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Abstract In geographically weighted regression, one must determine a window

size which will be used to subset the data locally. Typically, a cross-validation

procedure is used to determine a globally optimal window size. Preliminary

investigations indicate that the global cross-validation score is heavily influenced by

a small number of observations in the dataset. At present, the ramifications of this

behaviour in cross-validation are unknown. The research reported here explores the

extent to which individual and groups of observations impact optimal window size

determination, and whether one can explain why some points are more influential

than others. In addition, we strive to examine the impact neighbourhood specifi-

cation has on model quality in terms of predictive capabilities and the ability of the

method to retrieve spatially varying processes. The analysis is based on several

datasets and using simulated data in order to compare and validate results. The

results provide some practical guidelines for the use of cross-validation.
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1 Introduction

In geographically weighted regression (GWR), cross-validation (CV) is a frequently

used method for determining the optimal neighbourhood size required for model

estimation. According to a simple bibliometric analysis of the GWR literature

indexed on The Web of Knowledge and Google Scholar, 35 of 64 papers identified

used cross-validation, 13 used the Akaike Information Criterion, 9 used predefined,

maximum likelihood or other bandwidths, and 7 did not mention the method used.

Despite the popularity of the cross-validation approach for calibrating the kernel

bandwidth and estimating spatially varying coefficients in GWR, there have not

been any investigations in the geographical literature that we are aware of regarding

the behaviour and properties of this commonly used procedure.

The use of cross-validation in GWR can be traced back to an early suggestion by

Brunsdon et al. (1996) to minimize the following ‘leave-one-out’ score:

CV ¼
Xn

i¼1

yi � ŷ6¼i bð Þ
� �2

: ð1Þ

This CV score is a function of bandwidth b (a parameter that determines a

neighbourhood size), where ŷ 6¼i bð Þ is the estimated value of yi after the observation

at location i is removed. Generally, the CV can be thought of as a continuous

function of the bandwidth. However, when neighbourhood size is discretized over

the number of nearest neighbours (rather than some continuous measure such as

distance), it is possible to forgo the use of a function minimization algorithm by

simply computing the CV statistic for each feasible neighbourhood size. Of course,

when n is large, a sample of bandwidths can be used to approximate the shape of the

CV versus bandwidth curve and a near optimal neighbourhood size can be found.

The motivation for using cross-validation is based on the existence of an

optimum neighbourhood size. CV minimization should retrieve an optimal

bandwidth, one that is operating on the spatial process being modelled.. However,

since the CV score is a function value dependent on the sum of the squared errors

associated with estimating ŷ 6¼i bð Þ at each point in the data set, and each point

contributes a scalar value toward the CV score, it is possible to assess the merits of

this assumption. Examination of the CV score in this paper reveals that it is possible

for some points to have much larger errors relative to others which therefore impact

the CV score disproportionately. As a result, the bandwidth optimization process

can be driven by a small selection of highly influential points. This raises questions

about the properties of cross-validation and the global optimum thus obtained for

GWR estimation.

In this paper, we describe a method for exploring the cross-validation score with

respect to the contributions of individual observations. Using three spatial datasets

we then discuss the impact individual observations can have on bandwidth selection

and show that model estimation is sensitive to bandwidth selection both in terms of

goodness-of-fit and coefficient estimation. Furthermore, the method used to

investigate the contributions of observations to the CV score suggests a number

of modifications to the cross-validation score. We explore these alternative
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formulations of the cross-validation statistic using empirical examples and Monte

Carlo simulations. Finally, we describe some guidelines for the use of this cross-

validation in GWR, and suggest some directions for future research.

2 Data and model descriptions

2.1 Data

This analysis draws on three datasets to ensure that the results are reproducible and

not merely artefacts of any particular set of data. The first dataset was used by Páez

et al. (2001) in a study of land price estimation in Sendai, Japan. The dataset

consists of 479 observations of 1996 land values obtained from Sendai City’s

Information Office, and land use data taken from The Basic Planning Survey for

Sendai Metropolitan Area (1995). The independent variables entered into the model

under various transformations include: distances to the CBD and two sub-centres,

percentage of residential and commercial land use, and population density. The

second dataset obtained from the Municipal Property Assessment Corporation

(MPAC) consists of 33,494 freehold residential sales prices for the City of Toronto

(2001–2003). The structural attribute data (also obtained from MPAC) was

augmented with neighbourhood level data from the Statistics Canada 2001 Census

of Population. For a full treatment of this dataset please see Long (2006). The

variables used in our analysis are: parcel area and frontage, the dwelling age and

squared dwelling age, the sale date, and distance to nearest public transit station.

The third dataset consists of 429 land-price observations in Sapporo, Japan. The

explanatory variables include the property frontage, the distance to the nearest

arterial road, an index of development and the distance to the CBD.

2.2 Geographically weighted regression

Geographically weighted regression is used to estimate locally linear coefficients

and estimates of the dependent variable. The GWR model is formally defined as:

Pi ¼ b0i þ
X

k

bkiXki þ ei ð2Þ

where Pi is the ith observation of the dependent variable, Xki is the ith observation of

the kth independent variable, ei is the ith value of a normally distributed error vector

with mean equal to zero, b0i is the constant estimated for local regression i, and bki

is the regression coefficient estimated for regression i and variable k. This differs

from ordinary least squares regression by utilizing distinct constants and regression

parameters for each point, rather than a single set of global parameters.

The estimation algorithm essentially iterates through n weighted least square

regressions, each one modified by a unique distance–decay weight matrix.

Estimation for point i thus takes the form:
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Bi ¼ ðXTWiXÞ�1XTWiP; ð3Þ

where Bi is the vector of estimated coefficients for observation i, P is the vector of

observed dependent variables, X is the n · k matrix of explanatory variables, and

Wi is a diagonal distance–decay weight matrix specific to i’s location relative to the

surrounding observations (Fotheringham et al. 2002).

To produce distance-weighted neighbourhoods with each containing q nearest

neighbours, Fotheringham et al. (2002) suggests using the following bi-square

function:

Wij ¼ ½1� ðdij=bÞ2�2 if dij\b and 0 otherwise: ð4Þ

This function produces numbers that are near-normal in their distribution for dij\b,

and 0 for distances greater than or equal to b. The key to remember for this function

is that b adapts from observation to observation since it is defined as the maximum

of the distances between observation i and its q nearest neighbours.

3 CV Decomposition

The cross-validation score is examined by means of decomposition. The CV matrix

is a two dimensional structure with rows corresponding to observations in the

dataset and columns corresponding to a subset of feasible neighbourhood sizes.

Each cell, CVir, contains the squared error term, yi � ŷ 6¼i brð Þ
� �2

of the ith location

using the rth feasible number of neighbours. In large datasets we take a proper

subset of feasible neighbourhoods since the number of possible bandwidths is large

and generally, the CV versus bandwidth curve is smooth. Note that each column

sum in this matrix corresponds to a CV score as defined in Eq. (1). And the

bandwidth corresponding to the column with the smallest sum can be used to

approximate the globally optimal bandwidth. The CV procedure minimized at 70

nearest neighbours for Sendai, 200 for Toronto, and 50 for Sapporo.

The contribution of each point to the CV score is assessed through the

exploration of the CV matrix. We can think of each row sum as corresponding to the

aggregate influence of each point. In the Sendai land price example, we tested 46

different neighbourhood sizes on 479 locations. The row sums ranged from 0.026 to

115.44. There is a substantial difference in influence between the endpoints of this

range. If we were to assume that the errors for the two extreme locations were

constant across all bandwidths, we would find that one point on average has more

than 4,000 times the influence than the other. This is an indication that the CV score

is linked to model performance at the more influential locations. This polarization is

present in all of the datasets tested. For instance, in the Toronto dataset, minimum

and maximum row sums ranged between 988 and virtually 0. It is important to note

that we found that influential points affected CV scores across all bandwidths, even

at the global optimums. For example, in Toronto, at 200 neighbours, CV errors

ranged from 20 to negligible, demonstrating the existence of points that highly

impact the total of the CV score. In addition to identification, our goal is to measure
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the contribution of a point to the CV procedure and the influence of this value on

selection of the global optimum. To separate the points that most contribute to the

CV from the rest, each record is given an influence score. The influence score is an

arbitrary measure and several ranking schemes were tested including the squared

error at the smallest bandwidth or optimal bandwidth. Unlike these alternatives,

using the row sum is bandwidth independent and as such is a more holistic measure

of influence.

Figure 1 is a graph of the separated and cumulative sum of squared errors of the

most influential points (top 10%) and the remaining locations in the Sendai dataset.

Quite clearly, each curve in the graph has a unique minimum; the top 10% at 60

neighbours; the remaining 90% at 140 neighbours; and the combined minimum at

70 neighbours. One interpretation of the unique minima is that the effect of the 50

most influential observations is to move the optimum bandwidth from 140 to 70

nearest neighbours. In this case, 70 neighbours may not be the optimal bandwidth if

we care to obtain the best estimates for 90% of the observations. The same effect is

prevalent in the other datasets. For instance, in the Toronto dataset, the cumulative

CV curve mimics the sharp decline in error over the smaller bandwidths of the

highly influential points, while the curve pertaining to the rest of the points is much

flatter, exhibiting a minimum at 180 neighbours.

Independent of where the curves reach their minima, the bandwidths where they

intersect are also of interest as they can be used to visualize the share of influence

each group carries. For Sendai, the 10 and 90% curves intersect twice at roughly 100

and 460 nearest neighbours—so at these bandwidths, each group’s squared errors

are contributing equally to the CV score. It follows that for bandwidths between 100

and 460 neighbours, the 50 (or 10%) most influential points account for more than

50% of the total CV score. In Toronto, this split was polarized further, where the top

Fig. 1 Cumulative and separated contributions of influential and non-influential observations in Sendai
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10% of observations account for 70% of the total CV sum for most of the

bandwidths. This is quite remarkable in light of the differently shaped CV-

Bandwidth curves exhibited by the influential points and indicates that the global

optimum may not be representative for the majority of points in the dataset.

The visualization technique above can be generalized by arranging the same data

into cumulative percentiles, rather than splitting the points into two groups. Such a

graph allows one to see the marginal impact of adding the next set of more

influential points. Each dot represents a cumulative partial column sum in the CV

matrix. For example, in the Sendai graph (Fig. 2a) the bottom-left point is the sum

of the least influential 1% of squared errors in the 30 neighbour bandwidth. The

point above that is the sum of the smallest 2% of squared errors. The point to the

Fig. 2 Cross-validation partial sums in percentiles
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right is the sum of the smallest 1% at the 40 neighbour bandwidth, and so on. The

line connects the minimum values of each cumulative curve. For ease of

interpretation, quintiles are represented by a larger marker. The Sendai graph

shows a clear progressive pattern of influential points drawing the global optimum

toward smaller bandwidths. In fact, it shows that the highest 1% of cases is

responsible for bringing the optimum down from 100 to 70 neighbours; the highest

10% from 140 to 70 neighbours; and the highest 20% from 180 to 70 neighbours.

Clearly, these influential points are substantially shifting the optimum away from a

bandwidth that is more suitable for the majority of locations. The difference in the

general shape of influential and non-influential curves is also quite striking. The less

influential curves are quite flat whereas the curves belonging to the more influential

points exhibit a steep decrease in error across the smaller bandwidths and then a

steep increase away from their minimums toward larger bandwidths. This indicates

that the majority of points are less sensitive to changes in bandwidth while the errors

of the influential points are more leveraged. Interestingly, in Toronto we see the

same general pattern of the influential points requiring smaller and smaller

bandwidths, except the pattern is broken by the top percentile which accounts for a

shift in the optimum from 160 to 200 neighbours (Fig. 2b). For Sapporo (Fig. 2c),

we see a the top 20% of influential points drawing the optimum bandwidth from 70

down to 40 neighbours before the most influential draw the optimum back up to 50.

The visualization of the above phenomena raises the question of how well the

global optimum represents local neighbourhood conditions. Specifically, for each

point, i, there is a single bandwidth b*i such that yi � ŷ6¼i b�i
� �� �2

is less than the sum

of squared errors for any other bandwidth. We call this b*i the location specific

optimum. This value can be easily found by searching the CV matrix for columns

containing row-wise minima. Figure 3 contains histograms of local optima for the

three datasets. The most salient feature of the histogram is its bimodal nature; nearly

half of all optima lie in either the most local or the most global of bandwidths. In

Sendai, about 110 observations favour an extremely localized window of regression,

perhaps even smaller than the 30 nearest neighbours tested here. Alternatively, for

approximately 55 observations, GWR behaves optimally when every point is

included in the local regression. One should not equate this scenario to a global

regression since the model used here utilizes a distance decay weight matrix as

defined above. The presence of such a bipolar distribution is of interest since it

implies that a global optimum will largely consist of a compromise between

locations at the two extremes, and will probably misrepresent the majority of local

minima. Interestingly, the distributions of local optima in the Sapporo and Toronto

datasets exhibited similar bimodal patterns, indicating the prevalence of this

problem across multiple empirical datasets.1

The characterization of local minima of influential points can be used as a clue in

determining the cause of influence. The histogram in Fig. 4 contains frequency

counts of local minima amongst the most influential 5% of points in Sendai. The

1 For Toronto, 400 neighbours is the largest bandwidth tested, so it is likely that the frequency of local

optima at 400 is being augmented by those points which perform well under even larger bandwidths. We

would have liked to compute cross-validation scores for larger bandwidths but the current software used

to perform the GWR computations is presently incapable of processing such large matrices.
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most apparent pattern in the histogram is that 48% of the influential observations

have local optima in the 30 neighbour bandwidth and 84% have their minima at 100

neighbours or less. In contrast, for the entire population, only 23% are optimal at 30

neighbours, and 47% at 100 neighbours or less. Furthermore, only 8% of the

influential observations are optimal in neighbourhoods consisting of 400 or more

neighbours, in contrast to 20% for the entire sample. Clearly, influential points

exhibit quite a distinct distribution, highly skewed towards smaller bandwidths. This

Fig. 3 Histograms of local optima
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skew may account for the global optimum being pulled towards lower and lower

bandwidths as increasing numbers of influential points are added to the CV score.

Since cross-validation for influential points optimizes at smaller bandwidths,

perhaps there is a geographic pattern of where influential points are located on the

ground. Figure 5 shows the location of the most influential and non-influential

points in the Sendai dataset. Clearly there is a strong tendency for influential points

to cluster near the centre of the city. Páez found that central areas of this dataset

exhibit higher levels of heterogeneity (Páez et al. 2001). This heterogeneity could

be responsible for large local errors and hence more influence in the CV procedure.

Furthermore, heterogeneous areas are likely to perform better under more localized

regimes (Páez et al. 2001).

Fig. 4 Histogram of influential optima in Sendai

Fig. 5 Locations of least- and most-influential points in Sendai
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Conversely, points of low influence are clustered in several areas within a central

annulus surrounding the city. Typically, suburban areas are more homogeneous in

nature than their downtown cores. Empirical evidence suggests this to be fact in

Sendai (Páez et al. 2001). This homogeneity could allow for more accurate

estimates at larger bandwidths as long as extraneous variance in the form of local

outliers is not introduced.

In Toronto, over and above the clear pattern of geographical clustering of high

and low influence points, it was observed that the most influential 10% of points had

a mean sale price of $441,000 while the remaining points sold on average for

$335,000. This prompted us to check for such patterns in the other datasets and we

found that influential points routinely exhibit higher values of the dependent

variable as compared to their less influential counterparts. Other tests revealed

significant correlation between the aggregate influence score (measured as the row-

sum of the CV matrix) and the dependent variable. This relationship may represent a

bias inherent to the cross-validation procedure. Later, we examine a modification to

the CV procedure in an attempt to attend to this finding.

4 GWR sensitivity to bandwidth selection

In this section, we compare GWR results for a variety of bandwidths in order to

determine the impacts of bandwidth specification. Four bandwidths are tested for

each dataset: the global optimum, the bandwidths corresponding to the bimodal

histograms of local optima, and the optimum bandwidth after removing the top 10%

of influential points from the cross-validation sum (deemed the 90% Optimum). In

addition to these, we analyse a varying bandwidth model specification using the

local optimum for each point. The comparison of measures is in terms of goodness-

of-fit and coefficient stability.

4.1 Goodness-of-fit

The pseudo-R2 and sum of squared errors (SSE) are two measures used to describe

the aggregate explanatory power of a GWR regression model (Farber and Yeates

2006; Páez et al. 2002b; Zhang and Gove 2005; Zhang et al. 2005). These measures

relate to the distribution of errors which depend on the bandwidth selected via the

cross-validation score. One assumes a high goodness-of-fit exists at the globally

optimal bandwidth since overall cross-validation errors are minimized. Thus,

goodness-of-fit should peak near the global optimum and decrease as bandwidths

change in either direction. Interestingly, the results do not show this to be the case.

Rather goodness-of-fit peaks when bandwidths are small, and decreases as

bandwidths increase (see Table 1). When dealing with small sub-samples, the

leave-one-out estimation may be poor due to the missing data at the target location.

However, regression on the same neighbourhood in the presence of the target

location’s data improves the estimate substantially, thus some small bandwidths

produce better fitting estimates than the cross-validated optimum. Certainly, the
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benefit of the leave-one-out procedure is understood in terms of producing robust

estimates for out-of-sample observations.

4.2 Extreme coefficients

Even though estimation accuracy is maximized at smaller bandwidths, when the

focus of analysis is exploratory, not predictive, one is primarily concerned with

the spatial and aspatial distributions of estimated parameters. Past research shows

that GWR analyses are prone to estimating extreme coefficients including sign

reversals (Farber 2004), which may contradict a priori expectations of strength

and direction of relationships. Since the exploration of coefficient variability is

one of the main strengths of GWR analysis, the presence of wildly fluctuating

coefficients is problematic since it may be a sign of over-fitting in the local

models or the presence of local multicollinearity or some other local violation of

weighted-least-squares regression (Wheeler and Tiefelsdorf 2005). Relating this

back to cross-validation and bandwidth size, there is a relationship between

coefficient heterogeneity and bandwidth size, explained by Fotheringham et al. as

the variance-bias trade off (Fotheringham et al. 2002). Using a simple measure

of standard deviation, a monotonic inverse relation between bandwidth size and

coefficient variability is observed (see Table 2). Coefficient variability increases

as bandwidth decreases. The problem is that smaller bandwidths, which typically

produce tighter fitting predictions, exhibit higher levels of coefficient variability

and are plagued with extreme coefficients perhaps as a result of over-fitting. If

this is the case, the cross-validation procedure is thus driven by error

minimization and ignores the hazards of extreme coefficient estimation. An

optimization procedure which balances the dual objective of maximizing

goodness-of-fit and producing a set of non-extreme estimates would benefit

future GWR analysis.

Table 1 Goodness of fit measures for various bandwidths

Dataset Measure OLS Global

Optimum

Mode 1a Mode 2a 90%

optimum

Local

optimum

Sendai Bandwidth – 70 30 479 140 –

R2 0.81 0.91 0.94 0.82 0.89 0.95

SSE 85.9 39.1 25.9 81.9 49.25 21.44

Toronto Bandwidth – 200 100 400 180 –

R2 0.28 0.86 0.89 0.84 0.86 0.89

SSE 5326.6 1029.5 841.6 1193.7 1003.3 781.6

Sapporo Bandwidth – 50 20 428 50 –

R2 0.75 0.93 0.96 0.78 0.93 0.96

SSE 50.2 14.6 7.5 44.9 14.6 7.7

a This refers to the two modes in Fig. 3
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5 Modified cross-validation

In this section we test several modifications of the cross-validation procedure in

light of our findings concerning its characteristics and behaviour. There are two

issues we consider. The first is the significant relationship between the cross-

validation statistic and the dependent variable, and the second is the impact on

bandwidth selection of points with disproportionate contributions to the CV score.

There are admittedly other concerns, primarily regarding extreme coefficient

estimation, but more research is required to develop robust multi-criteria or iterative

procedures to cope with this. Instead, the modifications tested here are attempts at

standardizing the traditional cross-validation statistic in order to deal with the

aforementioned issues.

5.1 Modification 1: Y-standardization

Each of the three datasets tested in this paper exhibited statistically significant

correlation between the dependent variable and the aggregate cross-validation

Table 2 Coefficient standard deviations for various bandwidths

Dataset Variables Global

Optimum

Mode 1a Mode 2 90%

optimum

Sendai Bandwidth 70 30 479 140

Constant 27.4320 121.6244 0.3264 10.9915

logDIST 1.7063 9.5761 0.0187 0.5350

logDIST_IZUMI 2.8790 13.7272 0.0186 0.9260

logDIST_NAGAMACHI 2.4486 11.8511 0.0232 0.9514

CommPct 0.0121 0.0183 0.0018 0.0094

HousePct 0.0089 0.0134 0.0007 0.0076

PopDen 0.0020 0.0034 0.0003 0.0016

Toronto Bandwidth 200 100 400 170

Constant 0.5396 0.9512 0.4257 0.5702

Area 0.0047 0.0064 0.0037 0.0049

Front 0.0070 0.0091 0.0060 0.0072

AgeHouse 0.2404 0.6261 0.1593 0.2649

AgeHouse2 0.0528 0.1591 0.0334 0.0598

SaleDate 0.0019 0.0026 0.0014 0.0020

DistTransit 0.2046 0.2748 0.1645 0.2127

Sapporo Bandwidth 50 20 428 50

Constant 0.5115 1.1131 0.0686 0.5115

Frontage 0.0135 0.0265 0.0031 0.0135

Distance to Arterial 0.1088 0.2086 0.0110 0.1088

Development Rate 0.0017 0.0025 0.0001 0.0017

Distance to CBD 0.0833 0.1157 0.0126 0.0833

a This refers to the two modes in Fig. 3
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influence measure. This bias can be mitigated by down-weighting individual points’

contributions according to the size of the dependent variable. In particular, each

point’s CV contribution was divided by the observed dependent value, explicitly

reducing the influence of higher valued observations. Throughout the rest of the

paper, this modification is referred to as Y-standardization.

Reducing the influence of the dependent has little effect on the calibration

procedure in spite of the observed relationship between influence and the dependent.

For the Sendai, Toronto and Sapporo datasets, the Y-standardized cross-validation

procedure behaved nearly exactly the same as the ordinary CV. Optimization occurs

at the same bandwidth and the top 10% of influential points still account for more

than 50% of the total CV score at the optimal bandwidth (see Fig. 6). For Sendai,

correlation between sales price and influence does however drop from 0.24 to 0.06.

For Toronto and Sapporo, correlation is reduced only marginally, from 0.06 to 0.05

and from 0.21 to 0.19, respectively. Interestingly, while Sendai and Sapporo exhibit

a similar scale of correlation before Y-standardization, Y-standardization produces a

strong reduction of correlation only in Sendai.

Fig. 6 Cumulative and separated contributions of influential and non-influential observations in sendai
comparing traditional and Y-standardized CV
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In all of the datasets, there is observed correlation between aggregate influence

and the dependent variable, but the relative impact of most-influential observations

compared to least-influential observations is far greater than the relative values of

their dependent variables. This is perhaps why the above standardization technique

fails to properly mitigate the impact of influential observations; the procedure is

simply not powerful enough. If the dependent variable had a greater range, and if

influence was more tightly correlated with it, then the Y-standardization technique

would perhaps have a greater chance of equalizing the influence of individual

observations. These conditions however are not expected to apply to the majority of

experiments. A more democratic cross-validation method where each point has an

equal influence on bandwidth selection is required. We put forward two alternatives

next.

5.2 Modification 2: row-standardization

The first such modification is one which standardizes individual contributions by

the aggregate measure of influence, defined as the row-sum of the CV matrix.

Under this regime, deemed row-standardization, each observation’s contribution is

divided by its row sum and thereby converted into a value between 0 and 1. This

procedure is reminiscent of the row-standardization of spatial lag matrices in

autoregressive models (Griffith 1988; Anselin 1988). If the CV error for a

particular point and bandwidth is small in relation to errors for the same point

using other bandwidths, then the row-standardized statistic for that point and

bandwidth would be small and close to zero. Conversely, if the error is large in

comparison to errors using other bandwidths, the statistic would have a value

closer to unity. Similar to the traditional cross-validation procedure, the optimal

bandwidth minimizes the sum of the standardized scores across all observations.

Since each contribution is contained in (0,1), the effect is to have an optimization

procedure which produces a bandwidth that is not tied to a handful of

observations which typically have very large errors. We accept that some points

are inherently poorly estimated, and search for the bandwidth at which GWR

behaves well for the majority of observations.

Recall that each dataset exhibited a bimodal distribution of optimal local

bandwidth. It is not surprising that each dataset also exhibits a bimodal distribution

of worst local bandwidth (see Fig. 7). Even though many observations behave well

under either of the bandwidth extrema, the converse is also true; many observations

are poorly estimated under the extreme bandwidths. Moreover, those that behave

well at local scales behave quite poorly at the global scale and vice versa. Upon

removing scale as a factor in bandwidth selection by row-standardizing the CV

matrix, the row-standardized optimum bandwidth is the one which never performs

exceptionally poorly; by the same token, however, this bandwidth also rarely

performs exceptionally well. Thus, the optimal bandwidths occur in the middle of

the feasible range of all bandwidths. For Sendai, the optimal bandwidth is 210

neighbours; for Toronto it is 230; and for Sapporo it is 100. In all three cases, these

bandwidths are situated near the middle of the set of bandwidths tested, favouring
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neither the more local nor global options. It is still unclear whether treating one

extremum preferentially is more suitable than selecting the middle ground. Since,

under the row-standardized cross-validation regime, each observation’s aggregate

CV contribution is equal to one, there is no meaningful measure of overall influence

through which we can visualize the cumulative and incremental contributions of

points as above.

5.3 Modification 3: row-normalization

A third modification is put forward called Row-Normalization. In this method, the

CV statistic is standardized by subtracting the mean and dividing by the standard

deviation of the distribution of squared errors corresponding to each observation

across all bandwidths. The scores are then right-shifted by subtracting the minimum

standardized error of each row from the matrix in order to produce distributions

starting with zero.

This modification is similar to the row standardized method above in that each

error term is represented as a measure relative to the distribution of all error terms

belonging to the same observation. One difference is that values start at zero and

increase with respect to the distribution of errors for each point. In practice, Row-

Normalized CV error terms ranged from zero to seven. This results in a broader

distribution than the row standardized modification, but a much more compact

distribution than the original cross-validation procedure. The normalized cross-

validation procedure returns optimum bandwidths of 140, 170 and 40 nearest

neighbours for Sendai, Toronto and Sapporo respectively. These bandwidths are

very similar to the optimums obtained by the original cross-validation procedure

Fig. 7 Histogram of least optimal local bandwidths, Toronto
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after discarding the most influential observations. Clearly, this method is levelling

the playing field without flattening the distribution as much as the percentage based

row standardization modification.

5.4 Modified CV, goodness-of-fit and extreme coefficients

Above, the evidence establishes that both goodness-of-fit and the variability of

coefficient estimates in GWR are related to the bandwidth used during estimation

(Tables 1, 2). Then not surprisingly, the results of GWR estimations calibrated with

the modified cross-validation procedures are also related to the respective optimum

bandwidths. For the three datasets, Y-standardization produces the same bandwidths

as the standard cross-validation procedure (Tables 3, 4). Due to the extreme

bimodal distributions of optimal and worst bandwidths, the Row-Standardization

procedure optimizes at mid-range bandwidths which are larger than the ones

produced by the other calibration procedures. As a result, goodness-of-fit results are

weaker while coefficients show less variability. Row-normalization optimizes at or

near the 90% optimum (Table 1, 2). This results in high R-squares and moderate

coefficient variability.

5.5 Polarization index

In the end, we need to determine each modification’s ability to mitigate the

polarization of influence amongst observations. We are most interested in the

polarization taking place near the optimal bandwidth so the comparison of methods

will be focused at each one’s respective optimum. The degree of polarization is

measured as the share of the total CV sum belonging to the largest 10% of

contributors. In a scenario without any polarization of influence, the top 10% should

account for 10% of the total CV sum, thus we divide each term by 10% to convert

the score into an index. In our tests (see Table 5), the standard CV procedure

Table 3 Goodness of fit measures for modified CV procedures

Dataset Measure Y-standardization Row-standardization Row-normalization

Sendai Bandwidth 70 210 140

R2 0.91 0.87 0.89

SSE 39.1 57.33 49.25

Toronto Bandwidth 200 230 170

R2 0.86 0.86 0.87

SSE 1029.5 1063.1 988.9

Sapporo Bandwidth 50 100 40

R2 0.93 0.90 0.94

SSE 14.6 20.6 12.7
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consistently returns a high polarization index, ranging between 5.4 and 6.9. The

Y-standardization modification improves the index negligibly. Not surprisingly, the

percent based row-standardization procedure produces the lowest levels of

polarization, undoubtedly due to the compact nature of the distribution. Finally,

Table 4 Coefficient standard deviations for modified CV procedures

Dataset Variables Y-standardization Row-standardization Row-normalization

Sendai Bandwidth 70 210 140

Constant 27.4320 6.5451 10.9915

logDIST 1.7063 0.243 0.5350

logDIST_IZUMI 2.8790 0.6489 0.9260

logDIST_NAGAMACHI 2.4486 0.3946 0.9514

CommPct 0.0121 0.0083 0.0094

HousePct 0.0089 0.0053 0.0076

PopDen 0.0020 0.0014 0.0016

Toronto Bandwidth 200 230 170

Constant 0.5396 0.5118 0.5900

Area 0.0047 0.0045 0.005

Front 0.0070 0.0067 0.0073

AgeHouse 0.2404 0.2234 0.2815

AgeHouse2 0.0528 0.0489 0.0643

SaleDate 0.0019 0.0018 0.002

DistTransit 0.2046 0.195 0.2175

Sapporo Bandwidth 50 100 40

Constant 0.5115 0.3721 0.6117

Frontage 0.0135 0.0095 0.0155

Distance to arterial 0.1088 0.0643 0.1323

Development rate 0.0017 0.0016 0.0018

Distance to CBD 0.0833 0.0579 0.0951

Table 5 CV modifications, revealed optimum bandwidths, and polarization indices

Measure Traditional CV Y-std Row-std Row-norm

Sendai Revealed optimum 70 70 210 140

Polarization 5.4 5.5 2.1 2.8

Toronto Revealed optimum 200 200 230 170

Polarization 6.8 6.8 1.4 2.4

Sapporo Revealed optimum 50 50 100 40

Polarization 6.9 6.8 3.1 3.76

A systematic investigation of cross-validation in GWR 387

123



the row-normalization procedure has scores slightly higher than the row-standard-

ization, but vastly superior to the standard CV procedure.

6 A simulation experiment

Simulation can be used to explore the behaviour of the various cross-validation

procedures in a controlled environment. The experimental design draws from a

recent paper by Wang et al. where it was used to compare the performance of

traditional GWR to a modified GWR using local spatially expanded coefficients

(Wang et al. 2007). The objective of the experiment in our case is to test the

goodness of fit and the ability of GWR to retrieve the coefficients of a spatially

varying process under an array of cross-validation calibration methods (q.v.

Wheeler and Calder 2007). The data generating process is defined as follows:

yi ¼ b0 ui; við Þ þ b1 ui; við Þxi þ ei for i ¼ 1; 2; . . .; 625;

where the xi are randomly drawn from a uniform distribution over the interval (0,1),

and the ei are randomly drawn from a standard normal distribution. For a synthetic

sample of 625 observations, spatial coordinate pairs (ui, vi) are assigned as follows:

ui; við Þ ¼ 0:5 mod i� 1; 25ð Þ; 0:5fl i� 1=25ð Þð Þ for i ¼ 1; 2; . . .; 625;

where mod(a, b) is the remainder of a divided by b, and fl(a) is the floor of a.

Finally, the coefficients b0 (ui, vi) and b1 (ui, vi) are defined as functions of

coordinate pairs (u,v) as:

Case 1: b0 u; vð Þ ¼ 1þ 1
6

uþ vð Þ; b1 u; vð Þ ¼ 1þ 1
3

u;

Case 2: b0 u; vð Þ¼1þ4 sin 1
12

pu
� �

; b1 u; vð Þ¼1þ 1
324

36� 6�uð Þ2
h i

36� 6�vð Þ2
h i

:

As seen in the accompanying illustrations (Fig. 8), in the first case, the coefficient

surfaces are derived from simple planar functions of Cartesian coordinates, while in

the second, they are derived from more complex sinusoidal and biquadratic

expressions.

Following the generation of yi, the regular and modified cross-validation criteria

are used to retrieve a bandwidth for which GWR produces coefficient estimates and

predictions of the observed dependent variable. The estimates are stored and the

process is repeated 100 times with new sets of randomly drawn variates.

Table 6 contains descriptive statistics of the parameter distributions generated

via the Monte Carlo simulations. In general, the optimal bandwidths for Case 1 are

much smaller than those returned for Case 2. Currently, the experiment does not tell

if this is due to the level of complexity—linear surfaces versus biquadratic and

sinusoidal ones—or the rate of change of the parameter surfaces. In the linear case,

the partial derivatives are constant at 1/6 and 1/3 for b0 (ui, vi) and b1 (ui, vi)

respectively, but in the more complex case, the rates of change have much higher

peaks at approximately ±12 for b0 (ui, vi) and at ±10/9 for b1 (ui, vi). From a

theoretical point of view, it seems reasonable that larger bandwidths achieve better

performance on flatter surfaces since the local process at points further away from
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the target location may be quite similar to the process at the target location.

Likewise, for faster changing processes, smaller bandwidths perform better since

the process at points further away are likely to be quite dissimilar to the process at

the target location. For both cases, traditional cross-validation routinely returns the

smallest window sizes with the most compact distributions as illustrated by the

means and standard deviations. The distribution of bandwidths returned by the row-

standardized (CVRS) and row-normalized (CVRN) procedures are nearly identical

and both produce large mean bandwidths compared to CV. Finally, the Y-

standardized (CVYS) procedure produces highly variable bandwidth distributions,

and in the worst case, returns much poorer fitting estimates of both the coefficients

and the dependent variable.

The pseudo-R2 in Table 6 is simply the squared correlation coefficient for the

observed and predicted values of the dependent variable (the best estimates for each

case and parameter are printed in bold.) For both cases, there is not much variation

in the pseudo- R2 distributions across methods except that CVYS produces some

very poor fitting models as evidenced by the minimum pseudo-R2 values and the

standard deviations. Other than this, we see that CV consistently attains the highest

predictive accuracy with the most consistency between replications.

Contrastingly, whereas CV attains the highest prediction accuracy in terms of

estimating the dependent variable, we see that CVRN and CVRS are superior

coefficient retrievers. This indicates that the modeling purpose may dictate the

cross-validation methodology to use in that CV can be used to achieve higher

prediction accuracy, while CVRN and CVRS can be used for inference and

Fig. 8 True coefficient surfaces for Case 1 (top) and Case 2 (bottom)
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exploration. Furthermore, the CVYS procedure behaves quite poorly, neither

attaining superior predictive nor inferential power.

In addition to numeric descriptions of the simulation results, Figs. 9, 10, 11 and

12 provide graphical illustrations of two spatial aspects of the simulations. These

figures show, for each coefficient-method pair, the mean retrieved surface and the

Fig. 9 Mean coefficient and bias surfaces, CV—Case 1

Fig. 10 Mean coefficient and bias surfaces, CVRS—Case 1
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mean bias surface. For brevity, we exclude the CVYS surfaces, since this method

has been deemed inferior, and the CVRN surfaces, since CVRN returns results very

similar to CVRS while CVRS has a more parsimonious implementation. The mean

retrieved surface and mean bias are defined as:

Fig. 11 Mean coefficient and bias surfaces CV—Case 2

Fig. 12 Mean coefficient and bias surfaces: CVRS—Case 2
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Mean b̂k ui; við Þ
� �

¼ 1

R

XR

r

b̂kr ui; við Þ; for k ¼ 0; 1 and i ¼ 1; 2; . . .625;

MBIAS b̂k ui; við Þ
� �

¼ 1

R

XR

r

b̂kr ui; við Þ � bk ui; við Þ
� �2

;

for k ¼ 0; 1 and i ¼ 1; 2; . . .625;

where b̂k ui; við Þ is the GWR estimate of bk (ui, vi), and R is the number of Monte

Carlo repetitions.

In agreement with the numerical evidence, the surfaces of mean coefficient

estimates mirror the true coefficient surfaces in Fig. 8 (also see Wang et al. 2007).

Even though the mean surfaces capture the general trend of the true surfaces,

anomalies are visible along the edges of the study area, probably due to more

heterogeneous local neighbourhoods resulting from larger neighbourhoods in terms

of distance (i.e. to find the same number of nearest neighbours, a location near the

edge needs to cover a longer distance than one in the centre).

The mean bias surfaces more directly illustrate the spatial extent and magnitude

of these edge-effects. Comparing the two cross-validation procedures for each case,

at first glance it appears that the bias is far greater for the CVRS estimates thereby

contradicting the numerical findings in Table 6 which indicate the opposite.

However, on closer inspection it becomes evident that whereas the edge-effects are

far more severe for the CVRS estimates, bias for the inner points is much greater for

traditional CV than CVRS. Thus, CVRS, while producing better fitting surfaces

overall, is more prone to deleterious edge-effects in comparison to traditional CV.

7 Conclusions

In this paper, we systematically studied GWR cross-validation using three distinct

empirical datasets and Monte Carlo simulations. We describe a method used to

decompose the cross-validation score in terms of individual observations. After-

ward, using this method we illustrate that for three empirical spatial datasets, a

selection of observations exert quite large influence on cross-validation scores. In

the course of study, we discovered that global optimality may not be possible given

the bimodal distribution of locally optimum bandwidths. Furthermore, we found

that goodness-of-fit maximizes at small bandwidths, even if they are smaller than

the optimum defined by the cross-validation procedure. In an attempt to attenuate

the possibility of bandwidth selection being driven by a small number of influential

observations, three simple modifications to the CV statistic were tested: Y-

standardization, row-standardization; and row-normalization. Following the appli-

cations of the modified CV procedures to the empirical datasets, Monte Carlo

simulations were used to study them in a controlled environment. From the

empirical analysis, we discovered that both row-standardization and row-normal-

ization significantly reduced the amount of influence any single point could have on

bandwidth selection, while Y-standardization did not produce any noticeable effect.
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In the simulation studies we found that the traditional cross-validation method

systematically returns smaller bandwidths as compared to the more democratic row-

standardization and row-normalization techniques. Furthermore, traditional CV led

to better estimates of the dependent variable. CVRS and CVRN, on the other hand,

produce more accurate estimates of the local regression coefficients, but with a

tendency, most likely due to the larger window sizes, to return high levels of bias

around the edges of the study area.

This paper, while technical in nature, provides practical guidance to users of the

GWR method. It serves as a cautionary note, that traditional cross-validation

minimization is prone to the deleterious impacts of influential observations and may

return bandwidths that are not optimized for coefficient retrieval. Furthermore, the

cross-validation decomposition analysis supports earlier commentary on GWR that

a single globally optimum bandwidth probably does not adequately represent

observable spatial processes (Páez et al. 2002a). Finally, the findings from the

simulation studies can help practitioners customize their cross-validation procedure

according to their particular research goals, be they predictive or inferential in

nature. Clearly, if the objective of the analysis is to explore spatially varying

relationships, a row-normalization or standardization approach would be desirable,

mindful of the potential for edge effects. In fact, one could combine two cross-

validation approaches to assess the possible extent of edge effects. More generally,

the empirical and simulation studies show that the cross-validation procedure has a

strong impact on GWR coefficient estimates and predictions of the dependent

variable, and practitioners should proceed cautiously in order to ensure the highest

level of predictive or explanatory integrity.

Concerning further research, at the onset of this investigation, much attention was

drawn to the existence and identification of influential CV observations. In this

paper, the term ‘‘influential point’’ was borrowed to signify a point having

disproportionate impact on bandwidth selection. At this time, it is unclear if these

points are also influential in the more traditional sense of high leverage points or

outliers (Fox 1997). At the very least, it should be clear that global outliers and

influential points are not necessarily so with respect to local neighbourhood

regressions. In local statistics, the global notion of outliers is conditioned by the

neighbourhood size, thus allowing for discrepancy, the degree of outlying, to vary

with neighbourhood scale. As such, it is possible for an observation to be an outlier

at one spatial scale but not another. This observation partially motivated our

approach for identifying influential points with respect to cross-validation: since

points can be influential at any neighbourhood scale this requires the investigation

of the influence of all points at all scales. Regarding the source of influence, the

most intuitive explanation concerns spatial-outliers, observations whose attributes

are different from those of other observations in the surrounding neighbourhood.

These points can influence the estimation of local regressions for neighbourhoods

which they are members of. During cross-validation they can either force the

window size smaller to eliminate themselves from the membership. Alternatively,

by contributing to larger window sizes, they can drown-out their effect on

estimation. In either case, spatial-outliers are potentially disruptive of the cross-

validation procedure. In addition, since spatial outliers are likely not well
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represented by any local regression process, their locally cross-validated error terms

are likely quite high. These disproportionately high CV errors might influence the

CV minimization procedure.

Similar to spatial-outliers, another possible source of cross-validation influence is

a sudden shift in regression regimes. One of the various reasons for using GWR is to

identify regime shifts; however, cross-validation can be influenced by a regime shift

in a similar way to a spatial outlier. Indeed, an observation in one regime could be

considered an outlier in a neighbourhood that consists of points primarily belonging

to a second regime.

While spatial-outliers and regime changes quite possibly pose serious challenges

to the reliability of cross-validation, understanding the reasons for their existence

and the extent of their effect requires thorough experimental analysis. This paper

provides a point of departure for such investigations by developing a method for

exploring and measuring the impacts of individual observations. In addition, the

paper also shows how different specifications of the cross-validation objective

function can lead to more democratic and possibly more robust GWR estimation. A

systematic investigation of the source and cause of cross-validation influence

requires further study. Practitioners would greatly benefit from such analysis since

the current data-cleaning methods pertain to global statistical methods and thus may

not be entirely appropriate for local, moving windows approaches.

On a final note, in this paper we concentrated on bandwidth selection using cross

validation instead of more recent alternatives, such as the use of the Akaike

Information Criterion (Fotheringham et al. 2002). It is worth noting that in a recent

paper, Nakaya et al. recognize the current void in research concerning the properties

of GWR calibration methods, including AIC (Nakaya et al. 2005). Unfortunately for

us, the AIC cannot be easily decomposed into contributions from individual points,

and so our examination of influential points does not have a straightforward

counterpart within the AIC framework. The lack of reported results, moreover, does

not help to resolve the question of whether CV and AIC minimization tend to return

similar or even identical bandwidths (e.g. Yu 2006). Clearly, this is one additional

topic in need of further research.
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