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Abstract This paper presents a continuous version of the model of distribution

dynamics to analyse the transition dynamics and implied long-run behaviour of the

EU-27 NUTS-2 regions over the period 1995–2003. It departs from previous

research in two respects: first, by introducing kernel estimation and three-dimen-

sional stacked conditional density plots as well as highest density regions plots for

the visualisation of the transition function, based on Hyndman et al. (J Comput

Graph Stat 5(4):315–336, 1996), and second, by combining Getis’ spatial filtering

view with kernel estimation to explicitly account for the spatial dimension of the

growth process. The results of the analysis indicate a very slow catching-up of the

poorest regions with the richer ones, a process of shifting away of a small group of

very rich regions, and highlight the importance of geography in understanding

regional income distribution dynamics.
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1 Introduction

Whether income levels of poorer regions are converging to those of richer is a

question of paramount importance for human welfare (Islam 2003). In Europe

interest in this question has been enhanced in recent years, with the entry of new

countries to the European Union. This paper looks at evidence for regional income
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convergence in Europe. By Europe we mean the European Union of 27 member

states. The notion of convergence is a fuzzy term that can mean different things (see

Quah 1999). In this paper we understand this notion in the sense of poorer regions

catching-up with the richer. The observation units are NUTS-2 regions which the

European Commission has chosen as targets for the convergence process and

defined as the geographical level at which the persistence or disappearance of

inequalities should be measured.

Measuring regional income and the extent to which convergence across

regions—or what the European Commission calls regional cohesion—exists is a

difficult issue. But per capita gross regional product (GRP) measured in purchasing

power units seems like a natural definition if one is interested in an important

determinant of average welfare. By focusing upon per capita GRP we are interested

in the economic performance of regions and the claims that people living in those

regions have over that wealth. Cohesion depends on the degree of equality in the

distribution of per capita income and the extent to which there are processes of

catch-up, in which less wealthy regions enjoy faster rates of income growth than

more developed ones. The data were calculated on the basis of the 1995 European

System of Accounts (ESA 95) and refer to the time period from 1995 to 2003, the

latest year for which income data are available. This shorter time span makes

apparent the need for a model, before we can speak of the underlying dynamic

regularities in these data.

Empirical research on regional income convergence has proceeded in many

directions, using different definitions and methodologies.1 Most research has,

however, concentrated on the cross-section regression approach to investigate

b-convergence where b is the generic notion for the coefficient on the initial income

variable in the growth-initial level regressions. A negative b is interpreted as

evidence of convergence in terms of both income level and growth rate. But Quah

(1993b), Friedman (1992) and others have emphasised that a negative b can just be

an example of the more general phenomenon of reversion to the mean, and, by

interpreting it as convergence, growth analysts falling into Galton’s fallacy.

This study follows the tradition of the non-parametric approach that views the

catching-up question as a question about the evolution of the cross-section

distribution of income, and diverts attention from the individual or representative

region to the entire distribution as object of interest (see, in particular, Quah 1993a,

1996a, b, 1997a, b, c). The distribution that is relevant here is the distribution of

income across regions, not that within a given region. Purpose of the analysis is to

find the law of motion that describes transition dynamics and implied long-run

behaviour of regional income. In the spirit of Quah (1996a, b) we assume that each

region’s income follows a first-order Markov process with time-invariant transition

probabilities. That is, a region’s (uncertain) income tomorrow depends only on its

income today.

1 Recent surveys of the new growth literature in general and the convergence literature in particular can

be found in Durlauf and Quah (1999), Temple (1999) and Islam (2003), while Fingleton (2003), Abreu

et al. (2004), and Magrini (2004) survey the regional convergence literature, with region denoting a

subnational unit.
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Most of the applications of this approach have worked in a discrete state space set

up (see Quah 1996a, b; Fingleton 1997, 1999; Paap and van Dijk 1998; López-Bazo

et al. 1999; Magrini 1999; Rey 2001; LeGallo 2004 to mention some). This set up

has several advantages, but the process of discretising the state space of a

continuous variable is necessarily arbitrary. Experience from the study of income

distributions shows that this arbitrariness can matter in the sense that statements on

inferred dynamic behaviour of the distribution in question and the apparent long-run

implications of that behaviour are sensitive to the choice of the discretisation (Jones

1997; Reichlin 1999). Indeed, it is well known that the Markov property itself can

be distorted from inappropriate discretisation (Bulli 2001).

This paper avoids arbitrary discretisation of the income space and its possible

effects on the results by using the stochastic kernel, the continuous equivalent of the

transition probability matrix, as a suitable tool to overcome the problem. The

remainder of the paper is divided into two parts. The first, Sect. 2, provides an

empirical framework that extends current research by incorporating two novel

techniques into the existing research: kernel estimation and graphical devices for the

representation of the stochastic kernel (see Hyndman et al. 1996), and Getis’ spatial

filtering technique that enables to account for the effects of spatial autocorrelation.

The second part of the paper, Sect. 3, applies this framework to analyse income

distribution dynamics and cross-region convergence in Europe, looking at evolving

distributions of purchasing power standardised per capita (relative) gross regional

product across 257 NUTS-2 regions in 27 EU-countries from 1995 to 2003. Some

concluding remarks are given in the final section.

2 The empirical framework

A distribution perspective to the study of income dynamics and cross-region

convergence directs attention to the evolution of the entire cross-region income

distribution, emphasising shape and intra-distribution dynamics, and long-run

(ergodic) behaviour. Section 2.1 introduces a continuous version of the standard

model of explicit distribution dynamics, pioneered by Quah (1993a), and argues that

the stochastic kernel can be described as a conditional density function. In Sect. 2.2 we

present a product kernel estimator for estimating this transition function, and briefly

describe a three-step-strategy for solving the bandwidth selection problem, that

appears to be crucial for estimation. Section 2.3 combines Getis’ spatial filtering view

with stochastic kernel estimation to account for the issue of spatial autocorrelation

that may misguide inferences and interpretations if not properly handled.

2.1 A continuous version of the model of distribution dynamics

Let Ft denote the cross-section distribution of regional incomes at time t, then the

simplest scheme for modelling the intra-distribution dynamics of Ftjt integerf g is a

first-order Markov process with time-invariant transition probabilities. The distri-

bution evolves according to
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Ftþ1 ¼ M Ft ð1Þ

where M maps the distribution from time t to time t + 1, and tracks where points in

Ft end up in Ft+1. Iteration of Eq. (1) gives a prediction for future distributions of the

ex-post probabilities

Ftþs ¼ Ms Ft for s[ 0 ðs ¼ 1; 2; . . .Þ: ð2Þ

In this framework, there are two goals, the estimation of M will give us information

on persistence of regional income inequalities and the computation of the ergodic

(steady-state) distribution. The latter provides information on the limiting behaviour

of the regional income distribution. Convergence then might manifest in Ftþsf g
tending towards a point mass. A bimodal limit distribution can be interpreted as a

tendency towards stratification into two different ‘‘convergence clubs’’.

In the discrete version of the model, the operator M can be interpreted as the

transition probability matrix of the Markov process. The operator is approximated

by partitioning the set of possible income values into a finite number of intervals.

These intervals then constitute the states of a (time-homogeneous) finite Markov

process, and all the relevant properties of M are described by a Markov chain

transition matrix whose (i, j) entry is the probability that a region in state i transits to

state j in income space, in one time step. The inferred dynamic behaviour and the

long-run implications of that behaviour are conditional on the discretisation chosen.

Regional income, however, is by nature a continuous variable, and hence

discretisation may induce a possible bias. Instead of a state being a fixed interval we

let the state be all possible interval, including the infinitesimal small ones. In this

case one may think of the number of distinct cells to tend to infinity and then to

continuum. The corresponding transition probability matrix then tends to a matrix

with a continuum of rows and columns. In this case, the operator M in Eq. (1) may

be viewed as a stochastic kernel or transition function that describes the (time-

invariant) evolution of the cross-section distribution in time. Convergence can then

be studied by visualising and interpreting the shape of the income distribution at

time t + s over the range of incomes observed at time t.
For notational convenience let Y and Z denote the variable (per capita) regional

income at times t and t + s (s[ 0), respectively. The sample may be denoted then

by ðY1; Z1Þ; . . .; ðYn; ZnÞf g; and the observations by ðy1; z1Þ; . . .; ðyn; znÞf g where

n indicates the number of regions. We assume that the cross-region distribution of Y
can be described by the density function ft (y). This distribution will evolve over

time so that the density prevailing at t + s is ft+s (z). If we continue to maintain the

assumptions of time-invariance and first-order of the transition process, the

relationship between the cross-region income distributions, at time t and s-periods

later, can be written as

ftþsðzÞ ¼
Z1

0

gs ðzjyÞ ftðyÞ dy ð3Þ

where gs ðzjyÞ is the conditional density function giving the s-period ahead density

of income z, conditional on income y at time t. Evidently, the (first-order) stochastic
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kernel can be described by a conditional density function assuming that the

marginal and conditional income distributions have density functions.

So long as gs ðzjyÞ exists, the long-run (ergodic) density, f? (z), implied by the

estimated gs ðzjyÞ function can then be found as solution to

f1ðzÞ ¼
Z1

0

gs ðzjyÞ f1ðyÞ dy: ð4Þ

In this paper we will use the solution procedure outlined in Johnson (2004) to

estimate this long-run distribution of regional income per capita.

2.2 Kernel estimation of the conditional density function

If ft; tþsðy; zÞ denotes the joint density of (Y, Z) and ft (y) the marginal density of Y,

then the conditional density of ZjðY ¼ yÞ is given by

gs ðzjyÞ ¼
ft; tþsðy; zÞ

ftðyÞ
: ð5Þ

Probably, the most obvious estimator of this conditional density function2 (see

Hyndman et al. 1996) is

ĝs ðzjyÞ ¼
f̂t; tþsðy; zÞ

f̂tðyÞ
ð6Þ

where

f̂t; tþsðy; zÞ ¼ 1

n hy hz

Xn

i¼1

K
1

hy
y� Yik ky

� �
K

1

hz
z� Zik kz

� �
ð7Þ

is the kernel estimator of ft; tþsðy; zÞ; and

f̂tðyÞ ¼
1

n hy

Xn

i¼1

K
1

hy
y� Yik ky

� �
ð8Þ

the kernel estimator of ft (y) (see Hyndman et al. 1996). hy and hz are bandwidth

parameters that control the degree of smoothing applied to the density estimate. hy

controls the smoothness between conditional densities in the y-direction, and hz the

smoothness of each conditional density in the z-direction. :k ky and :k kz are

distance metrics on the spaces Y and Z, respectively. In this paper we use the

standard euclidean distances, :k ky¼ :j jy and :k kz¼ :j jz:
A multivariate kernel other than the product kernel might be used to define

ĝs ðzjyÞ: But the product kernel is simpler to work with, leads to conditional density

estimators with several nice properties and is only slightly less efficient than other

multivariate kernels (Wand and Jones 1995). The kernel K(x), where x is variously y
or z, is a real, integrable, non-negative, even function on R concentrated at the

origin so that (Silverman 1986)

2 For alternative estimators see Hyndman and Yao (2002), and Basile (2006).
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Z

R

KðxÞ dx ¼ 1;

Z

R

x KðxÞ dx ¼ 0 and r2
K ¼

Z

R

x2 KðxÞ dx\1: ð9Þ

Popular choices for K(x) are defined in terms of univariate and unimodal probability

density functions. In this paper we use the Gaussian kernel3 given by

KðxÞ ¼
ffiffiffiffiffiffi
2p
p� ��1

exp � 1

2
x2

� �
: ð10Þ

Whatever kernel is being used, bandwidth parameters chosen to minimise the

asymptotic mean square error give a trade-off between bias and variance. Small

bandwidths yield small bias but large variance, while large bandwidths lead to large

bias and small variance. The problem of choosing, how much to smooth, is of

crucial importance in conditional density estimation, and the results of the

continuous state space approach to distribution dynamics strongly depend on the

bandwidth parameters chosen.

In this study we follow Bashtannyk and Hyndman (2001) to solve this

bandwidth selection problem4 by a three-step-strategy that combines three

different procedures: a Silverman (1986) inspired normal reference rule that has

proven useful in univariate kernel density estimation,5 a bootstrap bandwidth

selection approach following the approach of Hall et al. (1999) for estimating

conditional distribution functions, and a regression-based bandwidth selector6 (see

Fan et al. 1996). Step 1 involves finding an initial value for the smoothing

parameter hz using the rule with normal marginal density. Given this value of hz,

Step 2 makes use of the regression-based bandwidth selector to find a value for hy.

In Step 3 the bootstrap method is used to revise the estimate of hz by minimising

the bootstrap estimator of a weighted mean square error function. Step 2 and Step
3 may be repeated one or more times.

2.3 Spatial autocorrelation and stochastic kernel estimation

Stochastic kernel estimation rests on the implicit assumption that each region

represents an independent observation providing unique information that can be

used to estimate the transition dynamics of income. In essence, the cross-section

observations at one point in time are viewed as a random sample from a univariate

distribution, or in other words, X (where X stands variously for Y and Z) is assumed

to be univariate and random. If the Xi (i = 1,..., n) are independent, we say that

3 On the basis of the mean integrated square error criterion, Silverman (1986) has shown that there is

very little to choose between alternatives. In contrast, the choice of the bandwidths plays a crucial role.
4 It is well known that the selection of the bandwidth parameters rather than the choice between various

kernels is of crucial importance in density estimation.
5 The rule is to assume that the underlying density is normal and to find the bandwidth which could

minimise the integrated mean square error function.
6 For a given hz and a given value z, finding ĝ ðzjyÞ is viewed here as a standard non-parametric problem

of regressing h�1
z Kðh�1

z jz� Zij Þ on Yi:
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there is no spatial structure. Independence implies the absence of spatial

autocorrelation.7 Spatial autocorrelation reflects a lack of independence between

regions. This independence may arise from a variety of measurement problems,

such as boundary mismatches between the NUTS-2 regions. But also interactions or

externalities across regions such as, for example, knowledge spillovers, trade as well

as commuting and migration flows are likely to be a major source of the violation of

the assumption (see Abreu et al. 2004 for a survey of the existing evidence).

A violation of the independence assumption may result in misguided inferences

and interpretations (Rey and Janikas 2005). This problem has been largely neglected

in distribution analysis so far. One way8 to dealing with the problem involves the

filtering of the variable X in order to separate spatial effects from the variable’s total

effects. While insuring spatial independence, this allows us to use the stochastic

kernel to properly estimate the underlying regional income distribution and to

analyse its evolution over time. The motivation for a spatial filter is simply that a

spatially autocorrelated variable can be transformed into an independent variable by

removing the spatial dependence embedded in it. The original variable, X, is hence

partitioned into two parts, a filtered non-spatial variable, say ~X; and a residual

spatial variable LX. The transformation procedure depends on identifying an

appropriate distance d within which nearby regions are spatially dependent, and

examining each individual observation for its contribution to the spatial dependence

embedded in the original variable (Getis and Griffith 2002).

There have been several suggestions for identifying d, but in this paper we adopt

the Getis filtering approach (see Getis 1990, 1995) which is based on the local

spatial autocorrelation statistic Gi (Getis and Ord 1992) to be evaluated at a series of

increasing distances until no further spatial autocorrelation is evident. As distance

increases from an observation (region i), the Gi-value also increases if spatial

autocorrelation is present. Once the Gi -value begins to decrease, the limit on spatial

autocorrelation is assumed to have been reached, and the associated critical d
identified. The filtered observation ~xi is given as

~xi ¼
xi

1
n�1

Wi½ �
Gi ðdÞ

ð11Þ

where xi is the original income observation for region i, n is the number of

observations and

Wi ¼
Xn

j¼1

wijðdÞ for j 6¼ i: ð12Þ

7 The controverse is not necessarily true (Ord and Getis 1995). Nevertheless, tests for spatial

autocorrelation are typically viewed as appropriate assessments of spatial dependence. Moran’s I and

Geary’s c statistics are typical testing tools.
8 Griffith’s eigenfunction decomposition approach that uses an eigenfunction decomposition based on the

geographic connectivity matrix used to compute a Moran’s I statistic provides an alternative way (Griffith

2006).
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with wij (d) = 1 if the distance9 from region i to region j (i = j), say dij, is smaller

than the critical distance band d, and wij (d) = 0 otherwise. Gi (d) is the spatial

autocorrelation statistic10 of Getis and Ord (1992) defined as

Gi ðdÞ ¼
Pn

j¼1 wij ðdÞ xjPn
j¼1 xj

for i 6¼ j: ð13Þ

The numerator of (13) is the sum of all xj within d of i but not including xi. The

denominator is the sum of all xj not including xi.

Equation (11) compares the observed value of Gi (d) with its expected value,

(n-1)-1Wi. E[Gi (d)] represents the realisation, ~X; of the variable X at region i when

no autocorrelation occurs. If there is no autocorrelation at i to distance d, then the

observed and expected values, xi and ~xi; will be the same. When Gi(d) is high

relative to its expectation, the difference xi � ~xi will be positive, indicating spatial

autocorrelation among high observations of X. When Gi(d) is low relative to its

expectation, the difference will be negative, indicating spatial autocorrelation

among low observations of X. Thus, the difference between xi and ~xi represents the

spatial component of the variable X at i. Taken together for all i, LX represents a

spatial variable associated, but not correlated, with the variable X. Thus, LX þ ~X ¼ X
(Getis and Griffith 2002).

Combining this spatial filtering approach with stochastic kernel estimation as

described in the previous section yields the long-run (ergodic) density, f1ð~zÞ;
implied by the estimated gsð~zj~yÞ function:

f1ð~zÞ ¼
Z1

0

gsð~zj~yÞ f1ð~yÞ d~y; ð14Þ

where ~y and ~z denote the spatially filtered observations of Y and Z, respectively. To

assess the role played by space on income growth and convergence dynamics across

the regions, we consider a specific stochastic kernel11 that maps the distribution Y to

the spatially filtered distribution ~Y jY so that

gð~yjyÞ ¼ f ðy; ~yÞ
f ðyÞ ð15Þ

where the stochastic kernel does not describe transitions over time, but transitions

from unfiltered to spatially filtered regional income distributions, and, thus,

quantifies the effects of spatial dependence. If spatial effects caused by spatial

9 In this study distances are measured in terms of geodesic distances between regional centres.
10 Getis and Ord (1992) and Ord and Getis (1995) show that the statistic Gi (d) is asymptotically

normally distributed as d increases. When the underlying distribution of the variable in question is

skewed, appropriate normality of the statistic can be guaranteed when the number of j neighbours is large.
11 Combining stochastic kernel estimation with the conditioning scheme suggested by Quah (1996b,

1997a) is an alternative way to evaluate the role of spatial interactions among neighbouring regions.

Conditioning means here normalising each region’s observations by the (population weighted) average

income of its neighbours. This approach removes substantive, but not nuisance spatial dependence

effects.
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interaction among regions and measurement problems would not matter, then the

stochastic kernel would be the identity map.

3 Revealing empirics

This section applies the above framework to study regional income dynamics and

convergence in Europe. In Sect. 3.1 we describe the data and the observation units.

Kernel smoothed densities and Tukey boxplots are used in Sect. 3.2 to study the

shape dynamics of the distribution. Cross-profile plots, continuous stochastic

kernels and implied ergodic distributions are taken in Sect. 3.3 to investigate intra-

distribution dynamics and long-run tendencies in the data. Section 3.4 proceeds to

the spatial filtering view of the data to gain insights not affected by the spatial

autocorrelation problem.

3.1 Data and observation units

We use per capita GRP over the period 1995–2003 expressed in ECUs, the former

European currency unit, replaced by the Euro in 1999. The GRP figures were

calculated on the basis of the 1995 European System of Integrated Economic

Accounts (ESA 95)12 and extracted from the Eurostat Regio database. We use GRP

per capita in national PPS (purchasing power standards) as defined by Eurostat.

These units are comparable to ECUs/Euros, with a slight correction.13

The time period is relatively short due to a lack of reliable figures for the regions

in the new member states of the EU. This comes partly from the substantial change

in measurement methods of national accounts in Central and East Europe (CEE)

between 1991 and 1995. But more important, even if estimates of the change in the

volume of output did exist, these would be impossible to interpret meaningfully

because of the fundamental change of production from a centrally planned to a

market system. As a consequence, figures for GRP are difficult to compare until the

mid-1990s (Fischer and Stirböck 2006).

The observation units of the analysis are NUTS-2 regions.14 Although varying

considerably in size, NUTS-2 regions are those regions that are adopted by the

12 In order to deal with the widely known problem measuring Groningen’s GRP figure we replaced its

energy specific gross value added component by the average of the neighbouring regions (Drenthe and

Friesland).
13 Figures given in PPPs are derived from figures expressed in national currency by using PPPs as

conversion factors. These parities are obtained as a weighted average of relative price ratios in respect to a

homogeneous basket of goods and services, both comparable and representative for each individual

country. The use of national purchasing power parities is based on the assumption that there are no—or

negligible—purchasing power disparities between the regions within individual countries. This

assumption may not appear to be entirely realistic, but it is inevitable in view of the data available.
14 Note that the use of administratively defined regions, such as NUTS-2 regions, can lead to misleading

inferences due to the presence of significant nuisance spatial dependence. In the case of Hamburg, for

example, the NUTS-2 boundary is very narrowly drawn with respect to the corresponding functional

region so that residential areas extend well beyond the boundary and substantial in-commuting takes

place. This implies that per capita GRP is overestimated, while in the surrounding NUTS-2 regions

underestimated.
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European Commission for the evaluation of regional growth and convergence

processes. NUTS is an acronym of the French for ‘‘the nomenclature of territorial

units for statistic’’, which is a hierarchical system of regions used by the statistical

office of the European Community for the production of regional statistics. Our

sample includes 257 NUTS-2 regions15 covering the 27 member states of the EU

(see the Appendix for a description of the regions):

• the EU-15 member states: Austria (nine regions), Belgium (eleven regions),

Denmark (one region), Finland (five regions), France (22 regions), Germany (40

regions), Greece (thirteen regions), Ireland (two regions), Italy (20 regions),

Luxembourg (one region), Netherlands (twelve regions), Portugal (five regions),

Spain (16 regions), Sweden (eight regions), UK (37 regions);

• the 12 new member states: Bulgaria (six regions), Cyprus (one region), Czech

Republic (eight regions), Estonia (one region), Hungary (seven regions), Latvia

(one region), Lithuania (one region), Malta (one region), Poland (16 regions),

Romania (eight regions), Slovakia (four regions), Slovenia (one region).

3.2 Shape dynamics of the distribution

When studying income distribution dynamics across regions in Europe, one can

consider incomes per region in absolute terms. Alternatively, one can study regional

incomes normalised by the European average. Although there are merits to using the

absolute income distribution, it is more natural to take relative incomes when

considering changes in income distributions over time. Relative incomes allow us to

abstract from overall changes in income levels.16 A natural approach to assess the

shape dynamics of the distribution change over the observation period 1995–2003 is

to estimate the cross-sectional distributions by using non-parametric kernel

smoothing procedures, which avoid the strong restrictions imposed by parametric

estimation. In this framework, if there is a bimodal density at a given point in time,

indicating the presence of two groups in the population of regions, convergence

implies a tendency of the distribution to move progressively towards unimodality.

Figure 1 plots the distribution of (per capita) GRP relative to the average of all

257 regions—what we call the Europe relative (per capita) income or simply the

relative income. The plots are densities and can be interpreted as the continuous

equivalent of a histogram, where the number of intervals has been let tend to infinity

and then to the continuum. All densities were calculated non-parametrically using a

Gaussian kernel with bandwidths chosen as suggested in Silverman (1986),

restricting the range to the positive interval. The solid line shows the distribution in

2003, and the dashed line that in 1995. To read this type of figure, note that 1.0 on

the horizontal axis indicates the European average of regional income, 2.0 indicates

15 We exclude the Spanish North African territories of Ceuta y Melilla, the Portuguese non-continental

territories Azores and Madeira, and the French Départements d’Outre-Mer Guadeloupe, Martinique,

French Guayana and Réunion.
16 This normalisation makes it possible to separate the global (European) effects on the cross-section

distribution of European forces from the effects from regional-specific effects.
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twice the average, and so on. The height of the curve over any point gives the

probability that any particular region will have that relative income. Since the height

of the curve at any particular point gives the probability, the area under the curve

between, say 0.0 and 1.0, gives the total likelihood that a region will have a relative

income that is between 0.0 and 1.0.

The figure shows a distribution with twin-peaks—to use the appellation coined

by Quah (1993a)—in 1995, one corresponding to low income regions and the other

to middle-income ranges, and a long tail with two smaller bumps at the upper end of

the distribution. Technically, the income distribution is said to show a bimodal

shape. The main mode17 is located at about 110% of the European average, and the

second mode at about 38%. The estimated densities reveal several changes over

the observation period. The kernel estimated median value decreases by 2%, while

the level of dispersion exhibits a small reduction. The kernel estimated standard

deviation decreases by 3.3% from 0.393 in 1995 to 0.380 in 2003.

Perhaps most remarkable is the change in the shape of the distributions. By 2003,

the peaks have become closer together, and the richer peak has risen moderately at

the expense of the poorer. We see this by noting that the area under the 2003 curve,

that is between 0.5 and 1.1, is greater than the corresponding area under the 1995

curve, while the area that is to the left of 0.5 is smaller. The smaller peak seems to

progressively collapse over time. This finding may suggest an improvement in
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Fig. 1 Distributions of relative (per capita) regional income, 1995 versus 2003. Notes: The plots are
densities calculated non-parametrically using a Gaussian kernel with bandwidth chosen as suggested in
Silverman (1986), restricting the domain to be non-negative. The solid line shows the density for 2003
and the dashed line that for 1995

17 A mode is defined as a point at which the gradient changes from positive to negative.
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economic conditions of the poorest regions and reflect a trend, in some sense, of

catching-up.

Figure 2 gives a sequence of Tukey boxplots for the 257 NUTS-2 regions. Recall

that the units of income are PPS units scaled to the EU-27 average. Time appears on

the horizontal axis, while the vertical axis maps relative per capita income values.

To understand these pictures, recall the construction of a Tukey boxplot. Each

boxplot includes a box bounded by Q1 and Q3 denoting sample quartiles. Thus, the

box contains the middle 50% of the distribution. The thick line in the box locates the

median. The upwards and downwards distances from the median to the top and

bottom of the box provide information on the shape of the distribution. If these

distances differ, then the distribution is asymmetric. Thin dashed vertical lines

emanating from the box both upwards and downwards, reach upper and lower

adjacent values, respectively. The upper adjacent value is the largest value observed

that is not greater than the top quartile plus 1.5 times (Q3 -Q1). The lower quartile

is similarly defined, extending downwards from the 25th percentile. Dots indicate

upper and lower outside values, that is, observations that lie outside the upper and

lower adjacent values, respectively. These denote regions which have performed

extraordinarily well or extraordinarily poorly relative to the set of other regions. Of

course, upper and lower outside values might not exist. The adjacent values might

already be the extreme points in a specific realisation.

There are no extraordinarily poorly performing regions, more accurately when

regions performed especially badly, they were not alone. On the upside, by contrast,

the figure shows several outstanding performers. At the beginning of the sample,

five regions showed upper outside values, and by the end of the sample six outside

values. The spreading apart in the regional income distribution has one distinct

source, the pulling away of the upper outside values—representing Inner London,
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Fig. 2 Tukey boxplots of relative (per capita) regional income across 257 European regions
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Brussels, Luxembourg, Hamburg, Île-de-France and Vienna—from the rest of the

regions. The figure, moreover, makes clear that the interquartile range is decreasing

by more than 15%, and this falling is due to a decrease of Q3 rather than Q1.

The matching counterparts in Figs. 1 and 2 use exactly the same data. But they

emphasise different empirical regularities. The bimodal shape is striking in Fig. 1,

but is far from obvious in Fig. 2. The spreading out of the upper tail of the

distribution is apparent in Fig. 2. It appears in form of two smaller bumps in Fig. 1.

3.3 Intra-distribution dynamics and long-run tendencies

Thus far, we have considered only point-in-time snapshots of the income

distribution across the regions. This section takes the next step in the analysis,

and looks at the intra-distribution dynamics and then at the long-run (ergodic)

tendencies. We start with Fig. 3 showing cross-profile dynamics.18 The vertical axis

is the log of relative (per capita) incomes. Each curve in the figure refers to the

situation at a given point in time. The lowest curve gives the cross-section of regions

at time 1995 in increasing order. This ordering is then maintained throughout the

time periods considered. Proceeding upwards, we see curves for 1999 and 2003. The

character of the upper plots, thus, depends on 1995 when the ordering is taken.

In the plots, increasing jaggedness indicates intra-distribution mobility. In

contrast, if each cross-profile would always monotonically increase over time, then

income rankings were invariant. The most striking feature of Fig. 3 is not this

comparative stability through time. It is the change in choppiness through time in

the cross-profile plots indicated by local peaks. By 2003, we observe local peaks, for

example, at the lower end of the distribution around regions ranked 9th, 19th, 42nd

and 66th poorest in 1995, and at the upper end around regions ranked second and

fourth richest. These turn out to be Latvia, Estonia, Mazowieckie (Warszawa) and

Közép–Magyarország (Budapest), and Inner London and Luxembourg, respectively.

By contrast, Moravskoslezko (57th poorest in 1995) in the Czech Republic,

Lüneburg (129th poorest) and Berlin (the 41st richest region) experienced

economically significant relative declines by 2003. The cross-profile dynamics are

informative. They illustrate when regions overtake one another, fall behind, or pull

ahead. But they do not identify underlying dynamic regularities in the data. We thus

turn to the stochastic kernel representation of intra-distribution dynamics next.

Figure 4 shows the conditional kernel density estimate ĝsðzjyÞ with fixed

bandwidths (hy = 0.036, hz = 0.023)19 that describes the stochastic kernel across

the 257 regions, averaging over 1995 through 2003. The stochastic kernel has been

estimated for a 5-year transition period, setting s = 5. The figure displays the

estimate, using Hyndman’s (1996) visualisation tools. Figure 4a presents the

stochastic kernel in terms of a three-dimensional stacked conditional density plot in

which a number of conditional densities are plotted side by side in a perspective

plot. For any point y on the period t axis, looking in the direction parallel to the

18 The idea for this picture comes from Quah (1997a), and López-Bazo et al. (1999).
19 The bandwidths for the estimator were chosen according to Bashtannyk and Hyndman’s three-step-

strategy. See Sect. 2.2 for more details.
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t + 5 time axis traces out a conditional probability density. The graph shows how

the cross-section income distribution at time t evolves into that at time t + 5. Just as

with a transition probability matrix in a discrete set up, the 45-degree diagonal in the

graph indicates persistence properties. When most of the graph is concentrated

along this diagonal, then the elements in the cross-section distribution remain where

they started. As evident from Fig. 4a, a large portion of the probability mass

remains clustered along the main diagonal over the 5-year horizon, and most of the

peaks lie along this line indicating a low degree mobility and modest change in the

regional income distribution.

The highest density regions (HDRs) boxplot, given in Fig. 4b, makes this clearer.

A HDR is the smallest region of the sample space containing a given probability.

Figure 4b shows a plot of the 50 and 99% HDRs,20 computed from the density
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Fig. 3 Cross-profile dynamics across 257 European regions, retaining the ranking fixed at the initial
year, relative (per capita) income, advancing upwards: 1995, 1999 and 2003 (a guide to region codes can
be found in the Appendix)

20 An HDR boxplot replaces the box bounded by the interquartile range with the 50% HDR, the region

bounded by the upper and lower adjacent values is replaced by the 99% HDR that roughly reflects the

probability coverage of the adjacent values on a standard boxplot for a normal distribution. In keeping

with the emphasis on highest density, the mode rather than the median is marked.

122 M. M. Fischer, P. Stumpner

123



a

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Relative (per capita) income at time t

R
el

at
iv

e 
(p

er
 c

ap
ita

) 
in

co
m

e 
at

 ti
m

e 
t+

5

0.0 0.5 1.0 1.5 2.0 2.5 3.00.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0

2.5

Income at time t+5

2.5

2.0

1.5

1.0
3.0

2.5
2.0

1.5
1.0

0.5

0.5

In
co

m
e 

at
 ti

m
e 

t

Fig. 4 Relative income dynamics across 257 European regions, the estimated g5(z|y), see Eq. (6):
a stacked density plot, and b highest density regions boxplot. Notes: ad b The lighter shaded regions in
each strip is a 99% HDR, and the darker shaded region a 50% HDR. The mode for each conditional
density is shown as a bullet •. Technical notes: The conditional density gs (z|y) is estimated over a 5-year
transition horizon s = 5 between 1995–2003. Estimates are based on a Gaussian product kernel density
estimator with bandwidth selection (hy = 0.036, hz = 0.023) based on the three-step-strategy suggested by
Bashtannyk and Hyndman (2001). The stacked conditional density plot and the high density region
boxplot were estimated at 70 and 150 points, respectively. Calculations of the plots were performed using
the R package HRDCDE, provided by Rob Hyndman
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estimates shown in Fig. 4a. Each vertical strip represents the conditional density for

one y value. The darker shaded region in each strip is a 50% HDR, and the lighter

shaded region is a 99% HDR. The mode for each conditional density is shown as a

bullet •. The vertical dashed line at 1.0 marks regions with income equal to the

European average at time t, and the horizontal dashed line at 1.0 those with income

equal to the average at t + 5. The 45-degree diagonal indicates intra-distribution

persistence over the 5-year transition horizon.

To read this type of boxplot note that strong persistence is evidenced when the

main diagonal crosses the 50% HDRs. It means that most of the elements in the

distribution remain where they started. There is a low persistence and more intra-

distribution mobility if that diagonal crosses only the 99% HDRs. Strong (weak)

global convergence towards equality would manifest in 50% (99%) HDRs crossed

by the horizontal line at 1.0. Fifty percent HDRs consisting of two disjoint intervals

would indicate a two-peaks property of the distribution.

The plot not only reveals persistence, but also mobility and polarisation features.

Regions with an income range of 0.8–1.2 times the European average show strong

persistence. Some mobility occurs at the extremes of the distribution, more at the

upper extreme than at the lower. Some portions of the cross-section in the income

range below 0.8 times the average tend to slightly increase their relative position

over the 5-year transition horizon, indicating a process of catching-up of the poorest

regions with the richer ones. In contrast, portions in the income range above 1.2–

1.8 times the average lose out their relative position, becoming relatively poorer.

The boxplot also shows signs of polarisation, the opposite of catching-up. This is

indicated by the disjoint intervals of the 50 and 99% HDRs at the upper extreme of

the income range. We see that regions starting with an income of 2.0–2.3 times the

European average at time t are unlikely to remain there. Most see their European

relative income fall and others rise, with the result that this income class appears to

vanish. The position of a small very rich group around 2.3–2.6 times the average

remains either unchanged or shifting away.

The evidence of Fig. 4 is corroborated by the ergodic density function that is

obtained by solving Eq. (4). Figure 5 plots the estimated long-run (ergodic)

density,21 f̂1ðzÞ; implied by the estimated gsðzjyÞ function for s = 5, along with

the initial income distribution. The solid line shows the point estimate of the

ergodic distribution and the dashed line the initial income distribution. Comparing

these two distributions we see that the ergodic distribution is wider, both at the

top and at the bottom. This reflects a shift in the mass of the distribution away

from the lower end to the middle, and from the middle to the upper end. In

particular, the peak in the initial distribution between 20 and 50% of the European

relative per capita income has shifted upward into the 60–100% range and shows

a tendency to disappear.

21 It is well known that the shape of the estimated ergodic density is sensitive to the bandwidths chosen in

computing the underlying estimated joint density functions. Wider bandwidths tend to obscure detail in

the shapes while narrower bandwidths tend to increase it but possibly spuriously so. It is important to note

that smaller equiproportionate decreases and increases in bandwidths do not remove the tendency to

bimodality in the ergodic density.

124 M. M. Fischer, P. Stumpner

123



The stationary distribution across the 257 regions, plotted in Fig. 5, is distinctively

bimodal. The dominant peak22 represents regions clustered just below the European

average income, while a small group of relatively rich regions gathers around three

times of the average European (per capita) income. The bimodal nature of the

ergodic distribution in comparison with the initial income distribution provides

indication for two types of processes at work over time: a gradual and slow catching-

up of the poorest regions which turn out to be—with very few exceptions—regions in

Central and Eastern Europe, and simultaneously a tendency towards polarisation—a

small group of richer regions separating from the rest of the cross-section.

The bimodal shape of the ergodic distribution contradicts with Quah’s (1996a)

unimodal ergodic solution found in a discrete state space set up with a largely

reduced set of 78 European regions over 1980–1989. The observation, however, is

in line with Pittau and Zelli’s (2006) findings, obtained for a set of 110 regions

covering twelve EU member countries over the time period from 1977 to 1996.

To sum up this first pass through the data, we conclude that the data show a wide

spectrum of intra-distribution dynamics. Overtaking and catching-up occur simul-

taneously with persistence and polarisation. Polarisation manifests itself in the

emergence of a twin-peak structure in the long-run regional income distribution.

3.4 The spatial filtering perspective

Large significant and positive values of Moran’s I reveal the presence of spatial

association of similar values of neighbouring European regions in relative (per
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Fig. 5 The ergodic density f?(z) implied by the estimated g5(z|y) and the marginal density function
f1995(y). Notes: The solid line shows the point estimate for f?(z) and the dashed line the estimate for the
marginal density f1995(y). The ergodic function f?(z) has been found as solution to Eq. (4)

22 The upper peak, however, is imprecisely estimated. Only few observations were actually made there,

and the precision of the estimate is low.
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capita) income.23 This motivates a spatial filtering pass24 through the data to avoid

inferences and interpretations, misguided by the violation of the independence

assumption in the previous analysis.

Figure 6 presents the spatially filtered counterpart of Fig. 1. Comparing these

densities with those in Fig. 1 indicates that the mode, which was situated at around

38% of the European average, has disappeared. Consequently, the economic

performance of the regions is well explained by the neighbouring regions’

performances, except may be for regions with very high relative (per capita)

income.

The filtered distributions in this figure are tighter and more concentrated than

those in Fig. 1. The boxplots in Fig. 7 make this particularly clear. Upper and lower

outliers exist here, but the 25th and 75th percentiles are located close to the average

income. Lower and upper adjacent values are compactly situated within about 0.5

and 1.5 times average income levels. The filtered distribution has a kernel estimated

standard deviation of 0.262 in 1995, which increases to 0.283 in 1999, and then to

0.310 in 2003. The increase over the time 1995–2003 is 15%. The estimated

standard deviations of the unfiltered data were found to be 0.393 in 1995 and 0.380

in 2003, indicating a slight decline by 3.3%. From this, it is clear that the evidence
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Fig. 6 Densities of relative (per capita) income, 1995 versus 2003: the spatial filtering view. Notes: The
plots are densities calculated non-parametrically using a Gaussian kernel with bandwidth chosen as
suggested in Silverman (1986), restricting the domain to be non-negative. The solid line shows the
density for 2003 and the dashed line that for 1995

23 Using Moran’s I, the spatial autocorrelation latent in each of the income variables ranges from

z(MI) = 8.86 for the 1995 income variable to z(MI) = 8.06 for the 2003 income variable where z(MI)
denotes the z-score value of Moran’s I. From this, it is clear that there is a strong spatial autocorrelation,

and hence the assumption of spatial independence does not hold.
24 Rather than use an individual d for each observation, the modal value for d was chosen for each

income variable as recommended by Getis and Griffith (2002).
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for r-convergence found in Sect. 3.1 is caused by spatial dependence embedded in

the income data.25

More information on the role of spatial effects becomes evident when looking at

the stochastic kernel in Fig. 8 that shows how the original (unfiltered) relative (per

capita) income distribution is transformed into the spatially filtered one. Figure 8a

displays the conditional kernel density estimate ĝð~yjyÞ with fixed bandwidths ðhy ¼
0:103; h~y ¼ 0:052Þ in terms of a three-dimensional stacked conditional plot as

given in Fig. 8a, and an HDR boxplot in Fig. 8b.

If spatial effects account for a substantial part of the distribution, then the

stochastic kernel mapping from the original (unfiltered) to the spatially filtered

distribution would depart from the identity map. Indeed, Fig. 8a precisely conveys

this message. The graph shows the kernel mapping the original to the filtered

distribution in the same year. The evident clockwise reversal on the lower, but also

on the higher part of the distribution indicates that spatial effects do account for a

large part of income dynamics in Europe. Figure 8b reinforces this interpretation.

The dominant feature in this figure appears to be intra-distribution mobility rather

than persistence. Regions with an income less than 0.7 times the European average

show a clear tendency towards cohesion. There are strong indications that the

probability of the poorest regions to move up is negatively affected by the presence

of spatial dependence effects. This is evidenced by the 99% HDRs crossing the

horizontal line at 1.0 and by the 50% HDRs coming much closer to this line.

However, while this is happening, the very highest parts of the income distribution

show tendencies away from cohesion, and provide evidence for emerging twin peaks.
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Fig. 7 Tukey boxplots of relative (per capita) income, across 257 European regions: the spatial filtering
view

25 See Rey and Dev (2006) for appropriate inference methods of r-convergence in the presence of spatial

effects.
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Fig. 8 Stochastic kernel mapping from the original to the spatially filtered distribution, the estimated
gð~yjyÞ: a stacked conditional density plot, and b highest density regions boxplot. Notes: ad b The lighter
shaded region in each strip is a 99% HDR, and the darker shaded region a 50% HDR. The mode for each
conditional density is shown as a bullet •. Technical notes: The conditional density gð~yjyÞ is estimated
over a 5-year transition horizon s = 5 between 1995 and 2003. Estimates are based on a Gaussian product
kernel density estimation with bandwidth selection ðhy ¼ 0:103; h~y ¼ 0:052Þ based on the three-step-
strategy suggested by Bashtannyk and Hyndman (2001). The stacked conditional density plot and the
high density region boxplot were estimated at 70 and 150 points, respectively. Calculations of the plots
were performed using the R package HRDCDE, provided by Rob Hyndman, and spatial filtering, using
the PPA package, provided by Arthur Getis
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Fig. 9 The spatial filter view of relative income dynamics: The estimated g5ð~zj~yÞ; a stacked density plot,
and b highest density regions boxplot. Notes: ad b The lighter shaded region in each strip is a 99% HDR,
and the darker shaded region a 50% HDR. The mode for each conditional density is shown as a bullet •.
Technical notes: The conditional density gsð~zj~yÞ is estimated over a 5-year transition horizon s = 5
between 1995–2003. Estimates are based on a Gaussian product kernel density estimator with bandwidth
selection ðh~y ¼ 0:061; h~z ¼ 0:047Þ based on the three-step-strategy suggested by Bashtannyk and
Hyndman (2001). The stacked conditional density plot and the high density region boxplot were
estimated at 70 and 150 points, respectively. Calculations of the plots were performed using the R
package HRDCDE, provided by Rob Hyndman, and spatial filtering using the PPA package, provided by
Arthur Getis
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Figure 9 provides stochastic kernel representations of 5-year transition dynamics

in the spatially filtered income space, using again a stochastic kernel estimator with

fixed bandwidths ðh~y ¼ 0:061; h~z ¼ 0:047Þ: This figure is the counterpart to Fig. 4

for spatially filtered relative (per capita) regional incomes. Figure 9a presents the

stochastic kernel in terms of a three-dimensional stacked conditional density plot,

and Fig. 9b in terms of a HDRs boxplot. The picture that emerges from the

estimates here is that of a substantial degree of intra-distribution mobility at the

upper and lower tails of the income distribution. The remarkably different dynamics

that emerge—in comparison to the unfiltered regional income case—suggest that—

if we are to evaluate growth and convergence dynamics across regions correctly—

the use of spatially filtered data is pretty much essential to avoid misleading

interpretations.

4 Concluding remarks

The study follows the tradition of the non-parametric approach studying both the

shape and mobility dynamics of cross-sectional distributions of relative (per capita)

income that appears to be generally more informative about the actual patterns of

cross-sectional growth than convergence empirics within the b-convergence

regression approach. It differs from most of the previous work by going for a

continuous kernel route which is more informative than research with discretely-

defined income cells.

This paper incorporates two novel techniques into the continuous analysis: kernel

estimation and more powerful graphical devices for the representation of the

stochastic kernel, and Getis’ spatial filtering technique to explicitly account for the

spatial dimension of the growth process. The paper illustrates that the use of

spatially filtered data is pretty much essential to evaluate growth and convergence

dynamics across regions. The lack of an appropriate inferential theory, however,

restricts the study to a descriptive stage.

The study has produced some interesting results. First, there is no development

trap in the long-run into which the poorer Central and Eastern European regions will

be permanently condemned. Second, the findings suggest a tendency of the cross-

section distribution of regional per capita income to split up into two separate

groups, where a small group of richer metropolitan regions is growing away from

the rest of the European regions. This evidence is coherent to Pittau and Zelli’s

(2006) stationary distribution estimated on a sample of 110 EU-12 regions over the

period 1977–1996. Third, spatial effects explain a substantial part of the income

distribution, but not the emergence of the two-club regional world in the long-run.

Growth theories now need to explain these facts. The distribution dynamics analysis

carried out in this paper does not help further in this respect.
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Appendix

NUTS is an acronym of the French for the ‘‘nomenclature of territorial units for

statistics’’, which is a hierarchical system of regions used by the statistical office of

the European Community for the production of regional statistics. At the top of the

hierarchy are NUTS-0 regions (countries) below which are NUTS-1 regions and

then NUTS-2 regions. The sample is composed of 257 NUTS-2 regions located in

27 EU member states (NUTS revision 1999, except for Finland NUTS revision

2003). We exclude the Spanish North African territories of Ceuta and Melilla, and

the French Départements d’Outre-Mer Guadeloupe, Martinique, French Guayana

and Réunion, the Spanish North African territories of Ceuta y Mellila, and the

Portuguese non-continental territories Azores and Madeira. Thus, we include the

NUTS 2 regions listed in the table.

Country ID code Region

Austria AT11 Burgenland

AT12 Niederösterreich

AT13 Wien

AT21 Kärnten

AT22 Steiermark

AT31 Oberösterreich

AT32 Salzburg

AT33 Tirol

AT34 Vorarlberg

Belgium BE10 Région de Bruxelles-Capitale

BE21 Prov. Antwerpen

BE22 Prov. Limburg (B)

BE23 Prov. Oost-Vlaanderen

BE24 Prov. Vlaams Brabant

BE25 Prov. West-Vlaanderen

BE31 Prov. Brabant Wallon

BE32 Prov. Hainaut

BE33 Prov. Liège

BE34 Prov. Luxembourg (B)

BE35 Prov. Namur

Bulgaria BG11 Severozapaden

BG12 Severen tsentralen

BG13 Severoiztochen

BG21 Yugozapaden

BG22 Yuzhen tsentralen

BG23 Yugoiztochen

Cyprus CY00 Kypros / Kibris
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Appendix continued

Country ID code Region

Czech Republic CZ01 Praha

CZ02 Strednı́ Cechy

CZ03 Jihozápad

CZ04 Severozápad

CZ05 Severovýchod

CZ06 Jihovýchod

CZ07 Strednı́ Morava

CZ08 Moravskoslezko

Denmark DK00 Danmark

Estonia EE00 Eesti

Finland FI13 Itä-Suomi

FI18 Etelä-Suomi

FI19 Länsi-Suomi

FI1A Pohjois-Suomi

FI20 Åland

France FR10 Île de France

FR21 Champagne-Ardenne

FR22 Picardie

FR23 Haute-Normandie

FR24 Centre

FR25 Basse-Normandie

FR26 Bourgogne

FR30 Nord-Pas-de-Calais

FR41 Lorraine

FR42 Alsace

FR43 Franche-Comté

FR51 Pays de la Loire

FR52 Bretagne

FR53 Poitou-Charentes

FR61 Aquitaine

FR62 Midi-Pyrénées

FR63 Limousin

FR71 Rhône-Alpes

FR72 Auvergne

FR81 Languedoc-Roussillon

FR82 Provence-Alpes-Côte d’Azur

FR83 Corse
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Appendix continued

Country ID code Region

Germany DE11 Stuttgart

DE12 Karlsruhe

DE13 Freiburg

DE14 Tübingen

DE21 Oberbayern

DE22 Niederbayern

DE23 Oberpfalz

DE24 Oberfranken

DE25 Mittelfranken

DE26 Unterfranken

DE27 Schwaben

DE30 Berlin

DE40 Brandenburg (Südwest and Nordost)

DE50 Bremen

DE60 Hamburg

DE71 Darmstadt

DE72 Gießen

DE73 Kassel

DE80 Mecklenburg-Vorpommern

DE91 Braunschweig

DE92 Hannover

DE93 Lüneburg

DE94 Weser-Ems

DEA1 Düsseldorf

DEA2 Köln

DEA3 Münster

DEA4 Detmold

DEA5 Arnsberg

DEB1 Koblenz

DEB2 Trier

DEB3 Rheinhessen-Pfalz

DEC0 Saarland

DED1 Chemnitz

DED2 Dresden

DED3 Leipzig

DEE1 Dessau

DEE2 Halle

DEE3 Magdeburg

DEF0 Schleswig-Holstein

DEG0 Thüringen

Income distribution dynamics and cross-region convergence in Europe 133

123



Appendix continued

Country ID code Region

Greece GR11 Anatoliki Makedonia, Thraki

GR12 Kentriki Makedonia

GR13 Dytiki Makedonia

GR14 Thessalia

GR21 Ipeiros

GR22 Ionia Nisia

GR23 Dytiki Ellada

GR24 Sterea Ellada

GR25 Peloponnisos

GR30 Attiki

GR41 Voreio Aigaio

GR42 Notio Aigaio

GR43 Kriti

Hungary HU10 Közép-Magyarország

HU21 Közép-Dunántúl

HU22 Nyugat-Dunántúl

HU23 Dél-Dunántúl

HU31 Észak-Magyarország

HU32 Észak-Alföld

HU33 Dél-Alföld

Ireland IE01 Border, Midlands and Western

IE02 Southern and Eastern

Italy IT31 Bolzano-Bozen e Trento

ITC1 Piemonte

ITC2 Valle d’Aosta/Vallée d’Aoste

ITC3 Liguria

ITC4 Lombardia

ITD3 Veneto

ITD4 Friuli-Venezia Giulia

ITD5 Emilia-Romagna

ITE1 Toscana

ITE2 Umbria

ITE3 Marche

ITE4 Lazio

ITF1 Abruzzo

ITF2 Molise

ITF3 Campania

ITF4 Puglia

ITF5 Basilicata
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Appendix continued

Country ID code Region

Italy ITF6 Calabria

ITG1 Sicilia

ITG2 Sardegna

Lithuania LT00 Lietuva

Luxembourg LU00 Luxembourg (Grand-Duché)

Latvia LV00 Latvija

Malta MT00 Malta

Netherlands NL11 Groningen

NL12 Friesland

NL13 Drenthe

NL21 Overijssel

NL22 Gelderland

NL23 Flevoland

NL31 Utrecht

NL32 Noord-Holland

NL33 Zuid-Holland

NL34 Zeeland

NL41 Noord-Brabant

NL42 Limburg (NL)

Poland PL11 Lódzkie

PL12 Mazowieckie

PL21 Malopolskie

PL22 Slaskie

PL31 Lubelskie

PL32 Podkarpackie

PL33 Swietokrzyskie

PL34 Podlaskie

PL41 Wielkopolskie

PL42 Zachodniopomorskie

PL43 Lubuskie

PL51 Dolnoslaskie

PL52 Opolskie

PL61 Kujawsko-Pomorskie

PL62 Warminsko-Mazurskie

PL63 Pomorskie
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Appendix continued

Country ID code Region

Portugal PT11 Norte

PT15 Algarve

PT16 Centro (P)

PT17 Lisboa

PT18 Alentejo

Romania RO01 Nord-Est

RO02 Sud-Est

RO03 Sud

RO04 Sud-Vest

RO05 Vest

RO06 Nord-Vest

RO07 Centru

RO08 Bucuresti

Slovakia SK01 Bratislavský kraj

SK02 Západné Slovensko

SK03 Stredné Slovensko

SK04 Východné Slovensko

Slovenia SI00 Slovenija

Spain ES11 Galicia

ES12 Principado de Asturias

ES13 Cantabria

ES21 Paı́s Vasco

ES22 Comunidad Foral de Navarra

ES23 La Rioja

ES24 Aragón

ES30 Comunidad de Madrid

ES41 Castilla y León

ES42 Castilla-La Mancha

ES43 Extremadura

ES51 Cataluña

ES52 Comunidad Valenciana

ES53 Illes Balears

ES61 Andalucı́a

ES62 Región de Murcia

Sweden SE01 Stockholm

SE02 Östra Mellansverige

SE04 Sydsverige

SE06 Norra Mellansverige
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Appendix continued

Country ID code Region

Sweden SE07 Mellersta Norrland

SE08 Övre Norrland

SE09 Småland med öarna

SE0A Västsverige

United Kingdom UKC1 Tees Valley and Durham

UKC2 Northumberland, Tyne and Wear

UKD1 Cumbria

UKD2 Cheshire

UKD3 Greater Manchester

UKD4 Lancashire

UKD5 Merseyside

UKE1 East Riding and North Lincolnshire

UKE2 North Yorkshire

UKE3 South Yorkshire

UKE4 West Yorkshire

UKF1 Derbyshire and Nottinghamshire

UKF2 Leicestershire, Rutland and Northants

UKF3 Lincolnshire

UKG1 Herefordshire, Worcestershire and Warks

UKG2 Shropshire and Staffordshire

UKG3 West Midlands

UKH1 East Anglia

UKH2 Bedfordshire, Hertfordshire

UKH3 Essex

UKI1 Inner London

UKI2 Outer London

UKJ1 Berkshire, Bucks and Oxfordshire

UKJ2 Surrey, East and West Sussex

UKJ3 Hampshire and Isle of Wight

UKJ4 Kent

UKK1 Gloucestershire, Wiltshire and North Somerset

UKK2 Dorset and Somerset

UKK3 Cornwall and Isles of Scilly

UKK4 Devon

UKL1 West Wales and The Valleys

UKL2 East Wales

UKM1 North Eastern Scotland

UKM2 Eastern Scotland

UKM3 South Western Scotland

UKM4 Highlands and Islands

UKN0 Northern Ireland
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