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Abstract. The cost functions used to form forecasts in practice may be quite dif-
ferent than the squared costs that is often assumed in forecast theory. The impact
on evaluation procedures is determined and simple properties for the derivate of
the cost function of the errors are found to provide simple tests of optimality.
For a very limited class of situations are forecasts based on conditional means
optimal, generally, the econometricians needs to provide the whole conditional
predicted distribution. Implications for multi-step forecasts and the combination
of forecasts are briefly considered.
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1. Basics

Suppose that, standing at timen, one is interested in forecasting the properties
of the vector random variablesXn+h that consists ofm components and whose
value will be determined at timen +h. Thus, at least in theory, the value ofXn+h

will be known at timen + h, wheren is now andh is the forecast horizon. The
information set that will be used to characterize the properties ofXn+h will be
denotedIn and will consist only of information available initially at time n and
certainly not of information available at a later time. The choice of information
is an important one and is discussed further in Sect. 5.

As Xn+h is a random variable, when viewed at time n as occurring in the
future, it is best described by a distribution function and the appropriate one is
its conditional cumulative distribution function, Prob(Xn+h ≤ x | In), which will
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sometimes be denotedPn, h(x) when In is known. For simplicity this will also
be called the “predicted distribution function.” OncePn, h(x) is known all the
conditional properties ofXn+h given In are known, such as conditional moments,
quantiles, and joint confidence intervals.

For now, just the casem = 1 will be considered so thatXn+h is univariate.
Frequently it is convenient to have a point forecastfn, h of Xn+h, which is a single
point that in some sense best represents the future occurring random variable. If
fn, h is chosen, there will be a forecast error

en, h = Xn+h − fn, h .

Note thatfn, h is known at timen, but en,h is not know untiln+h. If decisions are
based on the forecast, the fact that there are errors will mean that the decisions
will be sub-optimal relative to the perfect forecastability situation and so costs
will arise. If one assumes that these costs are a function of just the size and sign
of the error, denotedC(e), then one would expect thatC(o) = 0, so that there
is no cost if there is no error and the function will be non-decreasing as one
moves away frome = 0 on each side, i.e.,C(e) > 0, e /= 0, C ′(e) ≥ 0, e > 0,
C ′(e) ≤ 0, e< 0, whereC ′(e) is the derivative, which will be assumed to exist
for all e. Cost functions are discussed further in Sect. 3.

The optimum point forecastfn, h is chosen to minimizeE[C(Xn+h − fn, h | In]
i.e.

min
fn, h

∫
C(x − fn, h)dPn, h(x) .

Taking derivatives with respect tofn, h and assuming that everything is well
behaved, gives the first order condition

∫
C ′(x − fn, h)dPn, h(x) = 0 (1.1)

which has to be solved forfn, h. Some examples in particular cases are discussed
in Sect. 4.

2. Properties for the errors from optimum forecasts

At this stage, only the one-step forecast will be considered, so thath = 1, and
the subscripth will be dropped. Suppose that the solution to (1.1), that is the
optimal one-step point forecast using the cost functionC(e) based onIn is f 0

n, h.
The resulting forecast errore0

n,1 = Xn+1 − f 0
n,1, with corresponding costC ′(e0

n,1).
Substituting into (1.1) gives

∫
C ′(e0

n,1)dPn(e) = 0 , (2.1)

wherePn(e) is the conditional distribution ofen,1 which is immediately derived
from Pn(x), the conditional distribution ofXn+1 given thaten,1 = Xn+1 − f 0

n,1 and
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f 0
n,1 is just a constant givenIn as it is a function of the contents ofIn. Define the

random variable
Zn+1 = C ′(e0

n,1) (2.2)

which is the key variable, as it derives from the minimization leading to (1.1).
Now (2.1) says that

E[Zn+1 | In] = 0

and it immediately follows that

E[Zn+1k(wn) | In] = 0 , (2.3)

wherewn is any (finite) random variable constructed from the contents ofIn

andk( ) is any (finite) function, as conditionally onIn, k(wn) will appear to be a
constant within the expectation. Consequently, if one formed a regression

Zn+1 = α + βk(wn) + error (2.4)

one should expect bothα andβ to be zero ifZn+1 is really given by (2.2). As
laggede0

n−j ,1 will be in In, as will be pastxn−j , fn−j values, it further follows
that

corr(Zn+1,Zn+1−j ) = 0 all j /= 0 (2.5)

so that theZn series will be zero mean, white noise. Further

corr(Zn+1,e
0
n−j ,1) = 0 j > 0

and if one ran a regression

Zn+1 = α + β1k1(Zn) + β2k2(fn,1) + β3k3(Xn) + en+1 (2.6)

for any functionsk1, k2, k3 one should expectα = 0 and all betas to be zero.
Some important generalizations are easily obtained. The results have been

stated for a one step-horizon,h = 1, but hold for general horizonh in most cases.
The one-step predictive distributionP(Xn+1 | In) = Pn(x) ≡ Pn,1(x) is used to find
the two-step predicted distribution by noting thatXn+2 | In is (Xn+2 | In+1) | In.

P(Xn+2 | In) = E[P(Xn+2 | In+1) | In] = Pn,2(x)

and similarly for generalh.
The optimum forecast is denotedf 0

n, h with corresponding error

e0
n, h = Xn+h − f 0

n,h

and defineZ (h)
n+h = C ′(e0

n,h) from (2.2) extended. This variable will have condi-
tional mean zero, and (2.3) becomes

E
[
Z (h)

n+hk(wn) | In

]
= 0 . (2.3’)

It should be noted thate0
n,k is not in In for k = 1,2, . . . ,h − 1 and so (2.5)

becomes
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corr
(

Z (h)
n+h+1,Z

(h)
n+h+1−j

)
= 0 all j ≥ h (2.5’)

but is not necessarily zero forj ≤ h − 1. ThusZ (k)
n+h has the same autocorre-

lations as anMA(h − 1) process (which, of course, does not mean that it is such
a process!).

The section has been considering forecasts ofXn+h but one might be interested
in forecastingYn+h = g(Xn+h) for some given function g ( ), such as the log,
exponential, or square functions. If the predicted cumulative distribution function
of Xn+h is PX

n,h(x) then the corresponding predicted CDF ofYn+h is

PY
n, h = PX

n, h(q(x)) , (2.7)

whereq(x) = g−1(x) assumingg( ) is a one-to-one transformation over the range
of Xt . Thus, if Xt is a positive process the inverse functions of log, exponential,
and square are exponential, log and square root respectively. If there is no one-
to-one correspondence, the relationship betweenPX (x) andPY (y) still exists but
is more complicated. Thus, at least in theory, the foregoing theory will apply to
any well behaved functionYt = g(Xt ) as one is now simply forecasting the mean
of Yt . However, it would be strange behavior to use the same cost function for
Xn+h andYn+h.

Suppose that the cost function used to forecastg(Xn+1) is Cg(e), then one
needs to solve

minimize
f g

∫
Cg[g(Xn+1) − f g0

n,1]dPn(x) ,

where f g0
n,1 is the optimum one-step point forecast ofg(xn+1). The first-order

equation is thus to solve∫
Cg

′ [g(Xn+1) − f g0
n,1

]
dPn(x) = 1

for f gn,1. The one-step forecast error will be

eg0
n,1 = g(Xn+1) − f g0

n,1 .

Denoting Zgn+1 = Cg
′(eg0

n,1) then equations (2.3), (2.4), (2.5) still hold with
Zgn+1 replacingZn+1.

3. Cost functions

Cost will arise if forecasting error results in sub-optimal decisions, and so func-
tions of the formC(e) will be considered. In fact, costs could depend on other
variables or quantities, such asXn, the value of the process, or the state of the
economy, such as a measure of the business cycle, or timen, but just the simple
form will be considered for convenience.

The properties required for a cost function are:
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C(0) = 0 no error, no cost
min

e
C(e) = 0 SoC(e) ≥ 0

C(e) is monotonic non-decreasing ase moves away from zero
i.e. C(e1) ≥ C(e2) if e1 > e2 > 0 and if e1 < e2 < 0.

There are three useful properties that a cost function may have:

Symmetry(property PS)
C(e) is symmetric ifC(−e) = C(e).

Homogeneous(property PH)
C(e) is homogeneous ifC(ae) = h(a)C(e) for some positive functionh(a).

Differentiability to order k (propertyPDk)
If D is differentiation with respect toe, thenC(e) hadPDk if DhC(e) is possible
for all h ≤ k and for alle in some specified range.

If a cost function isPDk except at a single point, saye = 0, there will exist
another positive function which isPDk for all e which is arbitrarily close to it
for all e /= 0. In this case the original cost function will be considered to bePDk .
The problem of non-differentiability at a known point is just a technicality.

Some examples of cost functions, using the indicator functionI + = 1 if x ≥ 0,
= 0 if x < 0 are:

(a) (a + bI +) | x |θ, θ > 0, a ≥ 0,b ≥ 0 (3.1)

This group includes the familiar squared cost function, ifθ = 2, b = 0 and also
the “lin-lin” function (according to Christoffersen and Diebold 1994) ifθ = 1.
These functions arePDk , for any k except ate = 0, they have the propertyPH
and arePS if b = 0.

(b) Let L(x, α) = exp(αx) − αx − 1 (3.2)

which is called the Linex function and was introduced by Varian (1974), and
define the “double Linex cost function” by

C(e) = L(e, α) + L(e,−β). (3.3)

Note thatL(e, α) is not symmetric and, ifα > 0, is exponential fore positive and
linear in e for e negative. The double linex is not symmetric ifα > 0, β > 0,
α /= β, but is exponential for bothe positive and negative. Ifα = β the double
linex is symmetric. This class is alwaysPDk , all k and alle but are notPH .

It is very easy to generate further examples of cost functions. IfC1(e),C2(e)
are both cost functions then

(i) ϕ1(e) = aC1(e) + bC2(e), a ≥ 0, b ≥ 0 will be a cost function.
(ii) ϕ2(e) = [C1(e)]a[C2(e)]ba > 0, b > 0 will be a cost function.
(iii) ϕ3(e) = I +C1(e) + (1− I +)C2(e) is a cost function, havingC1(e) for positive

e andC2(e) for negative.
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(iv) If ψ(e) is a positive monotonic, non-decreasing function on (o,∞) with
ψ(o) finite, then

ϕ4(e) = ψ(C(e)) − ψ(o)

is a cost function ifC(e) is a cost function. Note thatψ(e) cannot be loge,
asψ(0) is infinite.

The overwhelming majority of forecast work uses the cost functionC(e) =
ae2, a > 0, largely for mathematical convenience. In practice not a lot is known
about cost functions but an assumption of symmetry is probably a poor one, as
it is easy to think of examples of non-symmetric functions, the cost of arriving
10 minutes early for an airplane is different from arriving 10 minutes later; the
cost of having a computer that is 10% too small for the typical task is different
than being 10% too big; the cost of booking a lecture room that is 20 seats too
big for your class is different from that of a room that is 20 seats too small, and
so forth.

It is also implausible to use the same cost function for point forecasts ofXn+1

and of g(Xn+1) where g( ) is some function, such as the log or the square, if
one is interesting in forecasting a form of volatility, say, and yet this commonly
occurs in academic reports, and in applied professional reports.

4. Some special cases of optimum forecasts

There are a number of special cases in which particular forms for the optimum
point forecastfn occur. The conditional distribution ofXn+1 given In will be
writtenP(x, µn, αn) whereµn is the condition mean andαn is the (vector of) other
conditional parameters. The conditional distribution will be said to be symmetric
about the mean ifdP

dx (x − µn,o, αn) = dP
dx (−(x − µn),o, αn) for all x where dP

dx
represents the probability density function corresponding toP. It was shown in
Granger (1969) that ifC(e) is symmetric and the distributionP(x) is symmetric
about the meanµn, thenfn = µn providedeither

(i) C(e) is strictly monotonic increasing ase goes away fromo (rather than just
non-decreasing;

or
(ii) dP/dx is unimodal.

It is possible that other conditions will also ensure that the optimal forecast equals
the conditional mean. The same paper gives an example showing that having both
C(e) anddP/dx symmetric is not sufficient to get this result.

It is possible forfn = µn under weaker conditions, for example ifC(e) = ae2

then the optimal forecast is alwaysµn regardless of the shape of the distribution
or of the properties ofαn.

It is also often difficult to get specific results for particular cost functions. An
exception is the “lin lin” function

C(e) = (a + b)x x > 0 a ≥ 0,b ≥ 0
= a | x | x < 0
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which can be shown to result in the equation

P(fn, µn, αn) = (a + b)/(2a + b) (4.1)

so that if a = b, fn becomes the conditional median. This will, of course, be
equal to the conditional mean if the distribution is symmetric.

For the symmetric double Linex function

C(e) = exp(θe) + exp(−θe) − 2

the solution is found to be

fn = µn + 1/2θ log(Mn(θ)/Mn(−θ)) , (4.2)

whereMn(θ) =
∫

eθxdP(x,o, αn) is the conditional central moment generating
function and will be a function ofαn.

It is possible to get a few more results by assuming thatXn+1 is a location/scale
process, so that

Xn+1 = µn + σnεn+1 (4.3)

and the distribution function ofεn+1 is independent ofIn, so that the conditional
distribution of εn+1 on In equals the unconditional distribution. The equation
being solved is then

∫
C ′(x − fn)dP(x, µn, σn) = 0

i .e.
∫

C ′(x − f n)dP(x − µn,o, σn) = 0 ,

wheref n = fn−µn, x = x−µn and now when one solves this equation, necessarily

fn = µn + θ(σn) (4.4)

for some functionθ( ). If the cost function is homogeneous, one gets a more
specific results, as the original cost being minimized is

C(Xn+1 − fn) = C

[
σn

(
Xn+1 − µn

σn
− fn − µn

σn

)]

= h(σn)C1[εn+1 − f̃n]

where f̃n = (fn − µn)/σn. The equation to solve becomes
∫

C ′
1[ε− f̃n]dP(ε)

and the solution is a constant, independent ofIn, depending just on the form of
C1(e), so that

fn = µn + kσn (4.5)

for some constantk.
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It is interesting to note that ifσn= constant, so that the process is homoskedas-
tic, in many of these special cases the optimum forecast takes the formµn +
constant.

Further progress can be made by assuming a particular distributional form
for P(x, µn, αn) the typical assumption being normality. IfXn+1 is Gaussian then
it will be locational/scale as in (4.3) withεn+1 ∼ N (0,1) and so (4.4) will hold,
as shown by Christoffersen and Diebold (1994). For example, they show that if
one has a single Linex cost function (3.2) then

fn = µn + ασ2
n/2 . (4.6)

Thus, in this case one adds a constant times the conditional variance rather than
the conditional standard deviation as in (4.5).

In most cases it is not possible to derive a closed solution for the optimal
forecast, but numerical solutions will certainly be available, as discussed by
Christoffersen and Diebold (1994).

There are a number of important implications that can be derived from these
results. Some can be stated in terms of the modeling strategy selected by the
researcher in terms of the forecast provided. Only the one- step case will be
considered. Two extremes will be:

(i) Provide an estimate of the complete predicted cumulative distribution func-
tion Pn(x) ≡ prob(Xn+1 ≤ x | in) or its corresponding predicted probability
function pn(x)

wheredPn(x) = pn(x)dx.
If this is provided, then point forecasts (and corresponding confidence inter-
vals) can be derived for any function of the process and for any cost function,
and in theory this can be extended to any horizon.

(ii) Provide an estimate only for the conditional meanµn. If one is interested
only in forecastingXn+1 whilst using a squared cost functionae2, then the
optimum forecast is justµn. However, a forecast confidence interval is not
available.

Between these two extremes are a variety of partial models, in which some
aspects ofPn(x) are modeled; others we merely assumed. An example is to
assumeXn+1 is a location/scale process (4.3), to then provide models or approxi-
mations forµn andσn and to then just assume thatεn+1 is iid N(0, 1). If actually
εn+1 is not Gaussian, this will be a partial model that may well approximate
Pn(x) in some features but not in others. A better strategy may be to check if
Xn+1−µ̂n

σ̂n
appears to be iid, independent ofIn and, if so, to find its distribution. The

extent that mis-specification affects forecasts will depend on the type of partial
model used and on the cost function involved. In all cases where the optimum
forecast isµn, such as when the cost function is symmetric and monotonic and
Pn(x) is symmetric aboutµn, then a model that just produces the conditional
mean will produce the optimal forecast. If the cost function is homogeneous
then a model based on a location/scale assumption should produce a relevant
point forecast. If the correct distribution ofεn+1 is given, confidence intervals
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will also result. However, if a single or double linex cost function is used, then
a complete specification is required.

Discussions in economic methodology often mention the ability of an eco-
nomic theory to “predict” or forecast. Whereas this concept is not often related
to ideas of evaluation, the relevant cost function does need consideration. This
is particularly true when discussing how to evaluate rational expectations theory.
For example, the result that (2.1) says

E[C ′(eo
n,1) | In] = 0

implies that the regression

C ′(xn+1 − fn,1) = a + bfn,1 + εn+1

will give a = b = 0 andεt+1 a white noise. IfC(e) = e2, this translates into the
regression

Xn+1 = a + βfn,1 + εn+1 (4.7)

and one should expecta = 0, β = 1. This regression is often used as a test that
“expectations are rational” (or “efficient” in an earlier terminology) but (4.7),
with its constraints, will not necessarily hold for other cost functions.

5. Information set

The contents of the information set used to form forecasts is at the choice of
the forecaster, and it is often an important choice. IfIn consists just of observed
series, its contents can be denoted

In : Xn−j ,Wi ,n−j , i = 1, . . . , l , j ≥ 0 .

If In contains the past of the series being forecast it will be called “proper,”
and thenIn will effectively contain past forecast errors, which is important when
considering the properties of errors from optimum forecasts.

If l = 0, so thatIn consists only of past and presentX ’s, the forecasts are
called univariate so thatXn+h is forecast just from its own past. Models using
this information set are well developed and provide useful comparison forecasts
against those arising from larger information sets. Ifl > 0, so thatIn includes
other series, one has a multivariate forecast. Asl is increased, one would expect
to achieve better forecasts, measured in terms of lower expected cost particularly
if one keeps adding relevant variables. The difficulty is knowing what variable
is relevant and possibly omitting some particularly important variable or group
of variables, although economic theory may be helpful in this respect.

If the average cost tends to zero asm becomes large, or perhaps even for
a finite value ofm, then the processXt is (effectively) deterministic and thus
perfectly forecastable, at least for the one step,h = 1, horizon. Whether or
not one believes that it is possible to continually improve forecasts by adding
further information is largely personal and depends on ones background. Most
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statisticians and econometricians would not expect processes to be deterministic
whereas physicists and meteorologists would take the opposite viewpoint, at least
asymptotically as the sample size becomes very large.

6. Comparing forecasts

Let Pn(x) ≡ P(x, µn, αn) be the true predicted c.d.f.Xn+1 given In, which leads
to the forecastfn if a cost functionC(e) is involved, as discussed in Sects.
1 and 2. Suppose that an alternative theory or model exists which proposes a
c.d.f. Mn(x) which is an approximation forPn(x). It will be convenient to write
Mn(x) ≡ Mn(x, µ∗

n, α
∗
n). If one uses this approximation to minimize

∫
C(Xn+1 − f ∗

n )dMn

resulting in the forecastf ∗
n , and thus forecast errorse∗

n = Xn+1 − f ∗
n then

these errors will have actual distributionP(e, µn − f ∗
n , αn) ≡ P∗

n (e). The er-
rors from the optimal forecastsf 0

n will produce errorse0
n with distribution

P(e, µn − f 0
n , αn) ≡ Pn(e). If forecastsf 0 and f ∗ are produced, the errorse0

and e∗ will be observed over time and their conditional cumulative histograms
will eventually approximatePn(e) andP∗

n (e) providedIn can fall into just a lim-
ited number of “states.” The obvious question becomes how one can compare
these two cumulative distributions. A potentially important result is

Theorem 1.
E[C(e0

n) | In] ≤ E[C(e∗
n ) | In] (6.1)

for every cost function.

Proof. The result states
∫

C
(
Xn+1 − f 0

n

)
dPn(e) ≤

∫
C

(
Xn+1 − f ∗

n

)
dPn(e)

which holds obviously asf 0
n is chosen to minimize the first integral and any

quantity f ∗
n will clearly produce costs that are larger, on average. The result

immediately holds also for general horizonh and for the point forecast of any
well behaved functiong(Xn+h). Thus, the theorem says that, on average, point
forecasts of any function of any horizon of theXn process using any cost function
are superior if one uses the true predicted c.d.f. rather than some approximation
to it. The result is proved both in Granger and Pesaran (1996) and in Diebold
et al. (1996) in the same way. A weakness of the result is that the theorem
gives no indication of the amount of the benefit from usingPn(e) rather than
its approximationP∗

n (e). It should be noted that the quality of the sub-optimal
forecast errors have to be judged in terms of their actual distributionP∗

n (e, µn −
f ∗
n , αn) rather than the error distribution suggested by the theoryMn(e, µ∗

n −
f ∗
n , α

∗
n), i.e. P∗

n (e) rather thanMn(e). However, both of these quantities will,
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potentially, be observable, and thus can be compared, whereas in practicePn(e)
is not generally observable, or estimable. [Note that ase∗

t are observable so
P∗

n (e) can be estimated andMn(e) is the distribution of the errors predicted by
the model in the post-sample.]

The theorem does not take into account the fact that the errors from a pair
of forecasts of the same quantity are likely to be affected by the same outside
events and so will be jointly distributed. Some on-going research involving the
evaluation of forecasts using stochastic dominance concepts can make use of this
information.

7. Some further results and generalization

7.1. Multi-step forecasting with general cost functions

To consider all costs of the formE[C(xt+1 − ft ) | It ] one needs the one-step
predicted distributionP(xt+1 | It ) and similarly for costs occurring further into the
future one needs the h-step predicted distributionP(xt+h | It ). If there is general
stationarity (not just covariance stationarity) theP(xt+h | It ) will be similar to
P(xt+1 | It−h+1) and this is easily determined from the one-step predicted density
by marginalizing out the terms inIt but not in It−h+1.

However, these predicted distributions will not be able to cope with cost
functions such asC(xt+k − xt+k−1 − ft ) or most functions of two or more futures
terms in thex series. For such cost functions one needs joint predicted distribu-
tions such asP(xt+k , xt+k−1 | It ) and obvious generalizations. To cover all cases,
one needsP(xt+k , k = 1, . . . ,M | It ) for some appropriate M. This point has
previously been made by Clements and Hendry (1993) but in a different form.

7.2. Multi-step forecasting with location-scale processes

Consider the processes generated by

Xt =
∞∑
j =0

cj σt−1−j εt−j , c0 = 1

whereσt is a process known at timet , and will be considered to be a function of
the information setIt . Further, suppose thatεt is iid, independent ofIt . It follows
that

Xt+1 = µt + σtεt+1 ,

whereµt = E[xt+1 | It ] =
∑∞

j =1 cj σt−j εt+1−j and so the results of (4.4) and (4.5)
hold for location-scale processes forh = 1. However, with general values ofh
one gets

fn, h = E[xn+h | In] =
∞∑
j =h

cnσn+h−j εn+h+1−j
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so thaten, h =
∑h−1

j =0 cj σn+h+j εn+h+1−j .
Thus xn+h = fn, h + en, h. Now en, h cannot generally be written in the form

SnWn+h whereWn+h is an iid process independent ofIn. If the ε’s are normally
distributed thenxn+h will be a location/scale process but this will not always be
the case and so results (4.4) and (4.5) will thus not be true for generalh even if
they do apply forh = 1.

7.3. Combining forecasts with general costs functions

Suppose that two point forecasts are available each point of timet , ft and gt .
We could ask if there is a simple combined forecastkt = θ1ft + θ2gt + θ3 which
would be superior to both. For a particular cost functionC , if the optimum pre-
dicted distribution function is used to minimize the conditional expectation of
E[C(xt+1 − θ1ft − θ2gt − θ3) | It ], thenθ1, θ2, θ3 will be chosen as functions ofIt

and the combined forecast will, generally, just become the better forecast. In par-
ticular, combining asks for constantsθ1, θ2 so that the unconditional expectation
of E[C] (or an estimate of it ) is minimized, i.e.

min
θ1,θ2

∑
t

C(xt+1 − θ1fn − θ2gt − θ3) .

Taking derivatives with respect to theθ’s and putting the results equal to
zero, give three first-order conditions that have to be solved for theθ’s, possibly
using a numerical technique. Using these optimum values for theθ’s, gives the
errors from the combined forecast

ekt+1 = xt+1 − k0
t

and with this notation, the first-order conditions gives

∑
t

C ′(ekt+1) = 0

∑
t

ft C
′(ekt+1) = 0

∑
t

gt C
′(ekt+1) = 0

Thus, writing Zt = C ′(ekt ) the estimated meanZt is zero, and the estimated
correlations betweenZt and ft and betweenZt and gt are both zero. These are
similar, but much weaker, forms of the results (2.3) and (2.5).

The discussion here has been for a specific linear combination, but a sim-
ilar analysis can handle a particular function that combines forecasts, such as
λ(ft , gt , ϕ) whenϕ is a set of parameters to be determined by minimizing

∑
C(xt+1 − λ(ft , gt , ϕ) .
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8. Brief literature review

An earlier paper on this topic was Granger (1964), which was greatly expanded in
Christoffersen and Diebold (1994) which both preceded and overlaps with some
of the results presented here. A more direct approach to evaluation using the
whole predictive distribution has been discussed by West (1996) and by Diebold
et al. (1996) An early specific contribution discussing asymmetric costs is by
Zellner (1986) There is a large literature on combining forecasts; as example is
given in the special issued on combining forecasts,Journal of Forecasting8, no.
3, 1989.
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