from the National Pupil Database (NPD) supplied by the

Department for Education (DfE) that records a variety of attribute information for

every state and privately funded pupil in England. Data were extracted from the

NPD for those students who had qualified in the 2006–2007 academic year with

A-Levels or equivalents (aged around 18) from schools and sixth form colleges.

In addition, records were extracted from the Learning and Skills Council (LSC)

2005 Independent Learner Record (ILR) for those studying qualifications at a level

enabling HE entry. The date mismatch of the FE records with the schools’ data is a

result of a withdrawing of public access to ILR for projects outside of the DfE. The

HE data were derived from the Higher Education Statistics Agency (HESA) and

record attributes and home locations of all students studying courses of HE in
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England during 2005–2006. The education data extracts were imported into a

MySQL database at the student record level and then coded with the Office for

National Statistics Output Area Classification (Vickers and Rees 2007: OAC). For

FE, state school and HE records, these were coded using the home address location

of each student. However, for independent schools, these records are missing

geographical attribution, and as such, OAC codes were later appended on aggregate

to these pupils based upon the OAC code of each school’s location. OAC is a free

geodemographic classification that disaggregates the UK population into a typology

comprising 52 Sub Groups that hierarchically nest into 21 Groups and these into 7

Super Groups.

An estimated supply of students who could potentially attend HE was then

created for each of the 7 OAC Sub Groups within 150 geographical zones based on

local authorities (LA) in England. These boundaries are shown later in the results

section (see Figs. 3, 4). The most aggregated level of 7 Super Groups was chosen

over the other hierarchical levels of OAC to reduce the overall size of the spatial

interaction matrix. The origin estimates for the spatial interaction model therefore

comprised 150 * 7 variables (1,050). This additional disaggregation of the supply

population by OAC aims to capture heterogeneity in HE participation behaviours,

which are known to stratify geodemographic clusters (see Batey et al. 1999;

Singleton 2010). The demand capacity for each (university) destination in the model

was estimated from the HESA data as the sum frequency of students with English

domicile within each HE institution. Thus, because the analysis was limited to

England, this comprised 88 demand universities or colleges.

For each of the OAC Super Groups, the cumulative frequency of students

travelling to attend HE was calculated for a series of arbitrarily selected 20 km

distance bins. Using these graphs, exponential decay functions were calculated to

best fit these empirical observations (see Fig. 1). The exponential functions fit the

empirically recorded distance decay reasonably well for the majority of OAC Super

Groups, with the exceptions of ‘‘City Living’’ and ‘‘Countryside’’. These observed

travel behaviours may relate to the distribution of these clusters nationally, relative

to the location of HE institutions. This hypothesis is explored in Fig. 2 where

Output Areas coded as Super Group ‘‘Countryside’’ are shaded in darker grey and

the location of the HE institutions plotted as black points. This map shows that the

majority of HE institutions are located in populous areas and therefore any student

attending an HE institution from the ‘‘Countryside’’ Super Group will first have to

travel outside of their local area. Thus, exponential decay is only seen from this

distance onwards and therefore creates the travel patterns exhibited in Fig. 1c.

Similarly, the ‘‘City Living’’ Super Group are primarily concentrated in urban areas

and there appears to be a considerable likelihood for students to travel to

universities located in other major metropolitan centres over and above a natural

exponential decay that might be expected with distance alone (see Fig. 1b). Because

students from this Super Group are generally already living within larger cities (e.g.

London, Manchester, Birmingham), it is not unreasonable to expect that they may

desire a university place in a location of a comparable size, but, not necessarily their

home city. We indicate below how to handle these issues in the model.
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3 A model of student flows from school to university

As we have seen, the study area consists of 150 origin zones, generically labelled

i (local authorities) and 88 destination zones, labelled j (universities and colleges).

The origin zones each represent the final-year school and further-education college

population in that local authority and are divided into separate subpopulations based

on geodemographics and attainment characteristics. The set of i are locations defined

from the centroid of each local authority in England. The set of j are locations that are

the centroids of the main campus of each non-specialised university in England.

A partially constrained spatial interaction model, calculating flows between the

origins and destinations, consists of singly and doubly constrained parts, depending

on whether the destination is at capacity or not. For universities which are not at

capacity, the singly constrained model is used. The choice of model is related to the

observation that only a subset of universities at the end of the main application cycle

Fig. 1 Distance decay of English HE participation by OAC
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are left with surplus places. These course vacancies are typically entered into

a clearing process where potential students are matched to open places; however,

these activities vary considerably between ‘recruiting’ and ‘selecting’ institutions

(Singleton 2010). This research is being conducted during a period of very rapid HE

policy change. The model presented below is a mixed model, partially constrained,

with a facility to change the degree of constraint according to circumstances.

The OAC groups and the levels of attainment are labelled with superscripts f and

g, respectively. The model can thus be written as
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Fig. 2 Countryside Output Area Classification Super Group and university locations
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where Sij
fg = the number of students from local authority i in OAC group f, with

attainment level g going to university j. Oi
fg = the number of students from local

authority i in OAC group f with attainment level g going to university. Rj = the

attractiveness of university j. Kj
g = the capacity of university K for admitting

students of attainment level g. b1i
fg = an element of the distance parameter relative to

distance decay. b2ij = an element of the distance parameter—a device for relative

attainment to enhance requirement. cij = a measure of the ‘distance’ between i and

j as a surrogate for impedance.

In the singly constrained model, there is no Bj coefficient. In the doubly

constrained model, both Ai and Bj coefficients are present and depend upon each

other, so the equations are solved iteratively. The parameter b1i
f is calibrated with

the actual flows observed on the decay functions of Fig. 1 with a binary attainment

band g split at the national average A-Level points score of 730.

Each university also has a composite attractiveness factor Rj
aKj. Rj

a is an

approximate measure based upon the 2010 Times Good University Guide rankings

score. It is raised to the power of a, which is set to 0.5 of this experiment, and then

multiplied by the university capacity Kj to make larger institutions more ‘attractive’

than smaller ones. This attractiveness factor is only used in the singly constrained

part of the model. The capacity itself is used in the doubly constrained model. We

are aware that concerns have been raised about the methodological robustness of the

metrics created by university rankings (Turner 2005); however, they are also a

resource commonly used by students when making institutional choices (Bowden

2000). And, of course, this metric could be changed in future models.

The cij values were taken as Euclidean distances; again as an approximation for

demonstration purposes. Two adjustments were made to deal with the issues raised

at the end of section 2. For origin subpopulations within the OAC Super Group

(f) equal to ‘‘Countryside’’, the cij was reduced by 50 km while ensuring a minimum

distance of zero. This accounts for such origin subpopulations needing to travel at

least this distance on average to get to even their nearest university (see Fig. 2),

causing the initial increase in the participation with distance seen for this

geodemographic in Fig. 1. The second issue, relating to the other poorly fitting

Super Group in Fig. 1, ‘‘City Living’’, was discovered to arise in major urban areas

in England where this OAC Super Group is typically found. Adjustments were made

as part of model calibration to cij terms where the i and j are within the same

metropolitan area, particularly for newer universities. These calibrated distance

costs are shown in Table 1. Unusually, these are negative, indicating a positive

attraction of ‘nearness’.

A further ‘‘not at university’’ destination capacity was created to account for

those students who do not attend HE. For this destination, all cij were set to be 0, Rj

set to a very low, but non-zero value, and Kj was set as a very large number. From

an operational perspective, those students who are assigned to the ‘‘not at

university’’ destination capacity by the end of the model run can be profiled to

examine origin characteristics more prevalent in non-participating students. Using

this information, the ‘‘not at university’’ group forms a benchmark upon which

potential widening participation scenarios could be modelled and tested.
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Before the model was run, the balancing factors were initialised (bj values to 1,Ai

to 1). A second beta factor, b2ij, acts as a step function and is used with an origin

subpopulation’s attainment band and a destination segmented population’s mini-

mum attainment requirement. If the former is lower than the latter, then b2ij is set to

a very large number for very rapid exponential decay in effect to set the value to

zero, otherwise it is 1. Thus, b2ij ¼
1; g\G
1; g�G

�
and the overall beta value takes the

form bij
f = b1i

f b2ij. This has the effect that for some institutions, capacity is not

available for potential students with lower attainment (see Table 2) and is required

to simulate approximate variable entry requirements within the HE sector.

4 Evaluating student flows from school to university

The set of results generated by the model are very large and it is impossible to

describe them all. To illustrate, flows to a single university from all local authorities

are considered, followed by the examination of flows from a local authority to all

universities. These analyses aim to demonstrate the utility of the model and indeed

highlight areas where further refinement is needed. The performance can be

assessed by comparing the origin–destination flows that are predicted against those

which were observed in reality. The aggregate (combined geodemographics and

attainment) top 40 flows from all local authorities to Manchester University are

shown in Table 3. Graphical representations of these aggregate flows are shown in

Figs. 3 and 4.

These actual and predicted results show strong regional flows of students from

Local Authorities in the North West region to study at the University of Manchester.

The majority of these local flows are predicted reasonably well by the model with

the exception of Trafford, which is broken down by OAC Super Group in the first

row of Table 4. In particular, more students than expected travel from the

‘‘Multicultural’’ Super Group, which is assigned one of the sharpest beta decay

Table 1 Intra-zonal flow adjustments

Local authority i University j Adjusted distance cij/km

Bath and North East Somerset Bath Spa University -110

Birmingham Birmingham City University -60

City of Bristol University of the West of England -30

Leeds Leeds Metropolitan University -40

Liverpool Liverpool Hope University -120

Liverpool Liverpool John Moores University -100

Manchester Manchester Metropolitan University -20

Norfolk Anglia Ruskin University -100

Nottingham Nottingham Trent University -20

Sheffield Sheffield Hallam University -30

Southampton Southampton Solent University -180
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values in the model (see Fig. 1). This under prediction could relate to specific local

influences such as the provision of a good transportation (e.g. Manchester

Metrolink) system that links Trafford to the City of Manchester or, perhaps,

specific widening participation activities that may have occurred within the local

area. If the actual flows from within the ‘‘Multicultural’’ Super Group in Trafford

are broken down by attainment, it is found that 18 are in the high band and 2 are in

the low band. This is unsurprising, given that the University of Manchester has high

entry requirements; however, it also suggests that there may be justification in

segmenting the beta decay values further by attainment band in addition to OAC

Super Group.

Other interesting results from this example include flows from local authorities in

the South East of England including Surrey and Buckinghamshire, and the London

Boroughs of Barnet and Harrow. All of these local authorities exhibit actual flows

that are greater in magnitude than those predicted by the model. Again, these flows

are disaggregated in Table 4. The under predictions exhibited in Surrey and

Table 2 Institutions specified

within the model to have

‘‘higher’’ entry requirements

The London School of

Economics and Political Science

would also be included in the

table above, but is excluded

from the model to remove an

anticipated unusual student flow

due to its restricted range of

subjects on offer

Institution

Imperial College London

King’s College London

Lancaster University

Loughborough University

Royal Holloway, University of London

University College London

University of Bath

University of Birmingham

University of Bristol

University of Cambridge

University of Durham

University of East Anglia

University of Exeter

University of Leeds

University of Leicester

University of Liverpool

University of Manchester

University of Newcastle upon Tyne

University of Nottingham

University of Oxford

University of Reading

University of Sheffield

University of Southampton

University of Sussex

University of Warwick

University of York
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Buckinghamshire mainly originate in the OAC Super Group ‘‘Prospering Suburbs’’.

Although geodemographic clusters are constructed with the aim of maximising

similarity within and differences between geographical areas, there may be some

degree of regional difference within a classification, and specifically so if some

Table 3 Actual and predicted

flows from local authorities to

Manchester University

Results in bold are expanded by

OAC group in Table 4

LEA Predicted

population

Actual

population

Ratio

Lancashire 312 284 0.9

Cheshire 282 179 0.6

Manchester 194 175 0.9

Stockport 124 155 1.3

Trafford 79 128 1.6

Derbyshire 111 110 1.0

Leeds 87 110 1.3

Hertfordshire 77 106 1.4

Surrey 63 104 1.7

Cumbria 79 96 1.2

Staffordshire 123 92 0.7

Wigan 126 88 0.7

Tameside 52 87 1.7

Bolton 73 83 1.1

Kent 46 82 1.8

Oldham 106 81 0.8

Wirral 79 81 1.0

Buckinghamshire 44 78 1.8

Barnet 9 76 8.4

Kirklees 122 73 0.6

North Yorkshire 121 72 0.6

Rochdale 18 72 4.0

Birmingham 74 72 1.0

Bradford 62 69 1.1

Sheffield 70 69 1.0

Bury 188 67 0.4

Leicestershire 69 67 1.0

Nottinghamshire 71 67 0.9

Hampshire 50 59 1.2

Warwickshire 65 57 0.9

Oxfordshire 53 57 1.1

Northamptonshire 53 56 1.1

Essex 51 56 1.1

Worcestershire 64 54 0.8

Warrington 54 52 1.0

Harrow 8 49 6.1

Lincolnshire 83 48 0.6
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dimension is not effectively accounted for within the input data used in the build

process. Because OAC is created entirely from the 2001 Census, there is no direct

measure of household income and as such, one might hypothesise that the under

predictions in the model could be induced by regional differences in income. The

‘‘Prospering Suburbs’’ areas of Buckinghamshire and Surrey are perhaps more

affluent than in other parts of the country and therefore may influence greater

propensity for students to travel to institutions at further distances from their

domicile. This is illustrated in Fig. 5 by examining the average distance that

students from ‘‘Prospering Suburbs’’ areas travel to university by local authorities. It

can be seen that these results partially relate to the isolation of the area; however,

both Surrey and Buckinghamshire are areas where student travel is more prevalent.

Also of note is the attractiveness of the North West Region for students from these

affluent areas to attend more local institutions.

The model also under predicts the flow of students from ‘‘Prospering Suburbs’’

neighbourhoods in the London Boroughs of Harrow and Barnet. However, in these

Fig. 3 Actual flows to Manchester University
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two local authorities, there is also an additional under prediction of the flow of

students from ‘‘Multicultural’’ neighbourhoods, which typically have a very low

propensity to travel. There may be specific draws within the local area of

Manchester which account for these flows. For example, like Barnet and Harrow,

Manchester has a large Asian population and there may be family ties that enhance

links between the two sets of places and, combined with good transport links,

increase the flow of students from the ‘‘Multicultural’’ Super Group. A possible

enhancement to the model could be achieved by implementing a different

geodemographic classification that better accounts for patterns of affluence and

additionally has a more disaggregated clustering of multicultural neighbourhoods

that identifies those students who are more willing to travel.

The second example illustrates how the model can produce predictions of flows

to all universities from a single local authority. Norfolk was chosen as this offered

large aggregate flows and represented a good mix of both rural and urban areas. The

results for this local authority are shown in Table 5 for the highest 30 actual flows

Fig. 4 Predicted flows to Manchester University
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and for all flows in Figs. 6 and 7. Overall, the model performs reasonably well;

however, an interesting result was for the University of Kent, which received fewer

students from Norfolk than one might expect, given close geographical proximity.

A possible explanation could be the difficulty in travelling to this destination on

public transport (e.g. via London) which might reduce the attractiveness of the

destination to students. A similar hypothesis could be applied to the over prediction

of student flows for the more disparately located University of Manchester and the

University of Leeds. Both of these locations may be less attractive to students in

reality, given long public transport travel times requiring multiple changes during

the route. These effects could be explored in future iterations of the model by further

refinement of the impedance term based on travel times or connectivity.

A further interesting result is that the model over predicts the number of students

attending the University of Cambridge, which is in close proximity to Norfolk and

has high entry grade requirements. In this case, the supply of students with the levels

of attainment necessary to obtain places at Cambridge might be limited, and as such

account for the over prediction. To some extent, the University of Cambridge and

Fig. 5 Average distance students from Prospering Suburbs travel to university

236 A. D. Singleton et al.

123



other institutions of similar stature are so dissimilar to other universities, both in

terms of their admission procedures and their entrance requirements, that they might

be better represented as a disaggregated destination group within the model.

5 Concluding comments

The tests of this model represent a useful beginning. However, there is obviously

much scope for future work. It would be possible to disaggregate the model further

and, for example, to incorporate information on the subjects that are on offer at

institutions. This might be especially important when a course at a specific

institution is perceived as having a strong ‘reputation’. For example, if a course in

Table 5 Flows of students from

Norfolk to university
University Predicted

flows

Actual

flows

Ratio

Anglia Ruskin University 358 376 1.1

University of East Anglia 266 354 1.3

University of Lincoln 76 115 1.5

Sheffield Hallam University 60 84 1.4

University of Sheffield 58 79 1.4

Nottingham Trent University 77 78 1.0

University of Hertfordshire 63 70 1.1

University of Nottingham 74 70 0.9

University of Leeds 70 61 0.9

De Montfort University 82 53 0.6

University of Kent 63 44 0.7

Loughborough University 49 41 0.8

University of Hull 70 39 0.6

University of Essex 57 38 0.7

University of Reading 18 37 2.1

University of York 29 37 1.3

University of Warwick 25 37 1.5

University of Cambridge 62 36 0.6

University of Durham 29 35 1.2

Oxford Brookes University 28 34 1.2

University of Birmingham 41 31 0.8

University of Newcastle upon Tyne 25 30 1.2

Leeds Metropolitan University 60 30 0.5

University of Brighton 30 29 1.0

University of Manchester 45 29 0.6

University of Portsmouth 27 25 0.9

University College London 21 24 1.1
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Sociology at the University of York was especially well regarded within the

applicant population, this might be represented in a model by stronger attractiveness

parameters than the same course more generally. By having a model disaggregated

at subject level, this might better account for geographical variations in course

availability. For example, courses with a marine focus are usually found in

institutions that are accessible to the coast.

Some institutions with specialist focus were excluded from the model as they

typically offered a very limited subject range and had skewed entrance profiles. For

example, in an Arts university, the entrance criteria are typically based on a

portfolio of creative achievement as opposed to attainment entry criteria. In future

work where HE subject differences are better accounted for, these institutions could

be reintroduced.

Those data made available for this research related to England only and in future

research, it would be useful to integrate Welsh and Scottish data should these be

made available. For local authorities and institutions in border regions (e.g.

Fig. 6 Actual flows of students from Norfolk to universities
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Northumbria), these data may be particularly useful. However, these data would

also add an extra layer of complexity to the model due to a variety of administrative

differences between the countries of Great Britain. For example, Scottish students

are given benefits of studying HE within Scotland through fee waiver, and Welsh

students studying within Wales are required to pay a lower fee.

The geodemographic classification chosen for this research was the Office for

National Statistics Output Area Classification; however, any one of a number of

different classifications could have been used. In future work, it would be useful to

examine whether the model is more effective when utilised with a commercial

classification (e.g. Mosaic from Experian) or a bespoke model designed specifically

for HE (see Singleton and Longley 2009).

The zonal geography used for this model was chosen with the specific aim of

reducing the frequency of zero values in the origin–destination matrix, given that

these can introduce problems when running the spatial interaction model. In future

iterations, we would aim to examine some alternate disaggregated zonal geography

Fig. 7 Predicted flows of students from Norfolk to universities
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that may mitigate potential misspecification issues related to the centroid of large

zones not being a good fit for the actual local distribution of the student population.

Finally, more experimentation with the precise form of model—for example in

relation to policy changes affecting the financial capacity of institutions to accept

students—and more systematic calibration of parameters is also needed. The

attractiveness exponent was set at 0.5, for example, and the OAC beta values are

visually rather than programmatically calibrated. Other impedance functions could

be evaluated and tested through more detailed statistical evaluation (see Black and

Salter 1975).

However, the research presented here represents some steps towards a model that

can be used by HE decision makers to test potential recruitment, selection and

widening participation scenarios. The model demonstrates how a geodemographic

framework can be used to simplify complex socio-demographic characteristics of

origin populations within a spatial interaction model. Through integration of

administrative data with a geodemographic classification, aggregate differences in

HE participation behaviour between geodemographic clusters were used to inform

the calibration of parameter estimates within the model. This approach has

demonstrated two methodological innovations; first, it has infused behavioural

insights into a spatial interaction model and secondly, it has demonstrated how

geodemographic classifications can be incorporated into a traditional modelling

framework that is more sensitive to local spatial contexts.
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