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Abstract. The cost functions used to form forecasts in practice may be quite dif-
ferent than the squared costs that is often assumed in forecast theory. The impact
on evaluation procedures is determined and simple properties for the derivate of
the cost function of the errors are found to provide simple tests of optimality.
For a very limited class of situations are forecasts based on conditional means
optimal, generally, the econometricians needs to provide the whole conditional
predicted distribution. Implications for multi-step forecasts and the combination
of forecasts are briefly considered.
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1. Basics

Suppose that, standing at tinme one is interested in forecasting the properties
of the vector random variables, ,;, that consists ofn components and whose
value will be determined at time+h. Thus, at least in theory, the value Xf,.,
will be known at timen + h, wheren is now andh is the forecast horizon. The
information set that will be used to characterize the propertieX @f will be
denotedl, and will consist only of information available initially at time n and
certainly not of information available at a later time. The choice of information
is an important one and is discussed further in Sect. 5.

As X,., is a random variable, when viewed at time n as occurring in the
future, it is best described by a distribution function and the appropriate one is
its conditional cumulative distribution function, Profa¢, < x | I), which will
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sometimes be denotde}, n(x) whenl, is known. For simplicity this will also
be called the “predicted distribution function.” On&g n(x) is known all the
conditional properties oK. givenl, are known, such as conditional moments,
guantiles, and joint confidence intervals.

For now, just the casen = 1 will be considered so th&X,., is univariate.
Frequently it is convenient to have a point foredast of Xn.n, which is a single
point that in some sense best represents the future occurring random variable. If
fn,n is chosen, there will be a forecast error

€n,h = Xn+h — fayh -

Note thatf, n is known at timen, bute, , is not know untiln+h. If decisions are
based on the forecast, the fact that there are errors will mean that the decisions
will be sub-optimal relative to the perfect forecastability situation and so costs
will arise. If one assumes that these costs are a function of just the size and sign
of the error, denoted (e), then one would expect th&(o) = 0, so that there
is no cost if there is no error and the function will be non-decreasing as one
moves away frone = 0 on each side, i.eC(e) > 0,e#0,C’(e) > 0,e > 0,
C’(e) <0, e < 0, whereC’'(e) is the derivative, which will be assumed to exist
for all e. Cost functions are discussed further in Sect. 3.

The optimum point forecad 1, is chosen to minimiz&[C (Xn+h — fn,n | In]
ie.

rfnin/C(x — fa,n)dPn, n(X) -
n,h

Taking derivatives with respect tfy , and assuming that everything is well
behaved, gives the first order condition

/C’(X — fn,n)dPy h(X) =0 (1.1)

which has to be solved fdp . Some examples in particular cases are discussed
in Sect. 4.

2. Properties for the errors from optimum forecasts

At this stage, only the one-step forecast will be considered, sohtkafl, and

the subscripth will be dropped. Suppose that the solution to (1.1), that is the
optimal one-step point forecast using the cost functiqe) based orl, is fn?h.

The resulting forecast err@ ; = X+1 — f2;, with corresponding cost’(e ,).
Substituting into (1.1) gives '

[ c@dpue) =o. (2.1)

whereP,(e) is the conditional distribution o, ; which is immediately derived
from Py(x), the conditional distribution oKy.1 given thate, 1 = Xq+1 — f,; and
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fn(fl is just a constant giveh, as it is a function of the contents &f. Define the
random variable
Zns1 = C/(er?,l) (2.2)

which is the key variable, as it derives from the minimization leading to (1.1).
Now (2.1) says that
E[Zy+1 | 1] =0

and it immediately follows that
E[Zns1k(wn) | 1n]=0, (2.3)

where wy, is any (finite) random variable constructed from the contents, of
andk() is any (finite) function, as conditionally dR, k(wn) will appear to be a
constant within the expectation. Consequently, if one formed a regression

Zn+1 = o+ BK(wy) + error (2.4)

one should expect both and 3 to be zero ifZ,.1 is really given by (2.2). As
Iaggede,?ﬂ-’1 will be in I,, as will be pasix,_j,f,—; values, it further follows
that

COIM(Zn+1,Zns1—j) =0 all j#0 (2.5)

so that theZ, series will be zero mean, white noise. Further
CONMZn+1,69 1) =0 | >0
and if one ran a regression
Zni1 = o+ B1ki(Zn) + B2Ka(fn 1) + B3ka(Xn) + €ns1 (2.6)

for any functionsky, ko, ks one should expect = 0 and all betas to be zero.
Some important generalizations are easily obtained. The results have been
stated for a one step-horizam= 1, but hold for general horizom in most cases.
The one-step predictive distributi®(Xs+1 | 1n) = Pn(X) = Py 1(X) is used to find
the two-step predicted distribution by noting th&t.2 | In is Xn+2 | In+1) | In.

P(Xns2 | In) = E[P(Xn+2 | Tn+1) | In] = Pn2(X)

and similarly for generah.
The optimum forecast is denoté,@h with corresponding error

0o _ 0
€, h = Xnen — T

and definezl) = C’(e?}) from (2.2) extended. This variable will have condi-
tional mean zero, and (2.3) becomes

E [z,f'&k(wn) | In} =0. (2.3)

It should be noted thaeﬁ’k isnotinl, fork =12 ...,h—1 and so (2.5)
becomes
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corr (28}, 280 ) =0 all j >h 2.5)

but is not necessarily zero for< h — 1. ThusZr?fj1 has the same autocorre-
lations as aMA(h — 1) process (which, of course, does not mean that it is such
a process!).

The section has been considering forecasts,af but one might be interested
in forecastingYn+h = g(Xn+h) for some given functio g (), such as the log,
exponential, or square functions. If the predicted cumulative distribution function
of X+ IS Pﬁ,fh(x) then the corresponding predicted CDFYgf, is

Py h=Prnax), (2.7)

whereq(x) = ¢g~(x) assumingy( ) is a one-to-one transformation over the range
of X;. Thus, ifX; is a positive process the inverse functions of log, exponential,
and square are exponential, log and square root respectively. If there is no one-
to-one correspondence, the relationship betw&fx) andPY (y) still exists but
is more complicated. Thus, at least in theory, the foregoing theory will apply to
any well behaved functiolt; = g(X;) as one is now simply forecasting the mean
of Y;. However, it would be strange behavior to use the same cost function for
Xn+h and Ynsn.

Suppose that the cost function used to foreggXh+1) is C4(€), then one
needs to solve

minfimize/ Cylg(Xne1) — fgn 1]dPh(X)
g

Wherefg,‘{l is the optimum one-step point forecast gf,+1). The first-order
equation is thus to solve

[ € o) ~ FaR.] o0 = 1.
for f gn.1. The one-step forecast error will be

egr?,l = g(Xn+1) — fgr?,l .

Denoting Zgn+1 = Cg’(eg,ﬂ’"l) then equations (2.3), (2.4), (2.5) still hold with
Z gn+1 replacingZp.1.

3. Cost functions

Cost will arise if forecasting error results in sub-optimal decisions, and so func-
tions of the formC(e) will be considered. In fact, costs could depend on other
variables or quantities, such g, the value of the process, or the state of the
economy, such as a measure of the business cycle, ontifet just the simple
form will be considered for convenience.

The properties required for a cost function are:
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Cc@O=0 no error, no cost
meinC(e):O SoC(e) >0
C(e) is monotonic non-decreasing asnoves away from zero

i.e.C(e) >C(e) if &g > >0andife; < & < 0.
There are three useful properties that a cost function may have:

Symmetryproperty PS)
C(e) is symmetric ifC(—e) = C(e).

Homogeneougproperty PH)
C(e) is homogeneous i€ (ae) = h(a)C(e) for some positive functioin(a).

Differentiability to order k (propertyPDy)
If D is differentiation with respect te, thenC (e) hadPDy if D"C (e) is possible
for all h < k and for alle in some specified range.

If a cost function isPDy except at a single point, sa&= 0, there will exist
another positive function which iBDy for all e which is arbitrarily close to it
for all e # 0. In this case the original cost function will be considered tébg.
The problem of non-differentiability at a known point is just a technicality.

Some examples of cost functions, using the indicator fundtion 1 if x > 0,
=0ifx <0 are:

(@ (a+bl*)|[x|°,6>0, a>0b>0 (3.1)

This group includes the familiar squared cost functiof,# 2,b = 0 and also
the “lin-lin” function (according to Christoffersen and Diebold 1994pif 1.
These functions arBDy, for anyk except ate = 0, they have the propertyH
and arePS if b =0.

(b) LetL(x,a)=explax) —ax —1 (3.2)

which is called the Linex function and was introduced by Varian (1974), and
define the “double Linex cost function” by

C(e) = L(e, ) + L(e, —). (3.3)

Note thatlL(e, ) is not symmetric and, if > 0, is exponential foe positive and
linear in e for e negative. The double linex is not symmetricaif> 0, 5 > 0,
a # (3, but is exponential for botle positive and negative. ik = 3 the double
linex is symmetric. This class is alway&Dy, all k and alle but are notPH.

It is very easy to generate further examples of cost functiornS; (€), C,(e)
are both cost functions then

(i) pi(e) =aCy(e) +bCy(e), a > 0, b > 0 will be a cost function.

(i) pa2(e) = [C1(e)]2[Ca(e)]Pa > 0, b > O will be a cost function.

(ii) p3(e) =17Cy(e)+(1—1*)Cy(e) is a cost function, havin@i(e) for positive
e and C;(e) for negative.
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(iv) If ¥(e) is a positive monotonic, non-decreasing function onocf) with
1(0) finite, then
pa(€) = P(C(e)) — ¥(0)
is a cost function ifC (e) is a cost function. Note that(e) cannot be lo@,
asy(0) is infinite.

The overwhelming majority of forecast work uses the cost funcde) =
a€?, a > 0, largely for mathematical convenience. In practice not a lot is known
about cost functions but an assumption of symmetry is probably a poor one, as
it is easy to think of examples of non-symmetric functions, the cost of arriving
10 minutes early for an airplane is different from arriving 10 minutes later; the
cost of having a computer that is 10% too small for the typical task is different
than being 10% too big; the cost of booking a lecture room that is 20 seats too
big for your class is different from that of a room that is 20 seats too small, and
so forth.

It is also implausible to use the same cost function for point forecasts.ef
and of g(Xn+1) whereg( ) is some function, such as the log or the square, if
one is interesting in forecasting a form of volatility, say, and yet this commonly
occurs in academic reports, and in applied professional reports.

4. Some special cases of optimum forecasts

There are a number of special cases in which particular forms for the optimum
point forecastf, occur. The conditional distribution oXn.1 given I, will be
written P(X, un, an) Whereuy, is the condition mean andl, is the (vector of) other
conditional parameters. The conditional distribution will be said to be symmetric
about the mean iff (X — i, 0, an) = F(—(X — 1n), 0, o) for all x where &
represents the probability density function corresponding.tét was shown in
Granger (1969) that i€ (e) is symmetric and the distributioR(x) is symmetric
about the meam, thenf, = u, providedeither

(i) C(e) is strictly monotonic increasing a&sgoes away frono (rather than just
non-decreasing;

or

(i) dP/dx is unimodal.

It is possible that other conditions will also ensure that the optimal forecast equals
the conditional mean. The same paper gives an example showing that having both
C(e) anddP/dx symmetric is not sufficient to get this result.

It is possible forf, = u, under weaker conditions, for exampleGi(e) = a€?
then the optimal forecast is alwaysg regardless of the shape of the distribution
or of the properties ofy,.

It is also often difficult to get specific results for particular cost functions. An
exception is the “lin lin” function

Ce) = (a+b)x x>0 a>0b>0
= a|x| x<0
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which can be shown to result in the equation
P(fa, tin, an) = (a +b)/(2a +b) (4.1

so that ifa = b, f, becomes the conditional median. This will, of course, be
equal to the conditional mean if the distribution is symmetric.
For the symmetric double Linex function

C(e) = expfe) + exp(oe) — 2
the solution is found to be
fa = pn + 1/2010g(Mn(6)/Mn(-0)) , (4.2)

where M, (0) = feede(x,o,an) is the conditional central moment generating
function and will be a function ofy,.

Itis possible to get a few more results by assumingXyat is a location/scale
process, so that

Xn+1 = fin + Onen+1 (4.3)

and the distribution function of,+; is independent of,,, so that the conditional
distribution of e+; on I, equals the unconditional distribution. The equation
being solved is then

/C/(X — fn)dp(x,/lrho—n) = 0
i.e. /C’(X —f.)dP(X — pn,0,0n) =0,
wheref |, = f,— pin, X = X—pn @and now when one solves this equation, necessarily

fo = pin + 0(0n) (4.4)

for some functiond( ). If the cost function is homogeneous, one gets a more
specific results, as the original cost being minimized is

Clo Xn+1_/vtn_fn_/in
n On On

h(on)Cilen+1 — an]

C(Xn+1 — )

wherefn = (fn — pn)/on. The equation to solve becomes

/ C{[e — f.1dP(¢)

and the solution is a constant, independent,pfdepending just on the form of
Ci(e), so that
fn = pn +Kop (4.5)

for some constark.
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It is interesting to note that i,= constant, so that the process is homoskedas-
tic, in many of these special cases the optimum forecast takes thefprin
constant.

Further progress can be made by assuming a particular distributional form
for P(x, un, an) the typical assumption being normality. Xf.; is Gaussian then
it will be locational/scale as in (4.3) with,+1 ~ N(0,1) and so (4.4) will hold,
as shown by Christoffersen and Diebold (1994). For example, they show that if
one has a single Linex cost function (3.2) then

fo = pin +a0?/2. (4.6)

Thus, in this case one adds a constant times the conditional variance rather than
the conditional standard deviation as in (4.5).

In most cases it is not possible to derive a closed solution for the optimal
forecast, but numerical solutions will certainly be available, as discussed by
Christoffersen and Diebold (1994).

There are a number of important implications that can be derived from these
results. Some can be stated in terms of the modeling strategy selected by the
researcher in terms of the forecast provided. Only the one- step case will be
considered. Two extremes will be:

() Provide an estimate of the complete predicted cumulative distribution func-
tion Pr(X) = probXn+1 < X | i) or its corresponding predicted probability
function p,(x)

wheredP,(x) = pn(X)dx.
If this is provided, then point forecasts (and corresponding confidence inter-
vals) can be derived for any function of the process and for any cost function,
and in theory this can be extended to any horizon.

(i) Provide an estimate only for the conditional meaq If one is interested
only in forecastingX,+; whilst using a squared cost functi@e?, then the
optimum forecast is just,. However, a forecast confidence interval is not
available.

Between these two extremes are a variety of partial models, in which some
aspects ofP,(x) are modeled; others we merely assumed. An example is to
assumeXn.1 is a location/scale process (4.3), to then provide models or approxi-
mations foru, ando, and to then just assume that.; is iid N(O, 1). If actually
en+1 IS Not Gaussian, this will be a partial model that may well approximate
P.(x) in some features but not in others. A better strategy may be to check if
Xi%“ appears to be iid, independentlgfand, if so, to find its distribution. The
extent that mis-specification affects forecasts will depend on the type of partial
model used and on the cost function involved. In all cases where the optimum
forecast isun, such as when the cost function is symmetric and monotonic and
Pn(x) is symmetric aboufs,, then a model that just produces the conditional
mean will produce the optimal forecast. If the cost function is homogeneous
then a model based on a location/scale assumption should produce a relevant
point forecast. If the correct distribution ef., is given, confidence intervals
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will also result. However, if a single or double linex cost function is used, then
a complete specification is required.

Discussions in economic methodology often mention the ability of an eco-
nomic theory to “predict” or forecast. Whereas this concept is not often related
to ideas of evaluation, the relevant cost function does need consideration. This
is particularly true when discussing how to evaluate rational expectations theory.
For example, the result that (2.1) says

E[C,(er?,l) |1n]=0
implies that the regression
C'(Xn+1 — fn1) =a+bfy 1 +ena

will give a = b = 0 andey,1 a white noise. IfC(e) = €2, this translates into the
regression
Xnet = a+ B 1 +ens 4.7)

and one should expeet= 0, 3 = 1. This regression is often used as a test that
“expectations are rational” (or “efficient” in an earlier terminology) but (4.7),
with its constraints, will not necessarily hold for other cost functions.

5. Information set

The contents of the information set used to form forecasts is at the choice of
the forecaster, and it is often an important choicd,, I€onsists just of observed
series, its contents can be denoted

In:xn—j7vvi,n—j7i =1...,1,j >0.

If I, contains the past of the series being forecast it will be called “proper,”
and thenl, will effectively contain past forecast errors, which is important when
considering the properties of errors from optimum forecasts.

If I =0, so thatl, consists only of past and presexts, the forecasts are
called univariate so thaX,., is forecast just from its own past. Models using
this information set are well developed and provide useful comparison forecasts
against those arising from larger information setsl. ¥ 0, so thatl, includes
other series, one has a multivariate forecastl fsincreased, one would expect
to achieve better forecasts, measured in terms of lower expected cost particularly
if one keeps adding relevant variables. The difficulty is knowing what variable
is relevant and possibly omitting some particularly important variable or group
of variables, although economic theory may be helpful in this respect.

If the average cost tends to zero msbecomes large, or perhaps even for
a finite value ofm, then the proces¥; is (effectively) deterministic and thus
perfectly forecastable, at least for the one stepr 1, horizon. Whether or
not one believes that it is possible to continually improve forecasts by adding
further information is largely personal and depends on ones background. Most
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statisticians and econometricians would not expect processes to be deterministic
whereas physicists and meteorologists would take the opposite viewpoint, at least
asymptotically as the sample size becomes very large.

6. Comparing forecasts

Let Ph(x) = P(X, un, an) be the true predicted c.dX,.1 givenl,, which leads

to the forecasf, if a cost functionC(e) is involved, as discussed in Sects.

1 and 2. Suppose that an alternative theory or model exists which proposes a
c.d.f. Mp(x) which is an approximation foP,(x). It will be convenient to write
Mn(X) = Mn(X, 5, o). If one uses this approximation to minimize

/C(Xn+1 - fn*)dMn

resulting in the forecast;, and thus forecast errorg; = Xn+1 — f° then
these errors will have actual distributid®(e, un — f, an) = Pji(e). The er-

rors from the optimal forecastg® will produce errorse? with distribution

P(e, un — f2, an) = Pn(e). If forecastsf® andf* are produced, the erroed

and e* will be observed over time and their conditional cumulative histograms
will eventually approximatd,(e) andP;(e) providedl, can fall into just a lim-

ited number of “states.” The obvious question becomes how one can compare
these two cumulative distributions. A potentially important result is

Theorem 1.
E[C(eD) | In] < E[C(E}) | In] (6.1)
for every cost function.

Proof. The result states
/ C (Xoez — £9) dPa(e) < / C (Xoe1 — 1) dPo(e)

which holds obviously a$? is chosen to minimize the first integral and any
quantity f* will clearly produce costs that are larger, on average. The result
immediately holds also for general horizbnand for the point forecast of any
well behaved functiory(X,+). Thus, the theorem says that, on average, point
forecasts of any function of any horizon of thg process using any cost function
are superior if one uses the true predicted c.d.f. rather than some approximation
to it. The result is proved both in Granger and Pesaran (1996) and in Diebold
et al. (1996) in the same way. A weakness of the result is that the theorem
gives no indication of the amount of the benefit from uskde) rather than

its approximationP;(e). It should be noted that the quality of the sub-optimal
forecast errors have to be judged in terms of their actual distribdide, 1, —

f¥, an) rather than the error distribution suggested by the thédgye, u: —

f¥, o), i.e. Pr(e) rather thanMp(e). However, both of these quantities will,
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potentially, be observable, and thus can be compared, whereas in pRg&te
is not generally observable, or estimable. [Note thatiasare observable so
Pz (e) can be estimated and,(e) is the distribution of the errors predicted by
the model in the post-sample.]

The theorem does not take into account the fact that the errors from a pair
of forecasts of the same quantity are likely to be affected by the same outside
events and so will be jointly distributed. Some on-going research involving the
evaluation of forecasts using stochastic dominance concepts can make use of this
information.

7. Some further results and generalization
7.1. Multi-step forecasting with general cost functions

To consider all costs of the forB[C(x+1 — ft) | It] one needs the one-step
predicted distributiof? (x+1 | It) and similarly for costs occurring further into the
future one needs the h-step predicted distribuigr.y | I;). If there is general
stationarity (not just covariance stationarity) tR€x.+ | It) will be similar to
P(x+1 | li—n+1) and this is easily determined from the one-step predicted density
by marginalizing out the terms ik but not inl;_p.1.

However, these predicted distributions will not be able to cope with cost
functions such a€ (x.+k — %+k—1 — ft) or most functions of two or more futures
terms in thex series. For such cost functions one needs joint predicted distribu-
tions such a$ (x.+k, Xi+k—1 | 1) and obvious generalizations. To cover all cases,
one need (x+k,k = 1,...,M | I;) for some appropriate M. This point has
previously been made by Clements and Hendry (1993) but in a different form.

7.2. Multi-step forecasting with location-scale processes

Consider the processes generated by

o)
X = ZCJUt—l—j&t—j,Co =1

j=0
whereoy is a process known at tinte and will be considered to be a function of
the information sel;. Further, suppose that is iid, independent of,. It follows
that

a1 = pit + OtE41
wherept = E[Xq | It] = Zj‘fl Cjot—jer+1—j and so the results of (4.4) and (4.5)
hold for location-scale processes for= 1. However, with general values bof
one gets

o0
fon = E[Xn+h | In] = ch0n+h—j En+h+i—j
i=h
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so thate, n = Zjhz_ol Cj On+h+j Enth+l—j -

Thus Xn+h = fn h + €n,n. NOW &, h cannot generally be written in the form
S\Wh+n whereW,,.p, is an iid process independent lpf If the ¢’s are normally
distributed therx,., will be a location/scale process but this will not always be
the case and so results (4.4) and (4.5) will thus not be true for gemexadn if
they do apply forh = 1.

7.3. Combining forecasts with general costs functions

Suppose that two point forecasts are available each point of tiheand g;.

We could ask if there is a simple combined foredast 6:f; + 0,9; + 63 which
would be superior to both. For a particular cost functionif the optimum pre-
dicted distribution function is used to minimize the conditional expectation of
E[C (X+1 — 01ft — O29: — 03) | 1t], thendy, 6>, 63 will be chosen as functions of

and the combined forecast will, generally, just become the better forecast. In par-
ticular, combining asks for constardg, 6, so that the unconditional expectation

of E[C] (or an estimate of it ) is minimized, i.e.

min Z C (X1 — O1fn — 290 — 63) .

Taking derivatives with respect to thigs and putting the results equal to
zero, give three first-order conditions that have to be solved fo6'thepossibly
using a numerical technique. Using these optimum values fof'#)egives the
errors from the combined forecast

ek = X1 — K

and with this notation, the first-order conditions gives

> Clleks) = 0
t
Y fC/(eks) = O
t
> @C'ekss) = 0
t

Thus, writing Z; = C’(ek) the estimated mea#; is zero, and the estimated
correlations betwee#; andf; and betweer; and g; are both zero. These are
similar, but much weaker, forms of the results (2.3) and (2.5).

The discussion here has been for a specific linear combination, but a sim-
ilar analysis can handle a particular function that combines forecasts, such as
Afi, gt, ) wheny is a set of parameters to be determined by minimizing

Z C(x+1 — Alf, gt5 ) -
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8. Brief literature review

An earlier paper on this topic was Granger (1964), which was greatly expanded in
Christoffersen and Diebold (1994) which both preceded and overlaps with some
of the results presented here. A more direct approach to evaluation using the
whole predictive distribution has been discussed by West (1996) and by Diebold
et al. (1996) An early specific contribution discussing asymmetric costs is by

Zellner (1986) There is a large literature on combining forecasts; as example is
given in the special issued on combining forecadtsirnal of Forecasting, no.

3, 1989.
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