
Abstract Effective management of critical network infrastructure requires
the assessment of potential interdiction scenarios. Optimization approaches
have been essential for identifying and evaluating such scenarios in networked
systems. Although a primary function of any network is the distribution of
flow between origins and destinations, the complexity and difficulty of
mathematically abstracting interdiction impacts on connectivity or flow has
been a challenge for researchers. This paper presents an optimization ap-
proach for identifying interdiction bounds with respect to connectivity and/or
flow associated with a system of origins and destinations. Application results
for telecommunications flow are presented, illustrating the capabilities of this
approach.
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1 Introduction

As a response to the growing threat of terrorism in the late 1990s, the U.S.
federal government established the President’s Commission on Critical
Infrastructure Protection (PCCIP) (E.O. 13010). In this executive order
(E.O.) (1995), ‘‘infrastructure’’ was defined as:

The framework of interdependent networks and systems comprising
identifiable industries, institutions (including people and procedures),
and distribution capabilities that provide a reliable flow of products and
services essential to the defense and economic security of the United
States, the smooth functioning of government at all levels, and society as
a whole (E.O. 13010).

More importantly, E.O. 13010 (1996) suggested that ‘‘... certain national
infrastructures are so vital that their incapacity or destruction would have a
debilitating impact on the defense or economic security of the United States.’’
The concept of ‘‘vital’’ or ‘‘critical’’ infrastructure is clearly an important one
for establishing national security benchmarks. Basic inventories of critical
infrastructure are often subdivided into sectors, and include (E.O. 13010, 1996;
White House 2003): telecommunications, electrical power systems, gas and oil
storage and transportation, banking and finance, transportation, water supply
systems, emergency services (including medical, police, fire, and rescue), and
continuity of government.

Given the vast array of infrastructure in these sectors, it is not surprising
that fiscal constraints can limit the scope of protective measures applied to the
nation’s critical infrastructure.1 Moreover, the heightened concerns for secu-
rity threats and the need to safeguard these sectors suggest that optimization-
based approaches for identifying risk in networks of all sorts, ranging from gas
and oil pipelines to transportation routes to telecommunication systems, are
extremely important for prioritizing and evaluating fortification strategies to
maintain the continuity of their functions (see White House 2003).

A common theme in the analysis and evaluation of network-based critical
infrastructure is interdiction, where network elements (nodes or arcs) are dis-
abled, intentionally or otherwise, disrupting the flow of valuable goods or
services through the network. There has been much interest in examining
vulnerabilities and risk in critical network infrastructure (Carlier et al. 1997;
Soni and Pirkul 2000; Palmer et al. 2001; Carreras et al. 2002; Crucitti et al.
2004; Latora and Marchiori 2005; Chassin and Posse 2005; Grubesic and
Murray 2006) and interdiction has been implicit, if not explicit, in most cases.

1 In the fiscal year 2006, $873 million USD were allocated to the Department of Homeland
Security’s Information Analysis and Infrastructure Protection Directorate (DHS 2004, 2005),
which coordinates the Federal Government’s efforts to protect the Nation’s critical infrastructure,
including commercial assets (e.g., stock exchanges), government facilities, dams, nuclear power
plants, national monuments and icons, chemical plants, bridges, and tunnels. In addition, $94
million USD is allocated to protecting against threats to information technology infrastructure
(OMB 2006).
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Baran (1964) recognized that some network topologies provide a higher
probability of survivability (or connectivity, more specifically) after an attack.
In particular, distributed networks with higher levels of redundancy and
diversity are good for ensuring connectivity, should interdiction take place.
The topological properties of networks are further explored in examining
‘‘scale-free’’ networks (Albert et al. 2000; 2004; Barabasi et al. 2000, 2001).
Results suggest that although scale-free networks like the Internet are very
tolerant of random failures, a series of targeted attacks on the most highly
connected nodes or ‘‘hubs’’ can be crippling. Nevertheless, performance of a
network, viewed in terms of either vulnerability or survivability, ultimately
centers on connectivity and whether flow can move between origins and des-
tinations (see Bell 2000; Doyle et al. 2005). If interdiction to network-based
critical infrastructure is to be guarded against or managed once it occurs,
methods are needed for identifying and examining possible interdiction sce-
narios, a sentiment shared by Houck et al. (2004) and Salmeron et al. (2004).

The above discussion has highlighted that networks serve to deliver flow
through a system of interconnected nodes and arcs and that planning for
interdiction of this service is essential. With this in mind, this paper develops
an integer programming model to evaluate the upper and lower bounds on
flow disruption as a result of facility interdiction in a network. The next sec-
tion provides a background review of previous modeling work in this area. An
integer model formulation is then presented and discussed. An application
analyzing potential interdiction of network components for the Abilene In-
ternet2 backbone is given, highlighting the utility of the developed modeling
approach. Finally, discussion and conclusions are provided.

2 Background

Optimization techniques have played a significant role in examining potential
interdiction impacts, recognizing the insights they can provide for mitigating
facility loss and prioritizing fortification efforts. Four categories of approaches
are reviewed here: simulation, min-cut/shortest paths, network attributes, and
system flow. Common to all categories is that nodes and/or arcs in the network
may be interdicted. The differences in the categorical distinctions are the ways
in which the network or its performance is evaluated.

Simulation has been an important optimization technique in general terms,
and has proven valuable in the analysis of interdiction in critical network
infrastructure. One benefit of simulation is that it typically allows for the
examination of a range of impacts, with either implicit or explicit notions of
optimized performance for a network. For example, Grubesic et al. (2003)
examined basic graph theoretic measures of network connectivity, such as the
degree of node and nodal centrality, for Internet backbone networks. As
network elements were interdicted (or ‘‘removed’’), the corresponding
changes in network connectivity were documented. Latora and Marchiori
(2005) also simulated the removal of nodes in a networked system, assessing
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performance and the criticality of each node individually. Crucitti et al. (2004)
examined individual nodal capacities for a network and their ability to handle
additional/excess information when other network elements (nodes) are lost.
Similarly, Albert et al. (2004) apply this logic to simulations of node-based
attacks on the North American power grid. In their simulations, consideration
for secondary failures spawned by the initial attack is also addressed. These
‘‘cascading’’ failures are represented using a rank, remove, and recomputation
method, similar to Holme et al. (2002). In this aforementioned work, assess-
ment of origin–destination (O–D) flows is not addressed. Recently, however,
Doyle et al. (2005) argue that O–D interaction is in fact an important com-
ponent of engineered systems and explore a standard metric for network
performance that examines end-user traffic demands between all pairs of end
vertices (nodes) in a system. While the loss or removal of critical arcs/nodes in
these systems can be instructive for identifying the varying levels of connec-
tivity for networks, evaluating individual links independent of the presence or
absence of all other network elements (arcs and nodes) can be myopic or
misleading.

Another category for network evaluation involves assessing impacts rela-
tive to altering the maximum flow or shortest path for a given O–D pair. For
example, one strategy for network interdiction is to maximize network dis-
ruption by removing the links with the greatest total value in a system (e.g.
Wollmer 1964; Ratliff et al. 1975; Ball et al. 1989; Wood 1993). Similarly, one
can also seek to maximize network disruption by removing the nodes most
critical to system operation (Corley and Chang 1974; Corley and Sha 1982;
Nardellia et al. 2003). The notion of flow (and its disruption) is implicit in
many of these optimization-based approaches given the focus on altering the
maximum O–D flow. However, recent research highlights the importance of
explicitly modeling O–D flows (Myung and Kim 2004).

A third category of optimization modeling work characterizes impacts in
terms of system performance or network characteristics. For example, Church
et al. (2004) consider average service costs and coverage reduction in this
context using median and covering location models, respectively. Grubesic
and Murray (2006) examine nodal interdiction outcomes quantified as the
total attributes (e.g., capacity) of arcs impacted. Extending this, Grubesic et al.
(2006) model node and arc attributes, simultaneously, in the context of
interdiction for a telecommunication backbone. Yet, while these models can
approximate impact to network connectivity, they do not account for O–D
flows in the network.

The final category is system flow. A more recent interest in interdiction
studies is examining connectivity and O–D flow in networked systems. While
maximum flow approaches seek to identify interdiction schemes that reduce
the capacity of a particular O–D pair to interact, system flow approaches focus
on the interaction between all O–D pairs. To address system flow Myung and
Kim (2004) present an integer program to identify those arcs whose removal
results in an upper bound on network failure and discuss an algorithm for
finding a lower bound. Their formulation relies on identifying feasible paths
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for each O–D pair and tracking the availability of facilities involved in each
path. A preprocessing technique is employed to focus only on O–D pairs that
can be interdicted given the removal of a specified number of arcs. Ultimately,
however, both the upper and lower bounds are heuristically derived.

Of interest in this paper is this fourth category, focusing on the explicit
representation of O–D flow in a network. To this end, an optimization model
is presented to identify optimal upper and lower bounds for potential network
interdiction scenarios, with the intent to support management and planning
efforts oriented toward assessing vulnerability and reliability in networked
systems.

3 Modeling flow interdiction

From a planning and management perspective, an optimization model is
necessary for identifying an interdiction scenario that maximizes or minimizes
total flow disrupted. In this context, a network component is interdicted,
rendering it inoperable, as commonly assumed in the literature. For modeling
and discussion purposes, interdiction is limited to nodes in the network,
though the work that follows can readily be extended to account for arc
interdiction as well. Without loss of generality, the number of facilities
interdicted is specified in advance. Given any general network G = (N,A),
where N denotes the set of nodes and A the set of component arcs or linkages,
it is assumed that all feasible, non-redundant paths in the network can be
identified for any interacting pair of nodes. This assumption is not unlike that
made to model flow capture (see Hodgson et al. 1996), network design (see
Kalvenes et al. 2004), or arc interdiction (see Myung and Kim 2004). The
following notation is used to formulate a model for the evaluation of flow
interdiction:
k index of paths, entire set denoted K
j index of facilities, entire set denoted J
o index of origins, entire set denoted W
d index of destinations, entire set denoted K
Nod set of paths enabling OD flow
fod flow observed between OD
p number of facilities to remove
/k set of facilities along path k

Xj

1 if facility j is interdicted

0 otherwise

(

Yk

1 if path k remains uneffected by interdiction

0 otherwise

(

Zod

1 if no flow possible between OD

0 otherwise

(
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3.1 Flow interdiction model

Maximize or Minimize X
o

X
d

fodZod ð1Þ

Subject to:

X
k2Nod

Yk þ Zod � 1 8o; d ð2Þ

Zod � ð1� YkÞ 8o; d,k 2 Nod; k ð3Þ
Yk � 1�

X
j2Uk

Xj 8k ð4Þ

Yk � ð1�XjÞ 8k; j 2 Uk ð5ÞX
j

Xj ¼ p ð6Þ

Xj ¼ 0; 1f g 8j
Yk ¼ f0; 1g 8k
Zod ¼ f0; 1g 8o; d

ð7Þ

Objective (1) maximizes or minimizes total flow interdicted. Constraints (2)
and (3) account for the existence of paths between a given O–D. Constraints
(4) and (5) track whether a path is impacted by an interdiction scenario.
Constraints (6) specify that p nodes are to be interdicted. Finally, Constraints
(7) impose binary integer restrictions on decision variables.

The FIM is a unified model, structured to identify interdiction schemes that
maximize or minimize total flow disruption in the network. It does this by
accounting for nodes interdicted, and the subsequent elimination of particular
paths between O–D pairs utilizing these nodes. For example, consider three
nodes, o, j, and d, with a link connecting o and j and a link connecting j and d,
and assume there is flow between od only. If node j is interdicted, then it is
inoperable and Xj = 1. Assume, without loss of generality, that path k is the
only path for od, node j is on path k, and j is the only interdicted node. Given
this, Constraint (4) is Yk ‡ 1–1, or simply Yk ‡ 0. With the objective of
maximizing flow disruption, Zod will seek to equal 1 if at all possible. This
means that Yk will equal zero, e.g., Yk = 0, as Constraints (2) and (3) allow
Zod = 1 only if no path exists for this O–D pair, which it does not in this case
because

P
k02Nod

Yk0 ¼ Yk ¼ 0 in Constraint (2) and Yk = 0 in Constraint (3).
When minimizing flow disruption, (1) will seek out Zod = 0, which can only be
attained when Yk = 1 as there is only one path. In this case, Constraints (5) are
in place to ensure that if any node on path Yk is interdicted, Yk is unavailable.
Thus, the decision variables and constraints work as intended to account for
flow disruption, which is why this is conceived of as a unified approach. While
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it would be possible to separate this one model into two models for addressing
the respective maximum or minimum case, one approach is capable of
addressing both concerns as the two cases are of interest in management and
planning contexts.

4 Application

The developed model was applied to the Abilene Internet2 network backbone
shown in Fig. 1 to assess interdiction risk. The Abilene backbone is a high
performance fiber-optic telecommunication network, consisting of 14 linkages
that integrate 11 routers (network nodes), primarily intended to facilitate
transmissions between research institutions in the U.S. (Abilene 2005). Flow
data (in bytes) observed at network routers was collected by Abilene using
Cisco NetFlow (Abilene 2005). Each router serves as both an origin and
destination node, resulting in 121 O–D pairs including intra-nodal flow. Given
infrastructure capacities, all network elements were considered uncapacitated.

The analysis was carried out on a personal computer with a Xeon 3.0 GHz
processor and 4 GB RAM. TransCAD, a commercial geographical informa-
tion system (GIS) package, was used to manage the Abilene data and extract
arc and node incidence relationships. A C++ program was written to enu-
merate all simple O–D paths using arc/node data exported from TransCAD.
For the Abilene network, 907 paths were identified (896 inter-nodal + 11 in-
tra-nodal). However, removing path redundancies reduced the number of
necessary paths to 151 (an 83.4% reduction). Path identification required less
than one second of computing time. The associated FIM problem instance was

Fig. 1 Flow activity on Abilene Internet2 backbone
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then structured, consisting of 228 decision variables and 1,065 constraints. The
C++ program then calls ILOG CPLEX 10.01, a commercial optimization
package, to solve all instances of the FIM reported in this paper.

The FIM was used to identify potential worst-case and best-case nodal
interdiction scenarios. Consistent with much of previous research, we initially
evaluate network connectivity using FIM. This is done assuming only a single
unit of flow between interacting O–D pairs (e.g., removing fod from the
objective) so that all O–D relationships are valued equivalently in the model.
Following this, actual observed total flow between interacting O–D pairs is
examined using the FIM. Both connectivity and actual flow instances are
solved for the entire range of node interdiction possibilities, p = 1–11, the
results of which are discussed below.

Connectivity results are provided in Table 1, giving solution details for each
level of potential interdiction. Fig. 2 plots the objective function as the
number of nodes interdicted increases. The problems required little compu-
tational effort, with the greatest effort being for p = 1. When one node is
interdicted, Indianapolis is identified as the location that, if rendered inop-
erable, would disrupt the greatest number of O–D pairs (21), some 17% of the
121 interacting pairs. If two nodes are interdicted, we find that Kansas City
and Houston would cause a disruption of 80 O–D pairs, or approximately 66%
of all interacting pairs. Certainly both cases represent a significant potential
impact on the network, but even one additional interdicted node (p = 3)
would bring the total impact to over 80% of interacting O–D pairs.

Altering the focus slightly, flow interdiction results are provided in Table 2,
giving solution details for each scenario level. As was found in Table 1, the
problems solved in Table 2 required little computational effort. In contrast to
the interdiction of connectivity, we find that explicitly accounting for flow

Table 1 FIM solutions for maximum connectivity interdiction (unit flow on each O–D pair)

p Objective
(O–D
pairs)

Cities interdicted Iterations Branches Time
(s)

1 21 IND 192 0 0.109
2 80 KC, HOU 67 0 0.016
3 97 KC, ATL, SNV 63 0 0.016
4 108 CHI, KC, ATL, SNV 30 0 0.016
5 113 IND, DEN, HOU, SNV, NY 30 0 0.016
6 116 CHI, IND, DEN, HOU, SNV, WAS 13 0 0.000
7 117 CHI, IND, KC, DEN, HOU, SNV, WAS 10 0 0.016
8 118 SEA, CHI, IND, DC, DEN, ATL, LA, WAS 7 0 0.015
9 119 SEA, CHI, IND, KC, DEN, ATL, HOU, LA, WAS 8 0 0.016
10 120 SEA, CHI, IND, KC, DEN, ATL, HOU, LA, SNV,

NY
0 0 0.000

11 121 SEA, CHI, IND, KC, DEN, ATL, HOU, LA, SNV,
NY, WAS

0 0 0.000

ATL Atlanta, CHI Chicago, DEN Denver, HOU Houston, IND Indianapolis, KC Kansas City,
LA Los Angeles, NY New York, SEA Seattle, SNV Sunnyvale, WAS Washington, DC
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transmission yields very different interdiction scenarios. Table 2 shows that
interdicting Washington, D.C. would be the single node causing the greatest
impact, representing a decrease in flow of over 37% (total O–D flow is
48,728,171,337,750 bytes). If two nodes are interdicted (p = 2), then Wash-
ington, D.C. and Indianapolis are found to cause the greatest decrease in flow
(over 73%). The tradeoff curve for nodes interdicted versus total flow dis-
rupted is shown in Fig. 3, summarizing the results given in Table 2. To illus-
trate the spatial impacts of an interdiction scenario, Fig. 4 depicts the p = 3
solution from Table 2, a configuration that disrupts over 81% of total system
flow. These results highlight an important difference between interdiction of
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Fig. 2 Connectivity reduction for each interdiction scenario

Table 2 FIM solutions for maximum flow interdiction (actual O–D flow)

p Objective (bytes) Cities interdicted Iterations Branches Time
(s)

1 18,334,225,068,600 WAS 76 0 0.031
2 35,832,056,381,650 IND, WAS 50 0 0.016
3 39,517,310,353,850 IND, SNV, WAS 70 0 0.047
4 44,640,185,137,700 ATL, KC, NY, SNV 35 0 0.015
5 46,760,549,968,700 ATL, CHI, KC, SNV, WAS 18 0 0.015
6 48,063,525,105,550 DEN, HOU, IND, NY, SNV, WAS 7 0 0.016
7 48,251,182,933,150 CHI, DEN, HOU, IND, NY, SNV,

WAS
6 0 0.015

8 48,427,837,682,950 ATL, CHI, HOU, KC, NY, SEA,
SNV, WAS

5 0 0.000

9 48,568,772,694,250 ATL, CHI, HOU, IND, KC, NY, SEA,
SNV, WAS

2 0 0.016

10 48,656,176,339,000 ATL, CHI, HOU, IND, KC, LA, NY, SEA,
SNV, WAS

0 0 0.016

11 48,728,171,337,750 ATL, CHI, DEN, HOU, IND, KC, LA, NY,
SEA, SNV, WAS

0 0 0.015

ATL Atlanta, CHI Chicago, DEN Denver, HOU Houston, IND Indianapolis, KC Kansas City,
LA Los Angeles, NY New York, SEA Seattle, SNV Sunnyvale, WAS Washington, DC
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connectivity and interdiction of flow. As can be discerned from the Abilene
network, the loss of any single node (p = 1) will equivalently impact network
connectivity. Similarly, several optimal solutions to the disruption of two
nodes (p = 2) exist for the case of connectivity (Kansas City and Atlanta;
Indianapolis and Houston; and Kansas City and Houston). Multiple optima
are expected when O–D connectivity is of interest given that O–D pairs are
given equitable treatment. In such cases, alternate optima could possibly be
identified through incorporating Dantzig-type cuts as is done in ReVelle and
Rosing (2000). The existence of multiple optimia changes when impacts to
system flow are considered, however. Interdiction impact does not necessarily
depend upon level of connectivity, but rather flow between origins and des-
tination. For instance, the two-node interdiction scenario maximizing damage
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Fig. 4 Maximal flow interdiction (p = 3)
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discussed earlier (Washington D.C. and Indianapolis) does not maximize
connectivity damage. In fact, six other scenarios cause a greater impact to
system flow than this particular interdiction set (Matisziw et al. 2005), high-
lighting that connectivity and system flow are very different performance is-
sues.

Table 3 and Fig. 2 detail the results for minimizing impact to O–D con-
nectivity. In the best-case scenario, the FIM identified Houston as the location
with minimal connectivity loss. As can be observed in Table 3, more com-
putational effort is required when computing a minimum. The results for
minimizing impact to O–D flow are shown in Table 4 and Fig. 3. Here, re-
moval of Kansas City impacts system flow the least. Figure 5 illustrates the
resulting minimum impact to flow given the interdiction of three nodes. In this
case, Indianapolis, Denver, and Kansas City are interdicted.

5 Discussion and conclusions

This paper has introduced an unified spatial optimization formulation, the
flow interdiction model (FIM), for examining risk and vulnerability associated
with network interdiction. The FIM can be used to identify either worst-case
or best-case impacts to system flow given any specified interdiction scenario,
providing upper and lower bounds on potential system degradation. Myung
and Kim (2004) implicitly attempted to establish such bounds when network
arcs were interdicted, but ultimately could do so only heuristically. Specifi-
cally, they address system flow interdiction by introducing an integer program
and heuristic solution method to identify scenarios maximizing flow disrup-

Table 3 FIM solutions for minimum connectivity interdiction (unit flow on each O–D pair)

p Objective
(O–D
pairs)

Cities interdicted Iterations Branches Time
(s)

1 21 HOU 482 0 0.235
2 40 ATL, HOU 3,056 78 0.531
3 57 ATL, HOU, LA 4,069 147 0.703
4 72 ATL, HOU, LA, SNV 5,651 217 0.797
5 85 ATL, HOU, LA, SNV, WAS 5,111 239 0.766
6 96 SEA, CHI, IND, KC, DEN, NY 4,388 181 0.672
7 105 SEA, CHI, IND, KC, DEN, NY, WAS 4,116 172 0.594
8 112 SEA, CHI, IND, KC, DEN, SNV, NY, WAS 3,091 77 0.500
9 117 SEA, CHI, IND, KC, DEN, LA, SNV,

NY, WAS
1,805 31 0.516

10 120 SEA, CHI, IND, KC, DEN, ATL, LA, SNV,
NY, WAS

461 0 0.047

11 121 SEA, CHI, IND, KC, DEN, ATL, HOU, LA,
SNV, NY, WAS

0 0 0.000

ATL Atlanta, CHI Chicago, DEN Denver, HOU Houston, IND Indianapolis, KC Kansas City,
LA Los Angeles, NY New York, SEA Seattle, SNV Sunnyvale, WAS Washington, DC
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tion. Their model, however, is a special case of the FIM in that it does not
permit minimization of system impact, though a lower bound heuristic is
suggested. The work of Myung and Kim (2004) highlights the need for the
FIM as it provides a unified approach to derive exact bounds on possible
network interdiction impacts. The application results highlight the capabilities
of the FIM to derive these bounds using commercial optimization software,
requiring little computational effort. For the system evaluated here both path
enumeration and model solution were easily handled. Though the network
application was not particularly large, the developed approach is feasible and
valid for examining interdiction risk and vulnerability in network infrastruc-
ture.

Another point to elaborate on is the relationship between connectivity and
flow, as the applications of the FIM to the Abilene network display some
subtle differences. A close examination of Tables 1 and 2 suggests that node
combinations associated with maximal system flow interdiction do not cor-
respond to the same nodal combinations when maximizing O–D connectivity
interdiction. Obviously the difference is due to the fact that connectivity is not
equivalent to total system flow. For example, if we examine the scenario
where one node is to be interdicted, the loss of Washington, D.C. disrupts the
most flow (p = 1 in Table 2) while the loss of Indianapolis disrupts the
greatest O–D connectivity (p = 1 in Table 1). This is not completely unex-
pected given the basic flow information and topological characteristics of the
network. This is a very important observation for several reasons. First, and
most obvious, nodal interdiction combinations for maximizing flow and con-
nectivity disruptions rarely coincide completely. Thus, considering previous
work on the attack tolerance and overall robustness of the Internet and other

Table 4 FIM solutions for minimum flow interdiction (actual O–D flow)

P Objective (bytes) Cities interdicted Iterations Branches Time
(s)

1 3,005,725,742,050 KC 75 0 0.078
2 7,331,100,352,550 DEN, KC 994 0 0.172
3 14,188,998,793,400 IND, DEN, KC 933 0 1.328
4 19,199,863,625,850 SEA, DEN, KC, SNV 712 0 0.984
5 24,632,533,830,000 SEA, IND, DEN, KC, SNV 514 0 0.187
6 29,387,932,211,450 SEA, DEN, KC, SNV, LA, HOU 447 0 0.109
7 33,900,402,066,750 SEA, DEN, KC, SNV, LA, ATL,

HOU
475 0 0.125

8 37,991,186,263,500 SEA, IND, DEN, KC, SNV, LA,
ATL, HOU

427 0 0.125

9 42,081,550,917,850 SEA, CHI, IND, DEN, KC, SNV, LA,
ATL, HOU

364 0 0.078

10 46,847,164,742,900 SEA, CHI, NY, IND, DEN, KC, WAS,
LA, ATL, HOU

337 0 0.062

11 48,728,171,337,750 SEA, CHI, NY, IND, DEN, KC, WAS,
SNV, LA, ATL, HOU

0 0 0.015

ATL Atlanta, CHI Chicago, DEN Denver, HOU Houston, IND Indianapolis, KC Kansas City,
LA Los Angeles, NY New York, SEA Seattle, SNV Sunnyvale, WAS Washington, DC
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scale-free networks (Albert et al. 2000, 2004; Barabasi et al. 2000, 2001), it is
clear that much of the complexity associated with network interaction remains
unaddressed. In other words, high nodal connectivity (degree) does not nec-
essarily correspond to an equally high level of network flow or utilization.
Second, from a geographic perspective, the nodes identified for interdiction by
FIM in the various scenarios are quite interesting. For example, while Denver
appears to play an important role in both connectivity and flow for the net-
work (Fig. 1), it is not identified as a high priority interdiction node until p ‡ 5
in either case. This is somewhat surprising given its relatively central geo-
graphic location on the network. In contrast, while Washington is an ex-
tremely critical node for network flow, appearing in the interdiction sets for
p = 1–3 (Table 2), it is not a connectivity priority until p ‡ 6. Again, this
suggests that high levels of network interaction for a node do not necessarily
correspond to a high degree of connectivity to the network. Moreover, the
implications are that both criteria need to be considered when evaluating the
characteristics of a network. These differences might play a more important
role when examining the survivability requirements of a network, particularly
if the fortification or protection of node-based network elements is being
considered.

The FIM was applied to the Abilene network, illustrating its feasibility and
validity. Perhaps most significant in this application was that non-intuitive
scenarios are found, precisely what we look to optimization models to help us
find. Though physical characteristics of networks are typically modeled as
interdiction targets, more dynamic and less observable characteristics further
increase the level of complexity involved. This is especially true given con-
sideration of multiple origins and destinations and their patterns of spatial
interaction. The threat of facility attack is a reality shared by many types of
critical network infrastructures, and preparing for such a possibility is chal-

Fig. 5 Minimal flow interdiction (p = 3)
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lenging. Here an optimization problem was formulated to address such a need.
However, application of the FIM is not limited to planning for network sur-
vivability, but can also be useful in the location of facilities to monitor flow
activity, such as weigh stations, surveillance points, traffic control, check-
points, etc.
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