
Abstract. This paper describes a procedure for extending local statistics to
categorical spatial data. The approach is based on the notion that there
are two fundamental characteristics of categorical spatial data; composi-
tion and configuration. Further, it is argued that, when considered locally,
the latter should be measured conditionally with respect to the former.
These ideas are developed for binary, gridded data. Local composition is
measured by counting the numbers of cells of a particular type, while
local configuration is measured by join counts. The approach is illustrated
using a small, empirical data set and an ad hoc procedure is developed to
deal with the impact of global spatial autocorrelation on the local
statistics.

Key words: categorical spatial data, local spatial statistics, spatial autocor-
relation
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1 Introduction

A set of spatial data consists of measurements (data values) taken at
specific locations (data sites) in a geographic space (study region).
Numerous measures of spatial association have been developed to
examine the nature and extent of spatial dependence in such data. Global
measures of spatial association do this by using the complete data set to
derive a single value for the entire study region. As such these measures
emphasize average or typical characteristics of the complete data set.
Inherent in such an approach is the implicit assumption that the single
value holds throughout the study region, i.e., the study region is
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environmentally homogeneous (Unwin 1996a; Fotheringham and Bruns-
don 1999). Statistically, this is equivalent to assuming that the process(es)
which give rise to the data values are stationary over the study region
(Unwin 1996b). Unless stationarity holds, the global value will not be
universally applicable throughout the study region, and may not even
apply in any part of it (Fotheringham 1997; Fotheringham and Brunsdon
1999). In contrast to global measures, local measures of spatial association
examine spatial dependence in subsets (variously known as neighbour-
hoods, windows or kernels) defined with respect to each data site i in the
complete data set. Such measures focus on the identification of variations,
rather than regularities, in the nature of spatial association within the
study region (Fotheringham 1997, 1999; Fotheringham and Brunsdon
1999). Thus, while global approaches yield a single value for the entire
data set, local approaches are capable of generating a local value for each
data site in the data set.
Getis and Ord (1996) suggest that local measures of spatial association can

be used for several purposes, including:

1. assessing the assumption of stationarity for a given study region;
2. identifying the existence of pockets of distinctive data values (hot and cold

spots);
3. identifying the scale (spatial extent) at which there is no discernible

association of data values.

In addition, if the measure satisfies the two requirements of a local indicator
of spatial association (LISA) (Anselin 1995), it can also be used to
decompose the corresponding global measure into the contributions of
individual data sites, thus revealing which sites have the most impact on the
global measure.
While a number of local measures of spatial dependence have been

developed for quantitative data, most notably local Moran’s I , local
Geary’s c, and the G and O statistics of Getis and Ord (for a review of
the first three see Boots 2002, for the last see Ord and Getis 2001),
research aimed at developing measures for use with categorical data is just
beginning (Wilhelm and Sander 1998; Gebhardt 1999; Brunsdon et al.
2002). There are, however, some related antecedents in image analysis
(Woodcock and Strahler 1987; Musick and Grover 1991), and landscape
analysis (Baker and Cai 1992; LaGro 1991; Mead et al. 1981; Murphy
1985; Perera and Baldwin 2000; Riitters and Wickham 1995; Riitters et al.
1997). However, in such work, local measures are used primarily as
smoothing or low pass filtering devices aimed at reducing or removing
local variation with the intention of making the data values more
homogeneous (Moore 2000) and thus the use of global measures more
appropriate.
Since categorical data is often encountered in environmental and

ecological data, the main purpose of this paper is to develop some local
measures of spatial association for such data. We refer to such measures
as local indicators for categorical data (LICD). In the next section, we
examine a number of issues related to the development of LICDs and
propose two such measures. At present, these measures are envisaged as
operating in an exploratory spatial data analysis (ESDA) role, in the spirit
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of a geographical analysis machine (GAM) (Openshaw et al. 1987;
Fotheringham and Zhan 1996), with the primary aim of addressing the
second purpose of Getis and Ord (1996) given above. The use of these
LICDs is demonstrated in Section 3 using an empirical example. This
illustration raises a number of additional considerations, and one of these,
the effect of significant global spatial dependence in the data values, is
examined more fully in Section 4. Here we present an ad hoc procedure
for dealing with such situations. The paper concludes with a discussion of
a number of open problems together with some suggestions for further
work.

2 Local indicators for categorical data (LICDs)

In general, spatial categorical data with k classes can be represented as a k-
colour map k � 2ð Þ. We will limit our attention to binary maps (k ¼ 2; black/
white). We do this, in part, because, when k is large and the number of
observations in the subregion is small, it is unlikely that any meaningful
questions can be posed or answered using statistical methods. This is even the
case when k ¼ 2 if the probability of one of the classes is small. Also even
when k > 2, a single type may be of particular interest; e.g., the binary model
of habitat (suitable/unsuitable) in island-biogeography theory (Gustafson
1998, p. 150) or error/non-error in remotely sensed data (Congalton 1988).
When k > 2, k-colour maps can be converted to binary maps in two ways; a
single colour may be tested for its relationship with all other colours or any
partition of the k colours into two groups may be tested against each other.
To further simplify the presentation, we confine our attention to gridded
(raster) lattice data.
In some respects, categorical data is less straightforward than its

quantitative counterpart. Following Li and Reynolds (1993, 1994, 1995)
and Gustafson (1998), it is possible to identify two sets of characteristics of
categorical maps: composition which relates to aspatial characteristics of the
different classes and configuration which refers to characteristics of the spatial
distribution of the classes.
For binary data, global composition can be measured by the number of

black (or white) cells in the map. Let pb be the proportion of black cells in the
entire study region. Under the assumption of no global spatial dependence
(i.e., the black cells are distributed at random throughout the study region),
the probability of a cell being black is equal for every cell and the colour in
one cell is independent of the colours in all other cells. Then the probability
(Pr X ¼ xð Þ) of finding x black cells in a subregion of r cells is given by the
binomial distribution (Turner et al. 1989)

Pr X ¼ xð Þ ¼ r
x

� �
px

b 1� pbð Þr�x ð1Þ

Using Eq. (1) we can test if there is significant presence or absence of black
cells in a specified subregion. We count the number of black cells X in
(m� m) (m ¼ 3; 5; 7; . . .) windows centred on each cell in the map
and evaluate the probability of finding x using Eq. (1). Cells for
which Pr X � xð Þ < p or Pr X � xð Þ < p represent those for which there
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is significant presence or absence, respectively, at the p significance level.1

Note that the window will be truncated for those cells around the edge of the
study region and allowance must be made for this. This measure, which we
refer to as the local composition for a given cell i, parallels directly the
approach taken by the Getis family of statistics for quantitative data (Getis
and Ord 1992, 1996; Ord and Getis 1995, 2001).
Numerous measures of configuration have been proposed in landscape

ecology. Many of these, including various contagion and fragmentation
indices designed to measure the degree of interspersion of patch types,
incorporate join count information. Given that global join count statistics
have been employed extensively, especially in geography, as a measure of the
nature and extent of spatial autocorrelation in nominal data, it seems
reasonable to consider local versions.
How might we use join counts locally? We could express the number of

black/white (or black/black or white/white) joins in a subregion as a
proportion of all joins in that subregion, and then test if this proportion
differs significantly from the corresponding proportion in the entire study
region. Providing that both the number of cells in the subregion and pb
were sufficiently large, a one-sample difference-of-proportions test could be
employed. However, we do not feel that this would be an appropriate
approach. This is because, as landscape ecologists have recognized in
both theoretical (Gustafson 1998; Haines-Young and Chopping 1996;
Lavorel et al. 1993) and empirical (Hulshoff 1995) studies, configuration is
not independent of composition. Thus, this approach would only appear
to be valid when the composition of the subregion does not differ
significantly from that of the entire study region. Whenever the local
composition differs significantly from the global one, we should not be
surprised to find that the local configuration also differs significantly
from the global one. In view of this, we suggest that the appropriate
hypothesis for examining local configuration should be conditional in
form. Thus, we might ask, given the number of black cells (composition)
in a subregion, do the number of joins of a specified type differ from what
would be expected if the black cells were located by chance in the
subregion? In order to evaluate such an hypothesis, we need to know
the sampling distributions of the join counts. It appears that the normal
approximation is only reasonable for the join-counts when none of n, npb,
or n 1� pbð Þ is small, where n is the number of cells and pb is
the proportion of them that are black (Upton and Fingleton 1985,
p. 163). In this context, small values can be considered to be n < 30, pb or
1� pbð Þ < 0:2 (Cliff and Ord 1981, Chapt. 2). This would include all 3� 3
and 5� 5 windows, regardless of the number of black cells, those 7� 7
windows when npb � 9 or n 1� pbð Þ � 40, those 9� 9 windows
when npb � 16 or n 1� pbð Þ � 65, and so on. In such situations, the
counts can either be enumerated completely or approximated by a random
sample of all possible outcomes. We have enumerated all of these cases for

1 Strictly speaking, since the population is not infinite, the hypergeometric distribution

should be used instead of the binomial distribution. However, the binomial usually provides an

adequate approximation of the hypergeometric when r < 0:1n, where n is the number of

observations. (Johnson and Kotz 1969, p. 148).
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windows of sizes up to 7� 7. Thus, we are able to test the conditional
hypothesis.2 We refer to these local join counts as measures of local
configuration.

3 Illustration

To illustrate the use of the measures of local composition and local
configuration described in the previous section, consider Fig. 1 which is re-
drawn from Fig. 3.3 in Upton and Fingleton (1985). In this figure, the cells
coded black/white correspond to quadrats where the perennial shrub
Atriplex hymenelytra is present/absent in a sample area in Death Valley,
California. pb is equal to 65

256 ¼ 0:254 . Using a global join count, Upton and
Fingleton (1985, Example 3.2, pp. 159–160) find there is no reason to reject
the null hypothesis of the random distribution of plants in the study region.
To explore local composition, we count the number of black cells X in

Fig. 1. Location map of Atriplex hymenelytra (re-drawn from Upton and Fingleton, 1985,

Fig. 3.3)

2 This data is available from the author. Note also that Tinkler (1977) has computed the

means and standard deviations of join counts, for non-free sampling, for all square grid lattices

in the size range 2� 3 to 16� 16:
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(m� m) (m ¼ 3, 5, 7) windows centred on each cell in the map and evaluate
the probability of finding x using Eq. (1). Note that the window is truncated
for those cells around the edge of the study region. Figure 2 shows those cells
for which Pr X � xð Þ or Pr X � xð Þ < 0:05. Following the lead of Ord and
Getis (2001, p. 423), we use this conventional single-test cutoff value because
we are employing the LICD in an ESDA role. However, it is acknowledged
that a statistical evaluation of the value for any given cell will suffer from the
effects of correlation between counts in overlapping windows and multiple
testing.

5
7

5/7

5
7

5/7
3/5/7

55

3

Fig. 2. Location of cells for which the number of black cells x in a (m� m) window centred on

the cell have probabilities Pr X � xð Þ or Pr X � xð Þ < 0:05 under the null hypothesis of no global

spatial autocorrelation. Cells for which Pr X � xð Þ < 0:05 are indicated by underlying grey

shading. (3, 5 indicates that the probability is significant for a 3� 3 and a 5� 5 window,

respectively, after applying the Sidak correction for multiple tests)
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Figure 2 suggests that there are clear variations in the spatial distribution
of the shrub within the study region. In particular, there is a zone, aligned
north-east to south-west, in the north-west quadrant, where there is a
marked presence of black cells. This zone consists of a core of six cells where
there is a marked presence at all three window sizes, surrounded by a further
nineteen cells where there is marked presence for at least one window size.3

In contrast, there is a zone of nineteen cells in the north-east corner where
there is a marked absence of black cells for the two larger window sizes.
There are also a pair of cells along the eastern edge of the study region with a
marked absence of black cells for the 5� 5 window.4

To explore local configuration, we count the number of black/black (b/b),
white/white (w/w), and black/white (b/w) joins in (m� m) (m ¼ 3, 5, 7)
windows centred on each cell in the map, using the rook’s count. If the black
cells cluster in the window, this will be reflected in an abundance of b/b and
w/w joins and a deficit of b/w joins. Conversely, dispersion of black cells
results in an abundance of b/w joins and a deficit of b/b and w/w ones. Using
the enumerations described in Sect. 2, we identify those cells for which the
probability of at least (or at most) the observed number of any of the three
join counts is <0:05 under the assumption of no spatial dependence.
Depending on the magnitudes of the counts, such cells are considered to
represent the foci of local clustering or dispersion (see Fig. 3). As Fig. 3
shows, for the three window sizes examined, this procedure identifies 10 cells,
all but one of which is indicative of local clustering of black cells. All of the
cells exhibiting local clustering are located either within or adjacent to the
zone of marked presence of black cells identified by the local composition
measure.
The two LICD measures may be combined to create a joint classification

with eight potential classes, although only five of these are realized for the
data in Fig. 1 (see Fig. 4). There are only four cells in Fig. 4 which display
both distinctive local composition and local configuration and in each case
these are where larger numbers of black cells cluster in space. Given that
these four cells are part of a single cluster in Fig. 4, it is conceivable that they

3 If we apply the Sidák correction, a� ¼ 1� 1� að Þ
1
n, where a� is the adjusted significance

level, we find that there are two cells, one each for a (3� 3) and a (5� 5) window (see Fig. 2),

where we can be confident that the clustering of black cells in the subregion centred on the cell is

statistically significant.

4 The cells with ‘‘significantly high’’ black counts form single clumps of sizes 6, 20, and 23,

for window sizes 3� 3, 5� 5, and 7� 7, respectively. The cells with ‘‘significantly low’’ black

counts form two clumps of size 11 and 2 for the 5� 5 window and a single clump of size 16 for

the 7� 7 window. Here a clump is defined using edge contiguity (i.e., rook’s count or von

Neumann neighbourhood). Based on estimates from 10,000 simulated random patterns with the

same proportion black (pb ¼ 0:254), the probability of getting 6 or more significant cells for a

3� 3 window in a random pattern is ’ 0.078 but the probability of clump of size 6 or greater

’0.022. The corresponding probabilities for the observed values for a 5� 5 and a 7� 7 window

are ’0.0031 and ’0.0017, and ’0.0070 and ’0.0085, respectively. For the significantly low

counts, the probability of finding 13 or more significant cells for window size 5� 5 is ’0.0110,
while the probabilities of clumps of size 2 or greater, and 11 or greater are ’0.5309 and ’0.0190,
respectively. The corresponding probabilities for the observed values for a 7� 7 window are

’ 0.0224 and ’0.0227.
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represent locations which are particularly favourable to the presence of
Atriplex hymenelytra.

4 Dealing with global spatial dependence

The pattern of Atriplex hymenelytra analyzed in the previous section did not
display significant global spatial autocorrelation. However, when there is
significant global spatial autocorrelation, we can anticipate that local
statistics will be too liberal, identifying excessively locations with ‘‘signifi-
cant’’ local spatial dependence. This will certainly be the case for the local
measure of composition in this paper. However, the behaviour of the local
measure of configuration will not be affected since the significance of this
measure is evaluated conditionally on the composition of the window used to

Dispersion

5

Clustering

5
7

Fig. 3. Location of cells for which the probability of the observed number or greater (the

observed number or less) of any of the three join counts (b/b, w/w, b/w) is <0:05 under the null

hypothesis of no global spatial autocorrelation
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compute the measure. Hence, in this section, we concentrate on the local
measure of composition and propose an ad hoc procedure for accounting for
the effects of global spatial autocorrelation.
Currently, there are three general strategies for attempting to deal with the

effects of global spatial autocorrelation on local statistics. The first of these is
to attempt to remove global spatial autocorrelation before undertaking local
analysis (Griffith and Layne 1999). This can be done by fitting a global
model, computing residuals, and analyzing the residuals rather than the
original data values. However, this will likely be viable only when the global
spatial dependence takes the form of a trend surface or some other simple
form. Its success is also dependent on the global model being specified
correctly. In practice, this approach would also have the effect of
transforming the original binary data into a non-categorical form. In

Dispersed only

Clump only

Cold only

Hot onlyHot clump

Fig. 4. Location of cells for which the observed values of local composition and/or local

configuration are significant under the null hypothesis of no global spatial autocorrelation

(a ¼ 0:05)
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addition, edge effects are difficult to handle with measures derived from
counts.
A variant on this approach is to obtain the conditional distribution of the

local statistic for a specified global process. For example, Tiefelsdorf (1998,
2000) presents a method for deriving the conditional distribution of Ii when
the global process is assumed to be either a Gaussian autoregressive or a
Gaussian moving average spatial process. The conditional distribution
measures the stochastic variation around the global process and is thus an
indicator of local heterogeneities in the global process.
A second strategy is to retain the original data values but to evaluate the

local measures using some form of restricted randomization, rather than the
complete or conditional forms of randomization which are invalid under
global spatial autocorrelation. For example, Fortin and Jacquez (2000)
suggest performing randomizations that maintain the same degree of global
spatial autocorrelation. Although they do not specify a procedure for doing
this, one possibility might be the conditional pixel swapping procedure
described by Liebisch et al. (2002). However, it is anticipated that there might
be situations where it would be difficult to obtain sufficient independent
realizations with the same global spatial autocorrelation.
The third strategy is to attempt to partition the study area into relatively

homogeneous subareas. This approach is based on the assumption that any
local anomalies will be at a different spatial scale to the global spatial
autocorrelation. Ord and Getis (2001) adopt this strategy in the development
of their test statistic, Oi, based on their G statistics. It seems particularly
appropriate when we may not have any clear idea about the number,
location, shape or size of the local anomalies. Our approach uses the same
strategy and also shares much in common with that used by Rogerson
(2002). The approach is as follows.
First, test for global spatial autocorrelation using global join-count

statistics. If these indicate that there is no significant global spatial
autocorrelation, apply the LICDs as illustrated in Sect. 3.5 However, if the
global join-counts reveal significant global spatial autocorrelation, perform
the following steps.

1. Use equation 1 to identify cells with excessively high and low counts for a
specified window size and nominal significance level a, under the
assumption of no global spatial autocorrelation (henceforth referred to
as ‘‘significant cells’’). Potentially, significant cells may be of two kinds;
those that occur simply because they are in subareas where the proportion
of black cells is much greater/smaller than the global proportion (i.e., they
are artifacts of the global spatial autocorrelation) and those that represent
real local anomalies (independent of the existence of global spatial
autocorrelation). Regardless, all cells in the pattern now fall into one of
three classes, significant cells with high black counts, significant cells with
low black counts, and cells with typical (expected) black counts.

2. Examine the number and spatial distribution of the two types of
significant cells. Because of the multiple testing involved, even in a

5 If the window size is sufficiently large, the binomial test may be replaced with a one-sample

difference of proportions test.
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pattern with no global spatial autocorrelation (henceforth referred to as a
‘‘random pattern’’), we might expect to find a total of approximately na
significant cells. While it is impossible to say anything about the spatial
distribution of such cells, this knowledge can be obtained by simulating
random patterns with the same number of black cells as the pattern being
analyzed.6

3. Identify clumps of x significant cells for which the probability of observing
a clump of size at least x cells is <0.05 in a random pattern (henceforth
referred to as ‘‘significant clumps’’).

4. Count the number of black cells in each significant clump and in the
remainder of the study area not covered by significant clumps and
compute the probability of finding a black cell in each of these subregions.

5. Evaluate the local composition using the additive binomial rather than the
simple binomial in Eq. (1). The additive binomial is given by

Pr X ¼ xð Þ ¼
Xm

i¼1
ai

r
x

� �
px

bi
1� pbið Þr�x ð2Þ

where r and x are the same as in Eq. (1), m is the number of subregions
covering the window, ai is the proportion of the window covered by
subregion i, and pbi is the proportion of black cells in subregion i.

We illustrate this procedure using two patterns, one in which there is global
autocorrelation but no local anomalies, the other with global spatial
autocorrelation and an anomalous subregion. The former situation is shown
in Fig. 5. While this pattern has the same number of black cells as the pattern
in Fig. 1, the black cells are located according to an inhomogeneous planar
Poisson process in which the probability of receiving a black cell declines
with distance from the left edge of the study region. As expected, global join-
count statistics identify significant positive global spatial autocorrelation
associated with a clustering of black cells (z b=bð Þ ¼ 2:473; z w=wð Þ ¼ 1:912;
z b=wð Þ ¼ �2:327). Thus, we undertake the five steps described above.
Figures 6, 7, and 8, show the significant cells, as defined in step 1, for 3� 3,

5� 5, and 7� 7 windows, respectively, using a nominal significance level of
a ¼ 0:05. For the 3� 3 windows (see Fig. 6), step 1 identifies 19 cells with
significantly high black counts. To implement step 2, we ran 10,000
simulations of random patterns with the same proportion of black cells as
the pattern in Fig. 5 (hereafter referred to as the ‘‘random simulations’’). No
occurrences with a total of 19 or more significant cells were found in these
random simulations. Further, the 19 significant cells form two clumps of size
five and fourteen. In the random simulations, given that there is a at least one
significant cell7, the probabilities of finding a clump of 5 or more, or 14 or
more significant cells are 0.044185 and 0.000083, respectively. Following step
3, we thus conclude that the 19 cells represent two significant clumps. The

6 However, Ahuja and Schacter (1983, Chap. 2) do report some limited results for the

number of clumps in a random pattern on a 100� 100 square grid.

7 In the random simulations, for a 3� 3 window, the probability of observing no significant

cells is ’0.2432. For a 5� 5 window the probability of finding no significant cells with

excessively high and low black counts is ’0.3371 and ’0.3884, respectively. The corresponding
probabilities for a 7� 7 window are ’0.5128 and ’0.4653, respectively.
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original pattern has now been subdivided into three subregions, two clumps
(A and B) of significantly high black counts, and the remainder (C). In
accordance with step 4, we calculate the probability of a black cell in regions
A, B, and C. These probabilities are 0.800, 0.786, and 0.211, respectively
(recall the global probability of finding a black cell is 0.254). Finally, in step
5, we use these probabilities in Eq. (2) to evaluate the local composition. The
results indicate that none of the counts for the cells in the pattern are
significant at a nominal significance level of a ¼ 0:05.
For the 5� 5 windows (see Fig. 7), step 1 identifies 38 cells with

significantly high black counts and 20 with significantly low counts. In the
random simulations, no occurrence of 38 or more cells with significantly high
counts was found, while the probability of finding 20 or more cells with
significantly low counts is 0.001300. Both the cells with significantly high
black counts and those with significantly low counts form single clumps. No
clump of 38 significantly high counts was found in the random simulations,
while the probability of finding a clump of significantly low counts of at least
20 cells is 0.001298. We conclude that each of these may be considered a
significant clump, so that the pattern is now subdivided into three regions,
clump A, clump B, and the remainder C. The probability of finding a black
cell in each of these three regions is 0.553, 0, and 0.222, respectively. Using

Fig. 5. Pattern created by an inhomogeneous planar Poisson process (probability (black) =

0.254)
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these values in Eq. (2) reveals that none of the counts can be considered
either significantly high or low.
For the 7� 7 windows (see Fig. 8), there are 49 and 40 cells with

significantly high and low black counts, respectively. The 49 significantly
high black counts form a single clump. No occurrence of this kind was found
in the random simulations and thus this is considered a significant clump
(clump A). The 40 significantly low counts form a clump of 38 cells and two
isolated cells. No occurrence of 40 or more significant cells (and thus a clump
of size 40 or more) occurred in the random simulations. However, the
probability of at least an isolated significant cell with a low count is 0.469075.
Consequently, clump B is considered significant while cells C and D are not.
This results in three sub areas, clumps A and B, and the remainder E, with
the associated probabilities of a black cell being 0.633, 0.026, and 0.195,
respectively. Using these probabilities none of the cells are significant. Note
that cells C and D with counts of 2 black cells, which were significant using

Fig. 6. Location of cells for which the number of black cells x in a 3� 3 window centred on the

cell have probabilities Pr X � xð Þ or Pr X � xð Þ < 0:05 under the null hypothesis of no global

spatial autocorrelation
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the global probability (pb ¼ 0:254), are no longer significant because of the
lower values of pb (¼ 0.195 or 0.026) in their vicinity when the pattern is
partitioned into three subregions. Thus, our procedure indicates that the
pattern in Fig. 5 shows no local anomalies at any of the three window sizes
examined, which is consistent with our knowledge of how the pattern was
generated.
In the second example, we adjust the pattern in Fig. 5 to create an

anomaly. We do this by moving six black cells from location A in the higher
density (left hand side) to location B in the lower density (right hand side) as
shown in Fig. 9. This has the effect of creating a small anomalous region of
black cells in the vicinity of B. It also reduces the clustering of black cells so
that the join count statistics are now z b=bð Þ ¼ 1:9976; z w=wð Þ ¼ 1:4948;
z b=wð Þ ¼ �1:8514, although the first of these is still significant at a ¼ 0:05 .
Figures 10, 11, and 12, show the significant cells, as defined in step 1 above,

for 3� 3; 5� 5, and 7� 7 windows, respectively, using a nominal signifi-
cance level of a ¼ 0:05. For the 3� 3 windows (see Fig. 10), step 1 identifies

Fig. 7. Location of cells for which the number of black cells x in a 5� 5 window centred on the

cell have probabilities Pr X � xð Þ or Pr X � xð Þ < 0:05 under the null hypothesis of no global

spatial autocorrelation
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two clumps of cells with significantly high black counts, A, in the higher
density area, with 14 cells and B, focused on the anomaly, with two cells. In
the random simulations, given that there is at least one significant cell, the
probabilities of finding a clump of 2 or more, or 14 or more significant cells
are 0.445019 and 0.000083, respectively. In view of this, we retain only A as a
significant clump, so that the pattern is divided into two subregions, A with
pb ¼ 0:786 and the remainder with pb ¼ 0:223. Using these probabilities in
Eq. (2), reveals that only the two cells in region B are now significant.
For the 5� 5 windows (see Fig. 11), step 1 identifies a single clump of 23

cells with significantly high black counts and a single clump of 9 cells with
significantly low counts. In the random simulations, the probabilities of
finding these occurrences were 0.000797 and 0.045800, respectively and so we
conclude that each of these may be considered a significant clump. Thus, the

Fig. 8. Location of cells for which the number of black cells x in a 7� 7 window centred on the

cell have probabilities Pr X � xð Þ or Pr X � xð Þ < 0:05 under the null hypothesis of no global

spatial autocorrelation
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pattern is subdivided into three regions, clump A, clump B, and the remainder
C. The probability of finding a black cell in each of these three regions is
0.609, 0, and 0.228, respectively. Using these values in Eq. (2) reveals that
none of the counts can be considered either significantly high or low.
For the 7� 7 windows (see Fig. 12), there is a single clump of 30 cells with

significantly high counts and three clumps, of sizes 19, 1 and 1, with
significantly low black counts. Since the associated probabilities for these
events in the random simulations are 0.001737, 0, 012433, and 0.469075,
respectively, only clumps A and B are considered significant clumps. This
results in three subareas, clumps A and B, and the remainder E, with the
associated probabilities of a black cell being 0.633, 0.053, and 0.217,
respectively. Using these probabilities, none of the cells are significant.
Collectively, the results from the three window sizes suggest that our

procedure is capable of identifying the local anomaly at the appropriate scale
(i.e., only for the 3� 3 window).

5 Conclusions

This paper has described a procedure for extending local statistics to
categorical data. Our approach is based on the notion that there are two

Fig. 9. Pattern created by a modified inhomogeneous planar Poisson process (probability

(black)=0.254)
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fundamental characteristics of categorical data, composition and configura-
tion. Further, it is argued that, when considered locally, the latter should be
measured conditionally with respect to the former. The approach was
illustrated using a small, empirical data set and an ad hoc procedure was
developed to deal with the impact of global spatial autocorrelation on the
local statistics. However, a number of issues remain for further consider-
ation. These are of two kinds, those related to the specific ad hoc test for
dealing with global spatial autocorrelation and those related to tests for
categorical spatial data in general. We consider the former first.
The implementation of step 1 for the ad hoc procedure requires the

selection of a nominal significance level, which, in turn, influences the
subsequent steps of the test. In this paper, a value of 0.05 was selected and so
it would be interesting to examine how the choice of other values relates to
the power of the test. Such investigations should also consider the influence
of the size of the study area.
A more subtle issue arises in step 5 where the evaluation requires the

specification of the parameters for the additive binomial equation. In order
to implement this step, these are estimated using the observed values.
However, since the empirical pattern results from a stochastic process, the

Fig. 10. Location of cells for which the number of black cells x in a 3� 3 window centred on the

cell have probabilities Pr X � xð Þ or Pr X � xð Þ < 0:05 under the null hypothesis of no global

spatial autocorrelation
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true values are actually variable rather than fixed quantities. Thus, any
inference made in step 5 should be considered conditional on the observed
values.
With regard to more general issues, first of all, we have only considered

binary data on regular lattices. In theory, there is no obstacle to extending
the approach to irregular lattices, although ‘‘windows’’ will need to be
defined in terms of spatial adjacency lags or distance, which means that
they will be of variable size. Further, if they are defined in terms of lags,
first order windows will typically be smaller in size than the smallest regular
window (3� 3) used in this paper, containing on average about six cells.
This will inhibit examining both local composition and configuration at this
scale.8

Consideration of multinomial data means that we need to replace the
binomial model in Eq. (1) with the multinomial one. This is probably not
worthwhile for small data sets since the increasing number of categories
makes it less likely to identify distinctive events. However, it does seem

Fig. 11. Location of cells for which the number of black cells x in a 5� 5 window centred on the

cell have probabilities Pr X � xð Þ or Pr X � xð Þ < 0:05 under the null hypothesis of no global

spatial autocorrelation

8 For example, for a 3� 3 window in a regular lattice, of the 30 possible outcomes for local

configuration (0-9 black cells, b/b, w/w, b/w counts) only 4 yield significant events (i.e., p < 0.05).
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appropriate if the approach is applied to large data sets such as remotely
sensed imagery (Griffith 2002). Such large data sets may also allow for the
use of alternative ways of partitioning the study region into quasi-
homogeneous subareas when global spatial autocorrelation is present.
Possible candidates include multifractal analysis (Milne 1991) or local
semivariance analysis (Aldstadt and Getis 2002).
Although there seems little choice in terms of how local composition is

measured, there are many other possibilities for measuring local connectivity
besides the local join-counts used here. These include various measures of
complexity developed in cartography (Monmonier 1974; Muller 1976;
MacEachern 1985; Bregt and Wopereis 1990; Johnsson 1995) and measures
of configuration developed in landscape ecology (Haines-Young and
Chopping 1996; Frohn 1998; He et al. 2000). Indeed, the computation of

Fig. 12. Location of cells for which the number of black cells x in a 7� 7 window centred on the

cell have probabilities Pr X � xð Þ or Pr X � xð Þ < 0:05 under the null hypothesis of no global

spatial autocorrelation
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multiple measures for a single data set may provide additional insight in the
context of exploratory spatial data analysis.
Consideration also needs to be given to the development of local measures

for multivariate categorical data sets. However, this is currently inhibited by
the lack of effective global measures for such data, although the work by
Wartenberg (1985) and Lee (2001) are important steps in this direction. In
the meantime, an interim solution has been proposed by Sokal et al. (1998)
who suggest computing local measures for each variable, ranking these, and
then determining a summary rank for each data site.
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