
Abstract A common approach to modeling population density gradients
across a city is to adjust the specification of a selected set of mathematical
functions to achieve the best fit to an urban place’s empirical density values. In
this paper, we employ a spatial regression approach that takes into account
the spatial autocorrelation latent in urban population density. We also use a
Minkowskian distance metric instead of Euclidean or network distance to
better describe spatial separation. We apply our formulation to the 20 largest
metropolitan areas in the US according to the 2000 census, using block group
level data. The general model furnishes good descriptions for both mono-
centric and polycentric cities.

Keywords Population density Æ Spatial autoregressive model Æ
Monocentric Æ Polycentric Æ Spatial autocorrelation

1 Introduction

Population density has been a research topic in geography, regional science,
urban studies, and public policy for many years (see Fonseca and Wong 2000).
While policy implications of urban population density are far-reaching,
developing a better and more accurate depiction of urban density surfaces has
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continued to be a major challenge that began with the pioneering work of
Clark (1951). Principal reasons underlying this type of modeling include
acquiring a better understanding of spatial relations between the geographic
distributions of urban population and jobs (e.g., the journey-to-work prob-
lem), and urban population and location rent. Accurately modeling urban
population density is partly a technical issue, in terms of deriving the best
mathematical equation to describe it, and partly a moving target issue, be-
cause an urban system, its environment, and its morphology are constantly
changing. Consequently, a significant proportion of the literature has been
dedicated to identifying the best equational form for an urban density func-
tion. For example, Batty and Kim (1992), and Martori and Suriñach (2002)
evaluate different but somewhat simple mathematical functions that can be
used to describe urban population density. But the most noticeably recon-
ceptualization has been from a monocentric to a polycentric city form (see,
e.g., Griffith 1981a, b; Gordon et al. 1986; Thurston and Yezer 1991; Hoch and
Waddell 1993; Chen 1997; Baumont et al. 2004), addressing the deficiency of a
single-center description that predicts relatively low-population densities in
more peripheral locations where subcenters have emerged over time.

Although this more sophisticated conceptualization was a major step in
advancing the modeling of population density from using simplistic mathe-
matical functions to more complex model specifications, the approach is still
constrained by the traditional framework of reducing the population density
surface to a two-dimensional function without considering local spatial
structure, and relies on a classical regression framework in the model-fitting
procedures, ignoring the presence of spatial autorrelation. Other model
specifications that account for spatial autocorrelation in the geographic dis-
tribution of urban population density (see Anselin and Can 1986; Griffith and
Can 1995), somewhat of a very local form of polycentricity, have bolstered the
modeling of population density. This effort began with attempts to describe
urban population density via gradient or trend surface analysis (e.g., Hill 1973),
an approach that focuses on global spatial autocorrelation map patterns. The
primary purpose of this paper is to better integrate the polycentric reconcep-
tualization with model specifications that account for spatial autocorrelation,
and better capture the nature of inter-point separations in an urban area.

A related problem in modeling urban population density is to identify the
location of a principal urban center [i.e., the central business district (CBD)],
and to determine the number and locations of subcenters. This task may sound
simple and straightforward for a monocentric city, but Alperovich and Deu-
tsch (1992) show how misidentification can result in biased population density
analysis results; intuitively speaking, the task is dramatically more difficult for
polycentric cities. First, determining whether a city is monocentric or poly-
centric is complicated by the presence of candidate potential centers of dif-
ferent magnitudes according to population density throughout a city, as well
as the presence of positive spatial autocorrelation. Even if a city is deemed to
have multiple centers, identifying prominent ones still can be an onerous task.
For a monocentric city, Alperovich and Deutsch (1994) and Griffith and Can
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(1995) independently show that the location of the single city center in
question can be introduced as a parameter into an urban population density
model, and then simultaneously estimated with other model parameters. A
secondary purpose of this paper is to extend this parameterization to the case
of a polycentric city.

The urban literature is replete with studies about city centers. Over the
years this theme has become part of the focus of the spatial mismatch prob-
lem—relative locations of jobs and households impact upon unemployment
(e.g., Holzer 1991; Preston and McLafferty 1999; Houston 2005)—and the
affiliated issue of wasteful commuting—workers reside too far from their
places of employment (e.g., Small and Song 1992; Horner 2002). These par-
ticular problems highlight that there are different types of city centers defined
by different criteria. For instance, McMillen (2004) attempts to identify
employment centers in 62 large United States (US) cities. In other words, the
centers are central and non-CBDs, geographic foci of jobs. Utilizing a dif-
ferent criterion, Han (2005) identifies centers based upon property values.
Similarly, Paez et al. (2001) use the local G statistic to identify centers with
high-land values. In this paper, the local G statistic also is employed. The
center of a city is based upon population density patterns, addressing the
residential dimension of urban areas, and therefore tends to coincide geo-
graphically with an historical, monocentric CBD location. This modeling
direction is in line with the classical work by Clark (1951), who depicts pop-
ulation density according to residential locations. Models of this type are
empirically based or data driven, rather than built upon urban economic
theories that extend the von Thünen model (Alonso 1964; Muth 1969; Mills
1970). Differences in the theoretical foundations of these two approaches are
emphasized in Griffith (1999), who states that

map pattern analysis theory, cast in terms of two-dimensional stochastic
processes theory or abstract mathematics, furnishes at least an interim
step in theory building, and as such is one source of regional science
theory. (p. 43)

This difference in perspective also is highlighted by Griffith and Paelinck
(2006), who allude to some of the tensions between analysis criteria based
upon theoretical economic derivations in contrast to statistical correctness and
goodness-of-fit. Meanwhile, in keeping with Alperovich and Deutsch (1994)
and Griffith and Can (1995), urban population density centers are included as
parameters of a city’s model description.

Therefore, the overall goal of this paper is to present a spatial regression
framework for modeling urban population density. In this framework, urban
population density is modeled as a function of both global distance from
polycentric urban centers (with a monocentric urban place being the default
geographic landscape) as well as local effects of neighboring population den-
sities surrounding each location in an urban area. This general approach fol-
lows the tradition of identifying the best equational form for an urban density
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function, as exemplified by Batty and Kim (1992). We adopt a statistical
modeling approach in which the parameter estimates are derived from
empirical population density data. The model takes into account local effects
to partially overcome limitations of the traditional approach, which reduces the
spatial structure to a two-dimensional function without incorporating local
characteristics. Overlooking this local dependency can result in biased distance
decay parameter estimates. The spatial autoregressive response (AR) model
furnishes our basic model specification. While most models of urban popula-
tion density use the Euclidean metric to measure global distances from centers,
we adopt the more general Minkowskian metric (see, e.g., Getis et al. 2005, p.
165) to measure distances from centers. This framework allows a high degree of
flexibility in accommodating different urban morphological characteristics. We
also demonstrate a methodology for determining the numbers and locations of
prominent population density centers in a city. Following the tradition of
Alonso (1964) to some degree, our conceptual framework parallels multi-
market von Thünen theory, and is demonstrated using data for the 20 largest
metropolitan areas in the US according to the 2000 decennial census coupled
with a block group geographic resolution. Comparisons are made between
more simple monocentric and more sophisticated polycentric model results.

2 A conceptual framework

The work by Clark (1951), which uses a negative exponential function to
characterize the relationship between a monotonic decline in population
density from a city center with increasing distance from the center, furnishes
the foundation of more recent work in modeling urban population density
gradients. But as Batty and Kim (1992) pointed out, Clark was not the first one
to conceptualize the rapid decline of population density with increasing dis-
tance. The root of this concept dates back to von Thünen’s land rent model,
which implies that land closer to an urban center generally has higher location
rent and thus has a higher intensity of use, regardless of the land use type. The
exponential decline depiction for a density gradient also is consistent with the
density functions based upon urban economic theories (e.g., Muth 1969;
Bussière and Snickars 1970; Mills 1970).

Following some of the early works modeling density gradients, some
researchers attempted to identify determinants of these gradients (e.g., Alp-
erovich 1983). But most studies have been dedicated to justifying the form and
the specification of density gradient functions. For example, Zielinski (1979)
evaluates different mathematical expressions that describe density gradients.
Numerous studies approach the subject by applying the same density gradient
model to different countries: Mills and Tan (1980) compare density gradient
functions between developed and developing countries, whereas Edmonston
et al. (1985) compare density gradient functions between US and Canadian
cities. Meanwhile, Asabere and Owusu-Banahene (1983) evaluate the appli-
cability of the model to an African city. Nevertheless, while the negative
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exponential model formulation has been the standard form for describing
urban population density, it has been challenged as alternatives have been
suggested. Crampton (1991) reports results of experiments with different
mathematical functional forms for cities in the developed world and Zheng
(1991) suggests using a cubic-spline to model population density in the Tokyo
metropolitan area. Batty and Kim (1992) suggest that a negative power
function may be more appropriate. In this paper, we posit a Minkowskian
metric specification for which this negative power function is a special case.
Given the prominence of polycentric cities, the utility of a monocentric-based
density gradient model also is being challenged (e.g., Griffith 1981a).

2.1 Implications from von Thünen

The simple von Thünen geographic landscape contains a single center coupled
with an assumption of isotropy. One extension is to introduce additional
centers of varying sizes together with exponential rather than linear intensity
decay with increasing distance. If intensity effects of multiple centers are
additive—they also can be multiplicative—then the resulting cross-section
curve may be portrayed as in Fig. 1a. The principal center has the highest
peak whereas the most subordinate center has the shortest peak, and at any
point along the horizontal axis, the vertical axis equals the sum of the three
curves. Retaining an assumption of isotropy (i.e., Euclidean distance), this
triplet of centers generates the two-dimensional contour map appearing in
Fig. 1b. This map emphasizes that as distance separating the principal center
and a subcenter decreases, population density gradients become increasingly
indistinguishable. This map also highlights that as distance separating a
principal center and one of its subcenters increases, three-dimensional
mounds become increasingly distinguishable. The population density surface
outcome of this kind of geographic landscape resembles an aerial view of part
of the roof of the Denver International Airport (or a big top tent): peaks are
represented by protrusions created in the material roof by poll supports, and
inter-center gradients are represented by sags in the material roof between
poll supports (see Fig. 2).

Fig. 1 a Cross-sectional curves for a principal center and two subcenters. b Two-dimensional
contour map for a principal center with two subcenters
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3 Components of a general analytical model specification

Traditionally, because a monocentric city urban population density model
involves the right-hand side of its equation being an exponentiation using the
base e, each side of the equation is subjected to a logarithmic transformation
(ln), resulting in ln(population density) being expressed as a linear function of
distance from the corresponding CBD, which allows inferences to be based
upon linear regression analysis coupled with a normal probability model:

ln
populationi

areai

� �
¼ a� cdistanceCBD; i þ ei ð1Þ

for location i (i = 1, 2, ..., n, for the n locations contained in an urban place),
where a is the intercept term, c the distance decay parameter, distanceCBD,i
the Euclidean distance separating location i from the CBD, and e is an
independent and identically distributed (iid) random error term; the normal
probability model is attached to e. But preserving the exponential form of the
right-hand side of the equation allows inferences to be based upon non-linear
regression analysis coupled with a normal probability model:

populationi

areai
¼ eae�cdistanceCBD; i þ ei: ð2Þ

This particular specification alludes to allowing population counts to be
modeled with Poisson regression, where area used to calculate densities be-
comes ln(area) and then is included as an offset variable. Unfortunately, the
introduction of an autoregressive term into this specification requires Markov
Chain Monte Carlo maximum likelihood estimation of model parameters, a
daunting undertaking. Investigating this modification of the model will be the
topic of future research.

The preceding general framework not only collapses urban spatial structure
into two-dimensional functions, ignoring the presence of neighborhood, and
community structures, but estimation of the distance parameter also ignores
that population density is highly spatially autocorrelated and thus the standard
error of the distance parameter may be affected when estimated using a log-
linear regression framework. Spatial dependence can be captured by including

Fig. 2 Roof of the Denver International Airport and protrusions in a big top tent
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an autoregressive term on the right-hand side of an urban population density
equation. Retaining the log-linear form of the equation results in the AR
model specification

ln
populationi

areai

� �
¼ a� cdistanceCBD;i þ q

Xn

j¼1

wijln
populationj

areaj

� �
þ ei; ð3Þ

where q is a spatial autocorrelation parameter, and wij is the row-standardized
entry in cell cij derived from a binary geographic weights matrix C whose
entries equal 1 if locations i and j are neighbors, and 0 otherwise (cii = 0). One
advantage of this specification is that the autoregressive term in its right-hand
side will tend to serve as a surrogate for missing variables, and will tend to
make the error estimates behave more like iid ones. In other words, local
variabilities or clusters not effectively captured by the traditional specification
based only upon global distance effects are captured by the spatial autocor-
relation term in this new specification.

The autoregressive structure of urban population density indicates that its
accompanying geographic distribution is distorted by latent spatial dependency
effects. In turn, this distortion, which means space is elastic rather than rigid in
nature, invalidates a planar-based conceptualization of distance, resulting in
the emergence of a breakdown in the application of Euclidean geometry
concepts such as inter-point distances. Earlier model specifications of urban
population density began with an assumption of Euclidean space; attempts to
accommodate recognized distortions included the use of polynomials in
Euclidean distance. But the elasticity of space in this context suggests that the
more general Minkowskian metric is better suited for measuring inter-point
distances. If Euclidean space prevails, then an estimated Minkowskian metric
reduces to it; otherwise, the estimated Minkowskian metric in question better
captures the curvilinear nature of inter-point distance relationships.

A Minkowskian metric can be defined as follows:

distanceij ¼ 1� ui �Ukj jp þ 1� vi � Vkj jpð Þ1=p
; ð4Þ

where the distance is measured between location (ui, vi) and center (Uk, Vk), | |
denotes absolute value, and p is a non-negative exponent; p = 2 yields the
Euclidean metric, and p = 1 yields the Manhattan (i.e., city block) metric.
More specifically, the unweighted Minkowskian distance formula in two-
dimensional space (i.e., distance along each axis is weighted by 1; see Eq. 4) is
a generalization of the commonly used Euclidean distance formula, allowing
proximity between points on a two-dimensional surface to become non-
Euclidean in nature. Although position and orientation continue to be of
equal importance across the full range of p-values, by allowing space to be-
come elastic, this generalization enables larger distances to be more or less
emphasized, according to the value of p, capturing heterogeneous proximity in
a landscape.
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Duda et al. (2001) portray proximity in the common range of Minkowskian
distances, 1 £ p £ ¥; Fig. 3 is adapted from their figure: the diamond iden-
tifies distance in Manhattan space (p = 1), the circle identifies distance in
Euclidean space (p = 2), and the square identifies distance in the maximum
(synonymously known as supremum or dominance) space (p = ¥). The impact
of two coordinate axes, used for geocoding, on distance calculations is sepa-
rable for Manhattan space, and becomes a function of increasing interde-
pendence as p increases beyond 1 (i.e., interaction effects materialize and
become increasingly pronounced). In other words, using the conic sections of
Euclidean geometry (p = 2) as a baseline, as p increases beyond 2, more
complicated loci of equi-distance points become possible. Of note is that 0 < p
< 1 characterizes cases in which the coordinate axis pairs are competitive in
determining proximity, reminiscent of negative spatial autocorrelation.
Therefore, replacing the Euclidean with the more general Minkowskian dis-
tance formula in conventional population density models potentially moves an
analysis into the realm of non-Euclidean geometry, but only when the
resulting estimate of p markedly deviates from 2.

In order to accommodate Batty and Kim’s (1992) suggest that a negative
power function may be more appropriate than a negative exponential function
for describing geographic variation in urban population density, the full dis-
tance expression is rewritten here as follows:

Model 1 : 1þ ui �Ukj jp þ vi � Vkj jpð Þ1=p
h ih

;

Fig. 3 Interpoint distances in Minkowskian space. The diamond demarcates distance in
Manhattan space (p = 1); the circle demarcates distance in Euclidean space (p = 2); and, the
square demarcates distance in the maximum space (p = ¥)
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where h governs the role of a given distance metric. Consequently, p can
only be interpreted conditional on h. The addition of a 1 appears in this
expression because the basic model structure is multiplicative in nature, and
hence for zero distance an urban population density peak is preserved. Not
surprisingly, parameters p and h interact, which complicates non-linear
estimation of the full set of parameters. This interaction can be minimized
by recognizing selected limiting cases. As p goes to infinity, this distance
expression converges on

Model 2 : 1þ ln e ui�Ukj j þ e vi�Vkj j� �� �h
:

As h goes to 0, this distance expression converges on

Model 3 : ln 1þ ui �Ukj jp þ vi � Vkj jpð Þ1=p
h i

;

which when exponentiated becomes the negative power function discussed by
Batty and Kim (1992). And, when p goes to infinity as h goes to 0, this distance
expression converges on

Model 4 : ln 1þ ln e ui�Ukj j þ e vi�Vkj j� �� �
:

In other words, the most general version of the distance function, Model 1, has
three special cases that can be exploited to facilitate non-linear regression
analysis.

These distance functions, coupled with a spatial autoregressive term and a
polycentric model specification, render the following AR model description
for urban population density, as a generalization of Eq. 3:

ln
populationi

areai

� �
¼ q

Xn

j¼1

wij ln
populationj

areaj

� �

þ ln
XK

k¼1

eð1�qÞak�ckf1þ½ðui�UkÞpþðvi�VkÞp�1=pgh
 !

þ ei;

ð5Þ

where the urban place has K centers, at locations (Uk, Vk), that need to be
estimated, and both the spatial autocorrelation and the nature of the distance
metric are assumed to be constant throughout the urban landscape in ques-
tion. This model specification allows for varying population density peaks (ak)
and varying distance decay rates (ck). The principal residential center, which
should tend to be near the historical CBD of a city, should have the largest
peak and the shallowest distance decay rate; importance of residential sub-
centers can be ascertained, to some degree, by their relative rankings with
regard to these two parameters. Of note is that distance calculations were
done for our analysis with polar coordinates in order to calculate great circle
distances based upon (latitude, longitude) geocodings.
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4 An empirical study of the 20 largest metropolitan areas in the US in 2000

To test how well our methodology works in describing monocentric and
polycentric urban population density, we selected the 20 largest metropolitan
areas in the US, according to population counts from the 2000 national
decennial census (see Table 1). Figure 4 displays a map showing the loca-
tions of these selected urban places. Many are positioned in the northeast
corridor, several are along the west coast, and some are in or near the Great
Lakes industrial region of the country. The smallest of the 20 is San Juan in
Puerto Rico. Overall, these 20 cities cover the coterminous US reasonable
well (this excludes Alaska and Hawaii). We used the 2000 census data from
Summary File 1A at the block group level of geographic resolution. The
data are near-100% counts of the US population in 2000 (the undercount

Table 1 Twenty largest US metropolitan regions (2000)

City Population Global
density

Number of block
groups

Normality descriptors

Total With 0
population

da K – Sln
b K – Sraw

New York city (NYC) 21,199,865 607.9 16,193 108 108.4 0.039 0.247
Los Angles (LA) 16,373,645 179.0 10,472 47 1,251.1 0.033 0.145
Chicago (CHI) 9,157,540 380.4 6,633 29 540.3 0.028 0.169
Washington, DC (DC) 7,608,070 280.0 5,012 15 310.1 0.059 0.210
San Francisco (SF) 7,039,362 308.9 4,591 6 890.6 0.046 0.190
Philadelphia (PHL) 6,188,463 349.4 5,153 38 181.3 0.048 0.191
Boston (BSTN) 5,819,100 319.1 4,455 13 15.4 0.044 0.241
Detroit (DT) 5,456,428 298.9 4,823 27 1,381.1 0.054 0.117
Dallas (DLS) 5,221,801 212.9 3,597 2 605.4 0.051 0.168
Houston (HOU) 4,669,571 205.4 2,706 7 661.9 0.056 0.160
Atlanta (ATL) 4,112,198 255.8 1,837 1 218.1 0.049 0.170
Miami (MIA) 3,876,380 399.0 1,912 13 952.3 0.050 0.153
Seattle (SEA) 3,554,760 168.7 2,962 2 486.4 0.065 0.188
Phoenix (PH) 3,251,876 86.0 2,229 7 1474.5 0.036 0.103
Minneapolis (MN) 2,968,806 180.1 2,241 3 509.3 0.058 0.157
Cleveland (CLV) 2,945,831 181.3 2,442 14 764.4 0.056 0.125
San Diego (SD) 2,813,833 240.1 1,762 2 1231.3 0.033 0.125
St. Louis (STL) 2,603,607 153.5 1,957 11 841.0 0.064 0.135
Denver (DNVR) 2,581,506 116.6 1,925 9 1,566.5 0.062 0.110
San Juan (SJ) 2,450,292 658.9 1,570 1 373.7 0.084 0.191

The subscript ln denotes the response variable was the logarithm of population density plus an
appropriate translation parameter; the subscript raw denotes the response variable was population
density

These data were extracted from http://www.census.gov/population/www/cen2000/phc-t3.html (see
Table 4). The US Bureau of the Census labels this set of cities Metropolitan Statistical Areas,
although some actually are Consolidated Metropolitan Statistical Areas. San Juan is included in
the listing, although it is located in a US territory as well as not in the conterminous US
a The translation parameter for the logarithmic transformation
b K–S denotes the Kolmogorov–Smirnov goodness-of-fit test statistic, whose ideal value is 0
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issue suggests 100% counts were not achieved). Block group data were se-
lected because census tract level results appear to be too coarse (pertinent
local spatial variability is obscured by geographic aggregation), while block
level results have too many zeroes (large numbers of units house no resi-
dents; see Table 1 for the associated block group counts); block group data
also allow some comparisons to be made with previous census geography
analyses we have completed (Griffith et al. 2003). Because the purpose of
this investigation is to describe urban population density gradients, we
sought a balance between too much and too little smoothing across urban
landscapes; too much smoothing tends to mask both subcenters and the role
of spatial autocorrelation, whereas too little smoothing becomes overshad-
owed by detailed local variability that behaves more like dirtiness and noise.
Results for the ln of population density appear in Table 1 (a translation
parameter, d, has been added to each urban place): in most cases, ln(pop-
ulation density + d) comes reasonably close to mimicking a normal fre-
quency distribution [according to the Kolmogorov–Smirnov (K–S) test
statistics].

4.1 Preliminary spatial autoregressive monocentric findings

The starting point of our analysis is with an assumption of a single center for
each urban place. This analysis helps reveal the nature of the distance func-
tion, as well as the location of the principal residential center, for each urban
place. Cities such as Dallas exhibit an expected shallow distance decay effect,
cities such as Detroit exhibit an expected sharp distance decay effect, and

Fig. 4 Locations of the 20 largest metropolitan areas in the US according to its 2000 national
census
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cities such as Washington, DC, exhibit a confused distance decay effect (be-
cause effects of the pair of centers located in downtown DC and downtown
Baltimore essentially are being traded off against each other). Finally, pseudo-
R2 values (see Cameron and Windmeijer 1996, 1997; Mittlböck and Schemper
1999) help index the amount of geographic variability in ln(population den-
sity + d) being accounted for by global distance from a single center point.
Results appearing in Table 2 are mostly comparable to monocentric results
reported in the literature several decades ago.

Ultimately we incorporate a Minkowskian distance function in our popu-
lation density equation. Impacts of this change in metric space are exemplified
by comparing estimation results reported in Tables 2 and 3; a graphic com-
parison appears in Fig. 5. Generalizing the distance function has three con-
spicuous outcomes here. First, estimates of the maximum population density
as well as the distance decay parameter tend to be altered. Second, the nature
of the distance function may change [see New York city (NYC), DT, and SJ];
although two of these metropolitan areas are on the border of a different
distance function, SJ is not (see Table 2). Third, the estimated urban centroids
and the percentage of variance accounted for essentially are the same— ĥ and
biases in parameter estimates essentially compensate for an incorrect
Euclidean distance specification.

Varying values of p across urban areas indicate that the elasticity of dis-
tance can change from one urban place to another. The non-Euclidean nature

Table 2 Single center population density model, with exponentially weighted great circle
Minkowskian distance

City â �ĉ �Û V̂ p̂ ĥ R2

NYC 11.971 1.299 73.9386 40.7421 1.627 0 0.57
LA 9.301 1.693 118.2438 34.0039 ¥ 0.153 0.32
CHI 10.274 2.837 87.5814 41.9371 1.154 0.186 0.47
DC 8.260 0.022 76.9058 39.0616 ¥ 1.151 0.26
SF 9.552 0.463 122.4248 37.7668 ¥ 0 0.31
PHL 9.871 0.942 75.1867 39.9742 ¥ 0 0.50
BSTN 10.053 0.975 71.0808 42.3582 1.046 0 0.39
DT 8.881 5.250 83.1147 42.3782 2.827 0.058 0.42
DLS 8.285 0.118 96.8955 32.8473 1.866 0.652 0.27
HOU 8.714 3.731 95.4869 29.7122 0.973 0.089 0.28
ATL 7.974 0.325 84.3501 33.7963 5.593 0.554 0.53
MIA 9.021 0.665 80.1326 25.7745 0.401 0.224 0.20
SEA 9.007 0.495 122.3260 47.6176 0.723 0 0.31
PH 8.517 0.266 112.0910 33.5150 ¥ 0.408 0.25
MN 8.952 2.568 93.2534 44.9583 1.023 0.176 0.57
CLV 9.089 0.382 81.6010 41.4730 0.408 0 0.33
SD 9.086 0.322 117.1331 32.7126 0.935 0 0.21
STL 8.878 0.515 90.2691 38.6311 2.055 0 0.52
DNVR 8.791 0.284 104.9752 39.7354 1.576 0 0.26
SJ 9.647 1.758 66.0436 18.4361 0.574 0.231 0.41

See Table 1 for city abbreviations

Estimation equations were specified to ensure that 0 population density block group predictions
were 0
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Table 3 Single center population density model, with exponentially weighted great circle
Euclidean distance and p = 2

City â �ĉ �Û V̂ ĥ R2

NYCa 11.944 1.308 73.9377 40.7423 0 0.57
LA 10.222 0.935 118.2523 33.9970 0.224 0.31
CHI 13.188 2.928 87.5718 41.9354 0.189 0.47
DC 8.138 0.007 76.8832 39.0910 1.357 0.22
SF 9.589 0.449 122.4254 37.7696 0 0.30
PHL 10.034 0.938 75.1851 39.9756 0 0.48
BSTN 9.889 0.981 71.0809 42.3504 0 0.38
DTa 8.946 0.349 83.1191 42.3813 0 0.41
DLS 8.394 0.115 96.8967 32.8489 0.661 0.27
HOU 10.298 1.728 95.4867 29.7146 0.163 0.28
ATL 8.233 0.273 84.3560 33.7959 0.582 0.53
MIA 11.033 2.158 80.1383 25.7806 0.108 0.16
SEA 8.849 0.505 122.3309 47.6179 0 0.29
PH 8.873 0.303 112.1015 33.4981 0.376 0.26
MN 11.198 2.325 93.2481 44.9606 0.196 0.57
CLV 8.834 0.425 81.6799 41.4710 0 0.30
SD 8.989 0.322 117.1231 32.7426 0 0.21
STL 8.879 0.515 90.2689 38.6310 0 0.52
DNVR 8.783 0.287 104.9732 39.7359 0 0.26
SJa 9.747 0.776 66.0484 18.4437 0 0.40

a The nature of the distance function differs from that reported in Table 2

Fig. 5 Graphical comparisons of Eq. 1 estimation results based upon Euclidean (vertical axis) and
Minkowskian (horizontal axis) metrics. a Top left Population density at distance 0. b Top middle
Distance decay parameter. c Top right Urban center longitude coordinate. d Bottom left Urban
center latitude coordinate. e Bottom middle Distance function exponent. f Bottom right Multiple
regression R2 value
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of urban space arises not only from the inability of straight-line movement due
to physical obstacles (e.g., buildings and fences), but also from the density and
layout of a traffic network, the presence of one-way streets, the presence of
limited access roads, geographic variation in road speed limits, and the extent
and effectiveness of a place’s public mass transit system. Dallas and St. Louis
appear to be closest to having an Euclidean metric space (see Table 2).
Boston, Chicago, Houston, Minneapolis, and San Diego appear to be closest
to having a Manhattan metric space (see Table 2). Cleveland, Miami, and San
Juan appear to have competitive north–south and east–west distance axis
corridors, which may arise from their truncation of the two-dimensional
spheres of influence by major water bodies. Future research is needed to more
fully understand what features of urban places co-vary with p.

Next, our analysis incorporates a spatial autoregressive term into the urban
population density equation. Because of the very large numbers of block
groups involved (see Table 1), Jacobian approximations (see, e.g., Griffith
2004) were employed in order to estimate the AR models. Estimation results
for this expanded model specification appear in Table 4. Not surprisingly, all
of the pseudo-R2 values are noticeably greater than their R2 counterparts
reported in Table 2 (see Fig. 6). Detected spatial autocorrelation is moderate-
to-strong and positive in all urban places. For all practical purposes, the
estimated monocentric center estimates remain the same with and without a
spatial autoregressive term in the model specification. But the presence of an
autoregressive term tends to result in a small increase in peak estimates

Table 4 Single center autoregressive population density model, with exponentially weighted
great circle distance

City q̂ â �ĉ p̂ ĥ pseudo-R2 K–S �Û V̂

NYC 0.814 12.429 0.246 2.421 0 0.78 0.094 73.9317 40.7535
LA 0.722 9.932 0.242 ¥ 0.225 0.60 0.039 118.2210 33.9825
CHI 0.754 11.472 0.382 1.110 0.264 0.69 0.063 87.5637 41.9390
DC 0.840 8.852 0.004 ¥ 1.131 0.73 0.032 76.8851 39.0597
SF 0.761 9.738 0.116 ¥ 0 0.67 0.055 122.4442 37.7714
PHL 0.797 9.870 0.175 ¥ 0 0.76 0.045 75.1892 39.9758
BSTN 0.862 10.946 0.150 1.373 0 0.80 0.052 71.0530 42.3653
DT 0.778 10.658 0.485 3.280 0.121 0.70 0.042 83.1169 42.3635
DLS 0.731 8.706 0.043 1.929 0.611 0.58 0.033 96.9026 32.8478
HOU 0.759 8.487 0.033 1.321 0.583 0.61 0.031 95.3980 29.6945
ATL 0.727 8.251 0.084 ¥ 0.574 0.72 0.046 84.3502 33.7951
MIA 0.707 10.191 0.117 0.215 0 0.50 0.054 80.1149 25.7794
SEA 0.818 9.557 0.096 0.525 0 0.70 0.033 122.3036 47.6202
PH 0.677 8.975 0.135 ¥ 0.343 0.50 0.040 112.1019 33.5084
MN 0.698 10.395 0.573 0.907 0.214 0.73 0.035 93.2507 44.9587
CLV 0.831 9.155 0.071 0.806 0 0.72 0.031 81.6258 41.4424
SD 0.758 9.140 0.079 1.862 0 0.58 0.032 117.1523 32.7235
STL 0.737 8.942 0.143 1.935 0 0.71 0.040 90.2620 38.6290
DNVR 0.719 8.864 0.076 0.759 0 0.55 0.029 104.9977 39.7376
SJ 0.573 10.494 0.500 0.472 0.283 0.58 0.030 66.0370 18.4358

See Table 1 for city abbreviations
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coupled with a dramatic shrinkage of distance decay parameter values. Except
for some detail, the estimated Minkowskian metric tends to remain the same
across the set of urban places (the sole exception is Atlanta), whereas the
distance power transformation parameter estimate ðĥÞ essentially remains
unchanged, when an autoregressive term is present.

The moderate-to-strong positive spatial autocorrelation detected across the
20 cities indicates that positive spatial externalities are helping to mold the
geographic distributions of population density across each of the urban areas.
In other words, forces at work (e.g., zoning, location rent, economies of scale
in housing and infrastructure provision, congestion, and accessibility) tend to
concentrate households in such a way that relative density increases in a few
locations, while decreasing in many other locations.

5 Polycentric urban population density surfaces

The preceding analysis assumes that all 20 metropolitan areas have single
centers—a monocentric city structure. But visual inspection of their corre-
sponding population density maps suggests that a number of these cities have
more than one center. Figure 7 shows two examples: the Washington, DC
metropolitan area includes two centers, the city of Washington, DC, and the
city of Baltimore; and the Cleveland metropolitan area appears to have three
centers, two in the city itself and the suburban center of Akron. Therefore, a
more sophisticated analytical methodology is needed to determine if a
metropolitan area has multiple centers in order to guide the modeling of
urban population density gradients.

R-squared (with and without autoregressive parameter)
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Fig. 6 Pseudo-R2 values for the monocentric population density models describing the 20
metropolitan areas, with and without a spatial autoregressive parameter
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5.1 The use of LISA and Getis–Ord G statistics for identifying urban
centers and subcenters

One may choose to use visual inspection to identify multiple centers, an ap-
proach that not only is subjective, but also is unreliable in terms of deter-
mining whether or not any given population density concentration is a
significant cluster. In identifying employment subcenters, McMillen (2003)
uses a locally weighted regression model to generate a density surface, and
subcenters are designated as contiguous areal units with residuals higher than
this surface. This approach assumes that some global pattern exists across an
urban landscape, and subcenters are significant deviations from this global
pattern. The approach we adopt here does not assume the presence of a global
pattern and follows the recent literature in hot spots detection using local
statistics. Conceptually, local statistics can detect hot spots, which are peaks of
urban population density, and hence centers. One logical quantitative choice
is local indicators of spatial associations (LISA; Anselin 1995). Han (2005)
uses both the global Moran’s I and local Moran statistics to identify centers
based upon condominium property values. Meanwhile, Feser et al. (2005) use
the Getis–Ord local G statistic (Getis and Ord 1992) to identify industrial
complexes. Our exploratory analyses highlight that the local Moran’s I can
effectively identify urban clusters with similar population density levels, but
fails to distinguished between high-density (i.e., hot spots) and low-density
(i.e., cold spots) clusters, as local Moran’s I is a function of the similarity of
neighboring values. However, we are interested only in high-density clusters.
For example, the local Moran’s I identified a cluster in the central part of the
Phoenix metropolitan area that actually consists of block groups with low-
population density.

Our findings are not surprising, since a major strength of the local G sta-
tistic is its ability to differentiate between hot (high-density clusters) and cold

Fig. 7 Examples of polycentric metropolitan areas: the Washington, DC MSA, and the Cleveland
MSA
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(low-density clusters) spots. In our research context, we only need to identify
clusters of high-population density—hot spots. Therefore, we computed the
local G statistic for each block group based upon population density. Spe-
cifically,

GiðdÞ ¼
P

j wijðdÞxiP
j xj

; ð6Þ

where xi is the raw population density value of block group i, and wij(d) is
essentially the binary neighborhood function using the contiguity constraint in
the queen’s case, and i can equal j. Given the expected value and variance for
each block group (Getis and Ord 1992), the local G statistic was standardized
such that a z-score was calculated for each block group.

Theoretically, based upon a 2.5% level of significance, areas with local G
statistic z-scores larger than 1.96 might be regarded as significant clusters;
but this criterion identifies an enormous number of such clusters here. Using
a more stringent significance level of 0.01, we classified all block groups with
a z-score of 2.58 or higher as forming significant clusters. This adjustment
helps counterbalance the impacts of multiple testing. By examining the
distributions of these clusters, we determined if there are multiple centers in
each metropolitan area, using coordinates of the peaks in these clusters as
the starting values for estimating center locations. Figure 8 presents the six
urban places (Washington DC, Cleveland, Atlanta, Detroit, San Francisco,
and Los Angeles) that have the most conspicuous multiple population
centers. These cities require special attention when determining the locations
of their centers and subcenters, and when estimating their population density
gradients.

5.2 Estimation results for the polycentric model specifications

Table 5 reports estimation results using multiple centers, which replace the
single center results for six of the cities that are reported in Table 4. The
model specification is an additive form of multiple center effects, although a
multiplicative form also could be employed (see Heikkila et al. 1989). Al-
though failure of the polycentric models to out-perform their monocentric
model counterparts in terms of the pseudo-R2 criterion seems counter-
intuitive, this feature of the analysis highlights how well an autoregressive
term can compensate for missing variables and/or specification error (i.e.,
the spatial autoregressive parameter estimate, q̂; tends to be higher for
monocentric specifications). In other words, while using a monocentric
specification when modeling urban population density in a city with multiple
centers introduces misspecification error into an analysis, a spatial autore-
gressive model specification still performs very well in terms of variance
explained—because of the relative smoothness of a population density sur-
face, geographic patterns attributable to the misspecification are highly
positively spatially autocorrelated. This finding indicates that not only
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introducing an autoregressive term into, but also capturing the existence
of multiple centers in a population density model specification makes
a difference.

Fig. 8 Six polycentric metropolitan areas with their analytical principal centers and subcenters:
areas with the darkest shade have a z-score of 2.58 or higher
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But this somewhat counter-intuitive result is quite logical. The single-center
model contains misspecification error by ignoring the presence of subcenters
in a polycentric urban region. By including a spatial autoregressive term in the
model specification, local variability in subcenters is modeled as local effects,
which are very effectively captured by an autoregressive parameter. Although
local centers are not explicitly recognized and incorporated into a single-
center model, the local effects are modeled implicitly with the autoregressive
term. As a result, multi-center models do not out-perform their single-center
model counterparts. In other words, a single-center model with an autore-
gressive specification is very robust in dealing with complicated urban struc-
ture, as long as the structure is not spatially random. Thus, this robust
modeling approach can be extended to model other urban phenomena besides
population density that contain both a global trend and local effects.

6 Conclusion and implications

In conclusion, the time has come for urban residential modeling to employ
polycentric specifications when they are applicable, while accounting for
spatial autocorrelation. Sound descriptions of this type are needed when
undertaking research on such higher-level problems as spatial mismatch and
wasteful commuting. Results summarized here indicate that such estimation is
feasible, even for very large numbers of areal units. Of note is that inclusion of
an autoregressive terms does a very good job of compensating for misspeci-
fication error/missing variables. In addition, the global distance function needs
to be written as a Minkowskian metric in order to capture the elasticity of
space created by spatial dependency effects. Empirical evidence is offered
here supporting the contention that the Minkownskian metric appears to
better characterize geographic distributions of urban population density.

Table 5 Multiple center autoregressive population density model, with exponentially weighted
great circle distance

City Rank q̂ â �ĉ p̂ ĥ Pseudo-R2 K–S �Û V̂

LA 1 0.773 7.8537 0.0871 ¥ 0 0.625 0.038 118.2900 34.0539
2 2.8465 0.3982 117.8625 33.7221

DC 2 0.753 2.1469 0.7991 ¥ 0 0.724 0.035 77.0305 38.9088
1 2.3409 0.2122 76.6087 39.3024

SF 2 0.738 8.3249 0.3614 ¥ 0 0.673 0.048 122.4460 37.7739
1 7.6856 0.0758 121.8313 37.3513

DT 1 0.760 2.1644 0.0864 ¥ 0 0.706 0.041 83.1174 42.3624
2 2.9023 6.3774 83.7374 42.2766

ATL 1 0.720 2.2182 0.1862 ¥ – 0.8804 0.722 0.049 84.3754 33.7642
2 1.2690 0.2437 84.2480 33.9462

CLV 1 0.777 6.9310 0.1031 1.4556 0 0.713 0.036 81.7699 41.4890
2 2.3868 0.7531 81.5908 41.5408
3 4.1942 1.2932 81.5134 41.0661

See Table 1 for city abbreviations
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To some extent, the spatial autoregressive term compensates for missing
variables, especially those affiliated with spatial externalities. It also accounts
for spatial spillover effects: similar housing tends to concentrate in geographic
space. Meanwhile, the Minkowskian metric indicates the degree of elasticity
in a given geographic space, the degree of difficulty associated with movement
between close and distant points in an urban landscape. Both of these features
of a metropolitan region impact upon the behaviorally related distance decay
parameter. Therefore, adjusting for the effects of spatial autocorrelation and
the non-Euclidean nature of urban space removes estimation bias from dis-
tance decay estimates, leading to a better depiction and understanding of
urban spatial structure.

The spatial regression models employed here offer better explanatory
power than do models without a spatial autoregressive term, a finding that has
important implications. The traditional models very much claim that popu-
lation density is a function of distance from a city center. Thus, one should use
distance from the city center to estimate the population density of a given
location. But this logic seems counter-intuitive and is inconsistent with com-
mon practice. If one wants to predict or estimate the population density of a
given location, the common starting point is to examine neighboring locations
to obtain an initial estimate. This is what the spatial autoregressive model
does, which parallels spatial interpolation (e.g., kriging) that exploits redun-
dant locational information. The local or neighboring density is a good pre-
dictor of population density, which is further impacted by the global variable
of distance from a city center. Therefore, one important finding from the
research summarized in this paper is a practical methodological framework to
implement this common and realistic practice.

Analysis of the set of selected metropolitan areas reveals several interesting
empirical regularities:

1. relatively few of the urban places display conspicuous urban population
density polycentricity;

2. moderate-to-strong positive spatial autocorrelation characterizes urban
population density across the set of 20 largest US metropolitan areas in
2000;

3. roughly two-thirds of the geographic variability in log-urban population
density can be accounted for by spatial autocorrelation and global dis-
tance effects;

4. inclusion of an autoregressive term in an urban population density model
changes the qualitative nature of the metric-distance function in only two
of 20 cases (Atlanta, Miami; see Table 6); and,

5. the polycentric model specification changes the qualitative nature of the
metric-distance function in only three of 20 cases (Los Angeles, Wash-
ington DC, Detroit; see Table 6).

Of note is that the uncovered subcenters in the six identified polycentric
urban places appear to be sensible (see Figs. 7, 8), and can be rank ordered

72 D.A. Griffith, D.W. Wong

123



according to their parameter estimates (see Table 5). For example, for
Cleveland,

principal center: 6:93e�0:10d�
ij

nearby subcenter: 4:19e�0:75d�
ij

Akron subcenter: 2:39e�1:29d�
ij

where dij
* is the Minkowskian metric describing the separation between

location i and center j. This geographic landscape presented particularly
challenging estimation problems because the first subcenter is very close to the
principal center (see Figs. 7, 8).

Even the more sophisticated polycentric model specifications render non-
normal residuals, suggesting that perhaps a Poisson probability model should
be employed. Planned future research includes capturing spatial autocorre-
lation effects with a spatial filter specification, which will allow a Poisson
regression to be executed. This generalized linear model regression analysis
will use population counts as the response variable, and include log-area as an
offset variable.

Finally, one of the goals of this paper is to furnish an improved method-
ology for modeling urban population density using the empirical approach
adopted by many researchers cited throughout this paper. Although our sta-
tistical approach is not explicitly built upon economic theories, the results we
obtain are consistent with those derived from urban economic models. As
mentioned previously, the difference in perspective is one of theory-driven

Table 6 Minkowskian metric-distance function model

City Monocentric
equation

AR monocentric
equation

AR polycentric
equation

NYC 3 3
LA 2 2 4
CHI 1 1
DC 2 2 4
SF 4 4 4
PHL 4 4
BSTN 3 3
DT 1 1 4
DLS 1 1
HOU 1 1
ATL 1 2 2
MIA 1 3
SEA 3 3
PH 2 2
MN 1 1
CLV 3 3 3
SD 3 3
STL 3 3
DNVR 3 3
SJ 1 1
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and data-driven modeling. Our findings include that introducing multiple
centers and spatial autoregressive terms can make a difference in urban
landscape descriptions, that spatial autocorrelation and proximity vary across
metropolitan areas, that distance decay covaries with the level of spatial
autocorrelation and the nature of a distance metric, and hence its estimate
may be biased in the absence of explicitly incorporating these features in a
population density model specification, and that subcenters can be identified
using the Getis–Ord local G statistic.
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