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Abstract In this paper we present a method for simultaneous simplification of a

collection of piecewise linear curves in the plane. The method is based on trian-

gulations, and the main purpose is to remove line segments from the piecewise

linear curves without changing the topological relations between the curves. The

method can also be used to construct a multi-level representation of a collection of

piecewise linear curves. We illustrate the method by simplifying cartographic

contours and a set of piecewise linear curves representing a road network.

Keywords Simplification � Digital line graph � Multi-resolution �
Triangulation

JEL C63

1 Introduction

A simplification of a piecewise linear curve is a piecewise linear approximation

using fewer segments than the original, where the distance between the curve and its

approximation is within a prescribed tolerance. In addition, when simplifying sets of
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curves, we want to maintain the relationships between the curves, thus keeping the

topology of the curve set constant. In this article we will describe a method for

performing a simultaneous simplification of a curve set, that is, all the curves are

simplified in parallel while enforcing the given topology of the curve set. A

piecewise linear curve is defined by a sequence of points where the convex hull

pairs of two consecutive points define the line segments. We create the

approximation by finding a subsequence of the original sequence of points by

discarding points one-by-one until no more points can be removed without violating

the tolerance.

An important issue is the strategy for finding which point to remove at each step

of the process. Usually, such processes are guided by evaluating the error induced

by removing each candidate point, and choosing the point inducing the smallest

error. This is a greedy optimization approach, which not necessarily finds a global

optimum, but gives good results in practice. In most cases the traditional Euclidean

norm or variations over the Hausdorff metric is used to measure distance between

curves, see Arge and Dæhlen (1997). In this paper we will use a variation over these

measures. The distance measure is particularly important when performing

simultaneous curve simplification since we must measure the distance to

neighbouring curves. Our solution for handling neighbouring relations, both

topological and geometrical, is based on representing the curve set as a

triangulation, i.e. subdividing the plane into triangles using the points and segments

of the curve set.

Simplification of piecewise linear curve sets, and in particular curve sets

representing level curves or cartographic contours, was one of the early challenges

of computer-based cartography. Other typical examples of curve sets which appear

in cartography and geographical information systems are river networks, various

types of boundary curves describing property borders, forest stands, etc. Contour

data and boundary curves are also important within other applications areas, e.g.

when modeling geological structures.

The most commonly used method for curve simplification is the well known

Douglas–Peucker algorithm (Douglas and Peucker 1973; Ramer 1972), which was

developed in the early seventies. Other methods have also been developed as well,

see Arge and Dæhlen (1997) and references therein. Our method for simultaneous

simplification of a set of curves is based on measuring the distance between points

and curves using variations over the Euclidean norm, in addition to relationships

between points and curves, which are efficiently found by using triangulations. We

also illustrate how this method can be used to construct a nested multi-level

representation of curve networks.

The outline of this paper is as follows: in the next section we give some

background information on refinement and decimation of curves and triangulations,

followed by a section defining the problem statement and further comments the

motivation behind this work. In Sect. 4 we describe the triangulation into which the

curve set is embedded. Then, in Sect. 5 we describe the simultaneous curve

simplification algorithm. Finally, we conclude the paper with a few examples in

Sect. 6 and some remarks on future work in Sect. 7.
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2 Refinement and decimation

Various algorithms have been constructed for simplification of piecewise linear

curves. The most well-known is the Douglas–Peucker algorithm (Douglas and

Peucker 1973; Ramer 1972), of which we will give an overview.

We begin by defining a piecewise linear planar curve. Given a sequence of

points in the plane

p1; . . .; pn; pi 2 R
2;

the curve is defined by the line segments

½pi; piþ1�; i ¼ 1; 2; . . .; n� 1;

where ½�� is the convex hull.

Then, given a tolerance we proceed as follows. The initial approximation is the

single segment [p1, pn]. We then pick the point pk in p2; . . .;pn�1 that is farthest

away from [p1, pn], using e.g. the Euclidean distance measure.

If the distance between pk and [p1, pn] is greater than the tolerance, we insert pk

into the approximation, and get two new line segments [p1, pk] and [pk, pn]. We

continue this process recursively on every new line segment until the tolerance is

met for every line segment.

The two first steps of the process is shown in Fig. 1 where first pk is inserted into

[p1, pn] yielding the two line segments [p1, pk] and [pk, pn]. Then, pl is inserted into

[pk, pn], and we end up with an approximation defined by the three line segments

[p1, pk], [pk, pl], and [pl, pn]. Variations over the Douglas-Peucker algorithm and

other methods can be found in Arge and Dæhlen (1997) , and references therein.

The Douglas–Peucker method is a refinement procedure, where we start with a

coarse approximation (one single line segment in our example) and insert the most

significant points, getting increasingly finer approximations, until the prescribed

tolerance is met. Another approach is the converse process, called a decimation
procedure. We start with the original curve as the initial approximation and remove

the least significant points progressively, giving increasingly coarser approximations

p

p

p
p

1

k

n

l

Fig. 1 Two steps of the Douglas–Peucker simplification algorithm
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until no more points can be removed without violating the prescribed tolerance. The

simultaneous simplification algorithm presented in this paper is based on decimation

of triangle meshes. Similarly to curve simplification, we can start with two triangles

covering the domain as our initial approximation and insert the most significant

points followed by a re-triangulation one by one until the tolerance is met. Or we can

start with the full triangle mesh and remove points and re-triangulate while the

tolerance is not violated. A variety of methods has been developed for this purpose,

and details on these algorithms can be found in Heckbert and Garland (1997) and

references therein.

3 Problem statement

We are given a set of piecewise linear curves in the plane, and we want to simplify

these curves without modifying the topological relationship between the curves.

Such a curve set is the lake in the top row of Fig. 2 where each curve defines a

contour of a complex polygon. When simplifying it is important that islands in the

lake remain inside the lake, and furthermore that the lake polygon remain a valid

polygon. Another example is the road network in the bottom row of Fig. 2. The road

network is a curve set where each curve describes the path between two junctions.

Thus, we are given a set Q of M piecewise linear curves,

Q ¼ fPj; j ¼ 1; . . .;Mg; ð1Þ

where each curve Pj in Q is a sequence of Nj points,

P j ¼ fpj
1; . . .pj

Njg; pj
i 2 D; D � R

2 ð2Þ

contained in some suitable domain D in the plane.

We want to create a simplified approximation of Q, which we denote Q̂ ,

Q̂ ¼ fP̂j; j ¼ 1; . . .;Mg;

where P̂j approximates Pj using a subset of the points of Pj.

Given a suitable distance measure j � j and a tolerance �; we create Q̂ from Q by

removing points from the curves one-by-one while jQ̂� Qj\�: When removing

points one-by-one, we inherently create a sequence of increasingly coarser

approximations, and thus, we can easily obtain a multiple-level-of-detail represen-

tation of Q by instead of using a single fixed tolerance �; we use a sequence of

monotonically increasing tolerances 0\�1\�2\ � � �\�L where jQ̂i � Qj\�i:
Initially, we let Q̂0 ¼ Q; and using �1 we create Q̂1 from Q̂0: Further, we create

Q̂2 from Q̂1 using �2; and so on. Since we only remove points and never move a

point, the points of Q̂i is a subset of the points of Q̂i�1; and thus, we have a nested
multiple-level-of-detail representation.

If this is done carefully we can introduce the curve sets into a triangle based

multi-level terrain model. Alternatively, a sequence of approximations can also be

obtained by removing a fixed number of points successively, and hence avoid using

an error tolerance at all. In Fig. 3, a fixed number of points were removed, while in

Figs. 4, 5, and 6, a sequence of tolerances were used.
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Fig. 2 Polygonal networks with constrained Delaunay triangulations. The top row depicts a polygonal
lake, and the bottom row depicts a small part of a road network. The left columnshow the original
datasets, while the right column show their maximally simplified counterparts
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Fig. 3 Comparison of the three distance measures. The curve set given in Fig. 7 left was simplified to 90
points using the three different norms. Left Maximum distance measure, �M = 16.7 m. Center Scaled
maximum distance measure, �s = 44.5 m. Right Hybrid distance measure (R = 20 m), �H= 22.3 m
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However, care must be taken when we remove points. Figure 7 shows the result

of an unfortunate point removal. By approximating the two consecutive line

segments [p, q] and [q, r] with the single line segment [p, r], we introduce two new

intersections, and thus, change the topological relationship between the curves.

From this we see that in order to simplify one curve segment in a network, we must

consider all curves simultaneously.

To satisfy that the topological relationship between curves remain constant when

we remove a point, we never remove any point whose removal would violate any of

the following four requirements:
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Fig. 4 Multi-resolution simplification of cartographic contours, created using the hybrid norm
(R = 20 m). Left Original set of cartographic contours, 470 points. Center Simplification �1 = 15.4 m,
108 points. Right Further simplification �2 = 100 m, 66 points. Here, no more points can be removed
without violating the topological constraints
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Fig. 5 Multi-resolution simplification of the road network of the Lake Tahoe dataset US Geological
Survey (1997), created using the hybrid distance measure (R = 500 m). Left Original curve set, 123,038
points. Middle Simplification �1 = 100 m, 33,014 points. Right Further simplification �2 = 1,000 m,
12,839 points
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1. All intersections between curves shall be kept fixed.

2. No new intersections between curves shall be generated.

3. No curves shall degenerate into one single point.

4. No closed curves shall degenerate into a single line segment.

This asserts that the topology of the curve set as a whole does not change.

For example, in the case of the road network, Requirements 1 through 3 ensures

that all existing junctions are maintained, no new junctions are introduced, or that

two junctions do not collapse into one single junction. Further, in the case of areal

objects like a polygonal lake, Requirement 4 ensures that they remain areal objects.

In order to continuously enforce the four requirements while we remove points,

we need a suitable method of encoding the geometric relationship between the
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Fig. 6 Multi-resolution simplification of the lake and river network combined of the Lake Tahoe dataset
US Geological Survey (1997), created using the hybrid distance measure (R = 500 m). Left Original
network, 144,293 points. Middle Simplification �1 = 100 m, 31,794 points. Right Further simplification
�2 = 1,000 m, 8,022 points
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Fig. 7 Approximating the two consecutive line segments. [p, q] and [q, r] with [p, r] introduces two new
intersections, and thus is an illegal simplification which changes the topology of the curve set

Simultaneous curve simplification 279

123



curves. This encoding can be handled by using the concept of triangulations from

graph theory, on which we will elaborate in the next section.

4 Triangulation

To encode the geometrical relationship between the curves of Q, we represent Q as a

triangulation (Hjelle and Dæhlen 2006) and use triangle decimation to remove

points and line segments. Thus, the initial triangulation must contain all points of Q
and every line segment of every curve Pj of Q must be an edge in the triangulation.

The edges not corresponding to line segments encodes the spatial relationship

between the curves. Figure 2 shows examples of such triangulations. Notice that a

curve can have itself as a neighbour.

We assume that all curve intersections are also points on the curves. If this is not

the case, the intersection points must be found and inserted into their respective

curves. With this assumption, it is always possible to construct such a triangulation

of Q. This follows from the fact that the collection of curves can be extended to a set

of closed non-overlapping polygons by including the boundary of the convex hull of

the curve set. Moreover, any closed polygon in the plane can be partitioned into a

set of triangles (Nielson 1997), and hence it follows that we can construct a

triangulation where every line segment of the curve set is an edge in the

triangulation.

For practical purposes we embed the entire curve set in a rectangular region by

introducing the boundary of this rectangle as a curve in the the curve set (see

Fig. 2). In most examples this boundary curve will be a rectangle represented as a

polygon containing the four corner points of the rectangle plus points where the

curve network intersects the boundary, e.g. where a road or a river leaves the

rectangular region.

Several methods exists for creating a triangulation with prescribed edges. A well-

known approach is to create a Delaunay triangulation followed by a successive

phase of edge swapping that includes the prescribed edges into the triangulation

(Nielson 1997). Any non-boundary edge is always a diagonal of a quadrilateral

composed of two adjacent triangles. If this quadrilateral is convex we can swap the

edge to form two new triangles. Alternatively, we can directly construct a

constrained Delaunay triangulation, using all the line segments of the curves as

initial edges and fill inn edges between the curves (Lee and Lin 1986). Figure 2

shows the original and decimated versions of two curve sets.

5 Curve set decimation

We have a curve set Q of piecewise linear curves embedded in a triangulation T
such that each line segment in Q corresponds to an edge in T. The triangulation T
encodes the geometrical relationship between the curves of Q. In this section we

describe how we use triangle decimation to simplify the curves while enforcing the

topology of the curve set.
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We begin by giving a general description of the decimation algorithm, and

continue with discussing the various components of the algorithm in detail. The

structure of the decimation algorithm is as follows:

1. Determine the set of points that are candidates for removal, and assign to each

candidate a weight based on a suitable error measure.

2. While the list of candidates for removal is non-empty and the smallest weight

have an error less than the prescribed tolerance, do:

(a) Remove the candidate with the smallest weight from its curve and the

triangulation.

(b) Update the list of candidates and calculate the new weights for points in

the neighbourhood of the removed point.

Notice that there are two error measures at play. One error measure is used to

determine the sequence in which points are removed, and another error measure is

used to describe the global error of the approximation, and thus is used to terminate

the decimation process. Alternatively, we can use a prescribed number of points to

be removed as termination criteria.

5.1 Nodes and vertices

We assume that the initial curve set Q satisfy the four requirements given in Sect. 3.

The triangulation T is a planar graph consisting of points and edges, and Q is a

subgraph of T.

We classify the points in T into two sets, nodes and vertices. The set of vertices is

the points that are not nodes. A node is a point in T that is also an endpoint of a

curve or a junction in Q. The four corner points of the rectangular domain are also

included in the set of nodes.

Further, some points are classified as nodes to handle closed loops. We must

make sure that every closed loop consists of at least three nodes that are not

co-linear. This requirement asserts that Requirement 4 will not be violated in the

decimation process.

If a single curve itself forms a closed loop (and the two endpoints of the curve are

the same point), we tag two of the interior points of the curve as nodes such that the

three nodes of the curve are not co-linear and form a triangle. Further, if two curves

together form a closed curve, e.g. when two curves describes the perimeter of a lake,

one interior point of one curve that is not co-linear with the endpoints must be

classified as a node. For three or more curves forming a loop, the problem does not

exists.

5.2 Removable vertices

Nodes are never considered for removal. Further, at each step in the decimation

process, only some of the vertices can be removed without violating some of the

requirements.
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Let q be a vertex. The platelet of q is the union of triangles of T that has q as a

corner, see Fig. 8. The geometry of the platelet defines whether or not a vertex can

be removed. Vertices are always in the interior of curves, and thus, they belong to

one single curve and always have two immediate neighbouring points on the same

curve.

Let q be the vertex on the curve Pj considered for removal and p and r be the two

immediate neighbours on Pj. The points p and r is situated on the border of the

platelet of q (refer to Fig. 8). Removing q implies that we simplify the two

consecutive line segments [p, q] and [q, r] of Pj with the single line segment [p, r].

The line segments of neighbouring curves are located on the boundary of the

platelet of q. Thus, if [p, r] is strictly inside the platelet of q, the line segment [p, r]

never touches any other curve, and therefore can be safely removed without

violating any of the four criteria. Contrary, if [p, r] intersects the boundary, the

approximation intersects one or more of the neighbouring curves, and the removal

of q would change the topology of the curve set.

We check if the line segment [p, r] is strictly inside the platelet of q in the

following way. Let s1,…,sL be the points on the boundary of the platelet of q from p
to r, counter-clockwise organized, and similarly, let t1,…,tR be the points on the

boundary of the platelet of q from r to p, also counter-clockwise organized. That is,

the sequence

p; s1; . . .; sL; r; t1; . . .; tR;

describes the complete border of the platelet of q. Then, the line segment [p, r] is

strictly inside the platelet of q if either

detðr� p; si � pÞ\0; i ¼ 1; . . .; L and

detðr� p; tj � pÞ[ 0; j ¼ 1; . . .;R;

or

detðr� p; si � pÞ[ 0; i ¼ 1; . . .; L and

detðr� p; ti � pÞ\0; j ¼ 1; ;R;

where detð�; �Þ is the determinant of a 2 9 2 matrix.

r

p
q

r

p
q

Fig. 8 The geometry of the platelet of q allows or prohibits removal of q. In the left figure, [p,r] is
strictly inside the platelet of q, and thus, q can safely be removed. However, in the right figure, [p,r]
intersects the boundary of the platelet of q twice, and thus removal of q would introduce two new
intersections, and therefore q cannot be removed without changing the topology of the curve set
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5.3 Weight calculation

Some points are more significant that others, and we handle this by associating a

weight to each vertex. The decimation process removes the vertex with the smallest

weight and updates the weight of the remaining vertices.

It is natural that weights are based on some appropriate error measure. If

approximation error is the single interesting property, using the approximation error

induced by the removal of a vertex as the weight of that vertex is appropriate.

However, in some applications, other properties like separation of adjacent curves

are important. In this case more elaborate weight expressions are appropriate.

In the following we present three different error measures based upon Euclidean

distances in the plane.

Maximum distance This distance measure is the maximum distance between a

curve and the approximation of the curve we get if the vertex is removed. Let q be a

vertex on the curve Pj. The points defining Pj are either remaining or have been

removed in preceding decimation steps.

Let p be the last remaining point on Pj before q, and let r be the first remaining

point after q. Moreover, let s1,…,sn be the sequence of removed points of Pj from p
to q.

The removal of q provides that the two line segments [p, q] and q, r] is replaced

by the single line segment [p, r]. The maximum distance between the original curve

Pj and the approximation induced by the removal of q is

v1 ¼ max distfl; sig; i ¼ 1; . . .; nf g; ð3Þ

where l is the line segment [p, r]. Figure 9 illustrates the calculation of the

maximum distance.

Scaled maximum distance The maximum distance measure only describes local

approximation error. However, in some cases the separation of curves, that is, the

distance between adjacent curves, is important, for example when approximating

cartographic contours. To accommodate this, we introduce an additional error

measure, a scaled version of the maximum distance measure.

p

q s2
s3

s4

r
s1

l

v1

p

s1

q s2
s3

s4

r

v1

l

Fig. 9 The maximum distance v1 is the maximum distance between the approximating line segment
l = [p, r] and the vertices s1,…,sn between p and r that is removed from the curve segment. In the left
figure, the maximum distance is perpendicular to l, while in the right figure it is not
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Similarly to the maximum distance calculation, let q be the point on Pj we are

calculating the weight for, and let p and q be the remaining points before and after q
on Pj. The points p and q and segments of curves close to Pj lie on the border of the

platelet of q.

Let t1,…,tm be the vertices on the border of the platelet of q, excluding the two

points p and r. Then, assuming that l = [p, r],

v2 ¼ minfdistfl; tjg; j ¼ 1; . . .;mg; ð4Þ

is the minimum distance between the approximating line segment [p, r] and the

points on the border of the platelet of q, as illustrated in the left of Fig. 10.

The scaled maximum distance is then defined as

ws ¼
v1

v2

;

where v1 is the maximum distance (3).

The scaled maximum distance measure scales the maximum distance measure

proportionally to the minimum distance to neighbouring curves, and thus makes it

less likely that q on Pj is removed if other curves are situated close to Pj. In this

way, the scaled maximum distance measure tends to preserve separation of adjacent

curves.

Hybrid distance measure The scaled measure tries to maintain the spatial

separation between neighbouring curves. A drawback is that this scaling also has

influence on the separation between curves in areas where curves are relatively far

apart, in areas that the maximum distance measure would be more appropriate. For

example, when simplifying cartographic contours, the scaled maximum distance

measure is appropriate in areas dense with curves in order to maintain a good

separation of adjacent curves, while in areas sparse with curves, the maximum

distance measure is appropriate. The hybrid distance measure solves this.

The hybrid distance measure introduces a parameter R, which can be regarded as

a radius of separation. If the minimum distance v2 is smaller than R, we use the

scaled maximum distance measure, otherwise, if v2 is larger than R, we use the

maximum distance measure (see Fig. 10, right).

p q

r

v2

p q

r

Rv2

Fig. 10 The scaled maximum distance measure is the maximum distance scaled by v2, which is the
minimum distance between the nodes on the border of the platelet of q and the approximating line
segment [p, q]
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First, we let v3 be v2 clamped to the interval [0, R],

v3 ¼
v2 if v2\R
R otherwise:

�

Then, hybrid distance measure wh is defined as

wh ¼
v1

v3

:

In effect, R chooses whether the maximum distance measure or the scaled

distance measure is used.

The choice of R is highly dependent on context. For plotting purposes, R should

be dependent on pen size, or for visualization on-screen, R should be dependent on

pixel size. If the resulting curve set should be represented on a grid, the grid size

should dictate the size of R. At other times, it is appropriate that R should be

proportional to the error threshold �: However, this can be a bit dicy when doing

multi-resolution simplifications, since R can be too small at the finer resolutions

resulting in bad spatial separation at coarser resolutions.

Figure 3 shows the dataset of Fig. 4a where 90 points were removed using

the three different distance measures. We see that the approximation from the

maximum distance measure has the best overall shape, but the contours along

the gorge in the right part of the contours end up almost on top of each other. The

approximation of the scaled maximum distance measure has distinctly better

separation between the contours, however, at the cost of an overall coarser shape.

The result of the hybrid measure maintains good separation between adjacent

contours while also preserving the overall shape of contours considerably better

than the scaled maximum norm.

5.4 Implementational details

We will here give a short description of the actual implementation used to produce

the results in Sect. 6.

From a given set of piecewise linear curves we establish a network of curve

segments. Points are classified as nodes or vertices, and a curve segment (also

referred to as a chain) is a sequence of vertices forming a piecewise linear curve

with one node at each end. Thus, the problem is reduced to simplify the interior of

chains without violating any of the requirements introduced in Sect. 3.

We start by building a constrained Delaunay triangulation where the chains are

the constraints. The triangulation is represented using an half-edge data structure,

see Hjelle and Dæhlen (2006). This data structure allows efficient navigation

through the triangulation. In theory, the removal of a vertex is bounded by

Oðn log nÞ; see (Chew 1987). However, a vertex removal strategy with a direct re-

triangulating locally around the removed vertex is generally very fast. In practice,

just a few edge-swaps are required.

The simplification process is built around maintaining a heap, where both

removal of the minimum element and the update of elements are of Oðlog nÞ
complexity. The heap contains all removable vertices organized by the error
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induced by the removal of that particular vertex. While the vertex with the

minimum induced error can be removed without violating the prescribed error

threshold, the vertex is removed and the induced error of the neighboring vertices

are updated.

Since a vertex always belongs to a single chain, the induced maximum distance

can be found by finding the maximum distance between the original chain and the

simplified chain with that vertex removed. Also, the minimum distance to

neighboring chains is found by traversing the platelet of that vertex. Further, when

a vertex is removed, only the induced error of the remaining vertices in a small

neighborhood are affected.

Using the half-edge structure, both traversing platelets and finding these

neighborhoods are straightforward. Thus, encoding the curve set in a triangulation

does not only enforce a consistent topology, it also serves as a tool for neighborhood

queries, allowing efficient evaluation of the error measures.

6 Numerical results

In this section we present three examples: a set of cartographic contours, a road

network, and a lake and river network. The two first examples consist of polygonal

curves, while the last example is a mix of polygonal curves as well as complex

polygons with holes.

Cartographic contours The cartographic contour curve set is a curve set of 15

cartographic contours, where the contours are a mix of open and closed piecewise

linear curves. The curve set is originally defined by 470 points (Fig. 4, left) over an

area of 607 9 607 m.

First, we simplified the original curve set three times, removing 380 points (and

thus leaving 90 points to define the curve set) using the three different distance

measures to guide the simplification. The results are shown in Fig. 3. We used the

maximum distance measure to define the approximation error. It is no surprise that

the simplification guided by the maximum distance measure got the smallest

approximation error (�m = 16.7 m). However, as mentioned in Sect. 3, the

maximum distance measure has problems preserving separation of adjacent curves,

which is clearly visible in Fig. 3, left. In Fig. 3, center, the result of using the scaled

maximum distance measure as a guide is shown. The separation of adjacent curves

is maintained, but the approximation error is considerably worse (�s = 44.5 m),

which is particularly visible on the gentle side of the mountain top where the

contours are unnecessarily coarse (the approximation error on this part is scaled

such that it becomes very small since the distance between adjacent contours is

large). However, simplification guided by the hybrid distance measure, which is

depicted in the right of Fig. 3, maintains a good balance between approximation

error (�H = 22.3 m) and separation of adjacent contours. The shapes are almost as

good as the result of simplification guided by the maximum distance measure, while

also the contours along the gorge are well separated.

Note in particular that even though adjacent contours may end up close to each

other, which is the case in particular when the maximum distance measure is used to
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guide the simplification, any contour never end up on top of another contour, which

would cause new intersections to form. This is because the four requirements of

Sect. 3 is honored, and points that whose removal would result in a contour set of a

different topology is never removed, and thus, the simplification maintains a

constant topology of the contour set.

Further, Fig. 4 shows a multi-resolution simplification of the set of cartographic

contours, where the hybrid distance measure (R = 20 m) was used to guide the

simplification. The sequence of simplifications is nested in that sense that the points

of a coarse simplification is a subset of the points of any of the finer simplifications.

In addition, each line segment of a coarse simplification has a one-to-one

correspondence to a sequence of one or more line segments in a finer simplification.

To the left, the original contour set is shown. In the center, the first simplification

with tolerance �1 = 15.4 m, which gives a contour set of 108 points (23%), and to

the right, a further simplification with tolerance �2 = 100 m, using 66 points (14%).

This simplification cannot be further simplified since removal of any of the

remaining points would change the topological type.

Road network The road network of Fig. 5 is the road network of the Lake Tahoe

dataset (US Geological Survey 1997), covering a domain of approximately

32 9 32 km2. Note that the network is plotted using the geographic coordinate

system and thus appears to be rectangular even though the domain is square. The

original network, which is depicted in Fig. 5, is defined by 123,038 points.

The road network was consecutively simplified two times using the hybrid

distance measure (R = 500 m). The first simplification ran with a tolerance �1 = 100

m, which produced an approximation of 33,014 points (27%), depicted in the center

of Fig. 5. The original road network and the first approximation are visually

indistinguishable at this scale, even though the approximation only uses one fourth

of the geometry. The second simplification is a further simplification of the first

simplification, using a tolerance �2 = 1,000 m, and results in a road network of

12,839 points (10%), about one-tenth of the geometry of the original network, and

with the same topology as the original road network.

Lake and river network The final example is the lake and river networks of the

Lake Tahoe dataset (US Geological Survey 1997) combined into one network, a

network consisting of both piecewise linear curves and complex polygons with

holes.

A clean polygon is a set of closed non-intersecting curves, called rings or

contours, consistently oriented such that the inside of the polygon always is on a

consistent side when one ‘‘walks’’ along the curves. Simplification of polygons

using our technique is simple. We let each contour be a closed curve in the contour

set. Since the topology of the curve set is constant during the simplification, the

polygon defined by the simplified curves is always a clean consistent polygon.

The original network is shown in the left of Fig. 6, and the two consecutive

simplifications are shown in the middle and right of the same figure. The

simplifications were guided by the hybrid distance measure (R = 500 m), and the

tolerances was the same as for the road network. The original network consists of

144,293 points, the first approximation with a tolerance of �1 = 100 m consists of
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31,794 points (22%) and the second approximation with a tolerance of �1 = 1,000 m

consists of 8,022 points (6%).

Similarly to the road network, the original lake and river network is visually

indistinguishable at this scale from the first approximation, which contains

significantly less geometry.

Approximation error In Fig. 11, the approximation error (the maximum distance

measure) is plotted as a function of the number of the points removed, for each of

the three examples. From left to right, the plots for the cartographic contours, the

road network, and the lake and river networks are shown respectively. Each plot

shows the approximation error of the three different norms as the simplification

progresses, and thus gives an indication of the performance of the three distance

measure.

As expected, simplifications guided directly by the maximum distance give the

best performance in terms of approximation error, but do not preserve curve

separation. The scaled maximum distance measure preserves curves separation

better, but has a significantly worse performance when comparing approximation

error, which is quite evident in all three plots. However, the hybrid distance measure

embraces the best from both worlds, both preserving good separation between

curves, and gives a reasonable performance in terms of approximation error.

7 Concluding remarks

In this paper we presented a method for simultaneous simplification of curve sets in

the plane, that is, simplification of curves while maintaining the geometric

relationship between curves.

In addition, we introduced three different distance measures that can be used to

guide the simplification process, choosing which point to remove at each step. The

distance measures have different characteristics. The maximum distance measure

minimizes approximation error, while the scaled maximum distance measure

preserves separation of adjacent curves. These two measures were successfully

combined in the hybrid distance measure, which both preserves separation of
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Fig. 11 Approximation errors resulting from using the different distance measures to guide the
simplification process. From left to right, the cartographic contours, the road network, and the lake and
river network is shown respectively
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adjacent curves while giving a reasonable performance in regard to approximation

error. However, the hybrid distance measure requires that a radius of separation be

specified, which is highly dependent on context.

In addition to creating single simplifications with a given tolerance or a given

number of points, the method can be used to create multi-level representations of

collections of curves.
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