
Abstract. Many epidemiological studies involve analysis of clusters of
diseases to infer locations of environmental hazards that could be responsible
for the disease. This approach is however only suitable for sedentary
populations or diseases with small latency periods. For migratory popula-
tions and diseases with long latency periods, people may change their
residential location between time of exposure and onset of ill health. For
such situations, clusters are diffused and diluted by in- and out-migration
and may become very difficult to detect. One way to address the problem of
diffused clusters is to include in analyses not only current residential
locations, but all past locations at which cases might have been exposed to
environmental hazardous. In this paper, we assume that a person’s
residential history provides such information and represent it through a
discrete geospatial lifeline data model. Clusters of similar geospatial lifelines
represent individuals who have similar residential histories—and therefore
represent people who are more likely to have had similar environmental
exposure histories. We therefore introduce a lifeline distance (dissimilarity)
measure to detect clusters of cases, providing a basis for revealing possible
regions in space-time where environmental hazards might have existed in the
past. The ability of the measure to distinguish cases from controls is tested
using two sets of synthetically generated cases and controls. Results indicate
that the measure is able to consistently distinguish between populations of
cases and controls with statistically significant results. The lifeline distance
measure consistently outperforms another measure which uses only the
distance between subjects’ residences at time of diagnosis. However, the
advantages of using the entire residential history are only partly realized,
since the ability to distinguish between cases and controls is only moderately
better for the lifeline distance function. Future work is needed to investigate
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modifications to the inter-lifeline distance measure in order to enhance the
potential of this approach to detect locations of environmental hazards over
the lifespan.

Key words: Geospatial lifelines, Mobile objects, Spatio-temporal clustering

1 Introduction

Many aspects of human health are related directly to exposures to
environmental toxins or hazards. Some of these environmental factors, such
as food or tobacco smoke, relate to individual lifestyle and habits. Others,
such as radon or air pollution, however, relate to the external human
environment, either in buildings or outdoors in geographic space. Often, the
locations or spatial concentrations of these environmental health hazards are
not known, but spatial clusters or ‘‘hot spots’’ may nevertheless be found
through spatial analysis and mapping of cases. When place of residence at
the onset of ill health is used as the basis for mapping, the residential location
is in effect being used as a surrogate for environmental exposure. However,
attempts to relate disease clusters to fixed geographic environmental hazards
are weakened by the fact that many people change their residential location
through their life course: current residence may not provide the best
estimates of lifetime exposure to environmental risks. Many health problems
require long exposures to risk factors, and many, especially numerous forms
of cancer, have long latency periods between exposure and onset of
symptoms or health problems (Rogerson and Han 2002).
Discovering the environmental factors responsible for hot-spots and

clusters for such diseases (e.g. many forms of cancer) is difficult because
mobile populations tend to break up clusters of and obscure patterns of
observable cases on account of different mobility patterns (Mark et al. 2000).
Since human mobility rates influence exposure estimates and risks, mobility
at different time scales (hour, day, year, life) corresponds to different
categories of health problems. For example, for an emerging infectious
disease such as SARS, details of the mobility of an infected person are
needed on very fine temporal and spatial scales. On the other hand, for forms
of cancer exhibiting relatively longer latency periods, hour by hour mobility
may be irrelevant; broader patterns of residential or work-place history may
be more critical to the identification of relevant environmental risk factors.
As can be deduced from the above discussion, the spatial distribution of

cases of diseases at the time of diagnosis within non-sedentary populations
does not provide sufficient information to estimate locations and times of
environmental exposures. But in practice, most attempts to estimate
environmental health factors related to cancer hot-spots or clusters still rely
solely on place of residence at the time of disease onset and neglect the
impact of the rate of mobility. A better alternative is to use the complete
residential histories (if available) of people—by recording a person’s
residential history, it becomes possible to account for health risk exposures
at past residential locations. The basic hypothesis then is that compared to
snap-shot information of residences at time of diagnosis, accounting for the
full spatio-temporal history of cases infected with diseases with long latency
periods, is a more informed analytical framework for migratory populations.
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If cases were clustered in the past, the locations of those clusters can be
inferred from residential life-histories, even if most of the people moved away
from the area of exposure before becoming ill.
In this paper, we use geospatial lifelines (Mark and Egenhofer 1998) to

model residential histories within a geographic information systems frame-
work. Clusters of geospatial lifelines represent individuals who have similar
residential histories—and therefore represent people who are more likely to
have had similar environmental exposure histories. A lifeline data model
allows direct comparison of the space-time behavior of cases; measuring
distances between lifelines will lead to the inference of potential clusters in
the past which can be then be subjected to more rigorous two-dimensional
cluster analysis techniques (Besag and Newell 1991; Kulldorff 1997). Any
measure of distance applicable to lifelines, if correlated with health
outcomes, may reveal locations of common risk factors that could in turn
help reveal causal factors. Such space-time cluster analysis of lifelines based
on residential address histories will be useful in the epidemiological
investigation of environmentally induced diseases that need cumulative
exposure or exhibit long latency periods.
In the following sections, we first discuss the ontological underpinnings of

geospatial lifelines and residential histories. Next, we present a lifeline
distance function that we subsequently use for a synthetic dataset to measure
the similarity of geospatial lifelines. Since this is an experimental study to
assess the efficacy of a new statistic (namely lifeline similarity), we do not use
authentic data; instead we rely on simulations to both produce populations
with realistic residential mobility and to expose them to highly-simplified
spatially-localized risk factors. Evaluation of the distance function involves
consideration of its ability to detect differences between populations of cases
and controls, which would result in the real world due to different kinds,
configurations and parameters of environmental risk factors; without real-
world test data that includes a known source of exposure, the effectiveness of
the method can be most readily assessed using simulation.

2 Ontology of geospatial lifelines

The lifeline data model (Fig. 1) is inspired by time-geography (Hägerstrand
1970, 1976; Parks and Thrift 1980); it is a representation of an individual’s
movement pattern in geographic space; Miller (1991) implemented many
time-geography principles within a GIS environment. The term ‘‘geospatial
lifeline’’ has recently been proposed to refer to the type of data that may be
modeled using time-geography principles:

‘‘A geospatial lifeline is here defined to be the continuous set of positions
occupied by an object in geographic space over some time period.
Geospatial lifeline data consist of discrete space-time observations of a
geospatial lifeline, describing an individual’s location in geographic space
at regular or irregular temporal intervals.’’ (Mark and Egenhofer 1998).

Most of the work on moving object trajectory data models in the past
(Vlachos et al. 2002a, b; Yanagisawa 2003) has been limited to the technical
considerations of storage, retrieval and computational complexity, with little
consideration of the actual phenomena being modeled. In this paper,
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however, explicit attention will be accorded to the ontology of the phenomena
being represented by the geospatial lifeline. This provides insights into the
exact nature of an address history and how it is related first to a person’s
movement in space-time and then in turn to environmental exposures.

2.1 Objects

Objects comprise a very important part of our world. Although one might
question the existence of an object at the molecular level, objects often exist
unambiguously at the perceptual level of everyday action and reasoning
(Gibson 1979). Detached objects have complete closed boundaries that
separate them from their environments. Individual organisms, including
people, are detached objects in this sense. Attached objects may be
conceptualized as being objects, but can be modeled and represented as
parts of the objects to which they are attached.

2.2 Mobile objects

Physical objects normally are considered to exist continuously in space and
time. This means that if they move, they are assumed to occupy a connected
series of intermediate positions between any two observed locations. If the
object more or less maintains its shape as it moves, then we can separate
the form from the location, and represent the locations of the object by the
location of its centroid. As the object moves, the centroid must also occupy a
continuous sequence of positions in space-time.

2.3 Addresses

It is important to note a number of things about the ontological status of
a person’s legal address. A postal address in the United States and in

Fig. 1. Visualization of 3 lifelines in the space-time cube—with the x- and y-axes representing a

2-dimensional projection of geographic space and the oriented z-axis representing the

progressing time
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many other countries is often, but not always, a unique identifier of a
dwelling place or a building. In many societies, people normally have legal or
home addresses; but since people do not normally spend all of their time at
home, a person’s address is not a perfect surrogate for his location. People’s
absences from their legal addresses occur at a variety of time scales. On a
daily basis, many people in developed countries go to work or school
five days a week, shop regularly, visit places for vacation or business
purposes, etc.. They may also go away from home for extended periods, such
as for higher education or military service, without changing their legal
addresses.

2.4 Residential history data

Some comment is needed on the actual residential history data that are
being collected in cancer studies. For example, our colleague Professor
J. Freudenheim and her research group are conducting studies of breast
cancer, and are including potential impacts of environmental exposure
through spatial and spatio-temporal analysis (cf. Han 2002; Bonner et al.
2003). In these studies, cases and controls were asked to list all of their past
residences along with other background information. Addresses were
recalled from memory, and the quality of early life addresses might be
somewhat suspect. Subjects were asked to list the start year and end year for
each residence, which means that two (or more) addresses appear to apply to
the entire year during which the move occurred. Such data characteristics
would have to be taken into account when applying the measures presented
in this paper to real data.

2.5 Differences in ontology of mobile objects and legal addresses

The ontology of address or legal address histories is not the same as
the ontology of moving objects. This is not just a matter of granularity,
scale, or resolution as some have framed the problem in the past
(Hornsby and Egenhofer 2002). The geospatial lifeline for a real, bona
fide, continuously existing object must be continuous (connected) in space-
time. But a person’s legal home address history might have gaps and
perhaps even overlaps (two legal addresses at the same time). Different
authorities might have different standards for legal address. Whereas
moving objects move at speeds limited by the laws of physics and in
practice by transportation technologies, a legal address can move great
distances instantaneously. When a person moves as a physical object, he or
she must occupy, however briefly, a connected set of places in between;
whereas it would be inappropriate to think that a person’s home address
occupies positions in between the end points when the person move their
residence. The address therefore refers to a particular place, but the legal
address is a fiat entity and a virtual place. A residential address history is
not merely a discretization or sample of their history as a mobile physical
object.
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3 Measures of similarity between geospatial lifelines

The main goal of the research reported in this paper is to develop a similarity
measure for geospatial lifelines, and to test the power of that measure to
detect differences between cases and a control group. The measures selected
should be consistent with the ontology of residential histories of mobile
populations. As noted earlier, trajectories are a special case of lifelines with a
particular ontology, based on continuous motion, a property not found in
residential histories. Hence it is not always appropriate to employ existing
trajectory similarity operators for residential history data. Nevertheless,
research on trajectory similarity is a good starting point for understanding
the advantages and disadvantages inherent in different kinds of distance or
similarity functions for spatio-temporal sequences.
A measurement theory for time geography has been proposed by Miller

(2005). Yanagisawa et al. (2003) and Vlachos et al. (2002a, b, 2003) have
previously introduced similarity operators for trajectory data. Such opera-
tors have been used to measure similarity in diverse contexts: stock market
indices, animal movements, vehicular navigation paths, mobile phone or
credit card usage, and many other kinds of temporally varying data. The
design of similarity operators for trajectory data is motivated by one of the
fundamental issues in data mining using time-series data: finding sequences
which partially or fully match other sequences generally provided by the
query (Park et al. 2000). In fact, time-series based similarity operators have
been designed not only for spatio-temporal data but also for sequences
defined in multidimensional attribute space (Lee et al. 2000; Keogh et al.
1999; Keogh, 1997; Das et al. 1997). In a data mining context, the design and
success of such similarity functions is contingent not only on their ability to
return the nearest neighbors (closest matches), but also on their algorithmic
complexity and processing time.

3.1 Distance functions

While similarity can be measured directly, it is often more intuitive to
measure first the distance (conceptual or physical) and then obtain a
similarity measure through an inverse function. However, measuring
distance between complex objects is often itself a complicated process in
the context of data models used in modern information systems (cf. Okabe
and Miller 1996). Many desirable properties for distance or similarity
measures have been suggested by respective authors, but any one function
can generally satisfy only some and not all of those properties. Hence the
application, more than anything else, decides the design and choice of a
particular distance function.
One property that is always desired, but sometimes difficult to achieve, is

that of a metric—a function that gives a generalized scalar distance between
two objects. With a metric distance function, it is possible to distinguish
objects on an interval scale of measurement and then develop indexing
schemes for databases. For a mapping d : U � U ! R, where U is the set of
objects or data vectors, R is the set of real numbers, and x, y and z are data
vectors defined in Rk, the metric function d(.,.) must satisfy the following
four properties (Duda et al. 2001):
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(i) Non-negativity: d(x, y) � 0;
(ii) Reflexivity (uniqueness): d(x, y) = 0, iff x = y;
(iii) Symmetry: d(x, y) = d(y, x);
(iv) Triangle Inequality: d(x, y) + d(y, z) � d(x, z).

If d is such a distance metric, lnðdÞ and � lnðmaxðdÞ � dÞ can also be treated
as (metric) distance functions; 1/d and expð�dÞ assume the status of (metric)
similarity functions; if d is limited to finite values only, then 1� d=maxðdÞ
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d=maxðdÞ
p

are also similarity functions.
There have been many measures of similarity suggested in the past to

calculate d(.,.)—the best known of all metrics is the Minkowski metric.
If x ¼ ðx1 . . . ; xi; . . . . . . ; xmÞT and y ¼ ðy1 . . . ; yi; . . . . . . ; ymÞT are two real

vectors in Rk, the Minkowski metric is calculated as follows:

Mphx; yi ¼
X

m

i¼0
ðjxi � yijpÞ1=p ð1Þ

For p ¼ 2, this yields the familiar Euclidean distance between vectors; for
p ¼ 1, the Manhattan or city-block distance is obtained and for the
asymptotic case (e.g. Lt(p) !1), we get the maximum value metric: maxi
(| xi)yi | ). For p < 1, this measure ceases to be a metric, because the triangle
inequality is no longer valid. Veltkamp and Hagedoorn (2000) review many
other properties and measures of similarity for pattern matching, most of
which have generic appeal and can be adapted for a wide variety of
application contexts.

3.2 Measuring lifeline distances

In this paper we introduce a lifeline distance function based on the
Minkowski metric for measuring the distance between two lifelines.
Proximity in space and the temporal duration of the proximity are the two
essential parameters for the lifeline distance function. To incorporate both, a
time-weighted distance function is described below.

d1ðL1; L2Þ ¼

P

t1¼tn�1;tj¼tn

ti¼t0;tj¼t1
ðtj � tiÞ �M2hsi; sji

P

ti¼tn�1;tj¼tn

ti¼t0;tj¼t1
ðtj � tiÞ

ð2Þ

where, ti and tj refer to times of successive moves by either lifeline; t0 is the
time at which the lifelines started overlapping; tn is the time of diagnosis; tj �
ti is the duration that two people were separated by the distance between two
location vectors si ¼ (xi, yi) and sj ¼ (xj, yj); M2 is the Euclidean distance
operator (or a special case of the Minkowski metric for p ¼ 2).
This distance function d1 is defined such that it provides an intuitive way to

measure the distance between two lifelines. The function essentially is a
weighted average of successive separation distances between two residences,
where the weights are the durations a particular separation distance was
maintained before either one or both residences were changed. The range of
this function spans from a minimum of 0 to the maximum physical distance
dm manifestable in the geographic domain of interest. Researchers interested
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in generic similarity measures, rather than in distances, can additionally
apply mapping functions like expð�dÞ or 1� d=dmax to force the function to
evaluate always between 0 and 1.
It is necessary to point out here that the distance function introduced in Eq. 2

is not a metric. For example, if this function is used to measure distances
between lifelines, two separate individuals (e.g. parent and child) with different
movement histories before start of overlap at t ¼ t0 but identical movement
histories after start of overlap, will have zero lifeline distance between them;
hence the reflexivity (property (ii) above) is not satisfied.
Hence, Eq. 2 can be further modified, if desired, to penalize the time of

non-overlap to distinguish between identical lifelines and partially identical
lifelines (e.g. identical after start of overlap). The modified version of this
distance function is defined in Eq. 3 below.

d2ðL1; L2Þ ¼

P

ti¼tn�1;tj¼tn

ti¼t0;tj¼t1
ðtj � tiÞ �M2hsi; sji

" #

þ T � EM2
L1; L2½ �

P

ti¼tn�1;tj¼tn

ti¼t0;tj¼t1
ðtj � tiÞ

" #

þ T

ð3Þ

T is the total duration of time for which either of the lifelines existed but did
not overlap with the other and EM2[L1, L2] is the expected Euclidean distance
between any two randomly generated points in the study area. In future, the
measure could be further modified to give differential weights to different
time periods.
The expected distance between lifelines is generally difficult to calculate

theoretically if the study area is not of a regular geometric shape. Even for
regularly shaped areas such as rectangles, the mathematical formula for the
expected distance between points is difficult to solve exactly (Lazoff and
Sherman 1994). Hence, in practice, the expected distance can be calculated
throughMonte Carlo simulations, by randomly generating a large (N>1000)
number of points in the study area and creating a distribution of the distances
between pairs of randomly selected points; the mean of the distribution will
approximate the expecteddistance closely if the sample size is large.Note that if
lifelines belong to the same cohort, the second terms in both the numerator and
denominator evaluates to zero (i.e. T ¼ 0) in which case d2 resolves to d1.

4 Simulation of lifelines

4.1 Why simulation?

While using authentic real-world data would have benefits, synthetic
(simulated) data offer a better basis for understanding the behavior of a
new method of analysis, because they can be generated for a wide range of
parameter values and forced to operate in specific regions in parameter
space. Simulation allows the researcher to control the ’true’ pattern of
environmental influences on health, thus enabling the verification and
calibration of methods to infer such differences given only residential history
data on cases and controls. Similarly, the efficacy of the lifeline distance
function in clustering similar lifelines (i.e., cases due to the same environ-
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mental hazard) as opposed to dissimilar lifelines (i.e., controls who have not
been exposed to the same hazard), must be evaluated rigorously for a wide
range of space-time configurations of exposures and lifelines, and this would
not be possible with real data. Hägerstrand (1970) himself suggested that
‘‘reasonably good simulations should improve our ability to survey whole
systems and help to reduce the considerable trial and error component in
applications,’’ and Parks and Thrift (1980) stated that ‘‘simulation is seen as
a means to a sharper appreciation of the possibilities open to individuals and
population aggregates and is generally preferred to inductive, sample survey
techniques’’.
There are many other practical constraints that make use of simulated data

attractive to us. Residential histories generated through interviews and
questionnaires may have missing components due to failing memories or
incomplete surveys, in which case either the distance function has to be
modified to reason with incomplete histories, or residential histories would
have to be interpolated before the distance function can be applied without
modification. Obtaining samples may also be prohibitive economically, since
considerable resources are required to conduct surveys of sample sizes
appropriate for statistical analysis. Also, the measure of similarity would
have to be evaluated with many different samples from different mobile
populations to achieve significant confidence about predictions made
regarding the likelihood of a test subject as a potential case.
Lastly, in the bio-medical domain, real case-control data carry serious

confidentiality constraints. Colleagues conducting medical research prefer
not to provide access to such data until the potential utility of analysis
methods has been demonstrated. Consequently, we use only synthetic data to
specifically control where to evaluate the lifeline distance function in the
exposure-lifeline parameter space.

4.2 Simulation procedure

In this study, we employ two different methods for simulating populations of
lifelines, one based on successive residential locations being completely
independent and random within the study area (a typical ‘null hypothesis’
approach), and the other based on a modified random walk model based on
an exponential model of ‘migration move distances’ observed in the US for
migratory populations (Rogerson et al. 1993). We generated training
datasets for both kinds of lifeline patterns.
In order to test the similarity measures, we also must simulate environ-

mental exposures. In this paper, we have adopted an extremely crude and
unrealistic model of exposure and ill health. Exposures at work place and
from foods and similar sources are ignored, and all exposures to the
simulated risk are assumed to be at the place of residence. Furthermore, for
this initial study, the risk area is considered to be a circle of fixed location
and radius. Lastly, we assume a deterministic relation between exposure and
ill health—all simulated individuals who live in the risk area for more then
the arbitrary threshold of years are classified as cases, and all those
individuals who for any reason do not meet the criterion are classified as
controls.
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Each model of residential mobility was then combined with three different
variations on the exposure model. The lifeline distance function defined in
Eq. 3, was then used to measure the expected case-to-case, case-to-control,
and control-to-control lifeline distances. Results are analyzed to show that
the lifeline distance function is more efficient in distinguishing cases from
controls, than snap-shot based two-dimensional analysis of distances at the
time of diagnosis.

4.2.1 Random-positions (RP) migration model

This method of simulation assumes that with each change in residence, a
person moves to any other point in the study area with equal probability. All
individuals are equally likely to move in a given time period; all lifelines and
all moves within a lifeline are independent of each other and the direction
and distance of the move is constrained only by the extent of the study area.
In the simulation, the probability of a move is evaluated only once each year;
hence the minimum temporal granularity is one year. The pseudo-code in
Fig. 2 was used to generate random lifelines for a rectangular shaped study
area. The pseudo code ensures that no location or move time is recorded
twice for a lifeline, that the moves are ordered in increasing temporal order
and that all locations are generated from a uniform random distribution that
produces all abscissa and ordinate values with equal probability for the
defined abscissa and ordinate range. Obviously this is an unrealistic model of
actual human behavior, but it provides a sort of null hypothesis against
which to evaluate results obtained from a more realistic model of residential
histories, discussed next.

4.2.2 Exponential-distance (ED) migration model

This method of simulating lifelines is more realistic; it also uses a random
walk model of residential mobility but chooses move probabilities and move
distances from empirically-derived patterns of residential mobility in the
United States taken from Plane and Rogerson (1993). The implementation
uses a exponential model of move distances for individuals in different age-
groups described in Yang (2001). The method involves certain assumptions
for making the simulation tractable:

(i) individuals either belong to the same age-cohort or their age compo-
sition has the same cumulative distribution as published by the Census
Bureau of the United States;

(ii) the annual probability of movement is dependent on age only; (the
probabilities are obtained from Plane and Rogerson, 1993);

(iii) for each individual’s movement, the moving distance is calculated as
in Eq. 4; this is derivable through simple algebraic manipulation from
Eq. 5,

x ¼ � lnð1� yÞ�b ð4Þ
y ¼ F ðxÞ ¼ 1� e

�x
b ð5Þ
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where b is the median moving distance, y is the cumulative probability of
a move, and x is the moving distance (Rogerson, et al. 1993);

(iv) the moving direction is randomly distributed between 0 to 360
degrees.

All moves are restricted to end within a rectangular study area, so that if a
simulated move would have taken the person outside the study area, that
move is not made and another potential move is simulated. The minimum
time interval between moves was set to one year, as for the random positions
simulation. The pseudo-code that was used for simulation for this case study
is provided in Yang (2001).

4.2.3 Environmental exposure

For purposes of this study, we generated environmental health risks through
a deterministic model. Simulated people were labeled cases if they lived for
sufficient time within an area of risky environmental conditions. We further
simplified the model by assuming that the risk area was a circle based on a
fixed distance from a point source of risk. The environmental risk region thus
was modeled as a static, 3-dimensional space-time cylinder of constant radius
r and height h; the radius r of the cylinder determines the spatial extent of the
exposure at any given time and the height determines the duration of the
exposure. Simulated people whose residential lifelines were generated by each
of the above methods were then classified as cases or controls depending on
their spatio-temporal interaction with the risk area. Any simulated person
that spends cumulatively more time (not necessarily continuously) than the
minimum required for contracting the disease is labeled as a case; a simulated
person whose lifeline spends less than the threshold time inside the exposure
cylinder is treated as a control, unaffected by the exposure.
It is important to state the assumptions we have made in designing the

study—we assume that the exposure affects all individuals similarly, and that
the intensity and spatial dimensions of the environmental hazard remain
unchanged throughout its existence. In the real world, these assumptions
may be violated, but these assumptions greatly simplify the investigation of
the lifeline similarity measure, without compromising much on the gener-
alizability of the measure.

Fig. 2. Pseudo Code for generating lifelines by the Random-Positions (RP) method
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4.2.4 Monte Carlo simulation of cases and controls

The Monte Carlo simulation method is applied here to generate a large
number of cases and controls, based on each of the two migration models
(random positions and exponential) for statistical evaluation of results. The
threshold time for becoming a case could be varied depending on which
disease is being investigated. The generation of a large number of controls
and cases may become an issue if the ratio of the volume of the cylinder and
the space-time study area is very small. This is because the Monte Carlo
simulation method employed here generates a cohort of lifeline cases and
controls in exactly the same way; only the random interaction of the lifeline
with the exposure when evaluated after the full generation of the lifeline is
used to classify it is as a case or control. Since normally the area of high risk
is significantly small compared to the study area, the requisite number of
controls can be generated with relative ease; on the contrary, many lifelines
generally will have to be simulated and rejected as controls before the
requisite number of cases can be generated.

4.2.5 Simulation parameters

Both the random position and exponential-distance random walk migration
models were used to generate lifelines for three different exposures. To
simplify the modeling in this proof-on-concept study, we chose to model only
a single cohort (age at conclusion = 70 years) for all simulations to avoid
complications arising due to inaccurate population composition when all age
groups would be considered. Six situations were run, based on three different
exposure risk region sizes, for each of the two migration models were
generated, and the case-case and control-control distributions of lifeline
distances were calculated using Eq. 2. The details of all the simulations are as
follows:

(i) Simulation Models: Random Positions (RP) and Exponential-Distance
(ED) Random Walk models.

(ii) Distance Function: d1(Eq. 2).
(iii) # Cases: 2000.
(iv) # Controls: 2000.
(v) Study Area: 200 X 200 km2 rectangle.
(vi) Age of all cases and controls at end of study period: 70 years.
(vii) Median Distance b (for ED migration model): 11.2 km.
(viii)Exposure threshold for contracting disease: 10 years.
(xi) Exposure cylinders <r, h>: <5 km, 70 years>; <10 km, 70 years>;

<10 km, 20 years>

5 Results

5.1 Comparing distributions

Both the Random-Positions (RP) and Exponential-Distance (ED) methods
of lifeline simulation were used to evaluate the lifeline distance function d1
for a cohort of simulated subjects who all were born in the same year and
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who lived to be 70 year olds. Figure 3a, b display the distribution of the
lifeline-distance statistic for 1000 pairs of cases and controls generated by the
RP method; Figs. 3c, d display the same for cases and controls generated by
the ED method. From visual inspection, the distributions in Fig. 3a, b
closely resemble a normal distribution while that in Fig. 3d do not. The
distribution in Fig. 3c resembles a normal distribution based on visual
analysis, but given the large sample size, statistics indicate that the
distribution in Fig. 3c also is significantly different from normal. This can
be verified from Tables 1 and 2, where the skewness of the RP distributions is
almost zero, but is much higher for cases under the ED model of migration.
The one sample Kolmogorov-Smirnov (K-S) composite goodness-of-fit

(GOF) test was used to test the null hypothesis that each empirical
distribution was similar to a normal distribution with mean and standard
deviation as estimated from the samples for an exposure of 10 km radius and
that had a 70 years long presence from 1930 to 2000. The null hypothesis

Fig. 3. Distributions of lifeline distance statistic for cases and controls for RP and ED migration

models for simulating lifelines for an exposure cylinder of 10 km radius and 70 years duration

(1930–2000)
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could not be rejected for either of the two RP distributions (p-value ¼ 0.5)
but was strongly rejected for the two ED distributions (p-value � 0) 1.
Repeating the test for the other two exposures and for other cohorts
(age ¼ 30, 50, 90) reproduced these results, albeit at slightly different levels of
significance (p-values). The null hypothesis that RP and ED models generate
sampling distributions from the same population was also rejected by the
two-sample K-S test (p-value � 0), thus additionally verifying that the
difference between the (mean) lifeline distances calculated for RP and ED
migration models is statistically significant.
These results show that the lifeline distance function d1 can be used to

distinguish between different migration patterns, just from an examination of
the distributions of case-case or control-control lifeline distances.

5.2 Comparing statistics

Tables 1 and 2 show 12 different sets of statistics that were calculated for
control-control and case-case distance measurements (n ¼ 1000) for 3
different exposure cylinders for the RP (Table 1) and ED (Table 2) migration
models.

Table 1. Statistics for lifelines generated by the RP migration model

Exposure type Controls (RP) Cases (RP)

Mean

(km)

Std. Dev.

(km)

Skewness Mean

(km)

Std. Dev.

(km)

Skewness

1930–2000;

10 km radius

104.62 16.90 0.250 90.03 15.71 0.175

1930–2000;

5 km radius

104.79 16.35 0.115 88.83 15.66 0.011

1950–1970;

10 km radius

104.80 17.04 0.112 80.64 16.56 0.097

Table 2. Statistics for lifelines generated by the ED migration model

Exposure type Controls (ED) Cases (ED)

Mean

(km)

Std. Dev.

(km)

Skewness Mean

(km)

Std. Dev.

(km)

Skewness

1930–2000;

10 km radius

105.21 45.29 .098 37.92 14.93 .719

1930–2000;

5 km radius

102.96 44.99 .177 33.58 13.52 .898

1950–1970;

10 km radius

105.45 44.67 .206 28.36 10.61 .822

1The mean and standard deviations were obtained from the samples. This is allowed in the

K-S test, if the reference distribution is normal (MathSoft, 2000).
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The mean lifeline distance for controls in both tables is very similar for all
exposures and is actually very close to the expected value of 104.28 km
between two randomly generated points in a 200 km � 200 km rectangle (we
used Lazoff and Sherman’s (1994) formula for calculating this expected
distance). This result is to be expected because of the following. Our
simulation procedure randomly distributes in the study area the origins of all
lifelines for both simulation methods (RP and ED). The lifelines then ‘evolve’
(non-randomly) in space-time as controlled by the parameters of the
particular migration model. As explained earlier, the lifeline distance d1 can
be interpreted as duration-weighted average of Euclidean distances between
pairs of residences. The mean lifeline distance d1 between pairs of randomly
selected control lifelines (these will have a random separation vector
throughout on account of their random separations at birth) should
therefore approximate the theoretically expected Euclidean distance between
any two points, randomly located in the same area as used for constraining
the sample space of spatial locations for lifeline nodes.
The real power of the lifeline distance is revealed when statistics for cases

and controls are compared. Foremost, it can be seen that mean lifeline
distances for cases are always lower than that for controls for both RP and
ED migration models. The statistics for controls and cases, for lifelines
generated by the ED migration model, give a strong indication that the
lifeline distance measure is able to distinguish clearly between lifelines which
have had similar exposure history compared to those who have not been
exposed to the same environmental hazard (exposure cylinder in our case
study). The Kolmogorov-Smirnov two sample test (MathSoft 2000) for
comparing empirical distributions indicates (p-value � 0) that cases and
controls have different empirical distributions for all exposures and for both
simulation methods.
For the ED migration model, the mean lifeline distance for cases is much

smaller than that for controls for all exposures—this is expected intuitively
because the median distance of any move for a lifeline is only 11.2 km (i.e.,
b ¼ 11.2 in Eq. 4) and therefore lifelines diverge relatively more slowly (and
more realistically). Hence, if lifelines have to have similar exposure histories,
then they will also have to originate relatively close in geographic space. Thus
cases for the ED simulations tend to cluster strongly over their entire lives and
not just during exposure. Controls also diverge equally slowly, but since they
will tend to originate anywhere in the study area, their mean lifelines
distances are much higher than that of controls.
It can also be observed, from comparing distribution means from Tables 1

and 2 that, for the RP migration model (Table 1), the distribution for both
cases and controls are characterized by higher mean lifeline distances as
compared to ED distributions. For example, for the same exposure (1930–
2000; 10 km radius) the difference of means for cases and controls is only
14.59 km for the RP model, while it is 67.29 km. This can be explained
briefly thus: if a lifeline has to be exposed for at least 10 years to be labeled as
a case, it tends to spend much more time near the exposure than a
corresponding RP lifeline—this is because a lifeline from the RP simulation
can migrate far away from the exposure with one move, while a lifeline from
the ED simulation will generally take several moves to migrate to large
distances away from the exposure site.
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Hence, it is relatively more difficult to distinguish between RP cases and
controls than between ED cases and controls. This means that for
populations, which are sufficiently mobile and whose successive moves can
be characterized as practically random (and hence can be simulated by the
RP method), the distinction between cases and controls will be masked (if we
were to use only the lifeline distance function for distinguishing between
them). The degree of masking will be dependent on the extent of the
randomness, the move vectors and the rate of movement. However, the
distinction between cases and controls gets stronger as the cylinder gets
smaller, since the ’opportunity’ to be exposed decreases and cases must be
closer in space-time to share the smaller exposure cylinder volume.

5.3 Use of lifeline distances at time of diagnosis only

It is also important now to re-assess the need for the lifeline distance
operator—it was suggested because the spatial distribution of the cases at
the time of diagnosis is not useful in retrodicting the exposure clusters in the
past. To verify this, for the same set of simulated data as simulated by the
ED method, we used a new time-of-diagnosis distance function, described in
Eq. 6, to distinguish cases from controls,

dtnðL1; L2Þ ¼ M2 < sn1; sn2 > ð6Þ
where tn is the time of diagnosis; sn1 and sn2 are the locations of the
individuals at tn, as obtained from lifelines L1 and L2 respectively and M2 is
the Euclidean distance operator. This function considers only the last pair of
distances (i.e., at the time of diagnosis) from the pair of lifelines, to create a
distribution for controls and cases; statistics generated for this function are
compared to that from the lifeline distance function from Eq. 2.
In this section we will compare results only for the Exponential-distance

migration method of simulating lifelines. Initially all parameters (e.g. study
area, exposure cylinders, mobility rate, cohort age, number of cases and
controls) for the simulation remained the same, except the use of the new
distance function. The first set of simulations was conducted for all three
exposure cylinders used earlier in Tables 1 and 2. The statistics obtained are
shown in Table 3 and the sample distributions of cases and controls for one
exposure (70 years, 10 km radius) are shown in Fig. 4 (below). The
distribution is obviously not normal and visual inspection of the cases

Table 3. Statistics for dtn for the ED migration model lifelines

Exposure type Controls (dtn) Cases (dtn)

Mean

(km)

Std. Dev.

(km)

Skewness Mean

(km)

Std. Dev.

(km)

Skewness

1930–2000;

10 km radius

104.54 47.91 0.112 38.55 26.85 0.98

1930–2000;

5 km radius

103.29 48.11 0.167 33.77 24.76 1.08

1950–1970;

10 km radius

102.41 48.30 0.159 27.08 18.87 1.51
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distribution indicates similarity with some form of an exponential distribu-
tion. The statistics and distribution for controls are almost identical to that
obtained for the lifeline distance function d1 (Table 2). For cases, the means
are almost identical for the two distance measures (Eqs. 2 and 6), but the
dispersion (std. dev.) and skewness is higher for dtn (Table 2).
Thus results indicate that the two distance functions d1 and dtn differ only in

distribution shape; they are almost identical in terms of central location
statistics. This would mean that the distance function designed to exploit
complete residential histories is after all just as good as the distance at time of
diagnosis—which defeats the whole purpose of using a lifeline based statistic.
To investigate further, we simulated a new set of lifelines, with the median
move distance doubled to 22.4 km. The cohort age was maintained at 70
years; three exposure cylinders were used, two of which were the same as
before. 100 unique pairs of comparisons (100 controls and 100 cases) were
made, statistics for which are shown in Table 4. (The statistics and
distributions for controls were similar to that observed in Table 2 and are
omitted here).

Fig. 4. Distributions for dtn (distance at diagnosis) for cases and controls for ED migration

model lifelines for an exposure cylinder of 10 km radius and 70 years duration

Table 4. Comparison of lifeline distance function and the time of diagnosis distance function for

the ED migration model lifelines for median move distance = 22.4 km

Exposure type Cases (d1) Cases (dtn)

Mean

(km)

Std. Dev.

(km)

Skewness Mean

(km)

Std. Dev.

(km)

Skewness

1930–2000;

10 km radius

59.52 19.12 0.27 55.46 36.76 0.80

1950–1970;

10 km radius

64.94 18.05 0.45 85.00 44.55 0.53

1955–1960;

2 km radiusa
55.95 18.75 0.29 68.24 33.25 0.11

aThe threshold for getting ill is set to 2 years for this small exposure cylinder
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Table 4 indicates that if the exposure has a large space-time presence, such
that people can get affected over a wide range of time, the lifeline based
distance function is almost just as bad (or good) as the distance at time of
diagnosis. On the other hand, as the exposure gets relatively smaller, such
that simulated cases have to be more clustered to become exposed, the lifeline
distance case-case distribution does center itself farther away from the
control distribution and is easier to distinguish. Table 4 suggests that d1 is
only marginally better than dtn. Comparison of standard deviations for the
two statistics indicates that d1 has much less uncertainty associated it than
dtn. This might be a crucial fact, as this increases the power of d1 to reject
false cases.
Before concluding, we briefly discuss the results from another set of

simulated data for the same study area and the median move length of
11.2 km for the ED model of migration. We measured the means and
standard deviations for the two distance functions for 5 different age cohorts
(Table 5). Now, just as is common for a random walk phenomenon (the
exponential distance model of simulation is similar to a floating random walk
process as opposed to grid based equal length walks) we see in Table 5 that
with increasing age people tend to be farther from each other (all lifelines for
all cohorts started at the center of the study area). The rate of separation is
the maximum in the twenties and then slows down considerably around 50
years of age (this is due to the particular age based mobility rates used for the
ED model simulation from Plane and Rogerson 1993). If we were to
interpret the cohort ages in Table 5 as the ages of diagnosis, we can make
two observations:

i) the mean for the distances at diagnosis is always larger than the mean
lifeline distances for the same pairs of lifelines and

ii) with increasing cohort age, the merit of the time-averaged distances as
used in the lifeline distance function becomes more pronounced because
the distinction between cases and controls is more difficult to make due
to similar central location values.

6 Discussion of results

The use of two different methods of simulation in this case study is important
when evaluating the robustness of the lifeline distance function. The ED
model, although much simplified through its assumptions, is still based on
actual data regarding human residential mobility in the United States
(Rogerson et al. 1993)—it therefore should simulate the actual distribution
of residential history lifeline distance statistics much more faithfully than the
RP migration model, which imposes no realistic constraints on the migration
of an individual, except that they must stay in the 200 by 200 km square
study area. Due to the lack of constraints, and as statistics indicate (Tables 1
and 2), the RP model makes it much more difficult to distinguish between
cases and controls, especially as the exposure cylinder grows in volume.
Therefore, if the lifeline-distance statistic is robust enough to detect
differences for this model, then it is likely to be that much more effective
in the case of real data as well.
Our results indicate that the lifeline distance measure d1 is able to

consistently distinguish between the distributions of cases and controls for
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both simulation methods. However, the efficiency varies with the exposure
size and duration. Results are much more promising for populations
generated by the more realistic simulation in which people migrate relatively
shorter distances than in the case of a purely random migration process. It is
also true that the performance of the lifeline distance function deteriorates as
the movement pattern becomes randomized because cases become less
clustered relative to controls as the spatio-temporal extent of the exposure
risk area becomes larger. Interestingly, the standard deviations for RP
lifelines (Table 1) are considerably smaller than those obtained for the ED
Model lifelines (Table 2). Thus, in the case of the ED lifelines, the statistical
power of the lifeline distance statistic is reduced somewhat because of the
higher variability.
When we compared the lifeline distance function with the time of

diagnosis distance function, we found no significant benefits for the
former—until we increased the median move length to twice what it was
before and reduced the critical exposure time from 70 years to 20 years.
From this result, it would seem reasonable to propose that the lifeline
distance function will be better than the distance at diagnosis function at
higher mobility rates. This would be especially true if lifelines diverged
substantially after exposure; this scenario is observable for small exposure
cylinders experienced sufficiently early on in life when mobility rates were
still high so that lifelines could separate far from each other by the time of
diagnosis. However, there is a caveat to be raised here—for the RP method
(randomized movement histories) higher mobility and smaller exposure
cylinders make the difference between cases and controls distributions more
difficult to detect for the lifeline distance statistic. Hence for d1, there is an
inverse relationship between power to distinguish between cases and performing
better than dtn.

7 Conclusions and future work

The lifeline distance function was designed in the hope that it would be able
to detect similarities in the patterns of residential histories of people and find
groups of people who have clustered sometime in the past, well before time of
diagnoses. Combining the information from Table 5 with the prior discus-
sion on the performance of the lifelines, we can offer two favorable situations
in which the lifeline distance function is a better function than the simple
distance at time of diagnosis, for classifying cases and controls:

Table 5. Comparison of lifeline distance function and the time of diagnosis distance function for

the ED model based lifelines for different age cohorts

Cohort age

(years)

Mean (d1)

(km)

Std. Dev(d1)

(km)

Mean (dtn)

(km)

Std. Dev(dtn)

(km)

10 21.52 12.66 34.52 19.66

30 37.78 16.65 55.63 29.14

50 47.56 22.17 63.73 34.52

70 53.19 23.94 68.65 36.10

90 55.35 24.52 69.16 35.72
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(i) Cases cluster sufficiently early on in their lives near an exposure and then
continue spreading far from each other after exposure (to diffuse the
cluster with increasing time). In such a scenario, mean time of diagnosis
distance (dtn) between cases is significantly larger when compared to
mean lifeline distance (d1). This is because dtn in this case will be reflective
of the increased distances between cases at the final time of diagnosis,
whereas d1, because of its time-weighted distance averaging character-
istic, is a relatively more robust measure in the case of diffusion of cases,
subsequent to clustering near an exposure. Note that if the exposure is
long persistent, such that cases can be exposed over a wide duration, the
suggested lifeline distance function is not as effective.

(ii) Highly mobile populations will make the case-control distributions
more similar but they will also make the use of the lifeline
distance function more effective relative to simple distance at time
of diagnosis

However, a good lifeline distance function must be generalizable to all
scenarios. Hence, the lifeline distance function must be modified to make it
much more robust to case-control distinctions for a wide variety of
exposure histories. For example, Vlachos et al. (2003) use a modified
Euclidean-distance-based similarity measure which makes the similarity
measure more robust to unusually large distances (outliers) between
lifelines. Another way to discount these outliers would be to use the
geometric or the harmonic means instead of the arithmetic means used to
average the distances for a pair of lifelines. The geometric mean is however
not applicable if the lifelines intersect, unless the minimum distance is set to
a non-zero threshold.
Yet another way to modify the lifeline distance function is to limit the

time-weighted averaging to only the lower quartile of distances generated
during a lifeline, thus eliminating separation vectors larger than a threshold
magnitude. Thus we can preferably use only those distances which
characterize the scale of clustering for an exposure (given that we have a
hunch of the size of the exposure). Similarly, lifeline distances could be
calculated only for specific time windows, if some information is available
about when likely exposures might have been encountered or some temporal
regions can be eliminated with certainty.
It may also be useful to develop visualization schemes for lifelines that

can afford visual detection of similar lifelines. This will be difficult when
the number of lifelines is large. One could also count the number of years
for which the lifelines were within threshold of each other, where the
threshold distance might relate to typical sizes of exposure areas. In this
paper we also did not present the results of validation by testing with new
cases after building characteristic distributions for cases and controls for a
given exposure.
Finally, one thing should be kept in mind: if lifelines do not tend to diverge

much, i.e., the sampled population has been not very mobile, the simple
distance between cases at the time of diagnosis will be as good an indicator as
the lifeline distance function.
Future work therefore must include more new lifeline distance functions

and must simulate new cases for a given exposure and then set up a
misclassification matrix. The function that classifies new cases most
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accurately will be the best measure. It may be the case that different measures
on account of different distribution shapes and statistics might exhibit
different classification accuracies for different exposure histories. Exploring
classification accuracies of different functions for different exposure types,
population types, migration vectors and mobility rates will help us
significantly improve our capability to reason about how environmental
hazards affect different cohorts.
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