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Abstract A spatio-temporal model of housing price trends is developed that

focuses on individual housing sales over time. The model allows for both the spatio-

temporal lag effects of previous sales in the vicinity of each housing sale, and for

general autocorrelation effects over time. A key feature of this model is the rec-

ognition of the unequal spacing between individual housing sales over time. Hence

the residuals are modeled as a first-order autoregressive process with unequally

spaced events. The maximum-likelihood estimation of this model is developed in

detail, and tested in terms of simulations based on selected data. In addition, the

model is applied to a small data set in the Philadelphia area.

Keywords Housing prices � Spatio-temporal models � Autocorrelation

JEL Classification R21 � R23 � R31 � C21

1 Introduction

The present model grew out of an effort to identify the impacts of certain

Community Development Corporation (CDC) housing projects on their local
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housing markets in Philadelphia. While no single measure can effectively capture

neighborhood revitalization, it is becoming common practice to use changes in

housing prices as a summary measure.1 Hence this model focuses on the specific

problem of identifying trends in housing prices within a given region based on a

time series of individual housing sales transactions. Because our approach to this

time-series problem appears to be new to the housing literature, the objective of the

present paper is to present a self-contained development of this approach.2 The

resulting model is illustrated by a small example from the Philadelphia study. A

presentation of the full study will be given in a subsequent paper [see Wu and Smith

(2009)].

Since housing prices are well known to be influenced by the prices of recent

house sales nearby, one must allow for possible spatio-temporal dependencies

between such prices. In addition there are generally a host of other processes

occurring over time that result in unobserved temporal autocorrelations among

housing prices. But since individual housing sales do not occur at regular time

intervals, it is difficult to model such processes in terms of standard discrete time

series. An approach to unequally spaced temporal events has been developed for

first-order autoregressive [AR(1)] processes by a number of authors (see Wansbeek

and Kapteyn 1985; McKenzie and Kapuscinski 1997; Batalgi and Wu 1999). A

continuous version of these models [CAR(1)] has also been developed by Jones and

Boadi-Boateng (1991) and Jones (1993). The continuous version is certainly the

most flexible one, but involves stochastic differential equations that rely on rather

sophisticated analytical methods. Moreover, since housing sales are basically

recorded on a daily basis, there is no need to consider finer time intervals. Hence we

choose to develop a standard AR(1) model on daily time intervals, and then embed

the observed sales events within this process. The approach we adopt is most closely

related to Batalgi and Wu (1999). But since their formulation is in terms of panel

data, it is convenient to give a self-contained development for the present case.

Finally, an interesting alternative approach to modeling sales transactions with

unequal time intervals was proposed by Pace et al. (2000). Because of its close

similarity to the present paper, a detailed comparison of these two models is

presented in Sect. 5 below.

We begin in the next section by developing the basic model, and then consider

maximum likelihood estimation and testing of its parameters. This is followed by a

small simulation study to examine the properties of the estimation procedure. The

model is then applied to a selected sample from the Philadelphia CDC study, and is

compared with the approach of Pace et al. (2000). Finally, a possible extension is

considered in the concluding section of the paper.

1 The number of affordable housing units provided (built or renovated) by the CDC is also commonly

used as a measure of ‘‘success.’’ However, it has been argued by many housing researchers that increased

housing supply is only a measure of input, and thus is not a fair assessment of neighborhood revitalization

as an outcome (see for example Smith (2003) and the many studies cited therein). Hence the assumption

implicit in the present approach is that improved neighborhood quality should increase local demand for

housing, and thus local housing prices.
2 Certain technical appendices have been omitted to save space, and can be found in the Electronic
Supplementary Material online.
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2 Development of the model

Consider a sequence of sales prices (yi: i = 1,…,n), resulting from the sale of

individual houses at distinct time points (ti: i = 1,…,n) in a given metropolitan area.3

Such prices of course depend on a host of attributes, xi = (xi1,…,xik), of each house

i, as well as the sales prices of houses recently sold in the immediate area of house i.
Here we model such dependencies by spatio-temporal lag weights, wij, that are

assumed to be positive only if house j is sold prior to house i,4 and is ‘‘sufficiently

close’’ to i in both time and space to be an influential factor. More precisely, it is

here assumed that there is some threshold time interval, D, and threshold distance,

d, beyond which other housing sales have no direct influence on the price of house i.
Hence, if the relevant distance from i to j is denoted by dij, then is assumed that only

houses in the spatio-temporal neighborhood,

Ni ¼ fj : ð0\ti � tj�DÞ&ðdij� dÞg ð1Þ

of i have direct influence on the sales price of house i. If ni denotes the cardinality

(size) of Ni, then the corresponding lag weights, wij, are given by

wij ¼
1=ni; j 2 Ni

0; j 62 Ni

�
ð2Þ

While this simple spatial-threshold assumption plays no substantive role in the

analysis to follow, it is used in both the simulations and empirical application

below.5 With these conventions, our basic model of housing prices takes the

following spatio-temporal lag form

yi ¼ k
Xn

j¼1

wijyj þ b0 þ
Xk

h¼1

bhxih þ ui; i ¼ 1; . . .; n ð3Þ

In the first term, k is an intensity parameter reflecting the strength of price

dependencies. Note from the normalization assumption, wij = 1/ni, in (2) that this

term is simply the average housing price in Ni weighted by k.6 To ensure that

variances in housing prices remain bounded over time, it is required that there be

a diminished dependency of house prices i on these averages, i.e., that (Green 2003,

p. 255):

jkj\1 ð4Þ
The second and third terms in (3) involve the usual linearity assumption on

housing attributes, where bh is the relevant coefficient for attribute h. (Of particular

3 Alternatively, it may often be more appropriate to use the log of sales price as yi.
4 Note that there may in fact be some minimal time lag required before a given sales price can influence

subsequent prices (such as the time required for this sale to be published in the local paper). Hence the

inclusion of all prior sales is a simplifying assumption.
5 It is worth noting that even if more elaborate spatial kernel functions were to be used, the bandwidth, d,

of each kernel is well known to be the single most critical determinant of spatial dependence (see for

example Silverman 1986).
6 Note also that if housing prices are in log form, then this term corresponds to a geometric average of

housing prices rather than an arithmetic average.
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relevance for our present purposes is the inclusion of time as an attribute of each

sale, in order to capture price trend effects.) Finally, the residuals (ui: i = 1,…,n), in

(3) are assumed to be generated by an underlying autoregressive process which we

now develop.

2.1 Autoregressive process with unequally spaced events

Consider a discrete process, {u(t): t [ T}, over a sequence of consecutive days,

T = {t1, t1 ? 1,…, t1 ? k,…}, which is generated by the following AR(1) process,

with autocorrelation parameter, q,

uðtÞ ¼ q � uðt � 1Þ þ eðtÞ; t [ t1 ð5Þ

where in addition it is assumed that u(t1) * N(0, v) and that all innovations,

{e(t): t [ t1}, are independently and identically distributed normal vari-

ates, e(t) * N(0, r2). This process is also assumed to be stationary, so that

u(t) * N(0, v) holds for all t [ T. Since each u(t) is necessarily normal with zero

mean by (5), this is equivalent to requiring that variance stay constant, i.e., that

var[u(t)] : v. Moreover, since u(t - 1) and e(t) are independent, this yields the

following well known stationarity condition:

var½uðtÞ� ¼ q2 � var½uðt � 1Þ� þ var½eðtÞ� ) v ¼ q2vþ r2 ) v ¼ r2

1� q2
ð6Þ

In particular, it follows that [as a parallel to (4)] residual variance will be finite

only if,

jqj\ 1 ð7Þ
Within this standard AR(1) setting, we now assume that the first sales event occurs

on day t1, so that the first residual in (3) is given by u1 = u(t1). Next, if the second

sale occurs on day t2 = t1 ? m, then since u(t1 ? 1) = q�u(t1) ? e(t1 ? 1), and

uðt1 þ 2Þ ¼ q � uðt1 þ 1Þ þ eðt1 þ 2Þ ¼ q � ½q � uðt1Þ þ eðt1 þ 1Þ� þ eðt1 þ 2Þ
¼ q2 � u1 þ ½eðt1 þ 2Þ þ q � eðt1 þ 1Þ�; ð8Þ

it follows by successive substitutions into (5) for m [ 2 that,

u2 ¼ qmu1 þ
Xm

j¼1

qm�jeðt1 þ jÞ ð9Þ

More generally, if we now replace (u1, u2, t1, t2) by (ui-1, ui, ti-1, ti) and replace

m = t2 - t1 by Di = ti - ti-1, then exactly the same argument shows that for all

i = 2,…, n,

ui ¼ qDi ui�1 þ ei ð10Þ

where the (cumulative) innovations, ei, now have the form:

ei ¼
XDi

j¼1

qDi�jeðti�1 þ jÞ ð11Þ
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Moreover, since var(ui) = v for all i = 1,…, n, it also follows from (10) that, in a

manner similar to (6),

varðuiÞ ¼ q2Di varðui�1Þ þ varðeiÞ ) v ¼ q2Di � vþ varðeiÞ
) varðeiÞ ¼ vð1� q2DiÞ

ð12Þ

[which can also be verified by summing the variances in (11) and using the identity,

v = r2/(1 - q2)]. Following Jones (1993) it is convenient to rescale the innova-

tions, ei, as,

ei ¼ ð1� q2DiÞ�1=2 ei ð13Þ

so that var(ei) : var(ui) = v. With this rescaling, it follows that the relevant

residual process (ui: i = 1,…, n), for (3) can now be summarized as follows:

u1�Nð0; vÞ ð14Þ

ui ¼ qDi ui�1 þ ð1� q2DiÞ1=2ei with ei�Nð0; vÞ; i ¼ 2; . . .; n ð15Þ
It is of interest to note that this residual process, [(14), (15)], is essentially

identical to the continuous formulation in Jones (1993, p. 62).7 Thus, by allowing

time intervals to become arbitrarily small, the above formulation provides a

somewhat more intuitive motivation of CAR(1) processes.

However, there is one additional restriction in the present model that is not shared

by the continuous model. In particular, observe that with a minimal time unit (such

as 1 day), it is quite possible that more that one event occurs in the same time

interval (such as more than one house sold on the same day). It should be clear from

(15) that this leads to implausible results, since the residuals ui for simultaneous

events must be identical.8 There are several ways to treat this problem. First, one

can simply choose the time unit to be smaller than the closest pair of consecutive

events in the given data. While this is possible in the present setting, intervals

smaller than a day are at best artificial, and have little meaningful content. A much

more satisfactory approach would be to introduce an additional ‘‘idiosyncratic’’

error term in (3) reflecting the unobserved attributes of individual houses that are

time independent. This approach is discussed in more detail in the Concluding

Remarks. For the present however, we choose to focus on a single set of errors

driven by an underlying AR(1) process, and to examine the behavior of this model

in detail. But since there are indeed a number of instances of houses sold on the

same day in the application presented below, we have chosen to ‘‘jitter’’ the time

sequence enough to allow a well-ordered sequence of sales events. Given that this

error model [(14), (15)] is intended only to capture unobserved effects with some

degree of stationary temporal dependency, such ‘‘tie breaking’’ conventions are

deemed to have little affect on the overall behavior of the model.

7 If time intervals, Dt, are allowed to become ‘‘arbitrarily small,’’ and are denoted by dt, then in the

formulation of Jones (1993), /(dt) = exp(-a0dt) = q2dt where q = exp(-a0).
8 This does not arise in the continuous model where it is natural to assume that simultaneous events occur

with probability zero.
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2.2 Matrix formulation of the model

By combining (3), (14), and (15) we can give a more compact statement of the

above model as follows. If we let y = (y1,…, yn)0, W = (wij: i, j = 1,…, n),

b = (b1,…, bk)
0, u = (u1,…, un)0, and let X = [xij: i = 1,…, n, j = 0, 1,…, k] with

xi0 = 1, i = 1,…, n, then (3) becomes

y ¼ kWyþ Xbþ u ð16Þ
Similarly if we let e = (e1,…, en)0, then [(14), (15)] can also be written in matrix

form as

u ¼ DðqÞ uþ CðqÞ e; e�Nð0; v InÞ ð17Þ

where D(q) is a lower triangular matrix of the form

DðqÞ ¼

0

qD2 0

0 qD3 0

..

. . .
. . .

. . .
.

0 � � � 0 qDn 0

0
BBBBB@

1
CCCCCA

ð18Þ

and C(q) is a diagonal matrix of the form

CðqÞ ¼

1

1� q2D2
� �1=2

. .
.

1� q2Dn
� �1=2

0
BB@

1
CCA ð19Þ

Hence the present spatio-temporal model is now summarized by (16) through

(19) [together with the implicit parameter restrictions (4) and (7)].

Note that there is a strong similarity between the present model and the well-

known ‘‘spatial autoregressive model with autoregressive disturbances’’ summa-

rized, for example, in Anselin and Florax (1995, pp. 22–24). However, it should be

clear that the present autocorrelation parameter, q, enters in a more complex manner

than the autoregressive disturbance parameter of that model. On the other hand, the

present model is in many ways simpler to analyze, since there are no simultaneities
either in space or time. As a consequence, both the spatial weight matrix, W, and the

temporal dependency matrix, D(q), are lower triangular matrices, which greatly

simplifies the analysis of this model.

2.3 Likelihood and concentrated likelihood functions

To estimate the present model it is convenient to combine (16) and (17) into a

reduced model form as follows. First, for notational simplicity, we write D = D(q)

and C = C(q) and solve for u in terms of e to obtain

ðIn � DÞ u ¼ Ce) u ¼ ðIn � DÞ�1Ce ¼ Be ð20Þ
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where B = (In - D)-1C.9 Next we set A = In - kW and write (16) as

ðIn � kWÞ y ¼ Xbþ Be) Ay ¼ Xbþ Be ð21Þ
Hence (20) and (21) are together equivalent to the reduced model10

y ¼ A�1Xbþ A�1Be; e�Nð0; v InÞ ð22Þ
This in turn implies that y is multivariate normal with distribution

y�N A�1Xb; vA�1BB0ðA0Þ�1
� �

ð23Þ

Hence the log likelihood function for parameters (b, v, k, q) is given by

Lðb; v; k; qjyÞ ¼ �n

2
lnð2pÞ � 1

2
lnfdet½vA�1BB0ðA0Þ�1�g

� 1

2v
ðy� A�1XbÞ0 ½A�1BB0ðA0Þ�1��1ðy� A�1XbÞ

¼ �n

2
lnð2pÞ � n

2
lnðvÞ � 1

2
lnfdet½A�1BB0ðA0Þ�1�g

� 1

2v
ðAy� XbÞ0 ðBB0Þ�1ðAy� XbÞ

ð24Þ

where implicitly, A = A(k) and B = B(q).

In Appendix 1 (see footnote 2 above) it is shown that the associated concentrated
likelihood function of q is given by:

LcðqjyÞ ¼ �n

2
½1þ lnð2pÞ� � n

2
lnfv̂ ½k̂ðqÞ; qÞ�g � 1

2

Xn

i¼2

ln 1� q2Di
� �

ð25Þ

where

v̂ ¼ v̂½k̂ðqÞ; q� ¼ 1

n
½Ây� Xb̂ðqÞ�0 ðBB0Þ�1½Ây� Xb̂ðqÞ� ð26Þ

with Â ¼ A ½k̂ðqÞ� and where in addition,

b̂ ¼ b̂ðqÞ ¼ b̂½k̂ðqÞ; q� ¼ ½X0ðBB0Þ�1X��1X0ðBB0Þ�1Ây ð27Þ

and

k̂ ¼ k̂ðqÞ ¼ y0G0ðBB0Þ�1GWy

y0W 0G0ðBB0Þ�1GWy
; ð28Þ

with

G ¼ GðqÞ ¼ In � X½X0ðBB0Þ�1X��1X0ðBB0Þ�1: ð29Þ
This one-dimensional function can in principle be maximized by a simple line

search to obtain the maximum-likelihood estimate, q̂. However, there are several

practical considerations that should be mentioned at this point. First, in autocor-

relation models where time intervals between events are unequal, the value of q is

9 It is shown in (A1.2) of Appendix 1 (see footnote 2) that det (In - D) = 1, so that (In - D)-1 always

exits and B is well defined.
10 It is also shown in (A1.2) of Appendix 1 that det (A) = 1, so that A-1 always exits.
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very dependent on the underlying time unit. In particular, since (15) shows that the

only quantities used in the analysis are the powers, qD (and their squares q2D), it is

these values that determine the likelihood function in (25). So if time is rescaled by

a factor, a, then the identity, qD � q1=a
� �aD

, implies that q̂ ! q̂ð Þ1=a. Hence even

though positive autocorrelation estimates will always lie between zero and one, the

actual value of q̂ depends on the time units and can only be interpreted in this

context.

A second related issue concerns the sign of q. While (7) allows negative as well

as positive values of q, it should be clear that negative dependencies are somewhat

problematic in the present setting. In particular, the type of oscillation behavior

implied by negative q depends crucially on the choice of time unit which, as

mentioned above, can be quite arbitrary in the present setting.11 Moreover, since

positive dependencies are of primary interest in the present setting, we simply

restrict the relevant interval of q values to the interval [0,1), and take all zero values

of q̂ to mean ‘‘no autocorrelation.’’12

A final consideration that arises with unequally spaced events relates to the

degree of inequality between time intervals. In particular, if the difference between

the smallest and largest values of D is considerable, then computational overflows

can result. For example, if time units are in days (as in the present application) and

there is a 30 day lag between two consecutive sales, then standard double-precision

computations of the quantity ð1� q2DiÞ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q60

p
will be numerically equal to

one for all values q\ 0.5. While most cases are not this extreme, it should be clear

that the concentrated likelihood function will tend to be very flat for small values of

q. The consequences of this flatness are discussed further in Sect. 3.1 below.

Given an estimate, q̂, of q, one can immediately obtain corresponding estimates

ðk̂; b̂; v̂Þ by successive substitution into (29), (28), (27) and (26). Hence whenever q̂
is unique, it follows that all estimates will be unique. Here it should be noted that

while the concentrated likelihood function, Lc(q|y), can fail to be concave (as can be

shown by numerical examples), the maximum-likelihood estimates, q̂, have proved

to be unique in all simulated cases studied to date. Thus it appears that non-

uniqueness of parameter estimates is not a serious issue in the present model.

Finally, this set of estimates ðb̂; v̂; k̂; q̂Þ can be used to estimate asymptotic

variances for testing purposes. A complete derivation of the asymptotic covariance

matrix is given in Appendix 2 (see footnote 2 above).

3 Selected simulation results

Two types of simulation analyses were done for this model. The first involved an

entirely artificial space-time process constructed on a square grid of housing sites.

The purpose of these simulations was to examine the effect of sample size on the

11 Indeed, such oscillation behavior loses all meaning in the continuous version of AR(1), where the

autocorrelation parameter is required to be nonnegative [as is evident from the positivity restriction,

a0 [ 0, in Jones (1993) for the identity, q = exp(-a0), of footnote 7 above].
12 Following Anselin and Moreno (2003), one might also interpret such negative estimates of q to be

evidence that the present spatio-temporal specification is simply not supported by the data.
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reliability of parameter estimates. As will be shown below, maximum-likelihood

estimates for this model are quite sensitive to sample size, and can be extremely

inefficient for small samples. In view of this, it was crucial to determine whether

such effects were present in the CDC application developed below. So a second set

of simulations was run for that model, using the empirical space-time structure and

sample size, together with the parameter estimates obtained from the given data set.

The results of these simulations, presented in Sect. 4.3 below, confirmed that the

sample size of this application (400 sales) was sufficiently large to achieve

reasonably efficient estimates. Moreover, since data sets for housing sales are

typically much larger than this, the present results suggest that maximum-likelihood

methods should produce reliable results in most applications. But given the wider

range of potential applications of this model, it is of interest to consider its small

sample behavior.13

3.1 A 100-sample case

Here ‘‘small sample’’ behavior is well illustrated by sample sizes as large as 100. To

construct such a case, a population of 100 houses was placed on a 10 by 10 unit grid

of locations, and these houses were sold in random order with time intervals

sampled from an exponential (‘‘memoriless’’) distribution with a mean of 4 days.

Time intervals were then rounded upward so that the minimal time interval was

1 day. To construct space time dependencies as in (1), a threshold time interval of

D = 60 days was chosen, along with a threshold distance of three units, d = 3. This

produced a W matrix of space-time influences in which 65% of the houses were

influenced by the previous sale of at least one house nearby.14 Two housing attribute

values (x1, x2) were randomly sampled from a uniform distribution on the unit

interval, producing a 100 9 2 matrix, X, of housing data. The parameter values

chosen for this simulation were b = (5,1,2)0, v = 4, k = 0.4, and q = 0.2. The

variance, v, was chosen to be relatively large in comparison to the conditional mean.

This was done to maintain some degree of comparability with the application below

which also involves two explanatory variables, and thus resulted in substantial

unobserved variation. In addition, the value of q was chosen to be low enough to

allow substantial unobserved variation between sales occurring only 1 day apart (as

discussed at the end of Sect. 2.1 above).

In this setting, a set of 1,000 sales price vectors, y = (yi: i = 1,…,1,000), were

simulated. The resulting distributions of parameter estimates are summarized in

Table 1 below.

Here the means of all parameters are close to their true values, but the standard

deviations on most parameters are quite high. Recall that the high variance, v = 4,

is a contributing factor here, especially for the b parameters. This can be seen in

13 Here it should be emphasized that the following simulations are intended only to illustrate the

‘‘typical’’ small sample properties of this model in a single situation. Systematic simulation studies of

model performance under a range of space-time structures and parameter values are left for future work.
14 Here parameter choices (d, D) for W were chosen to yield a degree of space-time interaction among

housing sales that roughly matched that of the Philadelphia application below, where about 66% of the

houses were influenced by previous sales (based on the space-time bandwidths used).
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Fig. 1a below, where even then most inefficient estimator, b̂1, is symmetrically

distributed about its true value, b1 = 1 (shown by the arrow head below the figure).

The situation for k̂ is surprisingly much better than for the betas, and is seen in

Fig. 1b to be much more concentrated around its true value k = 0.4. But the

situation for q̂ is quite different, as shown in Fig. 2a below.

Even though the sample mean of q̂ seems reasonable, the actual sampling

distribution exhibits extreme variation. Notice also that this variation combined with

the nonnegativity restriction on q (discussed at the end of Sect. 2.3 above) produces

a large spike of zero values. Hence it is clear that without this restriction there

would also be a severe negative bias in the estimates of q. Even with the restriction,

there is a slight downward bias in q̂, which is directly inherited by v̂ as seen in

Table 1 and Fig. 2b. This underestimation of variance is of particular significance

for statistical inference, since the primary objective of this model is to account for

the unobserved variation that is masked by space-time dependencies.

The main reason for the extreme variation in q̂ values turns out to be the relative

flatness of the concentrated likelihood function for q, as seen in Fig. 3 below, where

a case with q̂ close to the mean [in (a)], and a case with q̂ truncated to zero [in (b)]

are seen to have similar concentrated likelihood functions, both very flat in the range

of low q values. This can in turn be attributed to the fact that for all time intervals,

D, that are well above one (say at least 5 days), the values of qD and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � q2D

p
are

approximately zero and one, respectively, for all low values of q. Hence these terms

are essentially constant for small q. This flatness of course also results in small

values of the Hessian for the concentrated likelihood function, and hence tends to

inflate the asymptotic variance of q̂ estimates. (Indeed, for the 1,000 simulations

above, only about 25% resulted in a significantly positive value of q.)

Finally, since all other estimates are constructed from estimates of q, it should be

clear that this instability in q estimates will be inherited by all other estimates.15

Thus it would appear that for samples this small, autocorrelated errors with unequal

spacing can create substantial problems for parameter estimation.

3.2 A 400-sample case

Given these small-sample problems, it is of interest to extend the above example to

a grid large enough to allow a sample size comparable to the sample size, n = 400,

in the CDC application below. Hence a 20 by 20 grid was used to obtain 400

Table 1 Estimates for the simulation of 100 sales

b0 b1 b2 k q m

Mean 5.032 0.991 1.963 0.397 0.206 3.817

Std Dev 0.586 0.646 0.693 0.045 0.165 0.562

15 In view of this, it is somewhat surprising that estimates of k appear to behave quite well by

comparison. Moreover, since this relation persists in all simulations studied thus far, it raises an

interesting (open) question as to why the expression for k̂ðq̂Þ in (28) above should remain more stable

than q̂.
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housing sites. These were again sold in random order, with lag times defined by

rounded samples from an exponential distribution with mean equal to 4 days. A

400 9 2 matrix, X, of housing attributes was again sampled from the uniform
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distribution, and the same parameter values for [b, v, k, q] were used. The results are

shown in Table 2 above.

Here we see that there is considerable improvement with respect to all estimates.

Not only are the means slightly better, but the sample standard deviations are

roughly cut in half. The reason is made clear by the histogram for q̂ in Fig. 4a

below, which exhibits much better statistical properties.

While a spike at zero is still evident, there is now a clear concentration around the

true value, q = 0.2, with only a slight downward bias and a much smaller standard

deviation. This reduction is again inherited by all parameter estimates constructed

from q̂. Of particular importance for statistical inference is the improvement in v̂, as

seen in Table 2 and Fig. 4b. Not only is the standard deviation cut in half, but also

the downward bias has almost disappeared. Hence it appears that for sample sizes of

400 and larger, the maximum-likelihood estimates of all parameters are quite

reliable. Additional confirmation of this will be given in Sect. 4.3 below.

4 Application to a community development corporation area in Philadelphia

The following application is taken from the Philadelphia study mentioned in the

Introduction, and focuses on one of the CDCs in this larger study (which will be

reported in a subsequent paper (Wu and Smith 2009)). The present CDC, designated

as the People’s Emergency Center (PEC), consists of nine contiguous block groups

located in West Philadelphia, as shown in Fig. 5 below.

The specific objective of this study was to determine whether the overall trend of

housing sales prices in each CDC area was significantly greater than that of

comparable non-CDC areas in Philadelphia.16 Here a control area (CA), consisting

of 25 contiguous block groups in North Philadelphia was identified (also shown

Fig. 5) and used for purposes of comparison. The data for the present illustration

consists of all housing sales in these two areas during the 20-month period from

January 2004 to September 2005. During this period there were 64 housing sales in

PEC, and 336 housing sales in the larger control area, CA.17

To compare sales trends, an instance of model (3) was constructed with yi

denoting the sales price per square foot of each house i (to control for variations in

house sizes). To account for space-time dependencies among housing sales, the time

and distance thresholds in (1) above were chosen to be D = 60 and d = 500, so that

Table 2 Estimates for the simulation of 400 sales

b0 b1 b2 k q m

Mean 5.012 1.001 1.985 0.401 0.196 3.963

Std Dev 0.274 0.339 0.343 0.034 0.094 0.281

16 During this time period there was a significant increase in housing prices throughout the entire

Philadelphia area.
17 This address-level sales data was extracted from the Philadelphia Board of Revisions of Taxes (BRT)

Properties File from 1990 to 2006.
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for any two houses, i and j, the corresponding space-time weight, wij, is nonzero if

and only if house j is within 500 feet of house i and is sold no more than 60 days

prior to the sale of house i.18 Sales in each area were distinguished by a location

dummy, di (=1 for PEC houses i), and the sales time, ti, of each house i was used to
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Fig. 4 a Histogram for q̂. b Histogram for v̂

Fig. 5 CDC area (PEC) and control area (CA)

18 It should be clear from Fig. 5 that the areas PEC and CA are sufficiently far apart to ensure that no

space-time dependencies occur between houses in separate areas.
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capture (linear) sales-price trends. In this context, the relevant instance of model (3)

for the present application takes the form:

yi ¼ k
Xn

j¼1

wijyj þ ðb0 þ b1 ti þ b2 di þ b3 tidiÞ þ ui; i ¼ 1; . . .; n ð30Þ

where n = 400 and where tidi denotes the interaction effect between time and location.

For our present purposes, the coefficient of this interaction effect (b3) is the key

parameter of interest. This can be seen more clearly by rewriting (30) as follows:

yi ¼ k
Xn

j¼1

wijyj þ b0 þ b2 di þ ðb1 þ b3 diÞti þ ui; i ¼ 1; . . .; n ð31Þ

Here it is clear that b3 represents the difference in slopes between the linear sales-

price trends in the PEC and CA areas. Hence a positive value of b3 would at least be

consistent with a positive local effect of the PEC housing projects.

4.1 OLS estimation

To analyze this effect we start by treating (30) as a standard linear model. Here it is

of interest to observe that if temporal autocorrelation effects are assumed to be

absent, i.e., if q = 0, then (30) is precisely a standard linear model. To see this,

consider the form of the full likelihood function in (24) and note first that if q = 0,

then by definition, C = B = In, and in particular ln [det (C)] = 0. Hence if we let

~b ¼ k
b

� �
; ~X ¼ ðWy;XÞ ð32Þ

so that Ay � Xb ¼ y � kWy � Xb ¼ y � ~X~b, and rewrite the reduced likeli-

hood with q = 0 as Lðb; v; kÞ � Lð~b; vÞ, then it follows at once from (24) that

Lð~b; vÞ ¼ �n

2
lnð2pÞ � n

2
lnðvÞ � 1

2v
ðy� ~X~bÞ0ðy� ~X~bÞ ð33Þ

which is precisely the standard linear model likelihood function for ð~b; vÞ.19

Hence the ordinary least squares (OLS) estimates of ð~b; vÞ ¼ ðk; b; vÞ for this

case are guaranteed to satisfy all the usual optimality properties of maximum-

likelihood estimates.20 More generally, if temporal autocorrelation effects are

present but not too severe (as will be seen to be the case in this application), then

OLS should continue to yield quite reasonable estimates. The results for OLS in the

present case are summarized in Table 3 below:

19 It should be noted here that since this model involves both lagged dependent variables and a time trend

term, it is technically an instance of a ‘‘autoregressive process around a deterministic time trend.’’ But

while the rates of convergence for OLS estimates are more delicate in this case, it can be shown that the

standard model significance tests continue to be asymptotically valid. [See for example Hamilton (1994,

Sect. 16.3)].
20 In particular, OLS estimates in the presence of lagged dependent variables are consistent and

asymptotically normally distributed about their true values. However, since the lagged dependent

variables and residuals are not fully independent, these estimates are typically biased for small samples.

[See for example Davidson and MacKinnon (2004, Sect. 3.2)].
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Here both the time parameter (b1) and the key time-location interaction

parameter (b3) are significantly positive—with interaction being very significant.

Moreover the relative size of these coefficients shows that price increases in PEC

are considerably higher than those of CA, with a rate of increase above that of CA

by more than 5 cents per square foot per day. Notice also that the spatial effect of

nearby previous sales (k) is significantly positive.

In the next section it is shown that our present spatio-temporal extension of OLS

does not change these conclusions in any substantial way. Moreover, while the

present analysis is based only on a small data set drawn from the larger Philadelphia

CDC study, these same conclusions follow from the larger study as well. Hence it

does appear that prices have been rising faster in the CDC areas than can be

accounted for by general housing price increases during this period. In so far as

increased housing values can be taken to reflect neighborhood revitalization, our

results thus suggest that these Philadelphia CDC projects have achieved some

degree of success. For a fuller discussion of these points, see Wu and Smith (2009).

However, there are a number of shortcomings of the present analysis that carry

over to the larger study as well. The most obvious is the absence of additional

housing attributes that should be controlled for (as reflected by the low value of

pseudo R-square21). But unfortunately, such attributes were not available in usable

form for the current data set.22 The other key question for our present purposes

relates to possible temporal autocorrelation among residuals that is not captured by

the simple time trend in (30). As is well known, such autocorrelation tends to smooth

residuals which can in principle inflate the statistical significance of key parameters.

Indeed, this was the primary motivation for the present spatio-temporal model.

Table 3 OLS results for PEC

Variable Coefficient t-value P-value

Constant (b0) 10.203 4.482 0.00001

Spatial lag (k) 0.123 2.314 0.021

Time (b1) 0.014 2.419 0.016

PEC indicator (b2) 13.160 2.461 0.014

Time–PEC interaction (b3) 0.053 3.774 0.0002

Pseudo R-square 0.362

AIC 3,435.219

Variance (v) 308.651

21 The standard R-square is known to be somewhat problematic in the case of lagged dependent

variables. Hence for comparability with the spatio-temporal formulation below, we choose to define

pseudo R-square here to be the squared correlation between y and it prediction, ŷ ¼ ÊðyjXÞ ¼
ðIn � k̂WÞ�1Xb̂ with OLS estimates k̂ and b̂. However, it is also of interest to note that in this particular

application the unadjusted R-square (0.372) is almost the same as the pseudo R-square (0.362).
22 Here it should be noted that CDCs are local non-profit organizations whose funding is devoted almost

entirely to housing projects, and not to data collection. Hence all housing data was drawn from the

Philadelphia BRT (footnote 17 above). Moreover, while this BRT data did include provisions for a

number of key housing attributes (such as ‘‘number of bedrooms’’ and ‘‘interior and exterior condition’’),

most of this data was either missing or unusable for other reasons.
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4.2 Spatio-temporal estimation

Hence we now re-examine this data in terms of present spatio-temporal model. The

results of this estimation are summarized in Table 4 above. Notice first that the key

parameter estimates and significance levels are strikingly similar to Table 3.

Moreover, as is seen from the pseudo R-square and AIC values, the overall

goodness of fit for both models is also very similar.23 Hence, in view of the

discussion in Sect. 4.1 above, these similarities would seem to suggest that temporal

autocorrelation is not present. However, the P-value (0.044) for temporal

autocorrelation, q, does indicate some statistical significance here. But as noted

in Sect. 2.3 above, the estimated value of q can only be interpreted relative to the

time units used in the analysis. In the present case, q̂ ¼ 0:112, with a time unit of

1 day. This implies from (10) that for consecutive housing sales, i - 1 and i, that

are more than 1 day apart, the influence of residual, ui-1, on ui is less than

q2ui-1 & (0.013)ui-1. So in spite of its apparent statistical significance, the

autocorrelation impact of q in the present context is actually minimal.

In summary, the present application of the spatio-temporal model has simply

served to verify that the OLS estimates above do not appear to be severely

influenced by unobserved temporal autocorrelation effects.

But given the small-sample estimation difficulties illustrated in Sect. 3.1 above, it

is still of interest to ask whether the present value of q̂ might actually be

underestimating the true value. While no definitive answer can be given to this

question, it is instructive to simulate the behavior of maximum-likelihood estimates

for this application.

4.3 Simulation of spatio-temporal estimates

Recall from Sect. 3.1 that the sample size, n = 400, was chosen specifically to be

comparable with the present application. While the results there suggest that the

Table 4 Spatio-temporal results for PEC

Variable Coefficient t-value P-value

Constant (b0) 10.521 4.402 0.00001

Spatial lag (k) 0.120 2.296 0.0216

Time (b1) 0.014 2.210 0.0274

PEC indicator (b2) 12.380 2.363 0.0181

Time–PEC interaction (b3) 0.053 3.774 0.0001

Temporal autocorrelation (q) 0.112 2.013 0.0441

Pseudo R-square 0.362

AIC 3,435.219

Variance (v) 305.013

23 In the present context of maximum-likelihood estimation, the AIC measure is considered by many to

yield more reliable goodness-of-fit comparisons than pseudo R-square. However, the latter is somewhat

easier to interpret.
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present estimate of q should behave reasonably well, both the spatio-temporal

dependency structure and data used for that simulation are considerably different

than the present case. Hence it is of interest to carry out the same simulation

procedure using the present data set and W matrix. In addition, to gage how well the

model is doing in the region of the current parameter estimates, the ‘‘true’’ parameter

values were chosen to be (slightly) rounded versions of the parameter estimates

above (b0 = 10.52, b1 = 0.014, b2 = 12.38, b3 = 0.05, k = 0.12, q = 0.112, and

v = 305.01). The results of this simulation are summarized in Table 5 above.

Here it is clear that the maximum-likelihood estimates are behaving quite well

for this data and set of parameter values above. Of particular interest are the

q-estimates, which are shown in more detail in Fig. 6a below.

As in Fig. 4a there is still a noticeable spike at zero. But again there is strong

clustering about the true value, q = 0.112, resulting in only a small downward bias

in q̂. As expected, these results for q lead to even better results for the estimates of

variance, v, as compared to Fig. 4b. In short, these results lend further credibility to

the estimate of q above, and hence to the minimal nature of temporal

autocorrelation in the present application.

5 Comparison with a spatio-temporal lag model approach

An alternative approach to the spatio-temporal analysis of individual housing sales

with unequal time intervals was proposed by Pace et al. (2000).24 Here housing

sales are again ordered by time of occurrence, and the full structure of time

dependencies among these sales is specified by a nonnegative matrix, T = (sij), with

sij = 0 for all j C i. Similarly, all spatial dependencies for a given sale are assumed

to involve only previous sales, and the structure of such dependencies is represented

by a nonnegative matrix, S = (sij), with sij = 0 for all j C i. These are combined

into a general linear model designated as the spatio-temporal linear model (STLM).

For our present purposes, it is convenient to focus on the special case of STLM

given by the following spatio-temporal lag model paralleling (16) above:25

y ¼ ðkT T þ kSSþ kTSTSþ kST STÞyþ Xbþ u; u�Nð0; vIÞ ð34Þ
Here the simple expression, kWy, in (16) now has a more elaborate form, while

the unobserved residuals, u, in (17) have a much simpler form. In essence, all spatio-

temporal dependencies are here postulated to be among the observable sales prices,

Table 5 Estimates for the PEC simulation

b0 b1 b2 b3 k q m

Mean 10.466 0.0134 12.398 0.0545 0.1120 0.1067 301.51

Std Dev 2.459 0.0062 5.128 0.0141 0.0524 0.0542 21.69

24 We are indebted to an anonymous referee for pointing out the close similarities between our current

model and that of Pace et al. (2000).
25 This is a special case of the STLM model in expression (7) of Pace et al. (2000), where the interaction

terms (TX, SX, TSX, STX) are missing, along with matrix of non-lagged variables, Z.
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y, and not the residuals, u.26 As the authors point out, the appeal of this model is its

mathematical simplicity. In particular, since lower triangularity is preserved under

products, the spatio-temporal lag matrix in (34) is lower triangular. This, together

with the standard OLS specification of residuals, implies that all parameters can be

consistently estimated using OLS. Hence this model can be applied to very large

data sets, as is common in real estate markets.

To compare (34) with the present model in [(16), (17)], we begin by considering

the types of spatio-temporal interactions that can be captured by the product

matrices, TS and ST. Here we choose to focus on ST, and write STy more explicitly

as:

0

s21 0

s31 s32 0

..

. . .
. . .

. . .
.

sn1 � � � sn;n�2 sn;n�1 0

0
BBBBB@

1
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0
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..

. . .
. . .

. . .
.
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0
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1
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y2

..

.

yn�1

yn

2
666664

3
777775
ð35Þ

Hence the spatio-temporal influence on the ith housing sale, say /i(y1,…, yi - 1),

is seen to be of the form:

/iðy1; ::; yi�1Þ ¼
Xi�1

h¼1

sih

Xh�1

j¼1

shjyj

 !
¼
Xi�1

h¼1

Xh�1

j¼1

ðsihshjyjÞ ð36Þ

If we examine a typical term, sihshjyj, then the first point to notice is that by

definition, j \ h \ i. Hence all influences on the price of housing sale, i, by the prices,
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Fig. 6 a Histogram for q̂. b Histogram for v̂

26 It should be remarked that Pace et al. (2000) motivate the form of their model by constructing [in

expressions (1), (2) and (5)] a spatio-temporal extension of the spatial Durbin model (Anselin 1988)

which does indeed account for spatio-temporal autoregressive dependencies in the unobserved residuals.

But this development is somewhat misleading in the sense that their final model, STLM [expression (7)],

ignores the crucial ‘‘common factor’’ constraints on coefficients that preserve these autoregressive

dependencies. Hence, while STLM could in principle be used to test this ‘‘common factor hypothesis’’ (as

implied by their discussion on p. 234), the model itself is simply a more elaborate version of the spatio-

temporal lag model in (34) above.
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yj, of previous housing sales, j, involve indirect influences through some other housing

sale, h, that is intermediate in time between i and j. To gain some insight as to the nature

of such influences, suppose first that both sih and shj are positive so event j does exert

some influence on event i through h. Suppose further that sih = sij = 0 (so that events

h and j both happen long before i), and similarly that sij = shj = 0 (so that events i and

h are both very far from event j in space). Then this spatio-temporal interaction can be

given the following interpretation: Even though event h happened long before i, it is

close enough in time to event j to share some common temporal influences with j.
Moreover, even though event i is very far away from j in space, it is close enough to h to

share some of the spatial effects of these earlier influences. Similar interpretations can

be given to TS, and show that such spatio-temporal influences are indeed quite

meaningful. But the crucial point here is that these influences are necessarily indirect.
In our present model, for example, it is assumed that housing sale i can be

influenced by all previous sales j that are sufficiently close to i in both space and

time, i.e., for which both sij [ 0 and sij [ 0. But with respect to the above

interpretation, it is clear for example that if all other sales near i happened after i, so

that sihshj = 0 for all h \ i, then j can have neither an ‘‘ST’’ effect or a ‘‘TS’’ effect

on i in (34). While it is true that j can still have additive ‘‘T’’ and ‘‘S’’ effects in (34),

it should be clear that there is no way to model our particular joint space-time
interaction effect in the STLM model.

However, there is another matrix product that does allow such effects. In

particular, if one considers the Hadamard product, S � T, defined by simple

component-wise multiplication, [S � T]ij = (sij)�(sij), then this clearly encompasses

the desired joint interactions since,

½S � T�ij [ 0, ðsij [ 0Þ and ðsij [ 0Þ ð37Þ

Of equal importance in the present context is the fact that Hadamard products

obviously preserve lower triangularity. Hence by broadening the spatio-temporal lag

operator in (34) to

y ¼ ðkT T þ kSSþ kTSTSþ kST ST þ kS�T S � TÞyþ Xbþ u ð38Þ

one can encompass both direct and indirect spatio-temporal interactions in a manner

that still permits consistent OLS estimation.

Finally it is of interest to ask whether one can also use these simple weight

matrices, S and T, to model spatio-temporal autocorrelation effects in the

unobserved residuals, u. As in model [(16), (17)] we focus here on temporal

autocorrelation and, as an alternative to (10) and (11), now consider the much

simpler linear autoregressive model,

u1 ¼ e1 ð39Þ

ui ¼ q
Xi�1

j¼1

sijuj þ ei; i ¼ 2; . . .; n ð40Þ

with independent innovations, ei * N(0, r2), for all i. Here the unequal time

intervals between i and j are assumed to be captured by appropriately chosen values

of sij. This yields the matrix form,
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u ¼ qTuþ e ) u ¼ ðI � qTÞ�1e; e�Nð0; r2IÞ: ð41Þ

which is seen an instance of expressions (1) and (5) in Pace et al. (2000).

From a theoretical perspective the major difficulty with this process is that

stationarity is not possible without further modification. In particular, if it is

assumed that

varðuiÞ ¼ v [ 0; i ¼ 1; . . .; n ð42Þ

then it is easily shown that (41) and (42) are inconsistent, unless either T = O or

q : 0. The basic idea can be seen from (39) plus the first instance of (40). For by

(39) it follows that

varðu1Þ ¼ varðe1Þ ) v ¼ r2: ð43Þ
Hence by setting i = 2 in (40) we see that

u2 ¼ qs21u1 þ e2 ) varðu2Þ ¼ ðqs21Þ2varðu1Þ þ varðe2Þ
) v ¼ ðqs21Þ2vþ v ¼ v ½1þ ðqs21Þ2�

ð44Þ

But if q = 0 then s21 = 0 would imply that (qs21)2 [ 0, so that (44) can only

hold if v = 0. Since this contradicts (42), we must have s21 = 0. Proceeding by

induction, this forces T = O whenever q = 0.27

However, it is also well known that by a simple relaxation of the variance of the

initial innovation, e1, this problem can be overcome for the special case of the

standard AR(1) model [given by (10) and (11) above with Di : 1].28 Here T = (sij)

takes the special form with si,i-1 = 1 for all i = 2,…, n, and sij = 0 elsewhere, so

that by relaxing (43) and setting s21 = 1, it now follows from the argument in (44)

that [in a manner paralleling (12)],

v ¼ q2vþ r2 ) v ¼ r2=ð1� q2Þ ð45Þ
Hence by restricting the admissible values of q to the open interval (-1, 1) [so

that v is defined], and assuming only that the initial variance in (39) takes the form

varðe1Þ ¼ r2=ð1� q2Þ � v; ð46Þ

a simple inductive argument shows this initialization of the AR(1) model yields a

well defined stationary process as in (42), with var(ei) = r2 for all i [ 1.29 From a

practical viewpoint, this larger initial variance is taken to reflect the entire history of

the unobserved process prior to i = 1.30

Hence, there remains the interesting question of whether this simple modification

for the AR(1) model might not allow variance stationarity (42) for other possible

specifications of T. More precisely, one may ask whether there exist (nonzero)

27 A full argument is given in Appendix 3 (see footnote 2 above).
28 In fact this ‘‘special case’’ provides the motivation for essentially all linear autoregressive models,

both in time and space. For the spatial case, this is clear from the motivating examples in the original

papers of Whittle (1954) and Ord (1975).
29 Proofs of this result can be found in any standard text, such as Hamilton (1994, Sect. 3.4).
30 For further discussion of this point see Green (2003, Sect. 12.2).
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specifications of T = (sij) other than AR(1) [together with an appropriate choice of

r2] such that the model:

u1 ¼ e1; e1 � Nð0; vÞ ð47Þ

ui ¼ q
X
j\i

sijuj þ ei; ei�Nð0; r2Þ; i ¼ 2; ::; n ð48Þ

with independent innovations (ei: i = 1,…, n) satisfies stationarity condition (42).

Here the answer is unfortunately negative. In particular, if one imposes the rea-

sonable assumption that more distant time influences are never greater than more

recent influences, i.e., that

h\j\i) 0� sih� sij ð49Þ

and requires only that model [(45), (50)] hold for q in some sufficiently small open

interval containing zero (so that full independence is allowed), then it is shown in

Appendix 3 (see footnote 2 above) that AR(1) is indeed the only possibility here.31

So while model (41) [or its relaxation in (45) and (50)] is very appealing from an

analytical viewpoint, such models must always involve non-stationary residuals.

Moreover, since the structure of these non-stationarities will depend critically on the

particular specification of T, one must justify why this specification together with its

implicit non-stationarities is appropriate for the particular time interval (and

irregular event sequence) under study.32

6 Concluding remarks

In this paper, we have developed a spatio-temporal model that is particularly

suitable for the analysis of address-level events occurring sporadically in time. In

particular, this model not only avoids the need for temporal aggregation (that is

typical of most spatio-temporal regression models), but also allows for the

possibility of short-run temporal dependencies (such as changes in asking prices

based on very recent sales). Moreover, while the above analysis suggests that more

robust estimation procedures may be needed for small-sample applications, the

present maximum-likelihood framework does appear to be well suited for the

analysis of larger data sets, as typified by housing sales transactions in major urban

areas.

There is however a more subtle limitation of the present model that does not arise

in more standard temporal aggregation schemes. In particular, when events are

aggregated with respect to regular time intervals, as in the standard AR(1) model,

these aggregate events are by definition well separated in time. But in our present

extension of the AR(1) model to individual events, it is quite possible for such

31 It is also worth noting that this result depends only on the first two moments of the independent

innovations (ei: i = 1,…, n) so that the normality assumption in (7) is not required.
32 For example, if q[ 0 then it is clear from the cumulative nature of (50) that sales residuals ui with

many sales in the recent past, i.e., with many positive dependencies (sij: j \ i), will tend to have much

higher variances than those with very few sales in the recent past.
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events to occur at almost the same time. In particular, it is possible for several house

sales to occur on the same day. Moreover, as discussed in Sect. 2.3 above, the

steady-state conditions for this model imply that the unobserved residuals for such

events must be identical. This would make perfectly good sense if the unobserved

variation captured by ui was due entirely to time dependent phenomena affecting all

events occurring at time ti. For then it could be argued by simple continuity that

events occurring close in time to ti would be similarly affected. But in actuality each

residual, ui, necessarily includes any unobserved attributes of individual house i that

influence its sales price but are not shared by other houses sold at times close to ti.
Hence one important extension of the present model would be to incorporate

such effects by the addition of an idiosyncratic residual, uoi, for each sales event i. If

it is assumed that these residuals are iid normal variates, say with uo = (uoi:

i = 1,…, n)0 * N(0, voIn), and in addition that uo is independent of the temporal

effects captured by u, then the model in (16) could be extended as follows:

y ¼ kWyþ Xbþ uþ uo; u�Nð0; vBB0Þ; uo�Nð0; voInÞ ð50Þ
Here events occurring simultaneously would exhibit distinct idiosyncratic

residuals even though they shared a common temporal residual.

From a conceptual viewpoint, this extension appears to be rather straightforward.

But analytically it is considerably more complex. In particular, it is no longer

possible to reduce the estimation problem to a single dimension. However, if this

model is reparameterized by the standard technique of setting h = v/vo, then it can

be shown that (34) still exhibits many of the analytical properties developed for

model (16) above. This extension will be presented in a subsequent paper.
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