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Abstract. We present a branch and cut algorithm that yields in finite time, a globallyε-optimal solution (with
respect to feasibility and optimality) of the nonconvex quadratically constrained quadratic programming
problem. The idea is to estimate all quadratic terms by successive linearizations within a branching tree using
Reformulation-Linearization Techniques (RLT). To do so, four classes of linearizations (cuts), depending on
one to three parameters, are detailed. For each class, we show how to select the best member with respect
to a precise criterion. The cuts introduced at any node of the tree are valid in the whole tree, and not only
within the subtree rooted at that node. In order to enhance the computational speed, the structure created at
any node of the tree is flexible enough to be used at other nodes. Computational results are reported that
include standard test problems taken from the literature. Some of these problems are solved for the first time
with a proof of global optimality.

Key words. nonconvex programming – quadratic programming – RLT – linearization – outer-approximation
– branch and cut – global optimization

1. Introduction

The nonconvex quadratically constrained quadratic programming problem (QQP) is
a structured global optimization problem, which encompasses many others. Indeed,
linear mixed 0-1, fractional, bilinear, bilevel, generalized linear complementarity, and
many more programming problems are or can easily be reformulated as particular cases
of QQP. This generality has its price: there are theoretical and practical difficulties in
the process of solving such problems.

QQP’s complexity is present at two levels. The problem of finding a feasible
solution is NP-hard as it generalizes the linear complementarity problem (Chung [10]
analyzes the complexity of the latter problem); the nonlinear constraints define a feasible
region which is in general neither convex nor connected. Moreover, even if the feasible
region is a polyhedron, optimizing the quadratic objective function is strongly NP-hard
as the resulting problem subsumes the disjoint bilinear programming problem (Hansen,
Jaumard and Savard [21] show that an equivalent problem, the linear maxmin problem,
is strongly NP-hard). It follows that finding a finite and exact algorithm that solves large
QQP’s is probably out of reach.
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The nonconvex quadratically constrained quadratic programming problem may be
stated in its most general form as follows

QQP
min
x∈X

Q0(x)

s.t. Qk(x)=≤ bk k = 1,2, . . . , k,

whereX = {x ∈ IRn : Ax≤ a}, and for each indexk in the setK = {0,1, . . . , k}
Qk : IRn → IR

x 7→ Qk(x) =
∑

(i, j)∈M

Ck
i j xi x j +

∑
i∈N

ck
i x2

i +
∑
i∈N

dk
i xi ,

are quadratic functions whereN = {1,2, . . . ,n} andM = {(i , j) ∈ N× N : i > j } are
sets of indices. The symbol=≤ signifies that constraints may be equalities or inequalities.
The dimension of the matrices and vectors are the following:

x ∈ IRn; A ∈ IRm×n; a ∈ IRm; b ∈ IRk;
Ck

i j , c
k
`,d

k
` ∈ IR for all (i , j) ∈ M, ` ∈ N andk ∈ K.

The only further assumptions made in this paper concern the boundedness of the vari-
ables. We assume that the constraintx ≥ 0 is either present inAx ≤ a or implicit
through all the constraints. We also suppose that it is possible to obtain valid upper
bounds on each variable. This hypothesis is discussed in Sect. 2.3 below. No restrictions
are imposed regarding convexity or concavity of the objective function or constraints.

In this paper, we develop an algorithm based on approximation of quadratic terms
by means of Reformulation-Linearization Techniques (RLT). As surveyed in Sect. 2.1,
such an approach is not new, but is extended here in several ways. First, cuts associated
with linearizations are generalized as members of different classes that depend on one
to three parameters. One of them, namely ClassC II defined below, contains a new type
of linearization. Second, for these classes being defined, we pose and answer the natural
question of selecting the best member of each of them under a precise criterion. Third,
this outer-approximation scheme is incorporated in the first branch and cut algorithm
for QQP. Cuts generated at any node of the exploration tree are valid at all other nodes.
Moreover, a key algorithmic element is that the branching structure developed at a node
of the tree is reused at several other nodes.

The paper is organized in the following way. The next section introduces lineariza-
tion of quadratic terms. We present a brief survey of the literature and lay down our
assumptions regarding boundedness of the variables. In Sect. 3, we describe the four
classes of valid cuts derived from linearization of quadratic functions. These cuts are
used to refine the outer-approximation of quadratic terms, and to eliminate the current
relaxed solution. For each class, we show in Sect. 4 how to select the best cut, i.e.,
that one which minimizes the worst potential error of the refined approximation. These
results lead in Sect. 5, to a branch and cut algorithm which is shown to converge in finite
time within a given tolerance. This final section also details execution of the algorithm
on a small example, and reports computational results on a series of problems from the
literature. Several of them are solved for the first time with a proof of global optimality.
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2. Initial linearization of quadratic terms

The difficulty of QQP lies in the presence of quadratic terms in both objective function
and constraints. Throughout this paper, we consider the quadratic functions

f : IR→ IR and g : IR2 → IR
xi 7→ f(xi ) = x2

i (xi , xj ) 7→ g(xi , xj ) = xi x j .

Approximation of the functionf is easier than that ofg since it is convex on its domain.
Any line tangent tof defines a valid under-estimation on the whole domain IR. Over-
estimations are obtained by piecewise linear functions. A more detailed analysis is
required for the functiong. The plane tangent tog at any given point defines both an
under and over-estimation in different directions. The basic approach described in this
paper relies on piecewise estimations of such quadratic functions.

2.1. Survey

The bilinear programming problem (BIL) is equivalent toQQP. The variables of the
former problem are partitioned into two sets in such a way that when either set is fixed,
the resulting problem has a linear objective function and a polyhedral feasible domain,
thus it becomes a linear program. Obviously,BIL is a particular instance ofQQP.
Reciprocally, any instance ofQQP may be reformulated as aBIL by introducing
additional variables and constraints. Hansen and Jaumard [19] present various ways of
doing so.

In the last few years, several authors studied linearization of quadratic functions.
Al-Khayyal and Falk [3] developed an infinitely convergent branch and bound scheme
for a problem more general thanBIL. The variables of this problem are partitioned
into two sets, and require only the three following properties: (i) the objective function
is biconvex; (ii) the feasible region is closed and convex; (iii) finite bounds on every
variable may be obtained:xi ∈ [`i ,ui ]. Their method relies on outer-approximation
of the functiong(xi , xj ) = xi x j using the convex envelope over the hyper-rectangle
[`i ,ui ] × [` j ,u j ]. Such a linearization is exact only on the boundary of the hyper-
rectangle. If the solution(αi , α j ) of the corresponding relaxation lies in the strict
interior of the hyper-rectangle, then the approximation needs refinement. This is done
by adding linearizations over the four sub-intervals[`i , αi ]×[` j , α j ], [αi ,ui ]×[` j , α j ],
[`i , αi ]×[α j ,u j ] and[αi ,ui ]×[α j ,u j ]. The branch and bound method generates a new
problem for each of these intervals.

Al-Khayyal [1] strengthens this method by also evaluating the concave envelope.
Afterwards, Al-Khayyal [2], adapts this idea toBIL by adding linearizations not only
to the objective function, but also to the domain. Finally, Al-Khayyal, Larsen and Van
Voorhis [4] illustrate a slightly different version of this method onQQP. Instead of
generating four new subproblems as above, the proposed method generates only two
subproblems by splitting the longest interval in its middle. Computational experiments
on randomly generated problems having up to sixteen variables and eight constraints
are presented. It appears that the difficulty of a problem is directly related to the number
of variables present in quadratic terms that are not at one of their bounds.
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Sherali and Alameddine [27], [28] improve the linearization forBIL (where there
are no quadratic constraints) by considering the constraints defining the polyhedronX
instead of using only the bounding constraints. Sherali and Tuncbilek [29] generalize
this branch and bound method to the case where the functionsQk are polynomials. Their
approach does not consist in reformulating the polynomial problem into a quadratic one
by adding new variables and constraints. Instead, they add linearizations of degree higher
than two. Sherali and Tuncbilek [30] specialize this method toQP where there are no
quadratic constraints. They discuss several improvements such as linearization of cubic
terms, diagonalization of the matrixQ0 (when possible), convex approximation of the
function f , and resolution of the relaxation by a Lagrangian method. Ryoo and Sahini-
dis [26] propose a branch and bound algorithm in which the productxi x j is replaced by
1
2(u

2−x2
i −x2

j )whereu = xi +xj . The algorithm solves a sequence of convex underes-
timating subproblems. Range reduction techniques are used to tighten the bounds on the
variables of the subproblems. Sherali and Tuncbilek [31] compare different methods to
evaluate bounds for polynomial optimization. Sherali and Tuncbilek [32] present classes
of constraints for univariate and multivariate versions of this problem. The branch and
bound algorithm uses constraints selection and range reduction strategies.

Generalized Benders decomposition [7] provides a different approach to solveBIL.
It is studied in Geoffrion [18], Wolsey [35], Simoes [33], Flippo [13], Floudas and
Visweswaran [15], [16], Visweswaran and Floudas [34], and Flippo and Rinnooy
Kan [14].

QQP can also be written as a d.c. (difference of convex) programming problem
in which the objective function is linear and each functionQk is expressed as a d.c.
function. Phong, Tao and Hoai An [24] presents an outer-approximation method for
such problems.

2.2. Initial relaxation

The classes of cuts associated with quadratic functions presented in Sect. 3 below lead to
outer-approximations of the feasible region. For eachi in N, the variablevi is introduced
to estimate the squarex2

i , and for each(i , j) in M, the variablewi j is used to estimate
the productxi x j . Constraints regardingvi andwi j are successively added to refine the
approximation while insuring that the solutions wherevi = x2

i andwi j = xi x j remain
feasible.

Let us define precisely the terminology used throughout this paper. The variables
vi andwi j are estimationsof the quadratic termsx2

i and xi x j . The linearization of
a quadratic functionis obtained by replacing all quadratic terms by their estimations.
A valid inequalityon a given domain is an inequality that does not eliminate any
point belonging to both that domain and the feasible region. When valid inequalities are
combined, the resulting feasible region is an outer-approximationof the original domain.
Solution of this relaxed problem yields thecurrent point. A cut is a valid inequality that
eliminates the current point. In Sect. 3, specific cuts derived from linearization of
a quadratic functions are calledlinearizations.

We use the RLT notation introduced by Sherali and Tuncbilek [29]; the linearization
described above, in which the quadratic terms are replaced by linear ones, is denoted
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by [·]`. Typically,[(ap− Ap·x)(aq− Aq·x)]` (whereAp· is thepth row of the matrixA)
denotes the linearization of the product

(ap− Ap·x)(aq − Aq·x) =
∑
i∈N

∑
j∈N

Api Aq jxi x j −
∑
i∈N

(apAqi + aq Api)xi + apaq,

and is explicitly written through introduction of the linearization variablesv andw∑
(i, j)∈M

(Api Aq j + Ap j Aqi)wi j +
∑
i∈N

Api Aqivi −
∑
i∈N

(apAqi + aq Api)xi + apaq.

Since the definition of the polyhedronX contains the constraintsAp·x ≤ ap and
Aq·x ≤ aq, one can obtain a valid inequality in a higher dimensional space by imposing
linearization of the product to be greater than or equal to zero. We are now able to
formulate an initial linear relaxation ofQQP, which is a RLT relaxation as in Sherali
and Tuncbilek [29], [31], [32] (and thus is stated without proof).

Proposition 1. Let P be a subset of indices of{1,2, . . . ,m}, and Qp a subset of
{p, p+ 1, . . . ,m} for eachp of P. The problem

[QQP]`
min

x∈X,v,w
[Q0(x)]`

s.t. [Qk(x)]` =≤ bk k = 1,2, . . . , k,
[(ap− Ap·x)(aq − Aq·x)]` ≥ 0 p ∈ P, q ∈ Qp

is a linear relaxation ofQQP.

In the case where all possible valid inequalities derived from the linearizations are
present in the relaxation, i.e., whenP = {1,2, . . . ,m}, andQp = {p, p+ 1, . . . ,m}
for eachp of P, Sherali and Tuncbilek [30] show that if at least one of the variables
xi is lower and upper bounded inX, then the constraintx ∈ X is redundant for that
linearization. It can therefore be withdrawn from[QQP]`.

This linearization technique provides a general framework for an outer-approxi-
mation method that consists essentially in a sequence of refinements of approximations
of quadratic functions.

2.3. Computation of bounds on each variable

Due to the nonconvex nature of the constraints ofQQP, obtaining tight bounds on the
variables is a nontrivial problem. The range reduction strategy that we use is that of [32].
Let x−, x+ be bounds onxi such that 0≤ x− ≤ xi ≤ x+, andv−, v+ be bounds on
vi such that 0≤ v− ≤ vi ≤ v+ obtained by replacing[QQP]`’s objective function by
±xi and then by±vi . Let `i ≡ max{x−,√v−} andui ≡ min{x+,√v+}. If `i ≤ ui ,
then`i andui are valid bounds for the variablexi over the feasible domain ofQQP. If
`i > ui , then the feasible domain ofQQP is empty.

These bounds may be improved if`i > min{xi : x ∈ X} or if ui < max{xi : x ∈ X}.
After adding the bounding constraints`i ≤ xi ≤ ui to the polyhedronX, one can
reiterate the process in order to tighten the interval. Consider the following example.
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Example 1.Let a feasible domain be defined by the two constraints

x1+ x2
1 ≤ 6 and x1 ≥ 1.

One can easily verify that the feasible interval is[1,2]. The approach described above
yields the constraints of the relaxation[QQP]`:

x1+ v1 ≤ 6, x1 ≥ 1 and [(x1− 1)2]` = v1− 2x1+ 1≥ 0.

The first computed bounds arex1 ∈ [1, 7
3] andv1 ∈ [1,5], from which it follows that

x1 ∈ [1,
√

5]. SinceX = {x : x1 ≥ 1} has no upper bound, it is possible that the new
upper bound

√
5 can be improved. By adding the constraintx1 ≤

√
5 to X, we obtain

the new linearizations[
(
√

5− x1)
2]
`
= v1− 2

√
5x1+ 5 ≥ 0 and[

(
√

5− x1)(x1− 1)
]
`
= −v1+ (1+

√
5)x1−

√
5 ≥ 0.

Once again, these constraints generate new bounds:x1 ∈ [1, 11
2
√

5+1
] andv1 ∈ [1,13−

4
√

5]. Since 11
2
√

5+1
≈ 2.010<

√
13− 4

√
5 ≈ 2.014<

√
5 ≈ 2.236, the constraint

x1 ≤
√

5 can be improved tox1 ≤ 11
2
√

5+1
. Taking the limit of this process converges to

the feasible interval ofx1, i.e., to[1,2].
ut

Any valid inequality belonging to the two first linearization classes presented in the
following section can also be added when evaluating bounds. It is then possible that
better bounds are generated. In Sect. 5, we present an algorithm whose pre-processing
phase consists in iterating this bounding process until improvement is negligible. The
only assumption made in this paper concerningQQP is that finite bounds may be
obtained in this way for every variable.

3. Classes of linearizations

In this section, we present four classes of linearizations. Each class consists of a set of
inequalities which are valid over the intervals[`i ,ui ] for i ∈ N.

The first class of linearizations, due to Al-Khayyal and Falk [3], contains under-
estimations of the square function. Forαi ∈ [`i ,ui ], i ∈ N consider the RLT constraints

Vi (αi ) : [(xi − αi )
2]` ≥ 0.

For a given value ofαi , the valid inequality defines the half-space tangent to the convex
functionxi at the pointxi = αi . The first class of valid inequalities is

CI =
{
Vi (αi ) : αi ∈ [`i ,ui ], i ∈ N

}
.

The second class of linearizations, which is new, contains under-estimations of
a paraboloid. Forαi ∈ [`i ,ui ], α j ∈ [` j ,u j ], (i , j) ∈ M, γ ∈ IR consider the RLT
constraints

Pγi j (αi , α j ) : [((αi − xi )+ γ(α j − xj ))
2]` ≥ 0.
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For given values ofαi , α j andγ , the valid inequality defines the half-space tangent to
the convex paraboloid(xi + γxj )

2 at the point(xi , xj ) = (αi , α j ). The second class of
valid inequalities is

CII =
{

Pγi j (αi , α j ) : αi ∈ [`i ,ui ], α j ∈ [` j ,u j ], (i , j) ∈ M, γ ∈ IR
}
.

Both the inequalities of the above classes are tangent linear under-estimations of
convex functions, and thus are valid everywhere. The inequalities of the next two
classes are not. Dichotomy is used to refine the approximations of the quadratic terms
on subintervals. The branch and cut algorithm introduces some variablesδi (αi ) ∈ [0,1]
whereαi ∈ [`i ,ui ] for i ∈ N. The branching process of the algorithm fixes these
variables to either 0 or 1. When backtracking, the variables are freed in[0,1]. The same
variableδi (αi ) can be used at different branches of the enumeration tree.

The branch and cut algorithm presented in Sect. 5 uses a best first strategy. When the
algorithm unfolds, it often jumps from one branch to another. The RLT inequalities valid
at one branch may not be valid at another. Instead of adding and deleting inequalities
when moving along the branches, the introduction of the variablesδ ensures that the
inequalities are valid everywhere.

The constraints of classes III and IV are constructed in such a way that they are active
only when the variables are fixed at either 0 or 1. When these are free, the constraints
are redundant. The variablesδi (`i ) andδi (ui ) (which correspond to the endpoints of the
feasible interval ofxi ) are respectively fixed to 1 and 0. Moreover, if`i ≤ αi ≤ βi ≤ ui
thenδi (αi ) ≥ δi (βi ). Therefore, ifδi (αi ) = 0 thenδi (βi ) = 0, and ifδi (βi ) = 1 then
δi (αi ) = 1.

Furthermore, ifδi (αi ) is fixed at zero, then the variablexi is bounded above byαi .
Symmetrically, ifδi (αi ) is fixed at one, then the variablexi is bounded below byαi .
Finally, if δi (αi ) is free in[0,1], then the variablexi is also free in[`i ,ui ].

The third class of linearizations are over-estimations of the square function. For
αi , βi ∈ [`i ,ui ], αi < βi , i ∈ N consider the constraints

Vi (αi , βi ) : [(αi − xi )(βi − xi )]` ≥ (ui − `i )
2(δi (αi )− δi (βi )− 1).

For given values ofαi andβi , the valid inequality defines the half-space obtained through
the cord from(xi , vi ) = (αi , α

2
i ) to (βi , β

2
i ). If δi (αi ) = 1 andδi (βi ) = 0, then the

inequality reduces to[(αi − xi )(βi − xi )]` ≥ 0, and is thus valid whenαi ≤ xi ≤ βi .
Otherwise, the right-hand-side of the inequality becomes−(ui − `i )

2, and thus the
inequality remains valid wheǹi ≤ xi < αi or βi < xi ≤ ui . The third class of valid
inequalities is

CIII =
{
Vi (αi ),Vi (βi ),Vi (αi , βi ) : αi , βi ∈ [`i ,ui ], αi < βi , i ∈ N

}
.

By combiningVi (αi , βi ) with Vi (αi ) and Vi (βi ), it follows that if δi (αi ) = 1 and
δi (βi ) = 0 thenαi ≤ xi ≤ βi , thus makingVi (αi , βi ) the concave hull ofxi x j on that
subinterval.

The fourth class of linearizations are estimations of the product of two variables.
Consider the tangent plane5 to the functiong(xi , xj ) = xi x j at the point(αi , α j ).

This plane satisfies the three following properties:
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i- (xi , xj , wi j ) belongs to5 if and only if xi = αi or xj = α j .
ii- 5 strictly under-estimates(xi , xj , wi j ) if and only if bothxi < αi andxj < α j , or

bothxi > αi andxj > α j .
iii- 5 strictly over-estimates(xi , xj , wi j ) if and only if bothxi < αi andxj > α j , or

bothxi > αi andxj < α j .

We define the four quadrants associated with the point(αi , α j ):

�I = {(xi , xj ) : xi ≥ αi , xj ≥ α j }, �II = {(xi , xj ) : xi ≤ αi , xj ≥ α j },
�III = {(xi , xj ) : xi ≤ αi , xj ≤ α j }, �IV = {(xi , xj ) : xi ≥ αi , xj ≤ α j }.

For αi ∈ [`i ,ui ], α j ∈ [` j ,u j ], (i , j) ∈ M, setLi = αi − `i , L j = α j − ` j , and
Ui = ui − αi ,Uj = u j − α j and consider the constraints

WI
i j (αi , α j ) : [(xi − αi )(xj − α j )]` ≥ Li U j (δi (αi )− 1)+Ui L j (δ j (α j )− 1),

W
II
i j (αi , α j ) : [(xi − αi )(xj − α j )]` ≤ UiU j δi (αi )+ Li L j (1− δ j (α j )),

WIII
i j (αi , α j ) : [(xi − αi )(xj − α j )]` ≥ −Ui L j δi (αi )− Li U j δ j (α j ),

W
IV
i j (αi , α j ) : [(xi − αi )(xj − α j )]` ≤ Li L j (1− δi (αi ))+UiU j δ j (α j ).

For given values ofαi andα j , the valid inequalitiesWI
i j (αi , α j ) andWIII

i j (αi , α j ) define

the convex hulls of the functionxi x j on the respective domains�I and�III . Indeed,
on their respective domains the right-hand-sides of these inequalities becomes 0, thus
the inequalities are those of Al-Khayyal and Falk [3]. Similarly, the valid inequalities
WII

i j (αi , α j ) and WIV
i j (αi , α j ) define the concave hulls of the functionxi x j on the

respective domains�II and�IV . The fourth class of valid inequalities is partitioned
into

C IV =
{

WI
i j (αi , α j ), WIII

i j (αi , α j ) : αi ∈ [`i ,ui ], α j ∈ [` j ,u j ], (i , j) ∈ M
}

C IV =
{

W
II
i j (αi , α j ), W

IV
i j (αi , α j ) : αi ∈ [`i ,ui ], α j ∈ [` j ,u j ], (i , j) ∈ M

}
.

4. Selection of the best linearization

In this section, we study how to find among the four classes of cuts presented above,
that one which should be added to the relaxation in order to obtain the best possible
estimation of quadratic terms, according to a precise criterion. In a branching algorithm,
selecting the branching value in such a way may reduce the number of nodes generated
by the algorithm. This is illustrated in Sect. 5.5.

4.1. Refinement of under-estimation of the square function

We consider in this section the case where the current point satisfiesv̂i < x̂2
i . The

question studied here consists in finding the best linearization among allVi (α) that
eliminate the current point. The point(x̂i , v̂i ) is obtained by solving a relaxation of
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QQP. The fact that̂x2
i is not well-approximated bŷvi can be interpreted in two ways:

either the valuêvi is too small, or that of̂xi is too large. Therefore, we propose to select
the pointα (and thus the linearizationVi (α)) that minimizes a potential error over the
interval[√v̂i , x̂i ].

The error to minimize is the largest value betweene1 = v̂i − (2α
√
v̂i − α2) and

αe2 wheree2 = ( x̂2
i

2α + α
2)− x̂i . The weight of the second error termα compensates for

the fact thate1 represents a difference of squared values, but note2. Figure 1 illustrates
these error terms as well as the linearizationVi (α) tangent to the curvex2

i .

-

6

xi

vi vi=x2
i

√
v̂i α x̂i

v̂i

x̂2
i

•
e1 l

e2
↔

Vi (α)
: vi ≥ 2αxi − α2

Fig. 1. Minimization of the error for under-estimating a square

Slight variations of the following observation are used when minimizing various
weighted errors: the least value of the maximum ofe1 andαe2 is attained whene1 = αe2,
sincee1 monotonically increases from 0 andαe2 monotonically decreases to 0 whenα
varies continuously from

√
v̂i to x̂i .

Proposition 2. The valueα = (√2− 1)x̂i + (2−
√

2)
√
v̂i ∈ [√vi , xi ] minimizes the

maximum betweene1 = v̂i − (2α
√
v̂i − α2) andαe2 wheree2 = ( x̂2

i
2α + α

2)− x̂i .

Proof. The least value of the maximum betweene1 andαe2 is attained when both terms
are equal. One can easily verify thate1 = αe2 if and only if

α2+ 2(x̂i − 2
√
v̂i )α+ 2v̂i − x̂2

i = 0.

The root of this quadratic function that lies in the interval[√vi , xi ] is a convex combi-
nation of the endpointsα = (2−√2)

√
v̂i + (

√
2− 1)x̂i .

ut
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4.2. Refinement of under-estimation of a paraboloid

The inequalityPγi j (αi , α j ) depends on the three parametersαi , α j andγ . The first two
of them define the point where the tangent plane is evaluated, the third parameter,γ ,
describes the curvature of the paraboloid. In order to select its value, we rewrite the
valid inequality:(
v j − 2α j x j + α2

j

)
γ 2+ 2(wi j − αi x j − α j xi + αiα j )γ+

(
vi − 2αi xi − α2

i

)≥0. (1)

In the case where the left-hand-side is convex with respect toγ , we choose the value
of γ , specified in the next proposition, that corresponds to the minimum of this quadratic
function. The case where it is concave is not developed since it reduces to the use of an
arbitrarily largeγ , and the linearizations become equivalent to those of classCI .

In order to lighten the notation, we write

τi ≡ v̂i − 2αi x̂i + α2
i , τ j ≡ v̂ j − 2α j x̂ j + α2

j , πi j ≡ ŵi j − αi x̂ j − α j x̂i + αiα j .

Proposition 3. If `i ≤ x̂i <
√
v̂i ≤ ui and` j ≤ x̂ j <

√
v̂ j ≤ u j and ifτi τ j < π

2
i j , then

for anyαi ∈]x̂i ,
√
v̂i [ andα j ∈]x̂ j ,

√
v̂ j [ the value ofγ for which the cutPγi j (αi , α j ) is

the deepest at the current point (i.e., the value of[((αi − x̂i )+γ(α j − x̂ j ))
2]` is minimal)

is γ = −πi j
τ j

, and it eliminates the current point.

Proof. At the current point(x̂i , x̂ j , v̂i , v̂ j , ŵi j ), the value of the left-hand-side of
Pγi j (αi , α j ) becomesτ jγ

2 + 2πi j γ + τi . It is convex with respect toγ sinceτ j >

x̂2
j − 2α j x̂ j + α2

j ≥ 0, and its minimum is attained whenγ = −πi j
τ j

(this choice ofγ
maximizes in that way the depth of the inequality). It can be written

π2
i j

τ j
− 2π2

i j

τ j
+ τi ≥ 0 or π2

i j ≤ τi τ j .

Sinceτi τ j < π
2
i j , the current point is eliminated.

ut
We now show how to obtain the point where the tangent plane is evaluated, i.e., the
values ofαi andα j that minimize the greatest potential error are selected.

Proposition 4. The value(αi , α j ) = (x̂i +
√
v̂i , x̂ j +

√
v̂ j )/2 ∈ [xi ,

√
vi ] × [xj ,

√
v j ]

minimizes the maximum between the distances from the paraboloid to the tangent plane
at the point(x̂i ,

√
v̂ j ): e1 = hγ (x̂i ,

√
v̂ j ) − τ(x̂i + γ

√
v̂ j ) + τ2/2 and at the point

(
√
v̂i , x̂ j ): e2 = hγ (

√
v̂i , x̂ j )− τ(

√
v̂i + γ x̂ j )+ τ2/2, whereτ = 2(αi + γα j ).

Proof. The minimal value of the maximum betweene1 ande2 is attained when both
terms are equal. One can easily verify thate1 = e2 if and only if

τ = (x̂i +
√
v̂i )+ γ(x̂ j +

√
v̂ j ).

Sinceτ = 2(αi + γα j ), the valuesαi = (x̂i +
√
v̂i )/2 andα j = (x̂ j +

√
v̂ j )/2 satisfy

the criterion.
ut
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Similarly, it can be shown that the same point minimizes the maximal distance
between the paraboloid and the tangent plane at the points(x̂i , x̂ j ) and(

√
v̂i ,
√
v̂ j ).

4.3. Refinement of over-estimation of the square function

Suppose now that we wish to eliminate an over-approximation of the functionf , when
the current point satisfieŝvi > x̂2

i . We discuss the choice of the valueα that minimizes
the greatest potential weighted error. The choice of this parameter is more delicate
than that of the under-estimation since a linearization at a point depends on two other
parameters: the values of both inferior and superior evaluation points. Letβ andβ be

such evaluation points satisfying[x̂i ,
√
v̂i ] ⊂]β, β[. We wish to refine the approximation

on this first interval.

Proposition 5. The valueα = −q+
√

q2+4pβ(x̂i−β)x̂i

2p ∈ [xi ,
√
vi ] wherep = (x̂i − β)+

(β−√v̂i ) andq = (x̂i −β)(β− x̂i )− (β−
√
v̂i )
√
v̂i , minimizes the maximum between

e1 = (β + α)x̂i − βα− x̂2
i andαe2 wheree2 =

√
v̂i − v̂i+αβ

α+β .

Proof. The least value of the maximum betweene1 andαe2 is attained when both terms
are equal. It can be shown thate1 = αe2 if and only if

(β + α)(α+ β)x̂i − βα(α + β)− x̂2
i (α+ β) =

√
v̂i (α+ β)α− (v̂i + αβ)α

⇐⇒
(x̂i − β + β −

√
v̂i )α

2 + ((x̂i − β)(β − x̂i )− (β −
√
v̂i )
√
v̂i )α− (x̂i − β)βx̂i = 0

⇐⇒
pα2+ qα− (x̂i − β)βx̂i = 0.

This convex quadratic equation necessarily possesses a root in the interval[x̂i ,
√
v̂i ].

Indeed, ifα = x̂i thene1 = 0 andαe2 > 0, then by continuously increasingα up to√
v̂i , e1 becomes and remains positive, andαe2 decreases to 0. Therefore, there exists

a value ofα in the interval such thate1 = αe2.
The second root is negative. Indeed, ifα = 0 thene1 < 0 andαe2 = 0, thus by

continuously decreasingα, the value ofαe2 decreases more rapidly than that ofe1, and
so there exists anα < 0 such thate1 = αe2. Therefore, the desired root is the positive
one.

ut

4.4. Refinement of the product of two variables

We finally consider the case where we wish to refine the estimation of the product of
two variablesxi andxj . We only cover explicitly the case of the over-approximation
since the under-estimation is symmetrical.

Let ŵi j be an estimation of̂xi x̂ j such thatŵi j > x̂i x̂ j , andβ andβ the evaluation

points such that[x̂ j ,
ŵi j

x̂i
] ⊂]β, β[. We wish to obtain an evaluation pointα ∈ [x̂i ,

ŵi j

x̂ j
]
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for the variablexi , in order to refine the approximation of the productxi x j when

(xi , xj ) ∈ [x̂i ,
ŵi j

x̂ j
] × [β, β] to eliminate the over-estimation. Since in the algorithm

presented in Sect. 5 branching is done on a single variable, we fix variablex j to
α j = (x̂ j +

√
v̂ j )/2. Therefore, we select the value ofα that minimizes the greatest

potential weighted error in the interval[x̂i ,
wi j

x̂ j
[.

Proposition 6. The value

α =
(
1− β

α j

)
x̂i +

(
1− α j

β

) ŵi j

x̂ j(
1− β

α j

)+ (1− α j
β

)
minimizes the maximum betweene1 = βx̂i + α(α j − β) − α j x̂i and α j e2, where

e2 = ŵi j

x̂ j
− (α j ŵi j

x̂ jβ
− α(α j−β)

β
).

Proof. The least value of the maximum betweene1 andα j e2 is attained when both
terms are equal. Figure 2 illustrates these error terms. One can verify thate1 = α j e2 if
and only if

α

(
α j − β −

α j (α j − β)
β

)
= −βx̂i + α j

(
x̂i + ŵi j

x̂ j
− α j ŵi j

x̂ jβ

)

The results follows by solving for the variableα.
ut
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Fig. 2. Minimization of the error for over-estimating a product
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Similar results can be obtained for the case of under-approximation of the product
of two variables.

5. Branch and cut algorithm

In this section, we use the linearizations described above in order to construct a solution
method forQQP. We seek an approximate solution in terms of both feasibility and
objective function value.

Definition 1. For a feasibility tolerance parameterεr > 0, a solution(x̂, v̂, ŵ) is said
to beεr -approximateif it satisfies the three following conditions: (i)x̂ ∈ X;
(ii) |x̂2

i − v̂i | < εr for eachi of N; (iii) |x̂i x̂ j − ŵi j | < εr for each(i , j) of M.
Moreover, letz∗ be the minimum value of the linearization[Q0]` over allεr -approximate
solutions. For an objective toleranceεz > 0, the solution is said to beεr -εz-optimal if
it is εr -approximate and ifz∗ − [Q0(x̂, v̂, ŵ)]` < εz.

ut
The following notation is used throughout this section. The branch and cut algorithm

generates a branchingtree. The initial node of the tree is called theroot. When a node
is processed and needs further refinement, the branching step creates two new nodes:
these are calledsonsof the father. The incumbent solutionrefers to the best solution
currently found by the algorithm. Its objective value is theincumbent valuewhich is set
to+∞ at the beginning of the execution.

This section is divided into five parts. We first describe the pre-processing step done
on the instance to obtain valid bounds on the variables, and the initialization steps at
the root of the tree. Second, we discuss the branching strategy that selects at each node
a branching variable and a branching value. Third, we detail the cutting step which
refines the outer-approximation. Fourth, all these steps are combined in a branch and
cut algorithm. Finally, the method is illustrated on a small example and computational
results on problems of the literature are reported.

5.1. Root node

At the root node, the linear problem[QQP]` is created and contains a number of
linearizations. Next, bounds are evaluated for each variable through the iterative process
described in Sect. 2.3. Then, the outer-approximation of quadratic terms is refined using
the linearizations presented in Sect. 3, without however adding any variablesδi . In this
process, only cuts associated with convex and concave envelopes are introduced.

The first phase of the algorithm, thepre-processing, consists of the iteration of
these steps until no bound is improved by more thanεr . This relaxation tightening is
performed only at the root node. Although repeating this at other nodes might be useful,
it would change the algorithm from a branch and cut one into a branch and bound one
(and thus some cuts would be valid only in parts of the tree).

After the pre-processing phase at the root node, further refinement of the outer-
approximation requires introduction of cuts from classCIII . The algorithm moves on to
the branching process.
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5.2. Branching

When the need for refining the outer-approximation is felt at a node of the enumeration
tree, the branching step of the algorithm is invoked. Then, branching variable and
branching value are selected in the following way, by considering the optimal solution
(x̂, v̂, ŵ) of the current linear relaxation.

Selection of the branching variablexi :
Selecti in argmaxi {|v̂i − x̂2

i |}, and (k, j) in argmax(k, j){|ŵk j − x̂kx̂ j |}. If the error
associated with the indices(k, j) is larger than that of the indexi , then reseti to be the
index corresponding to the largest error between|v̂k − x̂2

k| and|v̂ j − x̂2
j |. The selected

branching variable isxi .
ut

If the error (either|v̂i − x̂2
i | or |ŵk j − x̂kx̂ j |) associated with the branching variable

is less thanεr , then the branching step does not need to be pursued as the corresponding
solution isεr -feasible. Otherwise, a branching value must be evaluated.

At various nodes of the tree, branching structures have been developed for different
values ofxi . Let β be the greatest branching value less thanx̂i currently produced by

the algorithm. If there are none, setβ to `i . Similarly, letβ be the smallest branching

value greater than̂xi currently produced by the algorithm. If there are none, setβ to ui .
It is possible that the branching done to reach the current node from the root does
not require fixation ofδi (β) or of δi (β), i.e., at least one of these variables is free. In
that case, the branching step selects that branching value (and so, the whole branching
structure already present in the model is reused). Otherwise, the branching value is
chosen according to the results presented in Sect. 4. This process is now described in
algorithmic terms.

Selection of the branching valueα:
One of the four following cases occurs.

i- Both δi (β) andδi (β) are free in[0,1]: Setα to be the value amongβ andβ that is
the closest tôv (β is selected in the unlikely event of equality).

ii- Only δi (β) is free in[0,1]: Setα to β.

iii- Only δi (β) is free in[0,1]: Setα to β.
iv- Bothδi (β) andδi(β) are fixed: Selectαaccording to the corresponding minimization

of error criterion of Proposition 5 or 6 (the latter criterion is used when the branching
variable is associated with|ŵk j − x̂kx̂ j | and not with|v̂i − x̂2

i |). Add to the linear
relaxation the variableδi (α) and linearizations of classCIII .

The branching value isα.
ut

Branching is done by creating two sons of the current node: one in which the variable
δi (α) is fixed at 0, and the other in which it is fixed at 1. In the first son, the variablexi is
constrained to be less than or equal toα, and in the second son it is forced to be greater
than or equal toα. Note that this branching rule is discrepancy based; other such rules
are discussed in Sherali and Tuncbilek [29], [30], [32].
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5.3. Cutting

The objective of the cutting step of the algorithm is to refine as much as possible (up
to the feasibility parameterεr ) the outer-approximation using only linear cuts. The idea
consists in iterating the four following steps, as long as at least one new linearization
is added to the relaxation. The point(x̂, v̂, ŵ) still refers to the optimal solution of the
current linear relaxation.

Optimality test:
If the optimal value of the relaxation is greater than the incumbent (minusεz), then no
cutting is necessary, the current node may be discarded. Otherwise, the algorithm goes
on with the next steps.

Refinement of an under-estimation of a square (classCI ):
For eachi ∈ N such that̂vi < x̂2

i − εr , add the linearizationVi (α) whereα is defined
through Proposition 2.

Refinement of a paraboloid (classCII ):
For each(i , j) ∈ M andγ such that the conditions in Proposition 3 are satisfied, add the
linearizationPγi j (αi , α j ), where(αi , α j ) is defined through Proposition 4.

Refinement of a product (classesC IV and C IV ):
For each(i , j) ∈ M such thatŵi j < x̂i x̂ j − εr , add the linearizationsWI

i j (β, β) and

WIII
i j (β, β) if they are not already present (using the current variablesδi (·) andδ j (·)),

whereβ andβ are evaluation points such that the interval[β, β] ⊇ [ ŵi j

x̂ j
, x̂i ] is the

smallest possible.

For each(i , j) ∈ M such thatŵi j > x̂i x̂ j + εr , add the linearizationsW
II
i j (β, β) and

W
IV
i j (β, β) if they are not already present (using the current variablesδi (·) andδ j (·)),

whereβ andβ are evaluation points such that the interval[β, β] ⊇ [x̂i ,
ŵi j

x̂ j
] is the

smallest possible.
ut

Note that if the relaxation is infeasible, then convention ensures that its optimal
value will be equal to+∞, and so the optimality test will stop processing the node.

The cuts of classesCI andCII are independent of the variablesδi (·) since they are
linear under-approximations of convex functions. These cuts are inexpensive to add to
the linear relaxation. Only the cuts associated with the classesCIII , C IV andC IV use
the variablesδi (·) that are already fixed at either 0 or 1. Cuts fromCIII are only added
and activated at the branching step. Cuts from the two other classes are added to the
outer-approximation only when they are needed, thus keeping the size of the relaxation
from growing.

5.4. Description of the whole algorithm

We are now able to construct the branch and cut algorithm. The method can be divided in
two main steps. ThePre-Processingstep is used to create the initial outer-approximation
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and to obtain valid bounds on each variable. TheEnumeration Treestep recursively
processes nodes of the tree in a best-first manner (preference with respect to the optimal
objective value of the relaxation). At each node, one of two outcomes is possible: either
the node is discarded (when infeasible, solved or eliminated), or it is split into two new
nodes. For clarity, only the main ideas of the algorithm are presented. Details of the
steps appear in the previous sections.

ALGORITHM.

Pre-Processing.
The listL of nodes to be explored is initialized to contain only the root node.

Enumeration Tree.
WhileL is not empty, repeat the three sub-steps.
• Select and remove the best-first node fromL.
• Perform the cutting steps:

Add linearizations from classesCI , CII , C IV andC IV .
If the optimal relaxed solution isεr -feasible, then update the incumbent.
Otherwise, pursue at the branching step if the relaxation is feasible and
its optimal objective value is less than the incumbent objective value (minusεz).

• Perform the branching step.
Obtain the branching variablexi and valueα and dichotomous variableδi (α)
(if possible, reuse the structure created at other nodes).
If the structure is not reused, introduce cuts from classCIII .
Add toL nodes corresponding to both sons.

ut
This is indeed a branch and cut algorithm in the sense that the cuts from classesCI

andCII introduced at any node of the tree are valid at all other nodes. The cuts derived
from the other classes are valid everywhere in the subtree rooted at the node where they
were generated. At all other nodes, these cuts are relaxed as long as the corresponding
variableδi is free in [0,1]. They are valid at all times, but become non-redundant as
soon as the branching structure is reused, i.e., when the variableδi is fixed at either
0 or 1. The next theorem shows finiteness and correctness of the algorithm.

Theorem 1. The above algorithm finds in finite time anεr -εz-optimal solution of prob-
lem QQP.

Proof. The Pre-Processing step stops as soon as two successive iterations do not improve
any bound by a value of at leastεr . Only a finite number of iterations are therefore
possible. At each iteration, a finite number of linear programs are solved. It follows that
the Pre-Processing phase is completed in finite time.

Consider a node generated by the Enumeration Tree phase where the over-approxi-
mation of the square function is refined. Letα ∈]`i ,ui [ be the point where the lineariza-
tion was done.

We now show that the linearizations associated with both sons of the current node
eliminate a non-negligible region of the relaxed domain. For the node wherexi ≤ α, the
linearization of the variablexi is within the required tolerance ifxi ≥ α− εr /ui . So, if
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this condition is satisfied, the maximal error will be

(`i + α)
(
α− εr

ui

)
− `iα−

(
α− εr

ui

)2

= αεr

ui
− `i εr

ui
− ε2

r

u2
i

≤ αεr
ui
≤ εr .

For the son wherexi ≥ α, the linearization of the variablexi is within the required
tolerance ifxi ≤ α+ εr /ui . So, if this condition is satisfied, the maximal error will be

(α+ ui )

(
α+ εr

ui

)
− αui −

(
α+ εr

ui

)2

= εr − ε2
r

u2
i

− αεr
ui
≤ εr .

For each son an interval of lengthεr /ui > 0 is linearized within the error tolerance,
and so, if a solution lying in that domain is generated, then the linearization will not be
refined anymore. Therefore, there can only be a finite number of cuts for each variable.

The same reasoning applies for the approximation of a product of two variables.
The solution produced will thus beεr -feasible.

The propositions from Sect. 3 imply that the inequalities are valid and so, the optimal
solution (within theεz optimality tolerance) is never eliminated. It follows that there
exists a node of the enumeration tree where anεr -εz-optimal solution will be identified.

Since the Pre-Processing and Enumeration Tree phases stop in finite time, the
algorithm finds in finite time anεr -εz-optimal solution ofQQP.

ut
In the following subsection, we illustrate the performance of this algorithm on

different examples taken from the literature.

5.5. Numerical results

The algorithm is coded in C++ and uses the CPLEX4.0 library to solve the linear
programs. Computational experiments were made on a SUN Ultra-1/167 station using
Solaris 2.5-06.

The following example is a quadratic reformulation of a fourth degree polynomial
problem found in Bartholomew-Biggs [8]. It is restated in Hock and Schittkowski [23]
(No 71) and in Hansen and Jaumard [19] (No 5). The reformulation (that introduces the
variablesx5 andx6) is stated as follows.

min
x

x3+ x1x5+ x2x5+ x3x5

s.t. x5− x1x4 = 0,
x6− x2x3 = 0,
x2

1 + x2
2 + x2

3 + x2
4 = 40,

x5x6 ≥ 25,
1≤ x1 ≤ 5 1≤ x3 ≤ 5,
1≤ x2 ≤ 5 1≤ x4 ≤ 5.

Using the precisionεr = εz = 10−6, the Pre-Processing phase spends 2.69 sec-
onds to improve bounds on both variablesx5 andx6 to [1.33975,18.6603]. Then, the
Enumeration Tree phase finds in 4.49 seconds the solution

x∗ = (1,4.74319,3.8209,1.37944,1.37944,18.1233)



148 Charles Audet et al.

having objective value 17.014 by exploring a total of 69 nodes, adding 25 variables
δi (α), and 599 linear cuts. The total time required to solve this problem is 7.18 seconds.
In order to compare the usefulness of selecting the branching values using the error
minimization criteria developed in Sect. 4, the same instance was solved by selecting
the branching value to be the mid-point of the current interval. This strategy generated
189 nodes, added 55 variablesδi (α), and 1076 linear cuts.

Figure 3 illustrates aspects of the resolution. The enumeration tree is detailed only to
a depth of six. The circled numbers indicate the order in which the nodes were generated.
One can deduce from them the order in which they are processed (i.e., removed from
the listL). Directly below each node is the corresponding branching variable, except
at node 12 where the relaxation was proven infeasible. The four numbers around each
node represent the number of cuts of each class (as illustrated to the right of the tree)
generated at the corresponding node. The dots under nodes 13 and 30 indicate that there
are further branches in the tree underneath them. The other leaves (nodes 3, 7, 10, 20,
21, 18, 31) are not developed as their lower bound, that is, the optimal value of the
relaxation, is greater than the incumbent value.
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Fig. 3. Partial branch and cut tree

The enumeration tree suggests the following observations. The nodes are processed
using a best-first strategy, and so the order in which they are selected is not predictable
only by simple inspection of the tree.

Most of the cuts introduced come from the classesCI andCII . That situation is
desirable since these cuts correspond to linear under-estimations of convex functions
and do not require dichotomy, hence no extra variable is needed and a single constraint
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is added to the outer-approximation. Moreover, the large number of cuts from classCII
is explained by the flexibility involved in their generation. The three required parameters
allow frequent elimination of the current point.

Only some of the cuts available from classesC IV andC IV are added. This limits the
growth in size of the relaxation.

At any node, there is never more than one new cut from classCIII . This is expected
since the branching process is invoked as soon as one such cut is added. When no cut of
that class is introduced (nodes 6, 11, 20, 21, 18, 19, 31), a previously created branching
variable and structure is reused. This is a key element to keep reasonable the size of the
relaxation.

The algorithm also solved several global optimization problems from the literature.
These problems were first reformulated as instances ofQQPusing techniques described
in Hansen and Jaumard [19]. In particular, polynomial terms of degree more than two
were rewritten, as in the example above, as quadratic ones. The same type of trans-
formations was applied to fractions involving quadratic terms. Moreover, monotonicity
analysis (as described in Hansen, Jaumard and Lu [20]) and variable elimination al-
lowed significant simplifications of these problems. No comparison between the several
possible reformulations and their effect on the tightness of the relaxation was performed
here. The final reformulations on which the algorithm was executed are detailed in
Audet [5]. We present here the largest of these reformulations, i.e., problem 7 below,
along with ourεr -εz-optimal solution.

min
x

z(x) = 12.62626(x12+ x13+ x14+ x15+ x16)

−1.231059(x1x12+ x2x13+ x3x14+ x4x15+ x5x16)

s.t. 50≤ z(x) ≤ 250,
−3.475xi + 100xj + .0975x2

i − 9.75xi x j ≤ 0 i = 1,2,3,4,5, j = i + 5,
−x6x11+ x7x11− x1x12+ x6x12 ≥ 0,
50x7− 50x8− x1x12+ x2x13+ x7x12− x8x13= 0,
50x8+ 50x9− x2x13+ x3x14+ x8x13− x9x14 ≤ 500,
−50x9+ 50x10− x3x14+ x4x15− x8x15+ x9x14 ≤ 0,
50x4− 50x10− x4x15− x4x16+ x5x16+ x10x15 ≤ 0,
50x4− x4x16+ x5x16≥ 450 −x1+ 2x7 ≤ 1,
x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 x6 ≤ x7 x8 ≤ x9 ≤ x10 ≤ x4
0≤ x11− x12≤ 50 .001≤ x6 ≤ 1,
1≤ x1 ≤ 8.03773157 1≤ x7 ≤ 4.51886579 10−7 ≤ x12 ≤ 100,
1≤ x2 ≤ 9 1≤ x8 ≤ 9 1≤ x13 ≤ 50,
4.5≤ x3 ≤ 9 1≤ x9 ≤ 9 50≤ x14 ≤ 100,
4.5≤ x4 ≤ 9 1≤ x10 ≤ 9 50≤ x15 ≤ 100,
9≤ x5 ≤ 10 .1≤ x11 ≤ 100 10−7 ≤ x16 ≤ 50.

Solution:εr = εz = 10−5,

x∗ = (8.03773,8.161,9,9,9,1,1.07026,1.90837,1.90837,
1.90837,50.5042, .504236,7.26387,50,50,0), z(x∗) = 174.788.

Table 1 presents some important characteristics of these instances. The first column
indicates the reference in which the first untransformed formulation of the problem
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appears, the other columns quantify aspects of the reformulated quadratic instances.
The next three respectively contain the number of variables that are not involved in
quadratic terms, the number of variables that are, and the total number of variables.
The middle column indicates the total number of different quadratic terms. The last
three presents the number of linear inequalities (including bounds on variables), and
the number of nonlinear inequalities and equalities. There is no linear equality since
the process of reformulating the problems into quadratic instances removed them by
variable elimination.

Table 1.Characteristics of the problems

Variables Quad Constraints
Ex Source Lin Quad Tot Terms Lin Quad

≤ ≤ =
1 Haverly [22] 2 3 5 2 7 2 0
2 Colville [11] 0 4 4 6 8 3 0
3 Avriel and Williams [6] 0 4 4 2 9 2 0
4 Bartholomew-Biggs [8] 0 6 6 9 8 1 3
5 Bracken and McCormick [9] 0 7 7 6 14 4 2
6 Dembo [12] 0 10 10 15 26 9 2
7 Dembo [12] 0 16 16 24 42 10 1

The first example stems from the bilinear pooling problem encountered in the
petrochemical industry. The next one describes a situation atProctor and Gamble Co.
The third one is a simple 3-stage heat exchanger design problem. The fourth one is more
academic, and is the one described in details at the beginning of this section. The fifth one
models an alkylation of olefin process. The last two arise from membrane separation in
respectively three and five phases; the largest of these two signomial programs is written
above. The diversity of these applications indicates the modeling flexibility ofQQP.

Table 2 displays the result of the application of the algorithm to these problems. The
columnboundindicates the number of variables that are not, at optimality, at one of their
bounds obtained in the pre-processing phase. Computational difficulty of a problem is
closely related to that number since linearization is exact when the variable is at one of its
bound. The columns entitledδ andAdd ctrrespectively contain the number of variables
and constraints that were introduced in the solution process. The columnNodesshows
the number of nodes required by the exploration tree. The columnsTime indicate the
pre-processing, the enumeration tree and the total time in seconds used by the algorithm.
Finally, the last column displays the precision factors supplied to the algorithm.

Even if the problems considered above arise from different sources and rely on
different modeling structure, all of them are now solved to global optimality within
a good precision. Prior to our work, other authors studied these problems. Our algorithm
confirmed that the heuristic solutions of problems 3 and 4 presented in Hock and
Schittkowski [23] are indeedεr -εz-optimal, and it slightly improved that of problem 6.
Problem 1 was solved by Foulds, Haugland and Jörnsten [17], but the tolerance parameter
is not specified (however, their discussion implies that it is small). Problems 2 and 3 were
solved to optimality by Hansenet al. [20] using monotonicity analysis together with
a branch and bound scheme. Problem 5 was solved by Quesada and Grossmann [25]
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Table 2.Performance of the algorithm

Ex Variables Add Nodes Time (sec) εr = εz
bound δ ctr PP Tree Tot

1 2 5 34 9 .64 .01 .65 10−6

2 2 6 69 7 1.25 .04 1.29 10−6

3 4 39 378 191 1.1 3.8 4.9 10−6

4 5 25 599 69 2.7 4.5 7.2 10−6

5 6 66 1335 357 4.3 65.6 69.9 10−5

6 7 41 1088 259 148 61 209 10−5

7 7 235 6205 2847 222 7329 7551 10−5

within a 5% tolerance using a branch and bound algorithm for fractional programs that
uses convex nonlinear under-estimators. To the best of our knowledge, problems 6 and
7 are solved toεr -εz-optimality for the first time.

Based on the theoretical and algorithmic framework described herein, we intend in
further work to pursue the study of such linearization approaches for other classes of
problems, and to compare the results with alternate methods.
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