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Abstract. We present a branch and cut algorithm that yields in finite time, a globaptimal solution (with

respect to feasibility and optimality) of the nonconvex quadratically constrained quadratic programming
problem. The idea is to estimate all quadratic terms by successive linearizations within a branching tree using
Reformulation-Linearization Techniques (RLT). To do so, four classes of linearizations (cuts), depending on
one to three parameters, are detailed. For each class, we show how to select the best member with respect
to a precise criterion. The cuts introduced at any node of the tree are valid in the whole tree, and not only
within the subtree rooted at that node. In order to enhance the computational speed, the structure created at
any node of the tree is flexible enough to be used at other nodes. Computational results are reported that
include standard test problems taken from the literature. Some of these problems are solved for the first time
with a proof of global optimality.
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1. Introduction

The nonconvex quadratically constrained quadratic programming proleepj is

a structured global optimization problem, which encompasses many others. Indeed,
linear mixed 0-1, fractional, bilinear, bilevel, generalized linear complementarity, and
many more programming problems are or can easily be reformulated as particular cases
of QQP. This generality has its price: there are theoretical and practical difficulties in
the process of solving such problems.

QQPs complexity is present at two levels. The problem of finding a feasible
solution is NP-hard as it generalizes the linear complementarity problem (Chung [10]
analyzes the complexity of the latter problem); the nonlinear constraints define a feasible
region which is in general neither convex nor connected. Moreover, even if the feasible
region is a polyhedron, optimizing the quadratic objective function is strongly NP-hard
as the resulting problem subsumes the disjoint bilinear programming problem (Hansen,
Jaumard and Savard [21] show that an equivalent problem, the linear maxmin problem,
is strongly NP-hard). It follows that finding a finite and exact algorithm that solves large
QQPs is probably out of reach.
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The nonconvex quadratically constrained quadratic programming problem may be
stated in its most general form as follows
min Q°(x)
xeX _

P
QQ stQxZhk k=1,2....k

whereX = {x € R" : Ax < a}, and for each indek in the setk = {0, 1, ... ,k}

Q“:R" > R
x> QX() = > Cikj Xi Xj +Zcikxi2+Zdikxi,
(i,)eM ieN ieN
are quadratic functionswhe={1,2,... ,nfandM = {(i, ) e Nx N :i > j}are

sets of indices. The symbdal signifies that constraints may be equalities or inequalities.
The dimension of the matrices and vectors are the following:

xeR" Ae R™" ae R™be R
Ck. ¢, df e Rforall (i, j) € M, £ € Nandk € K.
The only further assumptions made in this paper concern the boundedness of the vari-
ables. We assume that the constraint O is either present ilAx < a or implicit
through all the constraints. We also suppose that it is possible to obtain valid upper
bounds on each variable. This hypothesis is discussed in Sect. 2.3 below. No restrictions
are imposed regarding convexity or concavity of the objective function or constraints.

In this paper, we develop an algorithm based on approximation of quadratic terms
by means of Reformulation-Linearization Techniques (RLT). As surveyed in Sect. 2.1,
such an approach is not new, but is extended here in several ways. First, cuts associated
with linearizations are generalized as members of different classes that depend on one
to three parameters. One of them, namely Classlefined below, contains a new type
of linearization. Second, for these classes being defined, we pose and answer the natural
guestion of selecting the best member of each of them under a precise criterion. Third,
this outer-approximation scheme is incorporated in the first branch and cut algorithm
for QQP. Cuts generated at any node of the exploration tree are valid at all other nodes.
Moreover, a key algorithmic element is that the branching structure developed at a node
of the tree is reused at several other nodes.

The paper is organized in the following way. The next section introduces lineariza-
tion of quadratic terms. We present a brief survey of the literature and lay down our
assumptions regarding boundedness of the variables. In Sect. 3, we describe the four
classes of valid cuts derived from linearization of quadratic functions. These cuts are
used to refine the outer-approximation of quadratic terms, and to eliminate the current
relaxed solution. For each class, we show in Sect. 4 how to select the best cut, i.e.,
that one which minimizes the worst potential error of the refined approximation. These
results lead in Sect. 5, to a branch and cut algorithm which is shown to converge in finite
time within a given tolerance. This final section also details execution of the algorithm
on a small example, and reports computational results on a series of problems from the
literature. Several of them are solved for the first time with a proof of global optimality.
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2. Initial linearization of quadratic terms

The difficulty of Q Q Plies in the presence of quadratic terms in both objective function
and constraints. Throughout this paper, we consider the quadratic functions

f:R— R and g: R> - R
Xi > f(xi) = x? (Xi, Xj) = 9(Xi, Xj) = XiX].

Approximation of the functiorf is easier than that @f since it is convex on its domain.

Any line tangent tof defines a valid under-estimation on the whole domain IR. Over-
estimations are obtained by piecewise linear functions. A more detailed analysis is
required for the functiomy. The plane tangent tg at any given point defines both an
under and over-estimation in different directions. The basic approach described in this
paper relies on piecewise estimations of such quadratic functions.

2.1. Survey

The bilinear programming problenB(L) is equivalent toQ Q P. The variables of the
former problem are partitioned into two sets in such a way that when either set is fixed,
the resulting problem has a linear objective function and a polyhedral feasible domain,
thus it becomes a linear program. Obvioudb}L is a particular instance o QP.
Reciprocally, any instance d® QP may be reformulated as BIL by introducing
additional variables and constraints. Hansen and Jaumard [19] present various ways of
doing so.

In the last few years, several authors studied linearization of quadratic functions.
Al-Khayyal and Falk [3] developed an infinitely convergent branch and bound scheme
for a problem more general thaBlL. The variables of this problem are partitioned
into two sets, and require only the three following properties: (i) the objective function
is biconvex; (ii) the feasible region is closed and convex; (iii) finite bounds on every
variable may be obtained; € [4, u;]. Their method relies on outer-approximation
of the functiong(x;, Xj) = XiX;j using the convex envelope over the hyper-rectangle
[4i, ui] x [£j,uj]. Such a linearization is exact only on the boundary of the hyper-
rectangle. If the solution(«i, «j) of the corresponding relaxation lies in the strict
interior of the hyper-rectangle, then the approximation needs refinement. This is done
by adding linearizations over the four sub-interésoi 1 < [£j, «j1, [o, Uil x [£], «j],

[4i, ai] x [aj, ujlandei, ui] x [«], uj]. The branch and bound method generates a new
problem for each of these intervals.

Al-Khayyal [1] strengthens this method by also evaluating the concave envelope.
Afterwards, Al-Khayyal [2], adapts this idea ®IL by adding linearizations not only
to the objective function, but also to the domain. Finally, Al-Khayyal, Larsen and Van
Voorhis [4] illustrate a slightly different version of this method @QQ P. Instead of
generating four new subproblems as above, the proposed method generates only two
subproblems by splitting the longest interval in its middle. Computational experiments
on randomly generated problems having up to sixteen variables and eight constraints
are presented. It appears that the difficulty of a problem is directly related to the number
of variables present in quadratic terms that are not at one of their bounds.
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Sherali and Alameddine [27], [28] improve the linearization Bdt. (where there
are no quadratic constraints) by considering the constraints defining the polyhédron
instead of using only the bounding constraints. Sherali and Tuncbilek [29] generalize
this branch and bound method to the case where the fund@ibase polynomials. Their
approach does not consist in reformulating the polynomial problem into a quadratic one
by adding new variables and constraints. Instead, they add linearizations of degree higher
than two. Sherali and Tuncbilek [30] specialize this metho@® where there are no
guadratic constraints. They discuss several improvements such as linearization of cubic
terms, diagonalization of the matr@° (when possible), convex approximation of the
function f, and resolution of the relaxation by a Lagrangian method. Ryoo and Sahini-
dis [26] propose a branch and bound algorithm in which the pradugis replaced by
T(u?—x?— sz) whereu = X; + ;. The algorithm solves a sequence of convex underes-
timating subproblems. Range reduction techniques are used to tighten the bounds on the
variables of the subproblems. Sherali and Tuncbilek [31] compare different methods to
evaluate bounds for polynomial optimization. Sherali and Tuncbilek [32] present classes
of constraints for univariate and multivariate versions of this problem. The branch and
bound algorithm uses constraints selection and range reduction strategies.

Generalized Benders decomposition [7] provides a different approach toBdlve
It is studied in Geoffrion [18], Wolsey [35], Simoes [33], Flippo [13], Floudas and
Visweswaran [15], [16], Visweswaran and Floudas [34], and Flippo and Rinnooy
Kan [14].

QQP can also be written as a d.c. (difference of convex) programming problem
in which the objective function is linear and each functi@h is expressed as a d.c.
function. Phong, Tao and Hoai An [24] presents an outer-approximation method for
such problems.

2.2. Initial relaxation

The classes of cuts associated with quadratic functions presented in Sect. 3 below lead to
outer-approximations of the feasible region. For édnhN, the variable is introduced
to estimate the squavé, and for eachii, j) in M, the variablewjj is used to estimate
the produci;xj. Constraints regarding andwij are successively added to refine the
approximation while insuring that the solutions wheye= xi2 andwij = XiXj remain
feasible.

Let us define precisely the terminology used throughout this paper. The variables
vi and wjj are estimationsof the quadratic terms? and xx;. The linearization of
a quadratic functioris obtained by replacing all quadratic terms by their estimations.
A valid inequalityon a given domain is an inequality that does not eliminate any
point belonging to both that domain and the feasible region. When valid inequalities are
combined, the resulting feasible region is an outer-approximation of the original domain.
Solution of this relaxed problem yields tharrent point A cutis a valid inequality that
eliminates the current point. In Sect. 3, specific cuts derived from linearization of
a quadratic functions are calléidearizations

We use the RLT notation introduced by Sherali and Tuncbilek [29]; the linearization
described above, in which the quadratic terms are replaced by linear ones, is denoted
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by [-1¢. Typically, [(ap — Ap.X)(aqg — Aq-X)]¢ (WhereAp. is the p™ row of the matrixA)
denotes the linearization of the product

@ — ApX)(@g— AgX) = Y Y ApiAgiXiXj — Y _(apAqi + aqApi)Xi + apag,

ieN jeN ieN

and is explicitly written through introduction of the linearization variabiesmdw

Y (ApiAgi + ApjAqwij + Y ApiAgivi — ) _(apAqi + 8qApi)Xi + apag.

(i,))eM ieN ieN

Since the definition of the polyhedroX contains the constraintdp.x < ap and

Aq.x < aq, One can obtain a valid inequality in a higher dimensional space by imposing
linearization of the product to be greater than or equal to zero. We are now able to
formulate an initial linear relaxation & Q P, which is a RLT relaxation as in Sherali
and Tuncbilek [29], [31], [32] (and thus is stated without proof).

Proposition 1. Let P be a subset of indices d¢fl, 2, ..., m}, and Qp a subset of
{p, p+1,...,mjfor eachp of P. The problem

Jin [Q°(0)1
[QQPI, .t [Q¥(X)]¢ = bk k=12,....Kk
[(@p— ApX)(ag— AgX)]e >0 peP qeQp
is a linear relaxation ofQ Q P.

In the case where all possible valid inequalities derived from the linearizations are
present in the relaxation, i.e., whéh= {1,2,... ,m}, andQp = {p, p+1,... ,m}
for eachp of P, Sherali and Tuncbilek [30] show that if at least one of the variables
X; is lower and upper bounded 4, then the constraint € X is redundant for that
linearization. It can therefore be withdrawn frg@Q Q P, .

This linearization technique provides a general framework for an outer-approxi-
mation method that consists essentially in a sequence of refinements of approximations
of quadratic functions.

2.3. Computation of bounds on each variable

Due to the nonconvex nature of the constraintQ@ P, obtaining tight bounds on the
variables is a nontrivial problem. The range reduction strategy that we use is that of [32].
Let x—, xt be bounds orx; such that 0< x~ < x < x*, andv—, v be bounds on
vi such that O< v~ < vj < v™ obtained by replacingQ Q P],'s objective function by
+x; and then bytv;. Let ¢ = maxx~, vv—} andu; = min{x*, Vut}. If & < u;,
then¢; andu; are valid bounds for the variablg over the feasible domain @ QP. If
¢ > uj, then the feasible domain @ Q P is empty.

These bounds may be improvediif> min{x; : X € X} orif u; < max{x; : x € X}.
After adding the bounding constraints < X; < u; to the polyhedronX, one can
reiterate the process in order to tighten the interval. Consider the following example.
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Example 1.Let a feasible domain be defined by the two constraints
x1+x2<6 and x;>1

One can easily verify that the feasible intervalis2]. The approach described above
yields the constraints of the relaxatip®@ Q PJ:

X1+v1<6, x1>1and[(x1 — 1%y =v1—2x3+1>0.

The first computed bounds axe € [1, %] andv1 € [1, 5], from which it follows that

X1 € [1, +/5]. SinceX = {x : x; > 1} has no upper bound, it is possible that the new
upper bound/5 can be improved. By adding the constraint< +/5 to X, we obtain
the new linearizations

[(\/B—X]_)Z]Z = v1—2\/EX1+5 > 0 and
[(VB—xD(x1— D], = —v1+ 1A+ VEx1—v5 > 0.

Once again, these constraints generate new boupas[1, 2f+1] andvy € [1, 13—

4./5]. Slncezf . ~ 2010 < \/13 4./5 ~ 2.014 < /5 ~ 2.236, the constraint

X1 < +/5 can be improved t®; < 2f -
the feasible interval oy, i.e., to[1, 2].

. Taking the limit of this process converges to

O

Any valid inequality belonging to the two first linearization classes presented in the
following section can also be added when evaluating bounds. It is then possible that
better bounds are generated. In Sect. 5, we present an algorithm whose pre-processing
phase consists in iterating this bounding process until improvement is negligible. The
only assumption made in this paper concern@@ P is that finite bounds may be
obtained in this way for every variable.

3. Classes of linearizations

In this section, we present four classes of linearizations. Each class consists of a set of
inequalities which are valid over the intervéds, u;] fori € N.

The first class of linearizations, due to Al-Khayyal and Falk [3], contains under-
estimations of the square function. kegre [¢;, u;],i € N consider the RLT constraints

V(i) [(X —ai)?le > 0.

For a given value o#;, the valid inequality defines the half-space tangent to the convex
functionx; at the pointx; = «;. The first class of valid inequalities is

G = {Mi(ai)i aj €[4, uil,i € N}.

The second class of linearizations, which is new, contains under-estimations of
a paraboloid. Fori € [¢i,uil,«j € [£j,ujl, (i, ]) € M,y € R consider the RLT
constraints

Ei)} (i, @j) = [((@i —Xi) + p(@j —xj)?]e > 0.
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For given values o, «j andy, the valid inequality defines the half-space tangent to
the convex paraboloitk; + ]/Xj)z at the point(xj, Xj) = («j, @j). The second class of
valid inequalities is

Cn = {Eiyj(oti,otj): ai € [6, uil,aj € [£j,ujl,(, ) e M,y € |R}-

Both the inequalities of the above classes are tangent linear under-estimations of
convex functions, and thus are valid everywhere. The inequalities of the next two
classes are not. Dichotomy is used to refine the approximations of the quadratic terms
on subintervals. The branch and cut algorithm introduces some varsatatgse [0, 1]
whereqa; € [¢;,u;i] for i € N. The branching process of the algorithm fixes these
variables to either 0 or 1. When backtracking, the variables are frd@dih The same
variables; («j) can be used at different branches of the enumeration tree.

The branch and cut algorithm presented in Sect. 5 uses a best first strategy. When the
algorithm unfolds, it often jumps from one branch to another. The RLT inequalities valid
at one branch may not be valid at another. Instead of adding and deleting inequalities
when moving along the branches, the introduction of the variabtsssures that the
inequalities are valid everywhere.

The constraints of classes Il and IV are constructed in such a way that they are active
only when the variables are fixed at either 0 or 1. When these are free, the constraints
are redundant. The variabl&s¢;) ands; (u;) (which correspond to the endpoints of the
feasible interval ok;) are respectively fixed to 1 and 0. Moreover;if< o < i < U;
thensi (i) > 8i (Bi). Therefore, ifsi (i) = 0 thens;(Bi) = 0, and if§ (Bi) = 1 then
Si(aj) = 1.

Furthermore, i («j) is fixed at zero, then the variabkg is bounded above hy;.
Symmetrically, ifsj («;) is fixed at one, then the variable is bounded below by;.

Finally, if & («;) is free in[0, 1], then the variable; is also free in¢;, u;].

The third class of linearizations are over-estimations of the square function. For

ai, Bi €[4, uil,aj < Bi,i € N consider the constraints

Viai, B) 1 [ —x)(Bi —x)]e = (Ui — €)%@i(ai) — 8i(Bi) — 1).

For givenvalues af; andg;, the valid inequality defines the half-space obtained through
the cord from(x;, vi) = (i, &?) to (Bi, p2). If 8i(ei) = 1 andsi(Bi) = O, then the
inequality reduces t®(oi — Xi)(Bi — Xi)]¢ > 0, and is thus valid whea; < x < 6.
Otherwise, the right-hand-side of the inequality becomes; — ¢;)2, and thus the
inequality remains valid whefy < X < «j or 8i < X < uj. The third class of valid
inequalities is

Cin = {Vi(@). V(). Vi(ai. Bi) : ai, Bi € [4i, Uil i < Bi.i € N}.

By combiningVj («;, Bi) with V,(ei) and V; (Bi), it follows that if §j(«j) = 1 and
8 (Bi) = 0 thena; < X < Bi, thus makingVi (o, Bi) the concave hull ok; Xj on that
subinterval.
The fourth class of linearizations are estimations of the product of two variables.
Consider the tangent pladgto the functiong(x;, Xj) = XiX; at the point(a;, «j).
This plane satisfies the three following properties:
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i~ (Xi, Xj, wij) belongs toll if and only if i = «j or xj; = «j.

ii- TIT strictly under-estimateg;, X;, wij) if and only if bothx; < «j andxj < «j, or
bothxj > «j andxj > «;.

iii- IT strictly over-estimategx;, xj, wij) if and only if bothx; < «j andx; > «j, or
bothx; > «j andxj < «j.

We define the four quadrants associated with the pleinty;):

Q' ={(x, X)) % >ai, X >aj), Q1 ={(x, X)) X <&, X >aj},

QM =i, X)) i xi <@, xj <aj), QY = {(xXi, X)) X >ai, X < ).

Foraj € [4, uil, oj € [£j,ujl, (i, ) € M, setLj = oj — ¢, Lj = aj — ¢j, and
Ui = Ui —aj, Uj = uj — «j and consider the constraints

W (@i o)t (6 — i) () — a)]e = LiUj (i) — 1) + UiLj (8 (ej) — 1),
Wi (i ej) s [0 — o) (] —ap)le < UiUjsi (@) + LiL (1 — 8} (a)),

Wi'j” (i, j) @ [(X —ai)(Xj —aj)le = =UiLj8i(oi) — LiUjdj(ej),

Wi (@i ) [06 — ai)(xj — e < LiLj(L = 8i(ei) + Uil (@)).

For given values ofi and|, the valid inequalitie§Vi; (ai, «j) andW!i' (i, «;) define

the convex hulls of the functior xj on the respective domaiisg' andQ'" . Indeed,

on their respective domains the right-hand-sides of these inequalities becomes 0, thus
the inequalities are those of Al-Khayyal and Falk [3]. Similarly, the valid inequalities
Wi'j' (e, «j) and ﬂi'jv (ai, «j) define the concave hulls of the functioqxj on the
respective domain€" andQ'V. The fourth class of valid inequalities is partitioned

into

Cyv = {Wiljl (i, @j), Wiljv(oei,oej): ai €[4, uil,aj € [£j,ujl,(, ) eM }

4. Selection of the best linearization

In this section, we study how to find among the four classes of cuts presented above,
that one which should be added to the relaxation in order to obtain the best possible
estimation of quadratic terms, according to a precise criterion. In a branching algorithm,
selecting the branching value in such a way may reduce the number of nodes generated
by the algorithm. This is illustrated in Sect. 5.5.

4.1. Refinement of under-estimation of the square function
We consider in this section the case where the current point saﬁ$fies§<i2. The

question studied here consists in finding the best linearization amon (&) that
eliminate the current point. The poi%;, vi) is obtained by solving a relaxation of
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QQP. The fact thai?(i2 is not well-approximated by; can be interpreted in two ways:
either the valué; is too small, or that of; is too large. Therefore, we propose to select
the pointa (and thus the linearizatio; («)) that minimizes a potential error over the
interval[/9;, 1.

The error to minimize is the largest value betwegn= v; — (Za\/ﬁ — a?) and

AZ .

ae whereey = ()2(—'a + %) — X. The weight of the second error tetntompensates for
the fact thak; represents a difference of squared values, buendtigure 1 illustrates
these error terms as well as the linearizadgx) tangent to the curvre,z.

Vi

Vi@ © Ui = 20X — o?

Vi o

i

Xi

Fig. 1. Minimization of the error for under-estimating a square

Slight variations of the following observation are used when minimizing various
weighted errors: the least value of the maximureigindue; is attained whels; = aey,
sincee; monotonically increases from O and, monotonically decreases to 0 when
varies continuously from/ﬁ—i to K.

Proposition 2. The valuex = (v2 — )% + (2 — ~/2)/3i € [/v;, Xi] minimizes the
o2
maximum betwees = 9 — (2a/3i — ?) andae, wheree, = (5 + %) — %i.

Proof. The least value of the maximum betwesrandae; is attained when both terms
are equal. One can easily verify trat= aey if and only if

o? + 2(% — 2/t + 20 — %2 = 0.
The root of this quadratic function that lies in the interp@b;, Xi] is a convex combi-

nation of the endpoinis = (2 — v/2)\/i + (v/2 — D%;.
O
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4.2. Refinement of under-estimation of a paraboloid

The inequalityEi”- (ai, aj) depends on the three parametgrsyj andy. The first two
of them define the point where the tangent plane is evaluated, the third parameter,
describes the curvature of the paraboloid. In order to select its value, we rewrite the

valid inequality:
(vj — 20 X; —i—otjz))/z—i— 2(wij — o Xj —ajXi +ajoj)y+ (vi — 20X — a?)zo. (1)
In the case where the left-hand-side is convex with respegt toe choose the value
of y, specified in the next proposition, that corresponds to the minimum of this quadratic
function. The case where it is concave is not developed since it reduces to the use of an

arbitrarily largey, and the linearizations become equivalent to those of dass
In order to lighten the notation, we write

Ti = 0j — 20 Xi —i—aiz, T) = 0j — 20jX;] —i—otjz, Tij = Wij — i Xj —ojXi +ajoj.
Proposition 3. If ¢; < % < /%i < ujand¢j < &; < /3] < ujandifritj <77, then
for anyai €%, v/dil anda;j €1%;, \/j[ the value of for which the cutP (i, «j) is
the deepest at the current point (i.e., the valug @fi — Xi) + y(«j —f(j))z]g is minimal)

isy = —ZU and it eliminates the current point.
Tj

Proof. At the current point(%, Xj, i, 0j, wij), the value of the left-hand-side of
Eﬁ (i, o) becomesm/2 + 2mijy + 7. It is convex with respgct ty sincerj >
¢ — 2aj%j + of > 0, and its minimum is attained when= —- (this choice ofy
maximizes in that way the depth of the inequality). It can be written
2 2

7] 271”- 5

——-——+5=0 or xfj =77

Tj Tj

Sinceritj < nizj, the current point is eliminated.
O
We now show how to obtain the point where the tangent plane is evaluated, i.e., the

values ofwj andej that minimize the greatest potential error are selected.

Proposition 4. The value(ei, «j) = (X + /i, Xj +/})/2 € [Xi, V1 x [X;, Vil
minimizes the maximum between the distances from the paraboloid to the tangent plane
at the point(%i, \/9j): e1 = hy, (X, /?j) — t&i + vy/?j) + t2/2 and at the point

i, %)) €2 = h, (o1, %)) — ©(/Di + y%j) + t2/2, wheret = 2(a; + yj).

Proof. The minimal value of the maximum betweenande, is attained when both
terms are equal. One can easily verify teat= e if and only if

r= &+ V) &)+ o).

Sincer = 2(ai + yaj), the valuesy = (% + /9i)/2 andaj = (X} + ,/9;)/2 satisfy
the criterion.
O
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Similarly, it can be shown that the same point minimizes the maximal distance
between the paraboloid and the tangent plane at the pGints;) and(\/fTi, JfT,-).

4.3. Refinement of over-estimation of the square function

Suppose now that we wish to eliminate an over-approximation of the funé€tiarinen
the current point satisfies > f(,z We discuss the choice of the valud¢hat minimizes
the greatest potential weighted error. The choice of this parameter is more delicate
than that of the under-estimation since a linearization at a point depends on two other
parameters: the values of both inferior and superior evaluation pointg aetlg be

such evaluation points satisfyifg, /9] C18. Bl. We wish to refine the approximation
on this first interval.

.. —q+,/ 24ApB(Ki—P)Ki .
Proposition 5. The valuex = arya 2::/3 £ € [xi, v/vi] wherep = (X — ) +

(B—+/d) andq = (% — B)(B—%i) — (B — v/11)/2i, minimizes the maximum between
e1 = (B + & — o — %2 andee, wheree, = /i — —”";%ﬂ

Proof. The least value of the maximum betwesrandae is attained when both terms
are equal. It can be shown that= «ey if and only if

(B+a) (e + Bk — Pala + B) — K(a+ B) = ii(a+ Pa — (i + af)a
—
& — B+ B — Ve + (% — BB — %) — (B — Vo)) — (ki — B = 0
<
po? + ga — (& — B)B%i = O.

This convex quadratic equation necessarily possesses aroot in the i[ﬁer\/éTi ]
Indeed, ife = X; thene; = 0 andaez > 0, then by continuously increasingup to
/i, e becomes and remains positive, are# decreases to 0. Therefore, there exists
a value ofw in the interval such thag = aep.

The second root is negative. Indeedyit= 0 thene; < 0 andaey = 0, thus by
continuously decreasing the value otxe; decreases more rapidly than thaegpfand
so there exists am < 0 such that; = aey. Therefore, the desired root is the positive
one.

O

4.4. Refinement of the product of two variables

We finally consider the case where we wish to refine the estimation of the product of
two variablesx; andx;. We only cover explicitly the case of the over-approximation
since the under-estimation is symmetrical. _

Let wij be an estimation of;X; such thatbi; > XiXj, andp andg the evaluation
points such tha;, %! ]

Ki

1 C1B. Bl. We wish to obtain an evaluation poimte [%;, ﬁ’ijj

5‘(.
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for the variablexi, in order to refine the approximation of the produgx; when

(Xi, Xj) € (%, = X estimation. Since in the algorithm
presented in Sect. 5 branchlng is done on a single variable, we fix vaniakie

aj = (Xj + /0j)/2. Therefore, we select the value @tthat minimizes the greatest
potential weighted error in the intervigd;, “;—'J'[

Proposition 6. The value

minimizes the maximum between = g% + alaj — B) — ajX and ojey, where
aJw,J alaj—p)

=% "G~ 5
Proof. The least value of the maximum betweenand«je; is attained when both

terms are equal. Figure 2 illustrates these error terms. One can veriy thak e, if
and only if

o (Olj —E— 7051'(011'3—@) = —Efq + aj <f<i + 1?(' a)J(u;J)
P ] i

The results follows by solving for the variahie

Wi (@.p): wij <BXi +a(a—p)
Wij =0t %
Qi |
%
Wij (e, B): wjj <B¥;+aloj—p)
P

o
C e

ﬁ)..

Ri o R_IJJ X;

Fig. 2. Minimization of the error for over-estimating a product
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Similar results can be obtained for the case of under-approximation of the product
of two variables.

5. Branch and cut algorithm

In this section, we use the linearizations described above in order to construct a solution
method forQQP. We seek an approximate solution in terms of both feasibility and
objective function value.

Definition 1. For a feasibility tolerance parameter > 0, a solution(X, v, w) is said
to beer-approximatsf it satisfies the three following conditions: f)e X;
(i) |>A<i2 —0j| < ¢ foreachi of N; (i) |XiXj — wij| < & for each(i, j) of M.
Moreover, letz* be the minimum value of the linearizatip®], over alle; -approximate
solutions. For an objective toleraneg > 0, the solution is said to be -¢,-optimalif
it is e -approximate and i#* — [QO(&, D, W)]¢ < €.

O

The following notation is used throughout this section. The branch and cut algorithm
generates a branchitigee The initial node of the tree is called theot. When a node
is processed and needs further refinement, the branching step creates two new nodes:
these are calledonsof the father. Theincumbent solutiomefers to the best solution
currently found by the algorithm. Its objective value is theumbent valugvhich is set
to +oo at the beginning of the execution.

This section is divided into five parts. We first describe the pre-processing step done
on the instance to obtain valid bounds on the variables, and the initialization steps at
the root of the tree. Second, we discuss the branching strategy that selects at each node
a branching variable and a branching value. Third, we detail the cutting step which
refines the outer-approximation. Fourth, all these steps are combined in a branch and
cut algorithm. Finally, the method is illustrated on a small example and computational
results on problems of the literature are reported.

5.1. Root node

At the root node, the linear problef@Q QP], is created and contains a number of
linearizations. Next, bounds are evaluated for each variable through the iterative process
described in Sect. 2.3. Then, the outer-approximation of quadratic terms is refined using
the linearizations presented in Sect. 3, without however adding any varéableshis
process, only cuts associated with convex and concave envelopes are introduced.

The first phase of the algorithm, thme-processingconsists of the iteration of
these steps until no bound is improved by more tharThis relaxation tightening is
performed only at the root node. Although repeating this at other nodes might be useful,
it would change the algorithm from a branch and cut one into a branch and bound one
(and thus some cuts would be valid only in parts of the tree).

After the pre-processing phase at the root node, further refinement of the outer-
approximation requires introduction of cuts from clé&gs . The algorithm moves on to
the branching process.
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5.2. Branching

When the need for refining the outer-approximation is felt at a node of the enumeration
tree, the branching step of the algorithm is invoked. Then, branching variable and
branching value are selected in the following way, by considering the optimal solution

(X, v, w) of the current linear relaxation.

Selection of the branching variablex;:
Selecti in argmax{|vi — §<i2|}, and (k, j) in argmax j){|wkj — XXjl}. If the error
associated with the indic€k, j) is larger than that of the indexthen reset to be the
index corresponding to the largest error betwgen- RE| and|vj — 9(1-2|. The selected
branching variable ig;.
O

If the error (eithetv; — 9<i2| or |wkj — XkXj|) associated with the branching variable
is less thary, then the branching step does not need to be pursued as the corresponding
solution ise, -feasible. Otherwise, a branching value must be evaluated.

At various nodes of the tree, branching structures have been developed for different
values ofx;. Let 8 be the greatest branching value less tkaourrently produced by

the algorithm. If there are none, sg¢to ¢;. Similarly, let 8 be the smallest branching

value greater thak currently produced by the algorithm. If there are noneSsetu; .

It is possible that the branching done to reach the current node from the root does
not require fixation o®;(8) or of i (B), i.e., at least one of these variables is free. In
that case, the branching step selects that branching value (and so, the whole branching
structure already present in the model is reused). Otherwise, the branching value is
chosen according to the results presented in Sect. 4. This process is now described in
algorithmic terms.

Selection of the branching valuex:
One of the four following cases occurs.

i- Both 8 (8) ands; (B) are free in[0, 1]: Setx to be the value among andp that is
the closest td (8 is selected in the unlikely event of equality).

ii- Only §;(B) is free in[0, 1]: Seta to B.

iii- Only 8 (B) is free in[0, 1]: Seta to B.

iv- Both i (8) ands;(B) are fixed: Seleat according to the corresponding minimization
of error criterion of Proposition 5 or 6 (the latter criterion is used when the branching
variable is associated witliokj — XkXj| and not with|v; — §<i2|). Add to the linear
relaxation the variabl& («) and linearizations of clagg), .

The branching value is.
]
Branching is done by creating two sons of the current node: one in which the variable
8i () is fixed at 0, and the other in which it is fixed at 1. In the first son, the varialie
constrained to be less than or equaki@nd in the second son it is forced to be greater
than or equal ta. Note that this branching rule is discrepancy based; other such rules
are discussed in Sherali and Tunchilek [29], [30], [32].
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5.3. Cutting

The objective of the cutting step of the algorithm is to refine as much as possible (up
to the feasibility parametet) the outer-approximation using only linear cuts. The idea
consists in iterating the four following steps, as long as at least one new linearization

is added to the relaxation. The poi&t, v, w) still refers to the optimal solution of the
current linear relaxation.

Optimality test:

If the optimal value of the relaxation is greater than the incumbent (mif)ughen no

cutting is necessary, the current node may be discarded. Otherwise, the algorithm goes
on with the next steps.

Refinement of an under-estimation of a square (clasy):
For each € N such that; < f(,z — ¢, add the linearizatioV; («) wherew is defined
through Proposition 2.

Refinement of a paraboloid (clas€’) ):
For each, j) € M andy such that the conditions in Proposition 3 are satisfied, add the
IinearizationBﬁ (ai, ), where(aj, o) is defined through Proposition 4.

Refinement of a product (classe§,, andC)y):

For each(i, j) € M such thativij < XiXj — ¢, add the Iinearizationwi'j (B, B) and
WI! (8, B) if they are not already present (using the current variahlesands; (-)),
whereﬁ and g are evaluation points such that the inter[/gj Bl 2 [’f(—'J' Xi] is the
smallest possible.

For each(, j) € M such thatii; > iXj + €, add the IinearizationWiljI (B. B) and
Wiljv (B, B) if they are not already present (using the current variahlesands;(-)),

ijj ] is the

A

where g and 8 are evaluation points such that the interyal 8] 2 [%i,
smallest possible.

X

O
Note that if the relaxation is infeasible, then convention ensures that its optimal
value will be equal tet-oco, and so the optimality test will stop processing the node.
The cuts of classa8 and(), are independent of the variabl&$-) since they are
linear under-approximations of convex functions. These cuts are inexpensive to add to
the linear relaxation. Only the cuts associated with the claggesC,, andCy use
the variables; (-) that are already fixed at either O or 1. Cuts fr6m are only added
and activated at the branching step. Cuts from the two other classes are added to the
outer-approximation only when they are needed, thus keeping the size of the relaxation
from growing.

5.4. Description of the whole algorithm

We are now able to construct the branch and cut algorithm. The method can be divided in
two main steps. ThBre-Processingtep is used to create the initial outer-approximation
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and to obtain valid bounds on each variable. Braimeration Treestep recursively
processes nodes of the tree in a best-first manner (preference with respect to the optimal
objective value of the relaxation). At each node, one of two outcomes is possible: either
the node is discarded (when infeasible, solved or eliminated), or it is split into two new
nodes. For clarity, only the main ideas of the algorithm are presented. Details of the
steps appear in the previous sections.

ALGORITHM.

Pre-Processing.
The list£ of nodes to be explored is initialized to contain only the root node.

Enumeration Tree.
While £ is not empty, repeat the three sub-steps.
e Select and remove the best-first node frém
e Perform the cutting steps:
Add linearizations from class&y, Cyi, C,y andCy .
If the optimal relaxed solution ig -feasible, then update the incumbent.
Otherwise, pursue at the branching step if the relaxation is feasible and
its optimal objective value is less than the incumbent objective value (ragus
e Perform the branching step.
Obtain the branching variable and valuex and dichotomous variabB(«)
(if possible, reuse the structure created at other nodes).
If the structure is not reused, introduce cuts from clags.
Add to £ nodes corresponding to both sons.
O

This is indeed a branch and cut algorithm in the sense that the cuts from dasses
andC), introduced at any node of the tree are valid at all other nodes. The cuts derived
from the other classes are valid everywhere in the subtree rooted at the node where they
were generated. At all other nodes, these cuts are relaxed as long as the corresponding
variables; is free in[0, 1]. They are valid at all times, but become non-redundant as
soon as the branching structure is reused, i.e., when the vasialddixed at either
0 or 1. The next theorem shows finiteness and correctness of the algorithm.

Theorem 1. The above algorithm finds in finite time gne,-optimal solution of prob-

lemQQP.

Proof. The Pre-Processing step stops as soon as two successive iterations do notimprove
any bound by a value of at leasgt. Only a finite number of iterations are therefore
possible. At each iteration, a finite number of linear programs are solved. It follows that
the Pre-Processing phase is completed in finite time.

Consider a node generated by the Enumeration Tree phase where the over-approxi-
mation of the square function is refined. ket]¢;, ui[ be the point where the lineariza-
tion was done.

We now show that the linearizations associated with both sons of the current node
eliminate a non-negligible region of the relaxed domain. For the node wherex, the
linearization of the variablg; is within the required tolerance ¥ > o — ¢ /u;. So, if
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this condition is satisfied, the maximal error will be

2 2
g.
@t (a-T)—ta-(a-2) 220 _ba g e
| |

For the son wherg; > «, the linearization of the variablg is within the required
tolerance ifx; < « + ¢ /u;j. So, if this condition is satisfied, the maximal error will be

& e\’ € ae
@+u)(o+—)—ati—a+—) = — 5 —— <¢.
Ui Uj

For each son an interval of lengtfyu; > 0 is linearized within the error tolerance,
and so, if a solution lying in that domain is generated, then the linearization will not be
refined anymore. Therefore, there can only be a finite number of cuts for each variable.

The same reasoning applies for the approximation of a product of two variables.
The solution produced will thus he-feasible.

The propositions from Sect. 3 imply that the inequalities are valid and so, the optimal
solution (within thee, optimality tolerance) is never eliminated. It follows that there
exists a node of the enumeration tree where,ady-optimal solution will be identified.

Since the Pre-Processing and Enumeration Tree phases stop in finite time, the
algorithm finds in finite time aa, -¢,-optimal solution ofQ Q P.

O

In the following subsection, we illustrate the performance of this algorithm on
different examples taken from the literature.

5.5. Numerical results

The algorithm is coded in C++ and uses the CPLEX4.0 library to solve the linear
programs. Computational experiments were made on a SUN Ultra-1/167 station using
Solaris 2.5-06.

The following example is a quadratic reformulation of a fourth degree polynomial
problem found in Bartholomew-Biggs [8]. It is restated in Hock and Schittkowski [23]
(No 71) and in Hansen and Jaumard [19] (No 5). The reformulation (that introduces the
variablesxs andxg) is stated as follows.

MiN X3 + X1X5 + X2X5 + X3X5
S.t.Xs — X1X4 = 0,
X — XoX3 = 0,
X2 + X3 + X3 + X5 = 40,
Xs5Xg > 25,
l<x1<5 1<x3=<5
1<xp<5 1<x4 <5

Using the precisior; = ¢, = 1075, the Pre-Processing phase spend® Zec-
onds to improve bounds on both variablgsandxg to [1.33975 18.6603. Then, the
Enumeration Tree phase finds i@ seconds the solution

X* = (1,4.74319 3.8209 1.37944 1.37944 181233
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having objective value 1@14 by exploring a total of 69 nodes, adding 25 variables
i (o), and 599 linear cuts. The total time required to solve this probleni&seconds.
In order to compare the usefulness of selecting the branching values using the error
minimization criteria developed in Sect. 4, the same instance was solved by selecting
the branching value to be the mid-point of the current interval. This strategy generated
189 nodes, added 55 variabBéx), and 1076 linear cuts.

Figure 3 illustrates aspects of the resolution. The enumeration tree is detailed only to
a depth of six. The circled numbersindicate the order in which the nodes were generated.
One can deduce from them the order in which they are processed (i.e., removed from
the list £). Directly below each node is the corresponding branching variable, except
at node 12 where the relaxation was proven infeasible. The four numbers around each
node represent the number of cuts of each class (as illustrated to the right of the tree)
generated at the corresponding node. The dots under nodes 13 and 30 indicate that there
are further branches in the tree underneath them. The other leaves (nodes 3, 7, 10, 20,
21, 18, 31) are not developed as their lower bound, that is, the optimal value of the
relaxation, is greater than the incumbent value.

Fig. 3. Partial branch and cut tree

The enumeration tree suggests the following observations. The nodes are processed
using a best-first strategy, and so the order in which they are selected is not predictable
only by simple inspection of the tree.

Most of the cuts introduced come from the clas€esandC),. That situation is
desirable since these cuts correspond to linear under-estimations of convex functions
and do not require dichotomy, hence no extra variable is needed and a single constraint



A branch and cut algorithm for nonconvex quadratically constrained quadratic programming 149

is added to the outer-approximation. Moreover, the large number of cuts fronCglass
is explained by the flexibility involved in their generation. The three required parameters
allow frequent elimination of the current point.

Only some of the cuts available from clasggg andCyy are added. This limits the
growth in size of the relaxation.

At any node, there is never more than one new cut from ¢lgassThis is expected
since the branching process is invoked as soon as one such cut is added. When no cut of
that class is introduced (nodes 6, 11, 20, 21, 18, 19, 31), a previously created branching
variable and structure is reused. This is a key element to keep reasonable the size of the
relaxation.

The algorithm also solved several global optimization problems from the literature.
These problems were first reformulated as instanc€@P using techniques described
in Hansen and Jaumard [19]. In particular, polynomial terms of degree more than two
were rewritten, as in the example above, as quadratic ones. The same type of trans-
formations was applied to fractions involving quadratic terms. Moreover, monotonicity
analysis (as described in Hansen, Jaumard and Lu [20]) and variable elimination al-
lowed significant simplifications of these problems. No comparison between the several
possible reformulations and their effect on the tightness of the relaxation was performed
here. The final reformulations on which the algorithm was executed are detailed in
Audet [5]. We present here the largest of these reformulations, i.e., problem 7 below,
along with oure; -e,-optimal solution.

mXin Z(X) = 12.62626X12+ X13+ X14 + X15 + X16)

—1.231059X1X12 + X2X13 + X3X14 + XaX15 + X5X16)
s.t. 50< z(x) < 250,
—3.475x 4+ 100x; + '0975(i2 —9.75xxj <0 i=12345]j=i+5,
—XgX11 + X7X11 — X1X12 + XX12 > O,
50x7 — 50Xg — X1X12 + X2X13 4+ X7X12 — XgX13 = 0,
50xg + 509 — X2X13 4 X3X14 + XgX13 — XgX14 < 500,
—50xg + 50X10 — X3X14 + XaX15 — XgX15 + XoX14 < 0,
50x4 — 50X10 — XaX15 — X4X16 + XsX16 + X10X15 < O,

50x4 — X4X16 + X5X16 > 450 —X1+2x7 <1,

X1 =X2=X3=X4=Xs5 X6 = X7 Xg = X9 = X10 = X4
0<X11—X12<50 .001<xs <1,

1< x1 <8.03773157 1< x7 < 451886579 107 < xq2 < 100
1<x<9 1<xg<9 1<x13<50,
45<x3<9 1<x9<9 50 < x14 < 100,
45<x4<9 1<X10<9 50 < x15 < 100,
9< x5 <10 .1 < x11 < 100 107 < x16 < 50.

Solution:e; = ¢, = 107>,
x* =(8.037738.161,9,9,9,1, 1.07026 1.90837 1.90837
1.90837 50.5042 .5042367.26387 50, 50, 0), z(x*) = 174788

Table 1 presents some important characteristics of these instances. The first column
indicates the reference in which the first untransformed formulation of the problem
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appears, the other columns quantify aspects of the reformulated quadratic instances.
The next three respectively contain the number of variables that are not involved in
guadratic terms, the number of variables that are, and the total number of variables.
The middle column indicates the total number of different quadratic terms. The last
three presents the number of linear inequalities (including bounds on variables), and
the number of nonlinear inequalities and equalities. There is no linear equality since
the process of reformulating the problems into quadratic instances removed them by
variable elimination.

Table 1.Characteristics of the problems

Variables Quad| Constraints

Ex Source Lin Quad Tot| Terms|Lin Quad

= = =
1 Haverly [22] 2 3 5 2 7 2 0
2 Colville [11] 0 4 4 6 8 3 0
3 Avriel and Williams [6] 0 4 4 2 9 2 0
4 Bartholomew-Biggs [8] 0 6 6 9 8 1 3
5 Bracken and McCormick [9] O 7 7 6 14 4 2
6 Dembo [12] 0O 10 10| 15 |26 9 2
7 Dembo [12] 0 16 16| 24 |42 10 1

The first example stems from the bilinear pooling problem encountered in the
petrochemical industry. The next one describes a situati®noator and Gamble Co.

The third one is a simple 3-stage heat exchanger design problem. The fourth one is more
academic, and is the one described in details at the beginning of this section. The fifth one
models an alkylation of olefin process. The last two arise from membrane separation in
respectively three and five phases; the largest of these two signomial programs is written
above. The diversity of these applications indicates the modeling flexibili§y Q.

Table 2 displays the result of the application of the algorithm to these problems. The
columnboundindicates the number of variables that are not, at optimality, at one of their
bounds obtained in the pre-processing phase. Computational difficulty of a problem is
closely related to that number since linearization is exact when the variable is at one of its
bound. The columns entitleédandAdd ctrrespectively contain the number of variables
and constraints that were introduced in the solution process. The cilmaesshows
the number of nodes required by the exploration tree. The colUinmsindicate the
pre-processing, the enumeration tree and the total time in seconds used by the algorithm.
Finally, the last column displays the precision factors supplied to the algorithm.

Even if the problems considered above arise from different sources and rely on
different modeling structure, all of them are now solved to global optimality within
a good precision. Prior to our work, other authors studied these problems. Our algorithm
confirmed that the heuristic solutions of problems 3 and 4 presented in Hock and
Schittkowski [23] are indeeé} -¢,-optimal, and it slightly improved that of problem 6.
Problem 1 was solved by Foulds, Haugland and Jérnsten [17], but the tolerance parameter
is not specified (however, their discussion implies that it is small). Problems 2 and 3 were
solved to optimality by Hanseet al. [20] using monotonicity analysis together with
a branch and bound scheme. Problem 5 was solved by Quesada and Grossmann [25]
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Table 2. Performance of the algorithm

Ex|| Variables | Add | Nodes Time (sec) € =€z
bound & ctr PP Tree Tot
2 5 34 9 64 .01 .65| 10°°
6 69 7 125 .04 129 106
39| 378| 191 | 1.1 38 49| 106
25|599| 69 |27 45 72| 106
66 |1335| 357 | 4.3 65.6 69.9 10°°
411088 259 | 148 61 209 10°°
235| 6205| 2847 | 222 7329 7551 10°°

~NOoO b WN B
N~No absAN

within a 5% tolerance using a branch and bound algorithm for fractional programs that
uses convex nonlinear under-estimators. To the best of our knowledge, problems 6 and
7 are solved te, -¢,-optimality for the first time.

Based on the theoretical and algorithmic framework described herein, we intend in

further work to pursue the study of such linearization approaches for other classes of
problems, and to compare the results with alternate methods.
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