
Digital Object Identifier (DOI) 10.1007/s101070100271

Math. Program., Ser. A 92: 1–36 (2002)

Sanjeev Arora ·Alan Frieze · Haim Kaplan

A new rounding procedure for the assignment problem
with applications to dense graph arrangement problems�

Received: December 12, 1999 / Accepted: October 25, 2001
Published online February 14, 2002 – Springer-Verlag 2002

Abstract. We present a randomized procedure for rounding fractional perfect matchings to (integral) match-
ings. If the original fractional matching satisfies any linear inequality, then with high probability, the new
matching satisfies that linear inequality in an approximate sense. This extends the well-known LP rounding
procedure of Raghavan and Thompson, which is usually used to round fractional solutions of linear programs.

We use our rounding procedure to design an additive approximation algorithm to the Quadratic Assign-

ment Problem. The approximation error of the algorithm is εn2 and it runs in nO(log n/ε2) time.
We also describe Polynomial Time Approximation Schemes (PTASs) for dense subcases of many well-

known NP-hard arrangement problems, including MINIMUM LINEAR ARRANGEMENT, MINIMUM CUT LIN-
EAR ARRANGEMENT, MAXIMUM ACYCLIC SUBGRAPH, and BETWEENNESS.

1. Introduction

In the assignment problem, we wish to minimize a linear cost function over the set of
permutations. A permutation on a set of n elements is represented by the assignment
constraints in n2 variables

{
xi j : i, j ∈ [n]}.1∑

j xi j = 1 ∀i ∈ [n]∑
i xi j = 1 ∀ j ∈ [n]
xi j ≥ 0 ∀(i, j).

(1)

A fractional solution to (1) is called a fractional perfect (bipartite) matching and an
integral solution to (1) is called a perfect (bipartite) matching. We let A denote the set
of integral solutions to (1). Thus we can state the assignment problem as

minimize cx

s.t. x ∈ A

S. Arora: Computer Science, Princeton University, e-mail: arora@cs.princeton.edu. Supported by
NSF CAREER award NSF CCR-9502747 and an Alfred Sloan Fellowship.

A. Frieze: Department of Mathematics, Carnegie Mellon University, Pittsburgh PA15213, e-mail:
alan@random.math.cmu.edu. Supported in part by NSF grant CCR9225008.

H. Kaplan: Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel, e-mail:
haimk@math.tau.ac.il. Part of this research was done at Princeton University, supported by NSF
Grant CCR8920505 and the ONR Contract No. N00014-91-J-1463.

� Preliminary version of this paper appeared in the proceedings of the IEEE Symposium on Foundations
of Computer Science (FOCS), 1996 [AFK96].

1 By [n] we denote the set of integers {1, 2, . . . , n}.

2 Sanjeev Arora et al.

where for two vectors x and y we denote their dot-product by xy. (Sometimes this
optimization problem is stated as an equivalent decision problem: find a perfect matching
that satisfies a given linear constraint.)

There are a couple of reasons why the assignment problem is so fundamental in
operations research. The first is usefulness. Assigning n tasks to n people subject to
a linear cost function – a canonical use of the problem – is a basic primitive in many
applications. The second is tractability (which, here as in many other situations, goes
hand-in-hand with mathematical elegance). This tractability traces to the fact that every
vertex of the assignment polytope (1) is integral. Thus linear programming can be used
to compute integral solutions.

But one can easily pose variants of the assignment problem that are just as useful,
sometimes more so. This paper considers the following variant, in which the perfect
matching has to satisfy more than one linear constraint. We call this problem the
Assignment Problem with Extra Constraints, or APEC. The problem is to find a solution
to

x ∈ A
akx ≥ bk, ∀k ∈ [K]. (2)

The vertices of the APEC polytope are not necessarily integral any more. Hence
solving system (2) as a linear program does not guarantee to produce an integral solu-
tion. In fact, we would not expect any polynomial-time algorithm to produce integral
solutions, since APEC is NP-hard (it contains integer linear programming as a subcase).

One could try to compute “approximate” integer solutions by solving (2) as a linear
program, and then using Raghavan-Thompson rounding [RT87] on the resulting frac-
tional solution. This does not work for the following reason. Given a fractional solution
(xi j), Raghavan-Thompson rounding produces a 0/1 vector (yi j) by making yi j = 1
with probability xi j . The vector y obtained in this way is quite unlikely to look anything
like a perfect matching. For example, if all xi j = 1/n, then the expected number of
unmatched vertices in y is approximately n/e and the expected number of vertices with
two neighbors is �(n). Note however that vector y does satisfy the cost constraints in an
approximate sense. A Chernoff-type bound shows that with high probability, y satisfies

ak y ≥ bk − Õ(
√

n Ak) ∀k ∈ [K], (3)

where Ak is the largest (in magnitude) coefficient of ak and Õ is the usual “soft-Oh”
notation that suppresses polylogarithmic factors. We’re assuming that K is not too large,
say poly(n). (Note that though the

√
n factor may appear to come out of the standard

Hoeffding bound [H64], it actually requires a more delicate analysis, since the number
of variables is n2 and not n. See Sect. 7.)

This paper presents a new randomized rounding procedure for fractional matchings
(see Theorem 3). Instead of rounding all variables independently as in the Raghavan-
Thompson technique, the procedure rounds them in a fashion that is “not independentyet
independent enough.” Our procedure can start with any fractional matching in a bipartite
graph. When the initial fractional matching is a perfect fractional matching the procedure
produces a matching that contains n−o(n) edges2. The integral matching that we produce

2 By o(g(n)) we mean a function f(n) such that f(n)/g(n) goes to zero as n goes to infinity.

A rounding procedure for the assignment problem 3

“approximately” satisfies (in the same sense as (3)), with high probability, any linear
inequality that was satisfied by the fractional matching. Although our procedure does
not yield a perfect matching (o(n) jobs do not get assigned to any person), it may well
prove good enough in many situations.

We use the rounding procedure to derive an additive approximation algorithm for
a version of the well-known Quadratic Assignment Problem or QAP (see [BC96,PRW94]
for recent surveys on this problem). In this problem, we are given a set of coefficients{
ci jkl ∈ Z : 1 ≤ i, j, k, l ≤ n

}
and desire to

minimize c(x) =∑i, j,k,l ci jkl xi j xkl (4)

s.t. x ∈ A .

We impose the restriction that each
∣∣ci jkl
∣∣ ≤ C for some fixed C > 0 independent of n.

Even with this restriction, no polynomial-time approximation algorithm can approximate
QAP within any multiplicative factor if P �= NP. This follows from the following reduc-
tion from Hamiltonian Cycle to QAP. Given a graph G = (V, E), V = {1, 2, . . . , n}we
define a 0-1 cost function c such that there exists x ∈ A with c(x) = 0 iff G contains an
Hamiltonian Cycle. The cost function c is defined such that ci jkl = 1 if l = 1+ j mod n
and (i, k) /∈ E and ci jkl = 0 otherwise. Given an assignment x such that c(x) = 0 we
define an hamiltonian cycle by making i the jth vertex of the cycle if and only if xi j = 1.
Similarly, given an hamiltonian cycle we can define a vector x such that c(x) = 0.

Using our rounding procedure we describe an algorithm that runs in nO(log n/ε2) time
and finds an integral x satisfying

c(x) ≤ c(x∗)+ εn2,

where x∗ is the fractional optimum.
Our additive approximation for the QAP uses a random-sampling based technique as

in Arora, Karger, and Karpinski [AKK95] to first reduce the degree of the optimization
problem from 2 to 1. (The reduction is accompanied by some loss of accuracy.) The
degree-reduced problem happens to be an instance of APEC. We solve that instance
using linear programming and then round the resulting solution using our rounding
procedure.

We use our additive approximation for the QAP to design Quasi-Polynomial Time
Approximation Schemes for “dense” instances of many NP-hard optimization problems.
In case of graphs, “denseness” means that the average degree is
(n). The problems we
consider include GRAPH ISOMORPHISM formulated as an optimization problem, MINI-
MUM LINEAR ARRANGEMENT, MINIMUM CUT LINEAR ARRANGEMENT, MAXIMUM

ACYCLIC SUBGRAPH, and BETWEENNESS. Our approximation schemes compute a
(1+ ε)-approximation in nO(log n/ε2) time (n = the number of nodes). For some of the
problems listed above, by reducing the space on which we do an exhaustive search,
we give algorithms that run in nO(1/ε2) time (and thus are PTASs or Polynomial Time
Approximation Schemes). Our algorithms are randomized but, with the exception of the
PTAS for BETWEENNESS, we describe how to derandomize them using fairly standard
techniques.

4 Sanjeev Arora et al.

Finally, we remark that our rounding procedure can be implemented efficiently on
a parallel multiprocessor. For example, it can be made to run on an EREW PRAM in
time O(log n log log n) (i.e., it is in the complexity class RNC2).

1.1. Related work

Without additional constraints the assignment problem has been intensively studied. It
is solvable in polynomial time by linear programming (for more details see [Law76]).
Even more interesting is the parallel complexity of this problem. The parallel com-
plexity of the related perfect matching problem (in bipartite graphs) has been inten-
sively studied. In this problem you simply want to find a perfect matching in a given
bipartite graph (that admits a perfect matching). One can easily encode this prob-
lem into the assignment problem by assigning higher weight to nonexisting edges.
To date it is still not known whether this problem is in the class NC (i.e. admits
a PRAM algorithm that runs in polylogarithmic time using polynomially many pro-
cessors). Karp, Upfal and Wigderson [KUW86] showed that the problem is in RNC
(see [MVV87] for a simpler and more efficient algorithm). They also showed that
finding a perfect matching with maximum weight in an edge-weighted graph is in
RNC if the weights are bounded by a polynomial of the number of vertices in the
graph.

Approximating the size of the maximum matching in parallel turns out to be easier.
Fisher et al. [FGHP93] give an NC approximation algorithm for the maximum cardinality
matching problem in general graphs. For the case of bipartite graphs, Cohen [Cohen93]
developed a more efficient algorithm that finds a bipartite matching of cardinality
(1− 1/poly log(n)) times the maximum using O(m) processors where m is the number
of edges in the graph. Cohen’s algorithm uses a previous technique by Goldberg et
al. [GPST92] to round in NC a fractional matching of value M into a matching of size
at least M − 1/poly(n).

Luby and Nisan in [LN92] give an NC1 approximation algorithm for positive linear
programming problems. They observed that one can use their algorithm to approximately
find the weight of the maximum matching in a bipartite graph. However, Luby and Nisan
did not know how to round their approximate fractional solution to the linear program
into a matching except by using Cohen’s and Goldberg’s techniques [Cohen93,GPST92].
We provide a new rounding technique that achieves this goal and works for general
weight functions. When the weights are bounded by a constant then our technique
produce a matching whose weight is within an additive error of o(n) from the weight of
the fractional matching. In particular when weights are all ones we obtain a matching that
contains o(n) edges less than the maximum one. (For general weights the error depends
also on the maximum weight.) Furthermore if the original fractional solution satisfies
additional linear constraints then the matching that we obtain will approximately satisfy
these constraints as well.

Shmoys and Tardos [ST93] consider approximation algorithms for the generalized
assignment problem, which involves generalized assignment constraints mixed with
other linear constraints. However, they don’t allow negative coefficients in the con-
straints. We don’t impose this restriction, but then settle for additive approximation

A rounding procedure for the assignment problem 5

instead of multiplicative approximation. We also return an almost-perfect matching as
a solution, which [ST93] could not.

Previous work on PTAS’s. PTAS’s are known for relatively few problems; KNAP-
SACK [IK75] and BIN-PACKING [FL81,KK82] are the only two well-known exam-
ples. Recently, a PTAS has also been discovered for Euclidean TSP (Arora [A96]),
for Multiple Knapsack Problem (Chekuri and Khanna [CK00]) and some Scheduling
Problems (Afrati et al. [A99]). In fact, a result by Arora, Lund, Motwani, Sudan and
Szegedy [ALM+92] shows that if P �= NP, then PTAS’s do not exist for a large body
of problems – the so-called MAX-SNP-hard problems. Similar (or stronger) “inapprox-
imability” results have since been proven for many other problems.

Such inapproximability results have raised a very natural question: What subcases
of these problems are “easy” with respect to approximation? A paper by Baker [B94]
(which actually predated the inapproximability results) showed that many NP-hard graph
problems have PTAS’s on planar graphs; more recently Khanna and Motwani [KM96]
extended her work. Recent work of Arora, Karger and Karpinski [AKK95] and Frieze
and Kannan [FK99] shows that many MAX-SNP-hard problems have a PTAS when
the instance is “dense” (in the case of graphs, this means that the average degree is

(n)). Fernandez de la Vega [FdlV94] independently gave a PTAS for dense instances
of MAX-CUT and some other problems.

Since the first appearance of our paper Frieze and Kannan [FK96,FK99] have de-
veloped a beautiful theory based on random sampling for approximation algorithms
for dense graph problems [FK96,FK99] and the related problem of property test-
ing [GGR96]. The results in [FK96,FK99] rely on decomposing matrices into sums
of simple matrices in a way inspired by the regularity lemma of Szemerédi [S78]. Using
this technique they obtain a polynomial time approximation scheme for a restricted
version of the QAP that contains the other arrangement problems that we consider here
as subcases. Asymptotically, the running times of the algorithms of Frieze and Kannan
are better than ours. Their approach, however, is more complicated, and their algorithms
are impractical. Frieze and Kannan did not consider rounding fractional matchings and
the general version of QAP that we deal with here.

1.2. Approximating dense instances of arrangement problems

In this section we define the arrangement problems that we consider in this paper and
state our main approximabity results regarding dense instances of these problems. De-
pending upon the problem, we denote a permutation in one of two ways: as a bijection
π : {1, . . . , n} → {1, . . . , n} or as a vector (xi j) that satisfies the assignment con-
straints. Recall that we are interested in dense subcases of graph problems. A graph is
a-dense if the number of edges is at least a · n2. We will explain what denseness means
for problems that are not graph problems.

QUADRATIC ASSIGNMENT: Given a set
{
ci jkl ∈ Z : 1 ≤ i, j, k, l ≤ n

}
, find a permuta-

tion (xi j) that minimizes c(x) =∑i, j,k,l ci jkl xi j xkl . We will be interested in the special
case when each

∣∣ci jkl
∣∣ = O(1). We call an instance of the quadratic assignment problem

dense if the minimum value of c(x) is
(n2).

6 Sanjeev Arora et al.

GRAPH ISOMORPHISM: The input consists of two graphs G1 = (V1, E1) and G2 =
(V2, E2) such that V1 = V2 = [n]. We define the cost c(π) of a permutation π mapping
V1 to V2 to be the sum of the number of edges (i, j) ∈ E1 such that (π(i), π(j)) �∈ E2

and the number of edges (i, j) ∈ E2 such that (π−1(i), π−1(j)) �∈ E1. The problem is
to find a permutation π of minimum cost. A dense instance of this problem is a very
nonisomorphic pair of graphs. More specifically, we define an instance to be dense if
the cost of the best permutation is
(n2).

Note that this problem is easily reducible to the quadratic assignment problem by
setting ci jkl = 0 iff (i, k) ∈ E1 and (j, l) ∈ E2 and setting ci jkl = 1 otherwise.
Our results about GRAPH ISOMORPHISM will follow directly from our results about
QUADRATIC ASSIGNMENT and this reduction.

MINIMUM LINEAR ARRANGEMENT: Given a graph G = (V, E) with V = {1, . . . , n},
find a permutation π : {1, . . . , n} → {1, . . . , n} that minimizes c(π) =∑(i, j)∈E |π(i)−
π(j)|. In other words, the goal is to lay out G along the points 1, 2, . . . , n on a straight
line, such that the total edge length in the layout is minimized. Leighton and Rao [LR88]
gave an O(log2 n)-factor approximation algorithm for this problem on general graphs.

d-DIMENSIONAL ARRANGEMENT: The analogue of the linear arrangement problem
when we have nd points on a d-dimensional grid instead of n points on a line. We are
looking for a mapping π from the vertices of the graph to the points of the grid that
minimizes the sum of the lengths of the edges. The length of edge (i, j) is the Manhattan
distance from π(i) to π(j). Here d is a constant.

MINIMUM CUT LINEAR ARRANGEMENT: Given a graph G = (V, E) with V =
{1, . . . , n}, find a permutation π that minimizes c(π) = maxi |{(k, l) ∈ E|π(k) ≤
i < π(l)}|. The minimum value of c(π) is called the cutwidth of the graph. Leighton
and Rao [LR88] gave an O(log2 n)-factor approximation algorithm for this problem on
general graphs.

BETWEENNESS: Given a finite set A, |A| = n and a collection C of ordered triples
(a, b, c) of distinct elements from A. Find a permutation π of A that maximizes the
number of triples (a, b, c) such that either π(a) < π(b) < π(c) or π(c) < π(b) < π(a).
A dense instance is one in which the number of triples is
(n3). A constant factor
approximation algorithm is trivial (just pick a random permutation).

MAXIMUM ACYCLIC SUBGRAPH: Given a digraph G = (V, E), find the largest (with
respect to the number of edges) acyclic subgraph in it. Here, again, a constant-factor
approximation algorithm is trivial. We pick a random permutation π of the graph and
take as the subgraph the largest among the set of arcs (i, j) such that π(j) > π(i) and
the set of arcs (i, j) such that π(j) < π(i).

Most problems in the above list involve optimizing an objective function that is
a degree d polynomial in (xi j) (In fact, the degree d is 2 for most of the problems,
and 3 for BETWEENNESS.) The only problem that doesn’t fall into this classification is
MINIMUM CUT LINEAR ARRANGEMENT, which we will deal with separately. Now we
formalize this class of problems.

A rounding procedure for the assignment problem 7

Definition 1. A degree-d arrangement problem is of the type

minimize p(x)

s.t. x ∈ A
where p is a degree d polynomial.

The problem is c-smooth if each coefficient of p is an integer in [−c, c].
Remarks. (i) Our results apply also to degree-d arrangement problem that require to
maximize a degree-d polynomial rather than minimizing it. We can convert one to
another by negating the coefficients of the polynomial.

(ii) For d = 2 this problem is the quadratic assignment problem.

We now summarize our results about the problems listed above in the following two
theorems.

Theorem 1. There is an algorithm that, given any c-smooth degree-d arrangement
problem and an ε, finds a matching (xi j) that contains at least (1 − ε)n edges, and
which satisfies

p(x) ≤ p(x∗)+ εnd,

where x∗ is the perfect matching at which p attains its minimum value. The algorithm
runs in nO(c2d4 log n/ε2) time.

Theorem 2. Every problem in the list above has an nO(log n/ε2) time approximation
scheme on dense instances. In addition MINIMUM LINEAR ARRANGEMENT, d-DIMEN-
SIONAL ARRANGEMENT, MINIMUM CUT LINEAR ARRANGEMENT, MAXIMUM ACY-
CLIC SUBGRAPH , and BETWEENNESS have an nO(1/ε2) time approximation schemes3.

Part of Theorem 2 is a corollary to Theorem 1. The nO(1/ε2) time approximation schemes
are obtained using techniques similar to those of [AKK95] and will be treated separately
in Sect. 4. Alternative strategies for some of these problems can be found in [FK99].

In particular if we apply Theorem 1 to GRAPH ISOMORPHISM we obtain an algorithm
to decide whether a given pair of graphs is very non-isomorphic. Given some δ > 0 we
can use the algorithm specified by Theorem 1 for some ε � δ to obtain a procedure that
can identify correctly any pair of graphs G1 and G2 such that every bijection from V1 to
V2 would leave δn2 unmatched edges. Our procedure may classify incorrectly pairs of
graphs for which the best bijection leaves between (δ− ε)n2 and δn2 unmatched edges.

1.3. Assignment problem with additional linear constraints

The APEC problem that we defined in Equation (2) corresponds to finding a perfect
matching in a complete bipartite graph that satisfies a bunch of extra linear constraints.
More generally we can define an APEC problem for any bipartite graph as follows.
Let G = (V1, V2, E) be a bipartite graph with |V1| = |V2| = n and |E| = m. The
assignment polytope (or perfect matching polytope of G), denoted by AG (or just A

3 The algorithm for BETWEENNESS is randomized.

8 Sanjeev Arora et al.

when G is understood from context) is the polytope in �m defined by the assignment
constraints in (1), and with xi j = 0 for all {i, j} �∈ E. As is well-known, every vertex
(if one exists) of this polytope is integral.

A matching in G is a subset M ⊆ E of pairwise disjoint edges. A matching is perfect
if it includes every vertex. A solution (not necessarily integral) to the set of equations (1)
is called a fractional perfect matching and a solution to a set of inequalities similar to (1)
in which every equality sign is replaced by a “≤”-sign is called a fractional matching.
A (perfect) matching M is clearly also a fractional (perfect) matching.

For a given bipartite graph G, we consider a generalization of the decision formu-
lation of the assignment problem in which we are looking for a perfect matching that
satisfies K = poly(n) additional linear constraints. We call this the Assignment Problem
with Extra Constraints, or APEC. The problem is to find an integral x such that

x ∈ AG

akx ≥ bk, k ∈ [K]. (5)

(Thus the definition in (2) is for the case G = Kn,n .)
We show how to round a fractional solution to this linear program to a matching that

is “close” to it as stated by the following theorem which we prove in Sect. 5. Recall that
we denote the largest coefficient in ak by Ak.

Theorem 3. There is an algorithm that, given a fractional solution x∗ to the system (5),
produces whp a matching x that contains at least n − o(n) edges and satisfies

akx ≥ (1− o(1))bk − Õ(
√

n Ak) k = 1, 2, . . . , K. (6)

The running time of the algorithm is Õ(N), where N is the number of nonzero
entries in x∗. The algorithm can be implemented in O(log n log log n) time on an EREW
PRAM.

Remarks. (i) The polylog() factor hidden in the soft-O (i.e., Õ()) notation is somewhat
larger in our result than in Raghavan-Thompson. (ii) As in the Raghavan-Thompson
procedure, the error goes down when all coefficients are nonnegative. (LPs of this
form are called fractional packing and covering problems.) In this case the algorithm
guarantees that

akx ≥ (1− o(1))bk − Õ(Ak) k = 1, 2, . . . , K, (7)

(The −’s are changed to +’s if the inequality involved a ≤ instead of a ≥.)

(ii) One can obtain similar results for an APEC problem where the constraints contain
the matching polytope rather than the perfect matching polytope of G. I.e. when each
equality sign in (1) is replaced by a “≤” sign. The additive error will be as stated above
but the matching will not necessarily contain n − o(n) edges.

A rounding procedure for the assignment problem 9

2. Rounding procedure for APEC: small coefficients

For ease of exposition, we first prove the subcase of Theorem 3 when the coefficients
of the linear constraints are between −c and c, for some constant c independent of n.
Let us call such linear constraints c-smooth. The constraints encountered while proving
Theorem 1 are of this type. Furthermore, the simple procedure described here motivates
our more general procedure that is described in Sect. 5. The more general procedure
works even when the value of the coefficients is allowed to grow with n.

Notation: If a, b are real numbers we let [a± b] denote the interval [a− b, a+ b]. For
positive function a(n) and f(n), we denote by [a(n)±O(f(n)] the interval [a(n)±β f(n)]
for some unspecified constant β > 0. If we have an event En of the form Zn ∈
[a(n)± O(f(n))], for some random variable Zn , then we say that this occurs with high
probability (abbreviated as whp) if for every α > 0 we can choose the “hidden constant”
β large enough so that Pr(En) = 1 − O(n−α). The letter α will be reserved for this
exponent and is always assumed to be suitably large.

Let x∗ be a fractional perfect matching for the graph G = (V1, V2, E). We give
a probabilistic procedure to produce a matching M of cardinality n − o(n) in G. Fur-
thermore, if wi j is any c-smooth weight function, then whp the matching M satisfies
w(M) ∈ [wx∗ ± (ξwx∗ + Õ(n3/4))]. Here ξ denotes a decreasing function of n which
satisfies ξ = O(1/ log n). Now suppose that our APEC contains K = O(nγ) c-smooth
constraints a1, . . . , aK and we want a matching M such that with probability 1−O(n−α),
ai M ∈ [aix∗ ± (ξai x∗ + Õ(n3/4))] for every i ∈ [K] where x∗ is a fractional matching
satisfying the constraints. (Here we think of M as a vector where Mi j = 1 if the edge
(i, j) ∈ M and Mi j = 0 otherwise.) To find such matching we apply our rounding pro-
cedure looking for a matching that will satisfy any individual constraint with probability
1−O(n−α′) where α′ = α+ γ . So the constant β hidden by the big-O when we specify
the intervals [wi x∗ ± (ξwi x∗ + Õ(n3/4))] is determined by α = α′ + γ .

The procedure consists of two phases. The first, called decomposition, produces
� = O(log3 n) matchings M1, M2, . . . , M� such that whp,

1

�

�∑
i=1

w(Mi) ∈ [wx∗ ± (ξwx∗ + Õ(n1/2))]. (8)

For convenience we shall assume below that � is a power of 2.
The second phase consists of applying a binary (probabilistic) operator � (called

merge) to the matchings. The merge operator is designed such that if we apply it to two
matchings A and B we obtain a matching A � B which is a subset of the union of A
and B such that for any c-smooth function w, whp,

w(A � B) ∈
[
w(A)+w(B)

2
± Õ
(
n3/4)] . (9)

The second phase proceeds as follows. Partition M1, M2, . . . , M� into pairs, merge
each pair so as to obtain �/2 new matchings, and repeat this pairing and merging until

10 Sanjeev Arora et al.

we’re left with a single matching denoted M. Equation (9) implies that whp,

w(M) ∈
[

1

�

�∑
i=1

w(Mi)± Õ
(
�n3/4)] .

Since � = O(log3 n), the error term is at most Õ(n3/4). Now it follows from Equa-
tion (8) that whp

w(M) ∈ [wx∗ ± (ξwx∗ + Õ(n3/4))].
Finally, let’s estimate the cardinality of M. Let w0 be the linear function that counts

the number of edges of G in the matching. Since w0x∗ is n, we see that whp, the
decomposition phase ensures that w0(M) is at least n − o(n); in other words, M has at
least n − o(n) edges.

2.1. The decomposition phase

The decomposition step starts with the following OVERSAMPLING procedure.

OVERSAMPLING:

Given: Fractional perfect matching x∗ on a bipartite graph G = (V1, V2, E).
Procedure: Construct a multigraph G∗ = (V1, V2, E∗) as follows. For each edge
(i, j) ∈ E, toss a biased coin L = �(log3 n) times, where the coin is biased to
come up “Heads” with probability x∗i j . Suppose the coin came up “Heads” ξi j
times. Then put ξi j copies of the edge (i, j) in E∗.

Lemma 1. With high probability, each vertex in G∗ has degree in [L±O((L log n)1/2)].
Proof. The degree of vertex i is

∑
j ξi j , and the expectation of this degree is

E

∑

j

ξi j

 =∑

j

E[ξi j] = L ·
∑

j

x∗i j = L.

Now apply Lemma 24(b).
��

Let � be the maximum degree of a vertex in the multigraph G∗. By Lemma 1,
� ∈ [L ± O((L log n)1/2)] = O(log3 n) and the degree of any vertex is not smaller
than � by more then Õ(L1/2). Therefore by adding Õ(nL1/2) arbitrary edges to G∗
we can make it a �-regular bipartite graph. Let Ĝ∗ be the resulting �-regular bipartite
multigraph. It is well-known that a �-regular bipartite multigraph can be decomposed
into � perfect-matchings. (This follows for example from repeatedly applying Hall’s
Theorem, which guarantees the existence of a perfect matching, see for example [B98].)
The decomposition procedure decomposes Ĝ∗ into � disjoint perfect matchings, M̂1 ∪
M̂2 ∪ · · · ∪ M̂�. After obtaining the � perfect matchings we ignore the edges that
were added to make G∗ regular. The decomposition phase then ends with � matchings
M1 ∪M2 ∪ · · · ∪M� such that their union is G∗. We bound the average weight of these
� matchings in the following lemma.

A rounding procedure for the assignment problem 11

Lemma 2. With high probability,

1

�

�∑
k=1

w(Mk) ∈ wx∗ ± (ξwx∗ + Õ(n1/2)).

Proof. Let Yk
i j be a random variable taking the value wi j if the result of the k-th

coin toss in OVERSAMPLING for edge (i, j) is “Heads” and zero otherwise. By
the definition of OVERSAMPLING, Yk

i j takes the value wi j with probability x∗i j . Let

S = ∑i, j,k Yk
i j =
∑�

k=1 w(M̂k), and note that E[S] = Lwx∗. Since
∑

i x∗i j = 1 it

follows that µ̂ = E[∑ |Yk
i j |] = Õ(n). Furthermore since w is c-smooth |Yk

i j | ≤ c. By

applying Lemma 22 to S to see that whp S ∈ [Lwx∗ ± Õ(n1/2)]. Dividing by � and
using Lemma 1 to bound the ratio L/�, gives the lemma.

��

2.2. The merge operator

We use the merge operator in the second phase of our rounding procedure to carefully
combine the � matchings produced by the decomposition phase into one matching with
the desired properties. As we mentioned we perform this combination using a binary
merge operator� that takes two matchings A and B and merges them into one matching
A�B. We merge the matchings in phases where in each phase we pair up the matchings
produced by the previous phase and apply the merge operator to each pair thereby
reducing the number of matchings by a factor of two. Our final output is the matching
produces by the last phase. Here is the description of the merge operator.

MERGE:

Given: Two matchings A and B.
Procedure to construct A � B: Note that A ∪ B is a union of cycles and paths.
By deleting O(n1/2) edges if necessary, ensure that every cycle/path has length
O(
√

n). Consolidate all paths/cycles into �(n1/2) groups each of size O(n1/2).
Probabilistically construct a matching A�B as follows: Within all the paths/cycles
in a group, pick with equal probability either all the edges of A or all the edges
of B. Furthermore, make this decision independently in different groups.

The following lemma estimates the weight of A � B. The proof technique will be
used again in Sect. 5.

Lemma 3. If weight function w is c-smooth, then with high probability,

w(A � B) ∈ w(A)+w(B)

2
± Õ(n3/4).

Proof. Let m = O(n1/2) be the number of groups of paths or cycles, and let α1, α2, . . . ,

αm be the weights of the edges from A in each group. The absolute value of each αi

is O(n1/2). Let Z A be a random variable whose value is the contribution of A’s edges

12 Sanjeev Arora et al.

to w(A � B). The variable Z A is the sum of m independent random variable one
for each group of paths and cycles. The expectation of Z A is

∑
i αi/2 ∈ [w(A)/2 −

O(n1/2),w(A)/2]. Hence by Lemma 22 we obtain that whp

|Z A −w(A)/2| = Õ(n3/4) .

The same argument shows that |Z B−w(B)/2| = Õ(n3/4), which together with Equation
(2.2) implies the statement of the lemma.

��

Here is a good place to contrast our rounding procedure with Raghavan-Thompson
rounding. If the fractional matching were (A + B)/2 then RT-rounding would involve
picking every edge of A and B independently with probability 1/2. Hence the expected
weight of the resulting graph is (w(A)+ w(B))/2, but unfortunately, that graph is not
even close to a matching. Our procedure also picks each edge of A and B with probability
1/2 –to be correct, it does this for all edges of A and B except for at most O(

√
n) edges

that were deleted. Hence the expected weight of the resulting matching is very close to
(w(A)+w(B))/2. The crucial difference is that the procedure’s decisions for different
edges are not independent; in fact they are very dependent. Nevertheless, the degree of
independence is enough to allow us to get a good upperbound on the probability that
w(A � B) deviates “significantly” from its expectation.

We end this section with the following two remarks.

Remark. Our rounding procedure is randomized. We use randomization in the OVER-
SAMPLING procedure and in the merge operator. We can derandomized our algorithm
in a standard way using the method of conditional probabilities. For further details about
this method see [R88,AS92,RT98].

Remark. We can parallelize our algorithm and implement it on an EREW PRAM (Exclu-
sive Read Exclusive Write Parallel Random Access Machine) model (See e.g. [SG93]).
It is easy to implement OVERSAMPLING to run in polylogarithmic time using m
processors. To decompose a regular bipartite multigraph into perfect matching we use
an algorithm of Lev, Pippenger, and Valiant [LPV81]. This algorithm decomposes a �

regular bipartite multigraph into � disjoint perfect matchings in O(log � log n) parallel
time using O(n) processors. Recall that in our procedure � = poly(log(n)).

We can also parallelize the merge operator to run in O(log n) parallel time using n
processors. We do that using standard PRAM techniques (see e.g. [SG93]). We assign
a processor to each edge of A and to each edge of B. We assume that A and B are
represented such that a processor assigned to an edge e knows the processors assigned
to adjacent edges. A processor assigned to an edge e then finds in logarithmic time, using
a technique sometimes referred to as pointer jumping [SG93], the index of e on the path
or cycle of A ∪ B containing it, and the length of this path or cycle. Then processors
assigned to edges with indices that are multiples of

√
n drop the corresponding edges. By

assigning a processor to each component we can then group the small components into
larger ones such that the size of each group is O(

√
n). Finally (in parallel) a processor

flips a coin for each group and using a processor per edge in A ∪ B we can delete
unselected edges.

A rounding procedure for the assignment problem 13

3. Approximation algorithm for degree-d arrangement

In this section we prove Theorem 1 by presenting an approximation algorithm for the
degree-d arrangement problem. We start by proving the theorem for the case where
d = 2. Then we extend the proof by induction for general d. The algorithm which
we describe is randomized, we later indicate how to derandomize it while keeping
its running time quasi-polynomial. The basic idea is to use “exhaustive sampling” as
in [AKK95], except that here we always have to care about the assignment constraints.
Let p(x) =∑i jkl ci jkl xi j xkl be the objective function, where each ci jkl is an integer in
[−c, c]. Let x be the perfect matching that maximizes the objective function. Let bi j

denote
∑

kl ci jkl xkl . Then x is an integral solution to the linear program

minimize
∑

i j bi j xi j

s.t. x ∈ A∑
kl ci jkl xkl = bi j .

Note that if we knew the bi j ’s we could obtain a fractional solution to this linear
program and them use our APEC approximation to compute an approximation to the
optimum assignment x. The main idea will be to use the “exhaustive sampling” technique
of [AKK95] to obtain reasonable guesses for the bi j ’s. Specifically, the procedure is as
follows.

(i) Use random sampling to estimate bi j ’s within an additive error εn, where ε is
a constant fraction of ε that we determine later. Pick a random sample Sof O(c2 log n/ε2)

vertices with replacement and estimate bi j by the sum b′i j = n
|S|
∑

k∈S,l ci jkl xkl . Of

course we do not know x. Therefore we enumerate all nO(c2 log n/ε2) positions in which
the vertices of S can be placed in a permutation. One of these ways is also the way in
which they are placed by x; we restrict attention to that one. Of course, our algorithm,
not knowing x, must do the rest of the work that we describe next for each of the
nO(c2 log n/ε2) guesses. Finally we take the best result obtained for any of the guesses.
This would give us a solution which is at least as good as the one produced for the
correct guess.

(ii) We consider the optimization problem

minimize
∑

i j b′i j xi j (10)

s.t. x ∈ A
b′i j − εn ≤∑kl ci jkl xkl ≤ b′i j + εn .

We solve this linear program and denote the value of the optimal solution by ζ . We
replace the linear objective function by the linear constraint

∑
i j b′i j xi j ≤ ζ , thus

obtaining an instance of APEC. We round our fractional solution to this APEC problem
to an approximate integral solution using the algorithm of Sect. 2. The approximate
integral solution is almost a matching. We arbitrarily complete it to a matching and take
the arrangement which it defines as our approximate integral solution to the original
degree d arrangement problem. More precisely, we solve an APEC problem as above for
each possible guess of where the vertices in S are placed by the optimal solution. Among

14 Sanjeev Arora et al.

the solutions to the different APEC problems we take the one whose corresponding
arrangement minimizes the objective of the arrangement problem.

We now prove that the algorithm above indeed produces a solution with the de-
sired approximation guarantee. The following lemma establishes the accuracy of the
estimates b′i j .

Lemma 4. The estimates b′i j , computed using the placement of S in the optimal solution,
are in the interval [bi j ± εn] whp.

Proof. Fix i and j . Let Xm , 1 ≤ m ≤ |S| be a random variable taking the value ci jkl if the
mth sampled vertex is k, xkl = 1 (the position of vertex k in the optimal solution is l), and
ci jkl is nonnegative. Otherwise, Xm takes the value 0. Similarly, let Ym , 1 ≤ m ≤ |S| be
a random variable taking the value ci jkl if the mth sampled vertex is k, xkl = 1 and ci jkl

is nonpositive. Otherwise, Ym takes the value 0. Clearly, n
|S|
∑|S|

m=1(Xm + Ym) = b′i j ,

and E[∑|S|m=1(Xm + Ym)] = |S|
n bi j . The result now follows from Lemma 24(c) applied

separately to the sum of the X’s after dividing each by c and to the sum of the Y ’s after
dividing each by a factor of−c. In each application of Lemma 24(c) we use λ = ε|S|/2c.
The constant, say ρ, hidden by the big O when we defined the cardinality of S to be
O(c2 log n/ε2) determines the error probability to be 1

nρ .
��

Note that our algorithm tries all possible guesses of how S is placed by the optimal
solution x. However the guess we use to define b′i j in Lemma 4 is the correct one. In
other words b′i j in Lemma 4 is a function of S; once S is picked the guess that we use
to define b′i j is the restriction of the optimal solution x to S.

Lemma 4 implies that whp x is a feasible solution to the linear program (10).
Therefore the optimal (fractional) solution y to that linear program satisfies

ζ =
∑

i j

b′i j yi j ≤
∑

i j

b′i j xi j (11)

≤
∑

i j

(
∑

kl

ci jkl xkl)xi j + εn2

= p(x)+ εn2 .

We use our rounding algorithm from Sect. 2 to round y into an approximate matching
that approximately solves (10). In order to do that we first make our APEC c-smooth by
scaling the constraint corresponding to the objective function of (10) by n to make each
coefficient a number between −c and c. Our rounding procedure, applied to the scaled
APEC, rounds y into a ẑ that is a matching of cardinality n − o(n) and satisfies the
given constraints with an additive error of o(n). We then extend ẑ to z ∈ A arbitrarily by
adding o(n) edges to the matching to make it perfect. After scaling back the objective
function we obtain that ∑

i j

b′i j zi j ≤
∑

i j

b′i j yi j + o(n2) . (12)

A rounding procedure for the assignment problem 15

Furthermore z also satisfies∑
kl

ci jkl zkl ≤ b′i j + εn + o(n) . (13)

Combining inequalities (12) and (13) we obtain that

p(z) ≤
∑

i j

b′i j yi j + εn2 + o(n2). (14)

Combining Equations (11) and (14) and taking ε = ε/3 we obtain that whp p(z) ≤
p(x)+ εn2 for sufficiently large n.

This completes the proof for d = 2. Note that our proof still holds even if the degree
d arrangement problem contains additional linear constraints that have to be satisfies up
to an additive factor of o(n). Specifically, consider the problem

minimize p(x) (15)

s.t. x ∈ A

akx ≥ bk, k ∈ [K] (16)

where the extra constraints (16) need only be satisfied approximately, as in APEC. Our
proof for d = 2 shows how to obtain a solution z ∈ A such that if x is the optimal
solution then p(z) ≤ p(x)+ εn2 and furthermore z satisfies the constraints (16) within
an additive factor of o(n).

Remark. The algorithm which we described is randomized. It uses random bits to pick
the multiset S of O(c2 log n/ε2) vertices. We can derandomize the algorithm by running
the procedure specified above for every possible multiset S of the appropriate size, and
returning the best matching. The running time of the resulting deterministic algorithm
is larger than the running time of the randomized one by a factor of n|S|, and therefore
remains quasi-polynomial. This deteministic version has to use a derandomization of
the APEC procedure described in Sect. 2. Similarly, one can derandomize the algorithm
for degree-d arrangement problems when d > 2, which we describe next.

For d > 2 we use induction on d to prove that for a degree d arrangement problem we
can obtain a solution z such that p(z) ≤ p(x)+ (dε)nd in time nO(c2d2 log n/ε2) whp. By
setting ε = ε/d, this implies that we can obtain a solution z where p(z) ≤ p(x) + εnd

whp in nO(c2d4 log n/ε2) time. Our proof above establishes the base case for d = 2.
Assume this claim holds for degree l arrangement problems where l < d.

A generic term in the objective of (15) looks like ci1 j1···id jd xi1 j1 · · · xid jd . For fixed
i2, j2, . . . , id, jd we estimate using “exhaustive sampling”

bi2 j2···id jd =
∑

i j

ci ji2 j2···id jd xi j

by

b′i2 j2···id jd =
n

|S|
∑
k∈S,l

ckli2 j2···id jd xkl

16 Sanjeev Arora et al.

for a random sample S. Then we use these estimated values to define the following
(d − 1)-dimensional problem.

minimize p′(x) =
∑

i2 j2···id jd

b′i2 j2···id jd xi2 j2···id jd (17)

s.t.

x ∈ A
akx ≥ bk k ∈ [K]∑

kl

ckli2 j2···id jd xkl ≥ b′i2 j2···id jd − εn ∀i2, j2, . . . id, jd

∑
kl

ckli2 j2···id jd xkl ≤ b′i2 j2···id jd + εn ∀i2, j2, . . . id, jd .

As for the case d = 2 since we do not know where the vertices of S are placed by
the optimal solution we try all n|S| possibilities. For each such placement we calculate
estimates b′ and formulate a degree d−1 dimensional problem as above. We then divide
the objective p′(x) of the degree d − 1 problem by n to make it c-smooth and solve it
recursively. Using our induction hypothesis for each degree d − 1 problem we obtain
an approximation that is within an additive factor of (d − 1)εn(d−1) from the optimal
solution whp. The time it takes us to solve each degree d − 1 problem is by induction
nO(c2(d−1)2 log n/ε2). Finally we pick the best among the solutions obtained for different
guesses as the solution for our original degree d problem. (This is at least as good as the
solution obtained with the correct guess.) It immediately follows that the running time
of our algorithm is n|S| ∗ nO(c2(d−1)2 log n/ε2).

Similarly to the case of d = 2, the size of our random sample is O(c2d log n/ε2)

vertices which we pick uniformly at random with replacement. Comparable to the case
d = 2, we increased the size of S by a factor of d since the number of estimates b′i2 j2···id jd
which we want to be accurate whp simultaneously is O(nd). A lemma analogous to
Lemma 4 shows that b′i2 j2···id jd

(calculated for the correct guess) is within an additive
factor of εn of its true value bi2 j2···id jd in the optimal solution. Thus the optimal solution
x is a feasible solution to the degree d − 1 arrangement problem corresponding to the
right guess. Let y be the optimal solution to this degree d − 1 arrangement problem. It
follows from the feasibility of x whp that

p′(y) ≤ p′(x) ≤ p(x)+ εnd (18)

whp. By induction when we solve the degree d− 1 arrangement problem (after scaling
down the objective) we get a solution z such that whp

p′(z)/n ≤ p(y)/n + (d − 1)εnd−1 . (19)

Combining equations (18) and (19) we get that

p(z) ≤ p(x)+ dεnd

whp as required.

A rounding procedure for the assignment problem 17

4. Polynomial time approximation schemes

Our additive approximation procedure for the degree-d arrangement problem runs in
nO(log n) time. This immediately gives a quasi-polynomial time approximation algorithm
with additive error for many other problems that are special cases of the degree-d
arrangement problem mentioned in Sect. 1.2. For some problems however we can
obtain an approximation algorithm with a similar additive error that runs in polynomial
time. As a consequence we obtain a polynomial time approximation scheme (PTAS)
for dense instances of these problems. We reduce the running time by shrinking the
space of possible placements of the random sample, S, on which we do an exhaustive
search. Here is an outline of the rest of this section. Section 4.1 describes a PTAS for
MINIMUM LINEAR ARRANGEMENT on dense graphs. Sects. 4.2 and 4.3 describe similar
PTASs for dense instances of MINIMUM CUT LINEAR ARRANGEMENT and MAXIMUM

ACYCLIC SUBGRAPH, respectively. In Sect. 4.4 we describe a PTAS for dense instances
of BETWEENNESS.

The PTASs described in Sects. 4.1–4.4 are randomized. They have to pick a random
multiset of O(log n) vertices. Here we cannot derandomize these algorithm in poly-
nomial time by trying all possible multisets as there are too many. In Sect. 4.5 we sketch
how to derandomize the PTASs for MINIMUM LINEAR ARRANGEMENT, MINIMUM CUT

LINEAR ARRANGEMENT and MAXIMUM ACYCLIC SUBGRAPH in polynomial time.

4.1. Minimum linear arrangement

In this section we describe a PTAS for MINIMUM LINEAR ARRANGEMENT on dense
graphs. Let G = (V, E) be a 2a-dense graph. First we notice that the optimum value
of the cost function is no smaller than a3n3/8. The reason is that at least a n vertices
have degree at least a n. Regardless of how the graph is laid out along a line, the total
length of the edges incident to any such vertex is at least (an)2/4, which makes the
total edge length at least (an)3/8. Hence to obtain a layout of cost (1 + γ) times the
optimum, where γ > 0 is arbitrary, it suffices to find a layout whose cost is within an
additive factor γ(an)3/8 of the optimum. Since γa3/4 is just another constant, we will
for convenience denote it by ε in the description below.

Let t = c/ε for some suitably large constant c > 0 and assume for simplicity that
n is a multiple of t. Partition the interval [1, n] into consecutive equal-sized intervals
I1, . . . , It each of size n/t.

Definition 2. A placement is a mapping g from the set of vertices to the set of intervals
I1, . . . , It . It is proper if it maps n/t vertices to each interval, that is, for every 1 ≤ j ≤ t,
|{i ∈ V | g(i) = j}| = n/t. The cost cp(g) of the placement is

cp(g) =
∑

(i, j)∈E,g(j)>g(i)

(g(j)− g(i)).

Note that every permutation (i.e., bijection on vertices) induces a proper placement
in the obvious way. Two different permutations can induce the same placement, in
which case we think of them as “only differing locally.” The following lemma shows

18 Sanjeev Arora et al.

that the cost of a permutation is essentially decided (up to an additive factor n3/t) by
the placement it induces.

Lemma 5. If π is a permutation and g is its induced placement then,

|cp(g)− c(π)t/n| ≤ n2/2.

Proof. An edge that contributes x to c(π) contributes either �xt/n� or �xt/n� + 1 to
cp(g). Therefore, the absolute value of the difference between cp(g) and c(π)t/n can
be at most the number of edges, that is

(n
2

)
.

��
Let π∗ be an optimal linear arrangement, and let g∗ be its induced placement. Let g

be a placement such that cp(g) ≤ cp(g∗)+ ε′n2, where ε′ is determined below. Also let
π be an arbitrary permutation such that g is the placement induced by π. By Lemma 5
we obtain that

c(π) ≤ n ∗ cp(g)

t
+ n3

2t

≤ n ∗ cp(g∗)
t

+ (1+ ε′)n3

2t

≤ c(π∗)+ (2+ ε′)n3

2t
.

It follows that for ε′ = 2c−2, c(π) ≤ c(π∗)+εn3. Therefore to find a linear arrangement
close to optimal up to an additive factor of εn3 it suffices to find a placement close to
the optimal placement up to an additive error of ε′n2. In the following we show how to
find such a placement. To simplify the notation for the rest of this section we use ε′ = ε.

Let g∗ be an optimal placement. We note that the contribution of node i to the cost
cp(g∗) is ∑

(i, j)∈E,g∗(j)>g∗(i)
(g∗(j)− g∗(i)) (20)

As in our previous algorithms, we will use exhaustive sampling to estimate terms of
the form (20) for each vertex i. For this we randomly pick with replacement a multi-set
S of O(log n/δ2) vertices where δ = ε/t and ε is a sufficiently small fraction of ε

which we will determine later. We enumerate all possible functions h : S → {1, . . . , t}
that assign vertices in S to intervals. For each such function we solve a linear program
Mh described below and use the (fractional) solution to construct a placement. Among
all those placements we pick up one with minimum cost. When our function h is the
same as h∗, the restriction of an optimal placement g∗ to S, the placement g will satisfy
cp(g) ≤ cp(g∗)+ εn2 whp over the random choices of S.

Now we describe the linear program Mh . For each vertex i and interval Ik, we
compute an estimate eik of the cost of assigning i to Ik in any complete assignment g
whose restriction to S is h (see the connection to expression (20)):

eik = n

|S|
∑

(i, j)∈E, j∈S,h(j)>k

(h(j)− k) .

A rounding procedure for the assignment problem 19

Note that this estimate is well defined no matter whether i ∈ S, and no matter what is
the value of h(i) in case i ∈ S. Note also that if (i, j) ∈ E, j ∈ S, and h(j) > k then
h(j)− k appears as many times in the above sum as j appears in S.

Using the estimates eik , where 1 ≤ i ≤ n, and 1 ≤ k ≤ t, we write the following
linear program, Mh , which seeks to find the optimum fractional placement in which the
cost of assigning vertex i to interval k is [eik ± εn].

minimize
n∑

i=1

t∑
k=1

eikxik

s.t.
n∑

i=1

xik = n/t ∀k ∈ [t]
t∑

k=1

xik = 1 ∀i ∈ [n]
∑

(i,l)∈E

t∑
j=k+1

(j − k)xl j ≤ eik + εn ∀i ∈ [n], k ∈ [t]

∑
(i,l)∈E

t∑
j=k+1

(j − k)xl j ≥ eik − εn ∀i ∈ [n], k ∈ [t]

0 ≤ xik ≤ 1 ∀i ∈ [n], k ∈ [t] .
We solve Mh for every possible assignment h of the vertices in S to intervals. Let xh

be the optimal solution for Mh . We round xh
ik using randomized rounding to obtain

a placement r ′h as follows. For each vertex i independently we make r ′h(i) = k with
probability xh

ik . After the rounding the placement r ′h need not be proper. We construct
a proper placement rh from r ′h by moving vertices from intervals with more than n/t
vertices assigned to them to intervals with less than n/t vertices assigned to them
arbitrarily. The final answer of our algorithm is the placement r with smallest cost
among all placements rh for every possible h. Let g∗ be the optimum placement. We
will now show that cp(r) ≤ cp(g∗)+ εn2.

Our first lemma specifies the accuracy of the estimate eik .

Lemma 6. Let g be a placement. Pick uniformly at random with replacement a multi-set
S of O(log n/δ2) vertices. Let h : S → {1, . . . , t} be the restriction of g to S. Then with
high probability (over the choice of the sample S),

eik ∈

 ∑

(i, j)∈E,g(j)>k

(g(j)− k)± δnt

 .

Proof. Let Xl be a random variable that equals (g(j)− k) if the lth vertex sampled is j ,
(i, j) ∈ E, and g(j) > k. Otherwise, the value of Xl = 0. Note that

∑
l Xl = |S|

n eik

and E[∑l Xl] = |S|
n

∑
(i, j)∈E,g(j)>k (g(j)− k). Divide each Xl by t to scale it to the

interval [0, 1] and apply Lemma 24(c) to the sum of X1, . . . , X |S| after scaling. When
applying Lemma 24(c), use λ = δ|S|, and recall that |S| = O(log n/δ2). We obtain that

20 Sanjeev Arora et al.

the statement holds whp. The constant hidden behind the big-O when we pick S of size
O(log n/δ2) determines the error probability.

��
Let h∗ be the restriction of the optimal placement g∗ to the sample S. It follows

from Lemma 6 that whp g∗ is a feasible solution to Mh∗ . Let v(g∗) be the value of the
objective function of Mh∗ at g∗. Let x∗ be a fractional optimal solution to Mh∗ , and let
φ(h∗) the value of the objective function at x∗. Since g∗ is a feasible solution of Mh∗
we obtain that

φ(h∗) ≤ v(g∗) ≤ cp(g∗)+ εn2 , (21)

where the second inequality is obtained by substituting the upper bounds on the estimates
eik that follow from the constraints of Mh∗ that g∗ satisfies. Let r∗ be the placement
which we constructed by rounding the solution to Mh∗ . We next show that cp(r∗) ≤
φ(h∗)+ εn2 + o(n2).

Lemma 7. Let r∗ be the placement constructed from the optimal fractional solution x∗
of Mh∗ , where h∗ is the restriction of an optimal placement g∗ to S. Then cp(r∗) ≤
φ(h∗)+ εn2 + o(n2) where φ(h∗) is the value of the objective function of Mh∗ at x∗.

Proof. Consider first the placement r ′ obtained after randomized rounding of x∗ which
need not be proper. Think of this placement as a vector x′ such that x′ik = 1 if and only if
r ′(i) = k. From the definition of randomized rounding we obtain that E[∑i

∑
k eikx′ik] =

φ(h∗). Let Xik be the random variable taking the value eik if x′ik = 1 and 0 otherwise.
By applying Lemma 22 to the sum of the variables Xik we obtain that whp∑

i

∑
k

eik x′ik ∈ [φ(h∗)± Õ(n3/2)] . (22)

(When applying Lemma 22 note that eik ≤ nt and note that E(
∑n

i=1
∑t

k=1 Xik) ≤
(nt)2.)

Next we consider the question of how far
∑

i
∑

k eikx′ik can be from the cost
of the placement r ′. By definition, the cost of r ′ is

∑
i
∑

k fik x′ik where fik =∑
(i,l)∈E

∑t
j=k+1(j−k)x′l j . Let f ∗ik =

∑
(i,l)∈E

∑t
j=k+1(j−k)x∗l j . Since x∗ is a feasible

solution to Mh∗ we know that f ∗ik ≤ eik + εn. For l such that (i, l) ∈ E, and j > k,
let Xl j be the random variable taking the value (j − k) if x′l j = 1 and 0 otherwise. By
applying Lemma 24(c) to the sum of the random variables Zl j = Xl j/t we obtain that
f ′ik ∈ [f ∗ik + Õ(

√
n)]. Combining this with the upper bound on f ∗ik we obtain that

f ′ik ≤ eik + εn + Õ(
√

n) . (23)

Combining Equations (22) and (23) we obtain that cp(r ′) ≤ φ(h∗)+εn2+ Õ(n3/2).
To establish the result for the placement r∗ obtained by making r ′ proper we note

that for each k, |{i : r ′(i) ∈ Ik}| ∈
[n

t ± Õ(n1/2)
]

whp. (One can easily see that by
applying Lemma 24(c) to the sum of Xik for 1 ≤ i ≤ n and a fixed k). Thus to obtain r
from r ′ we move at most Õ(n3/2) vertices. This can change the cost of the placement
by no more than Õ(n3/2).

��

A rounding procedure for the assignment problem 21

By choosing say ε = ε/3. We obtain from Equation 21 and Lemma 7 that

cp(r∗) ≤ cp(g∗)+ εn2 .

for sufficiently large n. Since r∗ is a candidate for our chosen placement r, and we
choose the placement with minimum cost, the cost of r is no larger than the cost of r∗
and we obtain the desired result.

d-DIMENSIONAL ARRANGEMENT is handled similarly. One defines a partition of
the grid into td sub-cubes and only define permutations up to placement of vertices into
a sub-cube. The argument is very similar to the case d = 1 above and is left to the
reader.

4.2. Minimum cut linear arrangement

The approach is similar to the one for MINIMUM LINEAR ARRANGEMENT. First we no-
tice that if a graph is a-dense, then the value of the minimum cut in the best arrangement
is
(n2). To see that notice that if the average degree of G is an then G has a subgraph
G′ in which the minimum degree is an. (We can obtain G′ from G by keep eliminating
vertices of degree below the average degree.) In any arrangement if we look at the point
where an/2 of the vertices of G′ are on one side of it and the rest of the vertices of G′
are on the other side of it then there must be
(n2) edges crossing that point. Since the
value of the optimal solution is
(n2) to obtain a layout of cost no greater than (1+ γ)

times the optimum it suffices to obtain a solution whose cost is within an additive factor
of εn2 for a suitable ε. In the rest of this section we show how to obtain such layout.

We partition the interval [1, n] into t = c
ε

equal-size intervals I1, . . . , It for suffi-
ciently large constant c. We define a placement and a proper placement as in Sect. 4.1.
The cost of a placement g, denoted by cp(g), is defined as

cp(g) = max
1≤i<t

|{(k, l) ∈ E|g(k) ≤ i < g(l)}|.

The following lemma shows that the cost of an arrangement is determined up to an
additive factor of εn2 by the cost of its induced placement.

Lemma 8. Let π be a permutation and g be its induced placement. Then cp(g) ≤
c(π) ≤ cp(g)+ n2/t.

Proof. The lower bound follows from the fact that the cuts considered when we calculate
the cost of g are a subset of the cuts considered when we calculate the cost of π. Next
we prove the upper bound. Place the vertices according to π and let I be an interval
in our partition. The difference between the number of edges crossing a cut defined by
a point inside I and the number of edges crossing a cut defined by the point between I
and one of its neighboring intervals, is bounded by the maximum possible number of
edges between vertices of I and all other vertices. This number is at most n2/t so the
lemma follows.

��
The conclusion from Lemma 8 is that it suffices to find a placement g such that

cp(g) ≤ cp(g∗) + ε′n2, where g∗ is the optimal placement, and ε′ = c − 1. Any

22 Sanjeev Arora et al.

arrangement π such that g is its induced placement would then be within an additive
factor of εn2 from optimal since by Lemma 8

c(π) ≤ cp(g)+ n2

t

≤ cp(g∗)+ (1+ ε′)n2

t

≤ cp(π∗)+ (1+ ε′)n2

t
where π∗ is a min-cut linear arrangement. To simplify our notation we use ε′ = ε in the
followings.

We find such a placement g in a way analogous to Sect. 4.1. We sample a (multi)-
set S of O(log n/ε2) vertices where ε is a sufficiently small fraction of ε which we
will determine later. We enumerate all possible functions h : S → {1, . . . , t} that
assign vertices in S to intervals. For each such function we solve a linear program Mh
described below and use the (fractional) solution to construct a placement. Among all
those placements we pick up one with minimum cost. When our function h is the same
as h∗, the restriction of an optimal placement g∗ to S, the placement g will satisfy
cp(g) ≤ cp(g∗)+ εn2 whp over the random choices of S.

Now we describe the linear program Mh . For each vertex i and interval Ik, we
compute an estimate eik of the contribution of vertex i to a cut right between intervals
Ik−1 and Ik assuming i is placed in one of the intervals I1, . . . , Ik−1. The estimates eik

are defined now as

eik = n

|S| |{ j ∈ S|(i, j) ∈ E and h(j) ≥ k}| .
Note that j ∈ S is counted here as many times as it occurs in S and that this estimate
is defined nomatter whether i is in the sample S or not. The linear program Mh that
corresponds to a guess h is now the following.

minimize z
s.t.

n∑
i=1

xik = n/t ∀k ∈ [t]
t∑

k=1

xik = 1 ∀i ∈ [n]
n∑

i=1

eik(xi1 + . . . xi(k−1)) ≤ z ∀k ∈ [t], k > 1∣∣∣∣∣∣
∑

(i,s)∈E,l≥k

xsl − eik

∣∣∣∣∣∣ ≤ εn ∀i ∈ [n], k ∈ [t]

0 ≤ xik ≤ 1 ∀i ∈ [n], k ∈ [t] .
Similarly to the algorithm for MINIMUM LINEAR ARRANGEMENT, randomized round-
ing plus reallocation is applied to the solutions of the Mh ’s to obtain proper placements.
The final answer of our algorithm is the placement r with smallest cost among all

A rounding procedure for the assignment problem 23

placements rh for every possible h. The proof that r is indeed within an additive fac-
tor of εn2 from the optimal placement is similar to the proof for MINIMUM LINEAR

ARRANGEMENT in Sect. 4.1 so we only sketch it below.
Analogously to Lemma 6 we have the following lemma that specifies the accuracy

of the estimates eik . We omit the proof which similar to the proof of Lemma 6.

Lemma 9. Let g be a placement. Pick uniformly at random with replacement a multi-set
S of O(log n/ε2) vertices. Let h : S → {1, . . . , t} be the restriction of g to S. Then with
high probability (over the choice of the sample S).

eik ∈ [|{ j ∈ V | (i, j) ∈ E and g(j) ≥ k}| ± εn] .
Let φ(h∗) be the value of the objective function of Mh∗ at the optimal solution x∗.

By Lemma 9, g∗ is a feasible solution to Mh∗ whp. Let zg∗ be the value of the objective
function of Mh∗ at g∗. Clearly we have that φ(h∗) ≤ zg∗ whp. The constraints of Mh∗
guarantee that the actual contribution of placing i in one of I1, . . . , Ik−1 differ from eik
by at most εn. Therefore it follows that zg∗ ≤ cp(g∗)+ εn2 and so

�(h∗) ≤ cp(g∗)+ εn2 . (24)

We can also prove that Lemma 7 holds with definitions of Mh and cp of this section.
The proof is analogous to the proof of Lemma 7 in Sect. 4.1. To summarize, by choosing
say ε = ε/3 we obtain from Equation (24) and Lemma 7 that

cp(r∗) ≤ cp(g∗)+ εn2

for sufficiently large n. Since r∗ is a candidate for our chosen placement r, and we
choose a placement of minimum cost, the cost of r is no larger than the cost of r∗ and
we obtain the desired result.

4.3. Maximum acyclic subgraph

Recall that in the MAXIMUM ACYCLIC SUBGRAPH problem we are given a directed
graph G and we look for an acyclic subgraph with maximum number of arcs. We denote
an arc directed from v to w by (v,w). First we rephrase the problem as follows. Given
a directed graph G and a permutation π of the vertices of G we define the cost, c(π), of
the permutation, as the number of arcs (v,w) such that π(v) < π(w). The problem of
finding a permutation of maximum cost is exactly the MAXIMUM ACYCLIC SUBGRAPH

problem. If G is a-dense, i.e. the average degree (counting both ingoing and outgoing
arcs) of a vertex is an, then the size of the maximum acyclic subgraph is
(n2). To see
that notice that the graph contains
(n2) arcs and if we take an arbitrary permutation π

of the vertices then either π or its reversal define an acyclic subgraph with at least half
of the arcs in G. Therefore to obtain an acyclic subgraph with at least (1− γ) of the arcs
it is enough to find a subgraph whose number of arcs is within an additive factor of εn2

from the number of arcs in the largest subgraph for a suitable ε.
We use the same technique for finding such subgraph as we used to solve the

arrangement problems in Sects. 4.1 and 4.2. We partition the interval [1, n] into t = c
ε

equal-size intervals I1, . . . , It for sufficiently large constant c. We define a placement

24 Sanjeev Arora et al.

and a proper placement as in Sect. 4.1. Here the cost of a placement g, denoted by
cp(g), is defined as

cp(g) = |{(k, l) ∈ E|g(k) < g(l)}| .

The following lemma shows that the size of the acyclic subgraph defined by an ar-
rangement is determined up to an additive factor of εn2 by the cost of its induced
placement.

Lemma 10. Let π be a permutation and g be its induced placement. Then cp(g) ≤
c(π) ≤ cp(g)+ n2/t.

Proof. The lower bound follows from the fact that the arcs going from an interval to an
interval to its right in the placement define an acyclic subgraph. Next we prove the upper
bound. Consider the maximum acyclic subgraph defined by π. It is a supergraph of the
maximum acyclic subgraph defined by g. The arcs which are in the subgraph defined
by π and not in the subgraph defined by g are those arcs directed rightward with both
endpoints within one of the intervals I1, . . . , It . Any interval Ii contains at most (n/t)2

such arcs. Summing up over all t intervals we obtain that the total number of such arcs
is n2/t from which the upper bound follows.

��
So Lemma 10 reduces our problem to the problem of finding a placement within an

additive factor of εn2 from the optimal placement. As in Sects. 4.1 and 4.2 we sample a
(multi)-set S of O(log n/ε2) where ε is a sufficiently small fraction of ε. We enumerate
all possible functions h : S → {1, . . . , t} that assign vertices in S to intervals. For each
such function we solve a linear program Mh described below and use the (fractional)
solution to construct a placement. Among all those placements we pick up one with
minimum cost. When our function h is the same as h∗, the restriction of an optimal
placement g∗ to S, the placement g will satisfy cp(g) ≤ cp(g∗) + εn2 whp over the
random choices of S. For each vertex i and interval Ik, we compute an estimate eik on
the number of arcs outgoing from vertex i in a maximum acyclic subgraph defined by
a placement extending h assuming vertex i is placed in Ik. The estimates eik are defined
as follows

eik = n

|S| |{ j ∈ S|(i, j) ∈ E and h(j) > k}| .

The linear program Mh that corresponds to a guess h is now the following.

maximize
∑

eikxik

s.t.
n∑

i=1

xik = n/t ∀k ∈ [t]
t∑

k=1

xik = 1 ∀i ∈ [n]∣∣∣∣∣∣
∑

(i,s)∈E,l>k

xsl − eik

∣∣∣∣∣∣ ≤ εn ∀i ∈ [n], k ∈ [t]

0 ≤ xik ≤ 1 ∀i ∈ [n], k ∈ [t]

A rounding procedure for the assignment problem 25

Similarly to the algorithms in Sects. 4.1 and 4.2 we use randomized rounding plus
reallocation to obtain a proper placement from the solution of Mh . The final answer of
our algorithm is the placement r with smallest cost among all placements rh for every
possible h. The proof that r is indeed within an additive factor of εn2 from the optimal
placement is analogous to the proofs in Sects. 4.1 and 4.2.

4.4. Betweenness

Recall that the set of triples is denoted by C and the triples contain elements from
a set A, where |A| = n (we call these elements vertices). We also recall that we define
an instance of BETWEENNESS as dense if the optimal solution satisfies
(n3) triples. To
simplify the presentation we also assume that the set of triples in C does not contain both
a triple and its reversal. So when we write a statement like (a, b, c) ∈ C we in fact mean
that either (a, b, c) ∈ C or (c, b, a) ∈ C. We will assign vertices into one of t = c/ε
consecutive intervals; such an assignment is called a placement as in Sect. 4.1. A triple
(a, b, c) is feasible in placement g if either g(a) > g(b) > g(c) or g(c) > g(b) > g(a).
Here, c(π) denotes the number of feasible triples under permutation π and cp(g) denote
the number of feasible triples under a placement g. Now we observe that to obtain an
additive approximation, it suffices to find a good placement instead of a permutation.

Lemma 11. Let π be a permutation and g be its induced placement. Then cp(g) ≤
c(π) ≤ cp(g)+ n3/t.

Proof. A triple that is feasible in π is feasible in g unless two of its vertices are in the
same interval. The number of triples with at least two vertices in the same interval is at
most

t × n

t

(n

t
− 1
)
× (n − 2) ≤ n3

t
.

This is because there are t possible intervals for the colliding pair, n
t (

n
t − 1) ordered

pairs in each interval and at most n− 2 possibilities for the third vertex to determine the
triple.

��
The algorithm for finding a good placement will choose a random (multi)-set S

where |S| = O(log n/ε2) and ε is a fraction of ε that we specify later. We enumerate all
possible functions h : S → [1, t] that assign vertices in S to intervals. For each function
h : S → [1, t] we solve a linear program Mh defined below. We round the fractional
solutions to placements and take the best placement as our solution. For each pair of
vertices a, b and pair of intervals k, l ∈ {1, . . . , t} we define the following estimate.
This estimate estimates the contribution of triples of the form (a, b, ∗) ∈ C to the cost
of a placement g extending h assuming vertex a is placed in Ik and vertex b is placed
in Il . The definition and the notation of the estimate depend on whether the interval Ik

is to the left of Il or to the right of Il .

If k < l then e<
ak;bl =

n

|S| |{c ∈ S : (a, b, c) ∈ C and l < h(c)}|

else e>
ak;bl =

n

|S| |{c ∈ S : (a, b, c) ∈ C and l > h(c)}| .

26 Sanjeev Arora et al.

Furthermore, for each a ∈ A and an interval k ∈ [t] we estimate the contribution of
triples of the form (a, ∗, ∗) to the cost of a placement extending h, assuming element a
is placed in interval k. This estimate is defined as follows.

eak = n2

|S|2 |{b, c ∈ S : (a, b, c) ∈ C and ([k < h(b) < h(c)] or [k > h(b) > h(c)])}|.

The linear program Mh is defined using these estimates as follows.

maximize
∑
a∈A

t∑
k=1

eakxak

s.t. ∑
a∈A

xak = n/t ∀k ∈ [t]
t∑

k=1

xak = 1 ∀a ∈ A∣∣∣∣∣∣∣

∑

b∈A
k<l

e<
ak;blxbl +

∑
b∈A
k>l

e>
ak;blxbl

− eak

∣∣∣∣∣∣∣ ≤ 2εn2 ∀a ∈ A, k ∈ [t]

∣∣∣∣∣∣∣
∑

(a,b,c)∈C
l<m

xcm − e<
ak;bl

∣∣∣∣∣∣∣ ≤ εn ∀a, b ∈ A, k < l ∈ [t]

∣∣∣∣∣∣∣
∑

(a,b,c)∈C
l>m

xcm − e>
ak;bl

∣∣∣∣∣∣∣ ≤ εn ∀a, b ∈ A, k > l ∈ [t]

0 ≤ xik ≤ 1 ∀i ∈ [n], k ∈ [t] .
Similarly to the algorithms from Sects. 4.1, 4.2, and 4.3, randomized rounding plus

reallocation is applied to the solution of each Mh to obtain a placement. Our final
solution is the placement with maximum cost among these placements.

We analyze this algorithm in a way similar to the analysis of Sects. 4.1, 4.2, and 4.3.
The following lemma specify the accuracy of the estimates. Its proof is slightly more
complicated than the proof of the corresponding lemmas in previous section and use the
Azuma-Hoeffding tail inequality for analyzing the estimate eak.

Lemma 12. Let g be a placement. Pick uniformly at random with replacement a multiset
S of O(log n/ε2) elements from A. Let h : S → [1, t] be the restriction of g to S. Then
whp, for each pair a, b of elements from A and for each pair of intervals k, l ∈ [t],
(a) e<

ak;bl ∈ [|{c ∈ A : (a, b, c) ∈ C, l < g(c)}| ± εn] when k < l

(b) e>
ak;bl ∈ [|{c ∈ A : (a, b, c) ∈ C, l > g(c)}| ± εn] when k > l .

A rounding procedure for the assignment problem 27

Furthermore, for each a ∈ A and k ∈ [t],
(c) eak ∈ [|{b, c ∈ A : (a, b, c) ∈ C, and k < g(b) < g(c) or k > g(b) > g(c)}| ± εn2].
Proof. Parts (a) and (b) are proved using using Lemma 24(c) as in the proof of Lemma 6.
To prove (c) we use the Azuma-Hoeffding martingale tail inequality – see for example

Chap. 7 of Alon and Spencer [AS92] (Theorem 4.2). The random variable Z = |S|2
n2 eak

depends on |S| independent random variables (the elements of S in their chosen order).
Changing the value of one of these variables changes Z by at most |S|. So for any t > 0

Pr(|Z − E(Z)| ≥ t) ≤ 2e−2t2/|S|3 . (25)

Now
E(Z) = |{(a, b, c) ∈ C : [k < g(b) < g(c)] or [k > g(b) > g(c)]}|

and putting t = ε|S|2 into (25) yields the lemma.
��

The rest of the proof is analogous to the proof in Sects. 4.1, 4.2, and 4.3. We focus
on the guess h∗ which corresponds to the optimal placement g∗, and the estimates e<

ak;bl,
e>

ak;bl, and eak that correspond to h∗. By Lemma 12, g∗ is a feasible solution to the linear
program Mh∗ whp. Let v(g∗) be the value of the objective function of Mh∗ at g∗. Let
x∗ be the optimal fractional solution to Mh∗ , and let φ(h∗) be the value of the objective
function of Mh∗ at x∗. Clearly we have that φ(h∗) ≥ v(g∗). As a feasible solution to
Mh∗ , g∗ satisfies the constraints of Mh∗ . By substituting the constraints that provide
lower bounds on the estimates, into the objective we obtain that

φ(h∗) ≥ cp(g∗)− 3εn3 . (26)

We also have to bound how far from φ(h∗) can be the cost of the placement r∗, obtained
from x∗ by randomized rounding and reallocation of vertices. The following lemma,
that is analogous to Lemma 7, bounds the error resulting from randomized rounding
and reallocation of vertices.

Lemma 13. Let r∗ be the placement constructed from the optimal fractional solution x∗
of Mh∗ . Then cp(r∗) ≥ φ(h∗)− 3εn3 − o(n3) where φ(h∗) is the value of the objective
function of Mh∗ at x∗.
Proof. The proof of this lemma is analogous to the proof of Lemma 7 so we just sketch
it briefly. By scaling and applying Lemma 24(c) we obtain that the placement r∗ satisfies
the third set of constraints in Mh∗ with an additive error of o(n2), the forth and the fifth
sets with an additive error of o(n), and its objective value is close to φ(h∗) up to an
additive error of o(n3). By substituting the lower bounds on the eak that follow from the
constraints that r∗ satisfies into the objective we obtain the lemma.

��
To summarize, by choosing say ε = ε/7 we obtain from Equation (26) and Lemma 13

that
cp(r∗) ≥ cp(g∗)− εn3

for sufficiently large n. Since r∗ is a candidate for our chosen placement r, and we
choose a placement of minimum cost, the cost of r is no larger than the cost of r∗ and
we obtain the desired result.

28 Sanjeev Arora et al.

4.5. Derandomizing the PTASs

The PTASs described in Sects. 4.1–4.4 use randomization to pick the sample set of
vertices which we denoted by S. In this section we show how to derandomize the PTASs
for MINIMUM LINEAR ARRANGEMENT, MINIMUM CUT LINEAR ARRANGEMENT and
MAXIMUM ACYCLIC SUBGRAPH in polynomial time using random walks on a constant
degree expander to pick the set S. It is not clear whether the same derandomization
technique also works for BETWEENESS. To obtain such result one would need to prove
Lemma 12 when S is sampled using random walks on expanders as described next.

In Sects. 4.1–4.3 we picked the vertices of S uniformly at random with replacement.
Still using randomization consider the following alternative way of picking S. Identify
the vertices of G with the vertices of a constant degree expander graph E with n vertices
(as e.g. in [LPS88]). Pick a random walk of length |S| in E starting at a random vertex.
The multiset S that we pick consists of the vertices of G that correspond to the vertices
of E that occur on the random walk.

We claim that Lemma 6 still holds even with this modified random choice of S.
To prove this we partition the vertices of G into t + 1 groups as folows. Vertex j is in
group Gl , for some 1 ≤ l ≤ t if (i, j) ∈ E, g(j) > k, and g(j) − k = l. Otherwise,
vertex j is in the group Gt+1. We use the chernoff-like bound for random walks on
expanders proved in [Gil98] (Theorem 2.1) to show that the fraction of the vertices of
Gi in the sample S, ρi

S = |Gi∩S|
|S| , is close to ρi = |Gi |

n with high probability. Specifically,

if |S| = O(log n/δ2) then from Theorem 2.1 of [Gil98] follows that |ρi − ρi
S| = δ with

high probability. Therefore, the contribution of each group Gi , to our estimator eik is
off by at most δnt whp (We get an error of at most t contributed by at most δn vertices).
Summing over all groups we obtain that

eik ∈

 ∑

(i, j)∈E,g(j)>k

(g(j)− k)± δnt ∗ (t + 1)

 .

Picking δ = ε/t(t + 1) rather than δ = ε/t in Sect. 4.1 we obtain that Lemma 6 holds.
Once we establish the validity of the new random choice of S we can derandomize

the algorithm by running it for every possible such random walk on the expander.
Since there are only polynomially many random walks of length |S| = O(log n/δ2) on
a constant degree expander we obtain a deterministic approximation algorithm which
runs in polynomial time.

5. The general rounding procedure

In this section we generalize our rounding procedure for c-smooth APEC problems
from Sect. 2 to work for general APEC problems and prove Theorem 3. First we assume
for simplicity that the coefficients are all nonnegative, and show that we can produce
a matching satisfying condition (7). Let x∗ be a fractional perfect matching and w be
any weight function with positive coefficients, each upperbounded by W . Our procedure
with high probability produces a matching M such that for δ = O(log log n/ log n)

w(M) ∈ [wx∗ ± (δwx∗ + Õ(W))]. (27)

A rounding procedure for the assignment problem 29

(Note that δ = o(1).) Later in Sect. 5.3 we analyze the procedure when coefficients
could be negative, and prove Theorem 3.

The algorithm uses the two phase approach of Sect. 2, with the following difference.
Earlier, the Merge operator on matchings took the union of two matchings, and broke
long cycles/paths at arbitrarily-chosen points, so that the resulting paths/cycles are all
“small”. Now it will choose the breakpoints randomly.

5.1. The decomposition phase

This phase produces � = O(log3 n) matchings exactly as in Sect. 2.1. Instead of
Lemma 2 we prove the following.

Lemma 14. Let ξ = O(1/ log n). Then with high probability,

1

�

�∑
i=1

w(Mi) ∈ [wx∗ ± (ξwx∗ + Õ(W))].

Proof. Mimic the proof of Lemma 2 but use Lemma 21 instead of Lemma 22.
��

5.2. The new merge operator

We define a (probabilistic) binary operator⊗ on matchings with the following property.
For every pair (A, B) of matchings in G, A ⊗ B is a matching that satisfies with high
probability

w(A ⊗ B) ∈
[

w(A)+w(B)

2
±
(

O

(
w(A)+w(B)

k

)
+ Õ(kW)

)]
, (28)

where k = �(log n).
A ⊗ B is constructed as follows. Note that A ∪ B is a union of vertex-disjoint

alternating paths and cycles, some of which might have much more than k edges. Let q
denote the number of vertices on paths/cycles with more than k edges. Randomly pick
(with replacement) a multiset S of l = $q/k% vertices out of them. We call vertices in
S breakpoints, and we delete the edges incident to each breakpoint. Lemma 16 below
says that with high probability, none of the remaining paths/cycles has length more than
O(k log n). Now from each remaining path/cycle, randomly (i.e., with equal probability)
pick either all the edges of A or all the edges of B, and put them in A ⊗ B.

To calculate the weight of w(A ⊗ B), we first estimate the effect of deleting edges
incident to breakpoints.

Lemma 15. Let wA be the weights of edges in A that are in paths/cycles of length
> k. Then whp the weight of edges of A that are incident to S is no greater than
O
(

wA
k

)+ Õ(W).

30 Sanjeev Arora et al.

Proof. For a vertex v that is part of a path/cycle of length > k, let wv denote the weight
of the edge in A that is incident to v.

Let Xi , 1 ≤ i ≤ l be a random variable representing the weight of A’s edge incident
to the ith breakpoint. The variable Xi takes each one of the values wv with probability
1/q hence |Xi | ≤ W . Now apply Lemma 21 to

∑l
i=1 Xi .

��
Lemma 16. There is a c > 0 such that the following is true whp (over the choice of
breakpoints). After the edges incident to the breakpoints are deleted, the length of each
remaining path/cycle in A ∪ B is at most ck log n.

Proof. We partition long paths into (at most O(n/(k log n)) paths of length ck log n and
argue that whp each gets a breakpoint. Let P be any path of length at least ck log n. The
probability that P doesn’t get a breakpoint is at most (1−(ck log n)/q)l ≤ exp(−c log n).
Hence whp each of the paths under consideration gets a breakpoint.

��
Now we show that whp, A’s contribution to w(A ⊗ B) is very close to w(A)/2.

First we consider A′ which is the subset of the edges in A that are not incident to any
breakpoint. The following lemma is analogous to Lemma 3.

Lemma 17. Let A′ denote the edges of A that are not incident to any breakpoint. Then
whp

w(A′ ∩ (A ⊗ B)) ∈ [w(A′)/2± (O(w(A′)/ log n)+ Õ(kW))].
Proof. Similar to the proof of Lemma 3. Each edge of A′ belongs to some path or cycle
after removing the edges incident with breakpoints. We define a random variable Xi for
each such path or cycle whose value is the weight of the edges of A′ on this path with
probability 1/2 and 0 otherwise. Clearly |Xi | ≤ Wck log n. Now we apply Lemma 21
to the sum of the variables Xi .

��
By Lemma 15 we have that whp,

w(A)− (O(w(A)/k)+ Õ(W)) ≤ w(A′) ≤ w(A). (29)

By combining this equality with Lemma 17, and substituting k = �(log n), we obtain
that whp the contribution of edges from A to w(A ⊗ B) is in

[w(A)/2± (O(w(A)/k)+ Õ(kW))].
By similarly analyzing the contribution of B to w(A ⊗ B), we see that A ⊗ B whp
satisfies condition (28).

Except for using the new merge operator⊗ rather than� the merge phase is the same
as described in Sect. 2. We combine the � matchings produced by the decomposition
phase into one matching A in log � phases. In each such phase we arbitrarily pair up all
the matchings and merge each pair using the⊗ operator. Now we show that M satisfies
Equation (27).

A rounding procedure for the assignment problem 31

Let M j
1 , . . . , M j

�/2 j denote the �/2 j matchings obtained at round j of the merging
procedure where 0 ≤ j ≤ log �. A simple induction on j using the property of the ⊗
operator stated in equation (28) shows that the sum of the weights of these matchings is
whp sandwiched between

(1− O(1/k)) j

(∑�
i=1 w(Mi)

2 j −�

(
1

2
+ 1

4
+ · · · + 1

2 j

)
Õ (kW)

)

and

(1+ O(1/k)) j

(∑�
i=1 w(Mi)

2 j
+�

(
1

2
+ 1

4
+ · · · + 1

2 j

)
Õ (kW)

)
.

Substituting j = log � in these expressions, and noting that (1 ± O(1/k))log� ≈
1± O(log �/k) when log �� k, we get that w(M) is whp sandwiched between

(1− O(log �/k))
�∑

i=1

w(Mi)/�− Õ(kW�) (30)

and

(1+ O(log �/k))
�∑

i=1

w(Mi)/�+ Õ(kW�). (31)

Finally recall that k = �(log n), and � = O(log3 n), so by combining Equations (30),
(31), and Lemma 14 we obtain that whp w(M) is in [wx∗±(δwx∗+ Õ(W))], as claimed
in Equation (27).

We finish by estimating the number of edges in M. As in Sect. 2 we consider the
weight function wi j = 1 for every i, j ∈ [n]. We note that a fractional perfect matching
x satisfies wx = n. So by applying Equation (27) to this weight function we obtain that
our matching contains n − o(n) edges whp.

Remark. There exists a tradeoff between the multiplicative error factor δ and the additive
error term Õ(kW�) that we did not make explicit. As � and k increase the multiplicative
factor goes to zero faster but the additive error increases.

5.3. Positive and negative coefficients

Now we analyze the rounding procedure when each coefficient wi j in the weight function
can be positive or negative, and |wi j | ≤ W . The goal is to prove Theorem 3. The only
difference from the case when coefficients were positive is that we need a different
Chernoff bound, Lemma 22, where we earlier used Lemma 21. The analogue of Lemma 2
is as follows.

32 Sanjeev Arora et al.

Lemma 18. Let ξ = O(1/ log n). Then whp the matchings produced in the decompos-
ition phase satisfy

1

�

�∑
i=1

w(Mi) ∈ [wx∗ ± (ξwx∗ + Õ(n1/2W))].

��
Let k = �(log n) as before. The following lemma replaces Lemma 15.

Lemma 19. With high probability, the sum of weights of edges of A that are incident to
a breakpoint is in [wA

k
± Õ(n1/2W)

]
.

��
Lemma 16 continues to hold and the following lemma replaces Lemma 17.

Lemma 20. Let A′ denote the edges of A that are not incident to any breakpoint. Then
whp

w(A′ ∩ (A ⊗ B)) ∈ [w(A′)/2± Õ(n1/2kW)].
From the last two lemmas applied to the edges of A as well as the edges of B we

obtain that whp

w(A ⊗ B) ∈
[
w(A)+ w(B)

2
±
(

O

(
w(A)+w(B)

k

)
+ Õ(n1/2kW)

)]
.

Now by a simple induction as in the nonnegative case we can show that whp

w(M) ∈ [wx∗ ± (δwx∗ + Õ(n1/2W))].
This finishes the proof of Theorem 3.

6. Conclusion

We have presented a rounding procedure for linear programs that contains assignment
constraints. In contrast with randomized rounding [RT87] our method produce an inte-
gral solution which is an almost perfect assignment. The rounded solution also satisfies
each original constraint with some additive error. We use this procedure to design
quasi-polynomial time approximation scheme for the quadratic assignment problem.
We believe that our rounding scheme may have other applications that are yet to be
found.

We can derandomize our algorithm using the standard method of conditional prob-
abilities [R88,AS92]. An interesting question for for further research is whether there
is a deterministic parallel version of our rounding scheme that runs in polylogarithmic
time (i.e. in NC). One possible approach that may lead to such algorithm (with some
penalty in the approximation error) is to use some construction of polylogarithmic-wise
independent random variables combined with an efficient parallel implementation of
the method of conditional probabilities in a way similar to the one used by Berger and
Rompel in [BR].

A rounding procedure for the assignment problem 33

7. Chernoff bounds

The Chernoff-style tail bounds needed in this paper are a mixture of some standard
bounds. Since we haven’t found a published source for it, we give brief proofs for it
using standard techniques. The goal of this section is to prove the following two lemmas.

Lemma 21. Let Y1, . . . , Yk be independent random variables such that 0 ≤ Yi ≤ U.
Let S =∑i Yi and µ = E[S]. Then for every α > 0, there exists c > 0 such that

Pr
[|S− µ| ≥ c max{µ/ log n, U log2 n}] < 1/nα.

Proof. Let Xi = Yi/U , and apply Corollary 1 below to X1, . . . , Xk .
��

Lemma 22. Let Y1, . . . , Yk be independent random variables such that for each i ∈ [k],
either 0 ≤ Yi ≤ U or −U ≤ Yi ≤ 0. Let S = ∑i Yi , µ = E[S] and µ̂ = E[∑i |Yi |].
Then for every α > 0, there exists c > 0 such that

Pr
[|S− µ| ≥ c max{(µ̂U log n)1/2, U log n}] ≤ 1/nα.

Proof. Let Xi = Yi/U , and apply Lemma 26 below to X1, . . . , Xk .
��

In Lemmas 23–25, X1, . . . Xk are independent random variables such that 0≤Xi≤1.
Let S =∑i Xi and µ = E(S). The starting point is the following lemma.

Lemma 23. (1) For any β ≥ 0 and any λ,

Pr[S ≥ (1+ λ)µ)] ≤ e−β(1+λ)µeµ(eβ−1)

(2) For any β ≤ 0 and any λ,

Pr[S ≤ (1− λ)µ)] ≤ e−β(1−λ)µeµ(eβ−1).

Proof. We prove (1); the proof of (2) is analogous. By Markov’s inequality for any
β ≥ 0

Pr[S ≥ (1+ λ)µ)] ≤ E(eβS)e−β(1+λ)µ.

Since eβx is a convex function of x for any fixed β we have eβx ≤ 1 − x + xeβ for
0 ≤ x ≤ 1. So for each i we have

E(eβXi) ≤ 1+ E(Xi)(e
β − 1) ≤ eE(Xi)(eβ−1).

Hence

E(eβS) ≤
k∏

i=1

eE(Xi)(eβ−1).

The result follows by combining the inequalities.
��

34 Sanjeev Arora et al.

Lemma 24.

(a) Pr [|S− µ| ≥ λ] ≤ 21−λeµ

(b) Pr
[|S− µ| ≥ λ

√
µ
] ≤ 2e−λ2/3.

(c) Pr [|S− µ| ≥ λ] ≤ 2e−2λ2/k.

Where (a) and (c) hold for any λ ≥ 0 and (b) holds for λ ≤ µ1/2

��
Proof. To obtain (a) substitute β = ln 2 and β = − ln 2 in Lemma 23 (1) and (2)
respectively. To obtain (b) substitute β = ln(1+λ) and and β = ln(1−λ) in Lemma 23
(1) and (2) respectively, and make some approximations. Notice that these two values
minimize the right hand sides of Lemma 23. To obtain (c) follow the proof of Lemma 23
but use the bound E(eβS) ≤ eµβ+β2k/8 (for a proof see [H64]) instead of the one used
here. Then substitute β = 4λµ/k and β = −4λµ/k in (1) and (2) respectively.

��
Lemma 25. For every α > 0 there is a c > 0 such that

Pr
[|S− µ| ≥ c max{(µ log n)1/2, log n}] ≤ 1/nα.

Proof. If µ < c2 log n use Lemma 24 (a) with λ = c1 log n for a large enough con-
stant c1. Otherwise, use Lemma 24(b) with λ = (c2 log n)1/2.

��
The following is an easy corollary (It follows since max{(µ log n)1/2, log n} ≤

max{µ/ log n, log2 n}).
Corollary 1. For every α > 0 there is a c > 0 such that

Pr
[|S− µ| ≥ c max{µ/ log n, log2 n}] ≤ 1/nα.

Now we turn to the case when some variables are negative.

Lemma 26. Let Xi , 1 ≤ i ≤ k be independent random variables such that for each
i ∈ [k], either 0 ≤ Xi ≤ 1 or −1 ≤ Xi ≤ 0. Let S = ∑n

i=1 Xi , µ = E(S), and
µ̂ = E(

∑n
i=1 |Xi |). Then for every α > 0 there is a c > 0 such that:

Pr
[|S− µ| ≥ c max{(µ̂ log n)1/2, log n}] ≤ 1/nα.

Proof. Let I be the set of i’s such that 0 ≤ Xi ≤ 1. Let S1 =∑i∈I Xi , S2 =∑i �∈I Xi ,
and µ1 = E(S1), µ2 = E(S2).

Notice that |S−µ| ≤ |S1 −µ1| + |S2 −µ2|. Apply Lemma 25 to bound |S1 −µ1|
and |S2 − µ2| and use the inequality

√
x +√y ≤ √2(x + y).

��

Acknowledgements. We thanks the referees for their comments that helped us improve our presentation.

A rounding procedure for the assignment problem 35

References

[A99] Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne, M.,
Skutella, M., Stein, C., Sviridenko, M. (1999): Approximation schemes for Minimizing Average
Weighted Completion Time with Release dates. In: Proceedings of the 40th FOCS, pp. 32–43.
IEEE

[AS92] Alon, N., Spencer, J.H. (1992): The Probabilistic Method. John Wiley and Sons, New York
[A96] Arora, S. (1998): Polynomial Time Approximation Schemes for Euclidean Traveling Salesman

and other Geometric Problems. JACM 45(5), 753–782
[AFK96] Arora, S., Frieze, A.M., Kaplan, H. (1996): A New Rounding Procedure for the Assignment

Problem with Applications to Dense Graph Arrangement Problems. In: Proceedings of the 37th
FOCS, pp. 21–30. IEEE

[AKK95] Arora, S., Karger, D., Karpinski, M. (1999): Polynomial-time approximation schemes for dense
instances of NP-hard optimization problems. JCSS 58(1), 193–210

[ALM+92] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M. (1999): Proof verification and hardness
of approximation problems. JACM 45(3), 501–555

[B94] Baker, B.S. (1994): Approximation Algorithms for NP-complete problems in planar graphs.
JACM 41, 153-180

[BR] Berger, B., Rompel, J. (1991): Simulating logc n-wise Independence in NC. JACM 38(4), 1026–
1046

[B98] Bollobás, B. (1998): Modern Graph Theory. Springer, Graduate Texts in Mathematics 184, New
York

[BC96] Burkard, R.E., Cela, E. (1997): Quadratic and Three-Dimensional Assignments: An Annotated
Bibliography. In: Dell’Amico, M., Maffioli, F., Martello, S., eds., Annotated Bibliographies in
Combinatorial Optimization. Wiley, Chichester, pp. 373–392

[CK00] Chekuri, C., Khanna, S.: A PTAS for the Multiple Knapsack Problem. In: Proceedings of the
11th SODA, pp. 213–222

[Cohen93] Cohen, E. (1995): Approximate max-flow on small depth networks. SIAM J. Comput. 23(3),
579–597

[FdlV94] Fernandez de la Vega, W. (1996): MAXCUT has a randomized approximation scheme in dense
graphs. Random Structures & Algorithms 8(3), 187–198

[FL81] Fernandez de la Vega, W., Lueker, G.S. (1981): Bin packing can be solved within 1+ε in linear
time. Combinatorica 1(4), 349–355

[FGHP93] Fisher, T., Goldberg, A.V., Haglin, D.J., Plotkin, S. (1993): Approximating matchings in parallel.
Information Processing letters 46, 115–118

[FK96] Frieze, A., Kannan, R. (1996): The regularity lemma and approximation schemes for dense
problems. In: Proceedings of the 37th FOCS, pp. 12–20. IEEE

[FK99] Frieze, A.M., Kannan, R. (1999): Quick approximation to matrices and applications. Combina-
torica 19, 175–220

[Gil98] Gillman, D. (1998): A Chernoff bound for random walks on expanders. SIAM J. Comput. 27,
1203–1220

[GPST92] Goldberg, A.V., Plotkin, S.A., Shmoys, D., Tardos, E. (1991): Interior-Point Methods in Parallel
Computation. SIAM J. Comput. 21(1), 149–150

[GGR96] Goldreich, O., Goldwasser, S., Ron, D. (1998): Property testing and its connection to learning
and approximation. JACM 45(4), 653–750

[H64] Hoeffding, W. (1963): Probability inequalities for sums of bounded random variables. Journal
of the American Stastical Association 58, 13–30

[IK75] Ibarra, O.H., Kim, C.E. (1975): Fast approximation algorithms for the knapsack and sum of
subsets problems. JACM 22(4), 463–468

[KK82] Karmarkar, N., Karp, R.M. (1982): An efficient approximation scheme for the one-dimensional
bin-packing problem. In: Proc. 23rd FOCS, pp. 312–320. IEEE

[KUW86] Karp, R.M., Upfal, E., Wigderson, A. (1986): Constructing a perfect matching is in random NC.
Combinatorica 6(1), 35–48

[KM96] Khanna, S., Motwani, R. (1996): Towards a syntactic characterization of PTAS. In: Proc. 28th
STOC, pp. 329–337. ACM

[Law76] Lawler, E. (1976): Combinatorial Optimization: Networks and Matroids. Holt, Rinehart, Win-
ston, Fort Worth TX

[LR88] Leighton, T., Rao, S. (1999): Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. JACM 46(6), 787–832

[LPV81] Lev, G.F., Pippenger, N., Valiant, L. (1981): A Fast Parallel Algorithm for Routing in Permutation
Networks. In: IEEE Trans. Computers C-30(2), 93–100

36 Sanjeev Arora et al.: A rounding procedure for the assignment problem

[LPS88] Lubotzky, A., Phillips, R., Sarnak, P. (1988): Ramanujan graphs. Combinatorica 8(3), 261–277
[LN92] Luby, M., Nisan, N. (1993): A parallel approximation algorithm for positive linear programming.

In: Proc. 25th STOC, pp. 448–457. ACM
[MVV87] Mulmuley, K., Vazirani, U., Vazirani, V.V. (1987): Matching is as easy as matrix inversion.

Combinatorica 7(1), 105–113
[PRW94] Pardalos, P.M., Rendl, F., Wolkowicz, H. (1994): The quadratic assignment problem: a survey

of recent developments. In: Pardalos, P., Wolkowicz, H., eds., Quadratic assignment and related
problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science Vol. 16,
pp. 1–42

[R88] Raghavan, P. (1988): Probabilistic construction of deterministic algorithms: Approximating
packing integer programs. JCSS 37(2), 130–43

[RT87] Raghavan, P., Thompson, C. (1987): Randomized Rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica 7, 365–374

[RT98] Rolim, J.D.P., Trevisan, L. (1998): A Case Study of De-randomization Methods for Combina-
torial Approximation Problems. Journal of Combinatorial Optimization 2(3), 219–236

[SG76] Sahni, S., Gonzales, T. (1976): P-complete approximation problems. JACM 23, 555–565
[S78] Szemerédi, E. (1978): Regular partitions of graphs. In: Bermond, J.C., Fournier, J.C., Las

Vergnas, M., Sotteau, D., eds., Proc. Colloque Inter. CNRS No. 260, pp. 399–401
[ST93] Shmoys, D.B., Tardos, E. (1993): An approximation algorithm for the generalized assignment

problem. Math. Program. 62, 461–474
[SG93] Spirakis, P., Gibbons, A. (1993): PRAM models and fundamental parallel algorithmic tech-

niques: Part I. In: Gibbons, A., Spirakis, P., eds., Lectures in Parallel Computation. Cambridge
University Press, 1993.

