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Abstract. We give some sufficient conditions for proper lower semicontinuous functions on metric spaces
to have error bounds (with exponents). For a proper convex function f on a normed space X the existence of
a local error bound implies that of a global error bound. If in addition X is a Banach space, then error bounds
can be characterized by the subdifferential of f . In a reflexive Banach space X, we further obtain several
sufficient and necessary conditions for the existence of error bounds in terms of the lower Dini derivative
of f.
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1. Introduction

Let (X, d) be a metric space, f : X → (−∞,+∞] a proper function (that is, dom f :=
{x ∈ X : f(x) < +∞} is nonempty) and S := {x ∈ X : f(x) ≤ 0}. We say that f has
a local (global) error bound if for some 0 < ε < +∞ (ε = +∞) there exists µ > 0
such that

dS(x) ≤ µ f(x)+ ∀x ∈ X with f(x) < ε

where f(x)+ = max{ f(x), 0}, and dS(x) := inf{d(x, s) : s ∈ S} if S is nonempty and
dS(x) = +∞ if S is empty.

Error bounds have important applications in sensitivity analysis of mathematical
programming and in convergence analysis of some algorithms. In recent years, the
study of error bounds has received a lot of attention in the mathematical programming
literature. The reader is referred to the survey paper [5] for the relevant work and the
references. However, most previous error bound results assume continuous or convex
functions. Recently Ng and Zheng [6–8] and Wu and Ye [11] have made progress on
the study of error bounds for discontinuous functions on general spaces. The purpose
of this paper is to further extend several results in [6,7,11].
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2. Error bounds for nonconvex functions

For nonconvex functions Ng and Zheng [7] have obtained several interesting results
about the existence of global error bounds. For a proper function on a metric space Ng
and Zheng [7, Lemma 2.2] have presented a sufficient condition on the existence of
a global error bound. Applying their result to the function fε defined by

fε(x) = f(x)+ ψSε (x) ∀x ∈ X

where ψSε is the indicator function of the set Sε := {x ∈ X : f(x) < ε}, we can easily
derive the following corresponding sufficient condition for error bounds.

Theorem 1. Let (X, d) be a metric space and f : X → (−∞,+∞] a proper function.
Suppose that the set S is nonempty. If for some constants µ > 0, 0 ≤ ρ < 1 and
0 < ε ≤ +∞ and for each x ∈ f −1(0, ε) := {y ∈ X : 0 < f(y) < ε} there exists
x′ ∈ f −1[0, ε) such that

dS(x
′) ≤ ρdS(x) (1)

and

d(x, x′) ≤ µ[ f(x)− f(x′)], (2)

then

dS(x) ≤ µ f(x)+ ∀x ∈ f −1(−∞, ε).

Note that the assumptions in Theorem 1 are very weak in that the space X is only
required to be a metric space and f is only a proper function. If the space X is a normed
space and the function f is lower semicontinuous, then one can replace condition (2)
with an inequality involving the lower Dini derivative of f at x ∈ dom f in the direction
v ∈ X given by

f −(x; v) := lim inf
t→0+

f(x + tv)− f(x)

t
.

We need the following result of the mean-valued theorem given by Ng and Zheng [7,
Lemma 2.1].

Lemma 1 ([7, Lemma 2.1]). Let X be a normed space and f : X → (−∞,+∞] be
a proper lower semicontinuous function; let x ∈ dom f , h ∈ X with ‖h‖ = 1 and t > 0.
Assume that there exists δ ∈ R such that for each α ∈ [0, t), f −(x + αh; h) ≤ δ. Then

f(x + th)− f(x) ≤ tδ.

As Ng and Zheng showed in [7, Theorem 2.4] that inequality (2) in Theorem 1 can
be replaced with a condition in terms of the lower Dini derivative for the case ε = +∞,
we use Lemma 1 to prove the corresponding result for the case 0 < ε < +∞.
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Theorem 2. Let X be a normed space and f a proper lower semicontinuous function
on X; let 0 < ε ≤ +∞, 0 < µ < +∞ and 0 ≤ ρ < 1. Suppose that S is nonempty and
that for each x ∈ f −1(0, ε) = {y ∈ X : 0 < f(y) < ε} there exist tx > 0 and hx ∈ X
with ‖hx‖ = 1 such that

dS(x + txhx) ≤ ρdS(x) and f −(x + thx; hx) ≤ −µ−1 ∀t ∈ [0, tx).

Then

dS(x) ≤ µ[ f(x)]+ ∀x ∈ f −1(−∞, ε).

Proof. The result for the case ε = +∞ has been given in [7, Theorem 2.4], we only
need to consider the case 0 < ε < +∞.

For any n > 1 with n ∈ N, let

Fn(x) = f(x)+ ψSn (x)

where Sn = {x ∈ X : f(x) ≤ (1 − 1
n )ε} and ψSn is the indicator function of Sn . Then

for x ∈ F−1
n (0,+∞), by the assumption, there exist tx > 0 and hx ∈ X with ‖hx‖ = 1

such that

f −(x + thx; hx) ≤ −µ−1 ∀t ∈ [0, tx).

By Lemma 1, the above inequality implies that

f(x + thx)− f(x) ≤ t(−µ−1) ∀t ∈ (0, tx),

that is,

f(x + thx) ≤ f(x)− tµ−1 <

(
1 − 1

n

)
ε ∀t ∈ (0, tx).

Consequently

F−
n (x + thx; hx) = f −(x + thx; hx) ∀t ∈ [0, tx).

Therefore applying the result of this theorem for the case ε = +∞ to the lower
semicontinuous function Fn , one has

dS(x) ≤ µFn(x)+ ∀x ∈ F−1
n (−∞,+∞).

Since 1 < n ∈ N is arbitrary, the desired result is proven.
��

Another direction for simplifying the conditions in Theorem 1 is to assume that X is
a complete metric space on which the well-known Ekeland variational principle holds.
Indeed using an equivalent form of the Ekeland variational principle by Hamel [4], Ng
and Zheng [7, Lemma 2.3] showed that in a complete metric space X condition (1) in
Theorem 1 can be omited for the case ε = +∞. In fact we can further show that in
a complete metric space the nonemptiness of S has already been implied by the other
conditions in Theorem 1, that is, the nonemptiness of S comes as a conclusion instead
of an assumption thanks to the existence theorem given by Takahashi [10]. To prove the
above claim, we summarize the results on the existence of minima and the equivalent
statement of the Ekeland variational principle due to Takahashi and Hamel as follows.
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Proposition 1. Let (X, d) be a complete metric space and f : X → (−∞,+∞]
a proper lower semicontinuous function bounded from below. Denote

γ := inf{ f(x) : x ∈ X} and Z := {z ∈ X : f(z) = γ }.
If for some µ > 0 and each x ∈ X with γ < f(x) there exists x′ ∈ X such that

0 < d(x, x′) ≤ µ[ f(x)− f(x′)],
then

(i) the set Z is nonempty ([10, Theorem 1]), and
(ii) dZ(x) ≤ µ[ f(x)− f(z)] ∀x ∈ X, z ∈ Z ([4, Theorem 2]).

Theorem 3. Let (X, d) be a complete metric space and f : X → (−∞,+∞] be
a proper lower semicontinuous function. Suppose that for someµ > 0 and 0 < ε ≤ +∞
the set f −1(−∞, ε) is nonempty and for each x ∈ f −1(0, ε) there exists a point
x′ ∈ f −1[0, ε) such that

0 < d(x, x′) ≤ µ[ f(x)− f(x′)].
Then S is nonempty and

dS(x) ≤ µ f(x)+ ∀x ∈ f −1(−∞, ε).

Proof. Let µ > 0 and 0 < ε ≤ +∞ satisfy the given condition. Then f(·)+ is a lower
semicontinuous function bounded from below with S = {x ∈ X : f(x)+ = 0} and
γ := inf{ f(x)+ : x ∈ X} ≥ 0.

For the case ε = +∞, by Proposition 1, the set Z = {z ∈ X : f(z)+ = γ } is
nonempty. To show that S is nonempty, it suffices to prove S = Z, that is, γ = 0. This
must be true. Otherwise if γ were greater than 0 then for any z ∈ Z we have f(z) > 0.
Hence by the assumption there exists z′ ∈ f −1[0,+∞) such that

0 < d(z, z′) ≤ µ[ f(z)− f(z′)],
from which it follows that f(z′)+ < f(z)+ = γ, contradicting the definition of γ .

Next we consider the case 0 < ε < +∞. For each m > 1 with m ∈ N such that the
set

Sm :=
{

x ∈ X : f(x) ≤
(

1 − 1

m

)
ε

}

is nonempty we define Fm : X → (−∞,+∞] by

Fm(·) = ( f + ψSm )(·)
where ψC is the indicator function of C. Then S = {x ∈ X : Fm(x) ≤ 0} and Fm is
proper lower semicontinuous since f is lower semicontinuous and the set Sm is closed.
Besides for x ∈ F−1

m (0,+∞), that is, x ∈ f −1(0, (1 − 1
m )ε], by the assumption, there

exists x′ ∈ f −1[0, ε) such that

0 < d(x, x′) ≤ µ[ f(x)− f(x′)],
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which implies that x′ ∈ f −1[0, (1 − 1
m )ε]. Such an x′ satisfies x′ ∈ F−1

m [0,+∞) and

0 < d(x, x′) ≤ µ[Fm(x)− Fm(x
′)].

Therefore by the conclusion for the case ε = +∞ the set S is nonempty and

dS(x) ≤ µ[Fm(x)+] ∀x ∈ F−1
m (−∞,+∞)

= µ f(x)+ ∀x ∈ Sm,

from which we obtain

dS(x) ≤ µ f(x)+ ∀x ∈ f −1(−∞, ε)

since f −1(−∞, ε) = ∪+∞
m=2 Sm .

��
As a result of Theorem 3, the conditions of Theorem 2 in a Banach space version

can be greatly simplified as in [7, Theorem 2.5].

Theorem 4. Let X be a Banach space and f : X → (−∞,+∞] be a proper lower
semicontinuous function. Let 0 < ε ≤ +∞ and 0 < µ < +∞. Suppose that the set
f −1(−∞, ε) is nonempty and for each x ∈ f −1(0, ε) there exists hx ∈ X with ‖hx‖ = 1
such that f −(x; hx) ≤ −µ−1. Then S is nonempty and

dS(x) ≤ µ[ f(x)]+ ∀x ∈ f −1(−∞, ε).

Proof. By Theorem 3, it suffices to show that for any λ > 1 and x ∈ f −1(0, ε) there
exists a point y ∈ f −1[0, ε) such that

0 < ‖x − y‖ ≤ λµ[ f(x)− f(y)].
Let λ > 1 be fixed. For each x ∈ f −1(0, ε), by assumption, there exists hx ∈ X

with ‖hx‖ = 1 such that f −(x; hx) ≤ −µ−1. Let x ∈ f −1(0, ε) be fixed and tn → 0+
be such that

lim
n→+∞

f(x + tnhx)− f(x)

tn
= f −(x; hx).

Then for sufficiently large n we have

f(x + tnhx)− f(x)

tn
< − 1

λµ
.

From this and the lower semicontinuity of f it follows that

0 <
1

2
f(x) < f(x + tnhx) < f(x)− tn

λµ
< ε

for sufficiently large n. For any such n, taking y = x + tnhx , we have

0 < tn = ‖x − y‖ ≤ λµ[ f(x)− f(y)].
This completes the proof.

��
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3. Error bounds with exponents

For a proper extended-valued function f on a metric space X, we say that f has a local
(global) error bound with exponent β > 0 if for some 0 < ε < +∞ (ε = +∞) there
exists µ > 0 such that

dS(x) ≤ µ[ f(x)+]β ∀x ∈ X with f(x) < ε.

Simply replacing f by the function [ f+]β in Theorems 1 and 3, we obtain the following
sufficient conditions for error bounds with exponents.

Theorem 5. Let (X, d) be a metric space and f : X → (−∞,+∞] be a proper
function. Suppose that the set S is nonempty. If for some constants µ > 0, 0 ≤ ρ < 1
and 0 < ε ≤ +∞ and for each x ∈ f −1(0, ε) there exists x′ ∈ f −1[0, ε) such that

dS(x
′) ≤ ρdS(x) (3)

and

0 < d(x, x′) ≤ µ[ f β(x)− f β(x′)], (4)

then

dS(x) ≤ µ[ f(x)+]β ∀x ∈ f −1(−∞, ε). (5)

With the stronger condition that X is complete and f is a proper lower semicontinuous
function satisfying only (4), then S is automatically nonempty and the conclusion (5)
holds.

Note that Theorem 5 extends [6, Theorem 1] from a weakly lower semicontinuous
function f on a reflexive Banach space X to a proper lower semicontinuous function on
a Banach space.

In order to derive the corresponding sufficient conditions for error bounds with
exponents in terms of the lower Dini derivative of function f , we first give a chain rule
for the lower Dini derivative of f β.

Lemma 2. Let X be a normed space and f : X → (−∞,+∞] be a proper lower
semicontinuous function; let 0 < µ < +∞, 0 < β < +∞ and 0 < ε ≤ +∞ be
constants. Then for x ∈ f −1(0, ε) and hx ∈ X with ‖hx‖ = 1 the following are
equivalent:

(i) f −(x; hx) ≤ −µ−1 f 1−β(x).
(ii) ( f β)−(x; hx) ≤ −µ−1β.

Moreover if (i) or (ii) holds then

( f β)−(x; hx) = β f β−1(x) f −(x; hx).
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Proof. Let x ∈ f −1(0, ε) and hx ∈ X with ‖hx‖ = 1. Suppose that inequality (i) holds.
Then there exists a sequence {tn} such that tn → 0+ as n → +∞ and

lim
n→+∞

f(x + tnhx)− f(x)

tn
= f −(x; hx) ≤ −µ−1 f 1−β(x).

Since 0 < f(x) < ε, for sufficiently large n, we have

f(x + tnhx)− f(x)

tn
< −(2µ)−1 f 1−β(x),

which with the lower semicontinuity of f implies that the following properties hold
for f :

(1) limn→+∞[ f(x + tnhx)− f(x)] = 0.

(2) f(x + tnhx)− f(x) < 0 for sufficiently large n.

(3) f β(x + tnhx)− f β(x) = β f β−1(x)[ f(x + tnhx)− f(x)] + o( f(x + tnhx)− f(x))
as n → +∞.

Therefore

f β(x + tnhx)− f β(x)

tn
= f(x + tnhx)− f(x)

tn

[
β f β−1(x)+ o( f(x + tnhx)− f(x))

f(x + tnhx)− f(x)

]
,

from which it follows that

( f β)−(x; hx) ≤ lim
n→+∞

f β(x + tnhx)− f β(x)

tn
= β f β−1(x) f −(x; hx) ≤ −β

µ
.

This proves the implication (i) ⇒ (ii).
Conversely let inequality (ii) be true and tn → 0+ be such that

lim
n→+∞

( f β)(x + tnhx)− ( f β)(x)

tn
= ( f β)−(x; hx) ≤ −β

µ
.

From this inequality and the lower semicontinuity of f with 0 < f(x) < ε we see again
that f still satisfies the above properties (1)–(3). Hence

f −(x; hx) ≤ lim
n→+∞

f(x + tnhx)− f(x)

tn
= β−1 f 1−β(x)( f β)−(x; hx)

≤ −µ−1 f 1−β(x),
that is, inequality (i) follows.

Note that in the proof of implications (i) ⇒ (ii) and (ii) ⇒ (i) we have

( f β)−(x; hx) ≤ β f β−1(x) f −(x; hx)

and

f −(x; hx) ≤ β−1 f 1−β(x)( f β)−(x; hx).

Therefore no matter whether (i) or (ii) holds we always have

( f β)−(x; hx) = β f β−1(x) f −(x; hx).

��
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Replacing the function f in Theorems 2 and 4 with [ f+]β and applying Lemma 2,
we obtain the following sufficient conditions for error bounds with exponents.

Theorem 6. Let X be a normed space and f : X → (−∞,+∞) be a proper lower
semicontinuous function; let 0 < µ < +∞, 0 ≤ ρ < 1 and 0 < β < +∞ be constants
and 0 < ε ≤ +∞. Suppose that S is nonempty and for each x ∈ f −1(0, ε) there exist
tx > 0 and hx ∈ X with ‖hx‖ = 1 such that

dS(x + txhx) ≤ ρdS(x) and (6)

and

f −(x + thx; hx) ≤ −µ−1 f 1−β(x + thx) ∀t ∈ [0, tx). (7)

Then

dS(x) ≤ µ

β
[ f(x)+]β ∀x ∈ f −1(−∞, ε). (8)

With the stronger condition that X is complete (i.e., X is a Banach space) and (7) is
satisfied only for t = 0, then S is automatically nonempty and the conclusion (8) holds.

Remark 1. It is worth pointing out that Theorem 6 extends [6, Theorem 3] and [6,
Corollaries 3 and 4] in which X is a reflexive Banach space and f is weakly lower
semicontinuous and directionally continuous at x in the direction hx with f −(x; hx) ≤
−µ−1 f 1−β(x).

4. Error bounds for l.s.c. convex functions

A nonconvex function may have a local error bound but no global error bounds. For
example, it is easy to see that the function

f(x) =
{ |x| if |x| ≤ 1,√|x| if |x| > 1

has no global error bounds even though it has a local error bound. However, for a proper
convex function, the existence of a local error bound always implies that of a global
error bound.

Proposition 2. Let X be a normed space and f : X → (−∞,+∞] be a proper convex
function. Then, for some µ > 0 and 0 < ε < +∞, the following statements are
equivalent:

(i) S is nonempty and dS(x) ≤ µ f(x)+ for each x ∈ f −1(0, ε).
(ii) dS(x) ≤ µ f(x)+ for each x ∈ X.
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Proof. The inclusion (ii) ⇒ (i) is trivial. To show (i) ⇒ (ii) we suppose that S is
nonempty and

dS(x) ≤ µ f(x)+ ∀x ∈ X with f(x) < ε.

It suffices to prove that the above estimate holds for all x ∈ X with ε ≤ f(x) < +∞ as
well. Let x ∈ X with ε ≤ f(x) < +∞ be fixed. Then for any positive integer n there
exists x̄ ∈ S such that

‖x − x̄‖ ≤ dS(x)+ 1

n
. (9)

Let λ := ε

2 f(x)
and y = (1 − λ)x̄ + λx. Then (9) implies that

‖x − y‖ + ‖y − x̄‖ ≤ dS(x)+ 1

n

from which we have

‖y − x̄‖ ≤ dS(x)− ‖x − y‖ + 1

n
≤ dS(y)+ 1

n
. (10)

Since f is convex and x̄ ∈ S,

f(y) ≤ (1 − λ) f(x̄)+ λ f(x) ≤ λ f(x) = ε

2

which implies dS(y) ≤ µ f(y)+. Therefore

dS(x) ≤ ‖x − x̄‖ = 1

λ
‖y − x̄‖ = 2 f(x)

ε
‖y − x̄‖

≤ 2 f(x)

ε

(
dS(y)+ 1

n

)
(by (10))

≤ 2 f(x)

ε

(
µ f(y)+ + 1

n

)

≤ 2 f(x)

ε

(
µ
ε

2
+ 1

n

)

≤ µ f(x)+ 2 f(x)

nε
.

The desired estimate is obtained since n is arbitrary. Hence (ii) follows.
��

Recall that the subdifferential of a proper function f at x ∈ X in the sense of convex
analysis is given by

∂ f(x) := {ξ ∈ X∗ : f(y)− f(x) ≥ 〈ξ, y − x〉 ∀y ∈ X}
where X∗ is the dual space of a normed space X. For a continuous convex function
f on a reflexive Banach space X, under the condition the set S be nonempty, Ng and
Zheng showed that there exists µ > 0 such that dS(x) ≤ µ f(x)+ for each x ∈ X if
and only if ‖ξ‖ ≥ µ−1 for each ξ ∈ ∂ f(x) and each x ∈ X with 0 < f(x) < +∞
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(see [7, Theorem 3.3]). Note that for a proper lower semicontinuous convex function
f the subdifferential ∂ f(x) coincides with the Clarke subdifferential ∂◦ f(x) (see [2]).
This fact allows us to use [11, Theorem 3.1] to extend their result to a proper lower
semicontinuous convex function on a Banach space. In fact we can use Proposition 2 to
obtain additional equivalent statements about error bounds as follows.

Theorem 7. Let X be a Banach space and f : X → (−∞,+∞] be a proper lower
semicontinuous convex function. Then for some constant µ > 0 the following are
equivalent:

(i) ‖ξ‖ ≥ µ−1 for each ξ ∈ ∂ f(x) and each x ∈ f −1(0,+∞).

(ii) S is nonempty and there exists 0 < ε < +∞ such that ‖ξ‖ ≥ µ−1 for each
ξ ∈ ∂ f(x) and each x ∈ f −1(0, ε).

(iii) S is nonempty and there exists 0 < ε < +∞ such that dS(x) ≤ µ f(x)+ for each
x ∈ f −1(0, ε).

(iv) dS(x) ≤ µ f(x)+ for each x ∈ X.

Proof. For each x ∈ X with 0 < f(x) < ε, by [2, Definition 2.4.10], ξ ∈ ∂◦ f(x)
if and only if (ξ,−1) ∈ Nepi f (x, f(x)) where epi f is the epigraph of f given by
epi f = {(x, s) ∈ X × R : f(x) ≤ s} and Nepi f (x, f(x)) is the Clarke normal cone
to epi f at (x, f(x)). Since f is lower semicontinuous and convex, epi f is closed and
convex. By [2, Proposition 2.4.4], Nepi f (x, f(x)) coincides with the cone of normals
in the sense of convex analysis. Thus ξ ∈ ∂◦ f(x) if and only if ξ ∈ ∂ f(x). We will
implicitly use this relation in the following proof of (i) ⇒ (ii) ⇒ (iii).

(i) ⇒ (ii): We only need to show that S is nonempty. Suppose that S were empty.
Then 0 ≤ inf{ f(v), v ∈ X}. Taking u ∈ X with 0 < f(u) < +∞ and t > 1, we have

f(u) ≤ inf
v∈X

f(v)+ (tµ)−1(tµ) f(u).

Applying Ekeland’s variational principle [3] to f with σ = (tµ)−1(tµ) f(u) and
λ = (tµ) f(u), we find x ∈ X satisfying

f(v) + (tµ)−1‖v− x‖ ≥ f(x) ∀v ∈ X.

This implies that 0 < f(x) < +∞ and, by [2, Corollary 1 of Theorem 2.9.8],

0 ∈ ∂( f + (tµ)−1‖ · −x‖)(x) ⊆ ∂ f(x)+ ∂((tµ)−1‖ · −x‖)(x). (11)

It follows that there exists ξ ∈ ∂ f(x) such that

‖ξ‖∗ ≤ (tµ)−1 < µ−1

which contradicts statement (i).
(ii) ⇒ (iii): If S is nonempty and there exists 0 < ε < +∞ such that ‖ξ‖ ≥ µ−1

for each ξ ∈ ∂ f(x) and each x ∈ f −1(0, ε), then taking ∂◦ as an abstract subdifferential
∂ω in [11, Theorem 3.1] we have

dS(x) ≤ µ f(x)+ ∀x ∈ X with f(x) <
ε

2
.

By Proposition 2 this inequality holds for each x ∈ X with f(x) < ε.
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(iii)⇒ (iv) follows directly from Proposition 2. It remains to prove (iv) ⇒ (i).
Let x be such that 0 < f(x) < +∞ and dS(x) ≤ µ f(x). Then dS(x) > 0 and for

any ξ ∈ ∂ f(x) we have

‖ξ‖ · ‖y − x‖ ≥ −〈ξ, y − x〉 ≥ −[ f(y)− f(x)] ≥ f(x) ∀y ∈ S.

Taking inferiors of both sides of the inequality for all y over S we obtain

‖ξ‖ · dS(x) ≥ f(x),

from which we have

‖ξ‖ ≥ f(x)

dS(x)
≥ µ−1.

Therefore the inequality desired follows.
��

Remark 2. Wu and Ye pointed out in [11, Theorem 3.1] that if S is nonempty and
‖ξ‖ ≥ µ−1 for each ξ ∈ ∂ω f(x) and each x ∈ f −1(0,+∞) then dS(x) ≤ µ f(x)+ for
each x ∈ X, where ∂ω f(x) is an abstract subdifferential of f at x defined in [11]. As
in the proof of the implication (i) ⇒ (ii) in Theorem 7, we can prove the property that
the set f −1(−∞, ε) is nonempty and ‖ξ‖ ≥ µ−1 holds for each ξ ∈ ∂ω f(x) and each
x ∈ f −1(0, ε) implies that S is nonempty. Hence the condition that S be nonempty
in [11, Theorem 3.1] can be omitted.

We recall that if f is convex then f −(x; v) coincides with the usual directional
derivative of f at x in the direction v given by

f ′(x; v) := lim
t→0+

f(x + tv)− f(x)

t
.

When f is convex and each point in a neighborhood of S has a closest point in S,
the sufficient conditions for the existence of error bounds given in Theorems 3 and 4
become necessary as well.

Proposition 3. Let X be a normed space and f : X → (−∞,+∞] a lower semicontiu-
ous convex function. Suppose that for some 0 < ε ≤ +∞ each point x ∈ f −1(0, ε) has
a closest point in S := {x ∈ X : f(x) ≤ 0}. If for some µ > 0 and each x ∈ f −1(0, ε)
there holds dS(x) ≤ µ f(x)+, then for each x ∈ f −1(0, ε)

(i) there exists y ∈ f −1(0, ε) such that 0 < ‖x − y‖ ≤ µ[ f(x)− f(y)] and
(ii) there exist tx > 0 and hx ∈ X with ‖hx‖ = 1 such that

f ′(x + thx; hx) ≤ −µ−1 ∀t ∈ [0, tx).

Proof. Given x ∈ f −1(0, ε), let x be in S such that ‖x−x‖ = dS(x).Taking tx = ‖x−x‖
and hx = t−1

x (x − x), then x = x + txhx . Obviously for each 0 < t < tx we have
dS(x − thx) = t. This implies that 0 < f(x − thx). Besides, by the convexity of f,

f(x − thx) ≤
(

1 − t

tx

)
f(x)+ t

tx
f(x) < ε.
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Thus by the assumption

t = dS(x − thx) ≤ µ f(x − thx) ≤ µ[ f(x − thx)− f(x)] ∀0 < t < tx .

Rewriting gives the following inequality

f(x)− f(x − thx)

t
≤ − 1

µ
∀0 < t < tx .

For each 0 < t < tx, by the convexity of f again,

f(x + thx)− f(x)

t
≤ f(x)− f(x)

tx
= f(x)− f(x − txhx)

tx

≤ f(x)− f(x − thx)

t
≤ − 1

µ
.

For any 0 < t < tx, taking y = x + thx , we see from the above inequality that
y ∈ f −1(0, ε) and 0 < ‖x − y‖ ≤ µ[ f(x)− f(y)]. This proves (i).

To prove (ii) we note that the point x is also a closest point in S to the point x + thx

for each t ∈ (0, tx). Thus, for each 0 < s < tx − t with t ∈ [0, hx), as in the above
discussion, we have

f(x + thx + shx)− f(x + thx)

s
≤ − 1

µ

from which we obtain (ii).
��

Note that for an l.s.c. convex function f on a Banach space X the set S = {x ∈ X :
f(x) ≤ 0} is closed and convex. If X is reflexive and S is nonempty then each point
x ∈ X\S has a closest point in S. As a result of Theorem 7, Proposition 3, Theorems 3
and 4, the equivalent statements about the existence of error bounds can be summarized
as follows.

Theorem 8. Let X be a reflexive Banach space and f : X → (−∞,+∞] be a proper
lower semicontinuous convex function. Then for some µ > 0 the equivalent statements
(i)− (iv) in Theorem 7 are all equivalent to any one of the following:

(v) For some 0 < ε < +∞ the set f −1(−∞, ε) is nonempty and for each x ∈
f −1(0, ε) there exists a point y ∈ f −1[0, ε) such that 0 < ‖x − y‖ ≤ µ[ f(x)−
f(y)].

(vi) For each x ∈ f −1(0,+∞) there exists a point y ∈ f −1[0,+∞) such that

0 < ‖x − y‖ ≤ µ[ f(x)− f(y)].
(vii) For some 0 < ε < +∞ the set f −1(−∞, ε) is nonempty and for each λ > 1 and

each x ∈ f −1(0, ε) there exists a point y ∈ f −1[0, ε) such that

0 < ‖x − y‖ ≤ λµ[ f(x)− f(y)].
(viii) For each λ > 1 and each x ∈ f −1(0,+∞) there exists a point y ∈ f −1[0,+∞)

such that 0 < ‖x − y‖ ≤ λµ[ f(x)− f(y)].
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(ix) For some 0 < ε < +∞ the set f −1(−∞, ε) is nonempty and for each x ∈
f −1(0, ε) there exist tx > 0 and hx ∈ X with ‖hx‖ = 1 such that

f ′(x + thx; hx) ≤ −µ−1 ∀t ∈ [0, tx).

(x) For each x ∈ f −1(0,+∞) there exist tx > 0 and hx ∈ X with ‖hx‖ = 1 such
that f ′(x + thx; hx) ≤ −µ−1 ∀t ∈ [0, tx).

(xi) For some 0 < ε < +∞ the set f −1(−∞, ε) is nonempty and for each x ∈
f −1(0, ε) there exists hx ∈ X with ‖hx‖ = 1 such that f ′(x; hx) ≤ −µ−1.

(xii) For each x ∈ f −1(0,+∞) there exists hx ∈ X with ‖hx‖ = 1 such that
f ′(x; hx) ≤ −µ−1.

Proof. The implications (iii) ⇒ (v) ⇒ (vii) ⇒ (iii) follow directly from Proposition 3
and Theorem 3 while (iii) ⇒ (ix) ⇒ (xi) ⇒ (iii) follow from Proposition 3 and
Theorem 4. Similarly by Proposition 3 and Theorems 3 and 4 we have “(iv) ⇒ (vi) ⇒
(viii) ⇒ (iv)” and “(iv) ⇒ (x) ⇒ (xii)⇒ (iv)”.

��
As an application of Theorem 7 or 8, the following example is used to illustrate

that not all convex functions have error bounds. The function in this example appears
in [9] and was subsequently used in [1] and [5]. By its subdifferential we prove that this
function has no error bounds even though it is convex.

Example 1. Consider the closed proper convex function

f(x1, x2) =




x2
1

x2
if x2 > 0

0 if x1 = x2 = 0
∞ otherwise.

Obviously S = {(0, 0)} and for each n ∈ N with 0 < f(x1, n) < ∞ the subdifferential

∂ f(x1, n) = {(2 x1
n ,−

x2
1

n2 )}. For fixed x1 and any 0 < ε ≤ ∞ we have 0 < f(x1, n) < ε

when n is large enough and (2 x1
n ,−

x2
1

n2 ) → (0, 0) as n → +∞. Consequently, by
Theorem 7 or 8, there can not exist µ > 0 such that for all n,

dS((x1, n)) ≤ µ f(x1, n).
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