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Abstract. A new method for derivative-free optimization is presented. It is designed for solving problems
in which the objective function is smooth and the number of variables is moderate, but the gradient is not
available. The method generates a model that interpolates the objective function at a set of sample points, and
uses trust regions to promote convergence. The step-generation subproblem ensures that all the iterates satisfy
a geometric condition and are therefore adequate for updating the model. The sample points are updated using
a scheme that improves the accuracy of the interpolation model when needed. Two versions of the method are
presented: one using linear models and the other using quadratic models. Numerical tests comparing the new
approach with established methods for derivate-free optimization are reported.

1. Introduction

We are concerned with the problem of minimizing a smooth function f of several
variables whose derivatives are unavailable. Formally,

min
x∈IRn

f(x). (1.1)

We restrict our attention to problems with a moderate number of variables, and assume
that the cost of evaluating the function is much higher than the linear algebra required in
the optimization iteration. Derivatives are not available in many applications for a variety
of reasons. For example, the value f(x) could be the result of a physical measurement,
or the code that computes f(x) could use different programming languages or include
proprietary components that cannot be examined, making the use of automatic differ-
entiation or the calculation of analytical derivatives impractical. An option for solving
problems of this kind is to use gradient-based methods that employ finite-difference
approximations to the gradient, and the algorithms we discuss here will be compared
with that approach.

Several methods have been proposed, in addition to finite differences, for solv-
ing (1.1) when derivatives are not available. They include pattern-search, simulated
annealing, and trust region methods based on interpolation models (see Powell [11] and
Wright [13] for a survey of these techniques). Our approach belongs to the latter class:
it forms a linear or quadratic model of the objective and makes use of trust regions to
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promote convergence. In contrast to the methods described in [4,5,10,11], our method
includes a constraint in the trust region subproblem that ensures that the position of
all the points generated by the algorithm is such that they adequately define a linear
or quadratic model. Since this additional constraint has the form of a wedge when the
model is linear, we refer to our approach as a “wedge method”.

Model-based trust region methods exploit the smoothness in the objective function
and attempt to preserve the convergence properties of their gradient-based counterparts.
A model s �→ mc(xc + s) is created to approximate f around the current iterate xc.
The model is required to interpolate f at xc, as well as at a set �c of additional sample
points, i.e.,

mc(xc) = f(xc), mc(y) = f(y) for all y ∈ �c. (1.2)

We can write these interpolation conditions as a linear system of equations whose
unknowns are the coefficients of the model mc.

For the linear system defined by (1.2) to be well defined, one must ensure that the
position of the sample points is such that the rows of the linear system are linearly
independent; we call this the geometric condition, and if it holds we say that the sample
point set is non-degenerate.

We now outline the trust region methods described in [4,5,10,11]. These methods
obtain a step sc by minimizing mc(xc+ s) subject to a trust region ‖s‖2 ≤ �c, where the
radius �c is adjusted automatically according to established rules. After replacing one of
the sample points by the new point x+ = xc+ sc the geometric condition may, however,
not be satisfied. To cope with this difficulty two types of iterations are performed to
generate a new trial point x+ (we use the nomenclature in [11]):

1. “minimization” iterations aimed at reducing f ;
2. “simplex” iterations designed to define a model that approximates f more ade-

quately.

If the trial point x+ fails to reduce the value of f , the model mc is considered to be
a poor local approximation of f , and one of two courses of action is taken.

• If the set of sample points is nearly degenerate or some of the points interpolated by
mc are considered to be too far from xc, then an improved sample set is required, and
a simplex iteration is invoked. It returns a point that is close to xc and that increases
some measure of the goodness of the geometry of the simplex (e.g., the determinant
of the system induced by (1.2)).
• Otherwise, the new point x+ is considered to be too far from xc for mc to be an

accurate approximation of f . Then the trust region radius is reduced and another
minimization iteration is carried out.

Our method performs only one type of iteration. Instead of solving a standard trust
region subproblem and taking special action if the new point x+ = xc + sc does not
enjoy favorable geometric properties, we impose a geometric condition explicitly in the
step computation procedure, thereby guaranteeing that the new set of points defines an
adequate model. This, together with a mechanism that controls the accuracy of mc in
approximating f , make up the key components of the method, which has two versions,
depending on whether we use linear or quadratic interpolation models mc.
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In Sect. 2 we give a general description of the algorithm. In Sect. 3 we consider the
case when the model is linear, and in Sect. 4 we discuss quadratic models. In Sect. 5 we
report the results of numerical tests comparing the new method with a finite-difference
quasi-Newton method and with two model-based methods, DFO [3] and COBYLA [10].

Notation. Throughout the paper ‖·‖ denotes the Euclidean norm, and ‖·‖F the Frobenius
norm of a matrix.

2. The algorithm

In this section we describe a general framework for the wedge trust region method. At
the current iterate xc we define the model

mc(xc + s) = f(xc)+ gT
c s + 1

2 sT Gcs, (2.1)

where the vector gc ∈ IRn and the n × n symmetric matrix Gc must be determined so
that the model interpolates f at a set of sample points. (Of course, for linear models
we define Gc ≡ 0.) The model (2.1) is minimized with respect to s ∈ IRn , subject to
a constraint of the form ||s|| ≤ �c, to generate a step sc ∈ IRn that leads to the trial point
x+ = xc+ sc. If x+ reduces the objective function, it is accepted as the new iterate, and
the trust region radius � may be increased; otherwise � is decreased and a new trial
step is computed.

To define the model mc uniquely we maintain, in addition to xc, a set of m points

�c = {y1, . . . , ym},
which we call satellites of xc. It is easy to see (see Sects. 3 and 4) that for a linear
model we must define m = n, and for a quadratic model mc it should be chosen as
m = (n + 1)(n + 2)/2− 1. We then impose the interpolation conditions

mc(xc) = f(xc), mc(yl) = f(yl ), l = 1, . . . , m.

When the model mc is uniquely determined by these conditions, we say that the inter-
polation set {xc} ∪�c is non-degenerate.

Let us suppose that we start the current iteration with a non-degenerate set of sample
points {xc} ∪ �c. Before computing a new trial point using the model mc, the farthest
satellite from the current iterate xc, say ylout , is identified as the point that will be removed
from �c. This choice promotes the conservation of points that provide local information
of f around xc. We then define a “taboo region” Tc in IRn that contains all the points
xc+s that, if included in the interpolation set in place of ylout , would result in a degenerate
set of sample points. We also define a “wedge", which is a setWc that contains Tc, and
that is designed to avoid points that are very near Tc. The description of Tc andWc for
the case of linear and quadratic models will be given in Sects. 3 and 4, respectively,
where we also show that appropriate representations of these sets are inexpensive to
compute.
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Once the wedge Wc has been determined, we compute a trial step sc by approxi-
mately solving

min
s

mc(xc + s) = f(xc)+ gT
c s + 1

2 sT Gcs (2.2a)

subject to ||s|| ≤ �c, (2.2b)

s �∈ Wc, (2.2c)

and define x+ = xc + sc. If this trial point x+ reduces f , then x+ becomes the new
iterate, and xc becomes a satellite point, replacing ylout . If, on the other hand, x+ does
not reduce f , the current iterate is not updated, and x+ may or may not be discarded,
depending on how far it is from the current iterate xc compared with ylout . This and other
aspects of the algorithm are described below.

Algorithm 1
Choose the trust region parameters α, β ∈ (0, 1), an initial trust region radius �c > 0,
and an initial guess xc. Select an initial set of satellites �c = {y1, y2, . . . , ym} such that
xc∪�c is non-degenerate. Here m = n for a linear model, and m = 1

2 (n+1)(n+2)−1
for a quadratic model. (We assume that f(xc) ≤ f(y) ∀y ∈ �c.)

Repeat

1. Find a satellite that is farthest from the current iterate (break ties arbitrarily):
ylout = arg maxy∈�c ‖y − xc‖.

2. Form a model mc(xc + s) that interpolates {xc} ∪�c, and define the wedgeWc.
3. Compute sc by approximately solving subproblem (2.2), and evaluate f(xc + sc).
4. Set ared(sc) ≡ f(xc)− f(xc + sc) and pred(sc) ≡ mc(xc)−mc(xc + sc).
5. Update �c:

If ared(sc) > α pred(sc), choose �+ such that �+ ≥ �c,
else set �+ = β�c.

6. If f(xc + sc) < f(xc) (successful iteration)
Update the current iterate, and include xc in the satellite set, discarding ylout :
a. x+ = xc + sc

b. �+ = {xc} ∪�c \ {ylout}.
else (unsuccessful iteration)

If the new trial point is not further from the current iterate than ylout ,
admit it to the satellite set, discarding ylout ; otherwise, discard the new trial point:
c. x+ = xc

d. �+ =
{ {xc + sc} ∪�c \ {ylout} if ‖ylout − xc‖ ≥ ‖(xc + sc)− xc‖

�c otherwise.
7. xc← x+, �c ← �+, �c ← �+.

End

In the next sections we discuss the definition of the model mc and of the wedgeWc,
and the procedure for approximately solving the trust region subproblem.

Algorithm 1 is conceptually simple since it generates only one type of step, namely
a minimization step that always attempts to decrease f . Its novelty lies in the use of the
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wedge constraint, and in the acceptance strategy in Step 6. This strategy ensures that
the model is sufficiently accurate when needed, and therefore contributes significantly
to the robustness of the iteration, as we now discuss.

Trust region methods for gradient-based optimization guarantee that a successful
step will be generated whenever the trust region is small enough (and assuming that xc

is not a stationary point of f ). In order to retain this important property in interpolation-
based models, we deviate from the standard practice of discarding trial points that give
rise to an increase of the objective function, if these points help to improve the accuracy
of the model in a vicinity of xc. More specifically, suppose that the model mc is poor
and that, as a result, a sequence of unsuccessful trial points are computed. If these trial
points were discarded, then the interpolation model would not change, and subsequent
steps may still be poor in spite of the fact that the trust region has been reduced.

To ensure that the quality of the model improves as steps are being rejected, we
propose the mechanism described in Step 6 of the algorithm. Since an unsuccessful trial
point xc + sc will be retained as a satellite if and only if it is no further from xc than
ylout (Step 6d), we promote the conservation of trial points in the vicinity of xc, and also
avoid wasting the expensive function evaluation made at the unsuccessful trial point
xc + sc whenever possible.

If a sequence of unsuccessful trial steps is generated and as a result � decreases
sufficiently, the trial points will eventually be admitted as satellites of xc (Step 6d).
These satellites will then be both nondegenerate (because of the action of the wedge)
and increasingly clustered around xc (because � decreases). Therefore, the interpolation
model will become an increasingly accurate approximation of f in a vicinity of xc, so
that eventually a successful step will be computed. This is the main mechanism that
drives the convergence theory. As in the convergence proofs of trust region methods
with exact gradients, a lower bound on the reduction pred(sc) in the model achieved by
each trial step sc is also needed. We have been able to obtain this bound so far only for
the case when mc is linear (see [7] for a convergence analysis when linear models are
used).

The values of the trust region parameters α and β, and the updating rule of the trust
region radius in Step 5 used in our numerical tests are given in Sect. 5.

3. Linear models

Linear models can be useful in derivative-free optimization because they only require
n + 1 sample points—a useful feature when the number of variables is not very small.
The model, at the current iterate xc takes the form

mc(xc + s) = f(xc)+ gT
c s, (3.1)

where gc is a vector in IRn to be determined. Since gc has n components, we maintain,
in addition to xc, the set of n satellites

�c = {y1, . . . , yn},
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and impose the interpolation conditions mc(yl ) = f(yl ), l = 1, ..., n, which can be
written as

gT
c sl = f(yl )− f(xc) l = 1, . . . , n. (3.2)

Here sl is the displacement from xc to yl; i.e.

yl = xc + sl l = 1, . . . , n.

It follows from (3.2), that the linear model (3.1) is uniquely determined if and only if
the set of sample points {xc} ∪�c is such that the set

{sl : l = 1, . . . , n}
is linearly independent.

To compute a new iterate, we first select ylout , the satellite that is farthest from xc.
The taboo region Tc, which is the region that we want to avoid when computing a new
point so that the new sample set is non-degenerate, is therefore defined as the (n − 1)-
dimensional subspace spanned by the displacement vectors

{sl : l = 1, . . . , n, l �= lout} (3.3)

corresponding to the satellites that will remain in the sample set; see Fig. 1. A more
convenient representation is

Tc =
{
s ∈ IRn : bT

c s = 0
}
,

where bc ∈ IRn is normal to the displacement vectors (3.3).

x

c

+

y

y

1

2 leaving satellite

cs

x taboo region

Fig. 1. Example for n = 2. The set of sample points at the current iteration is {xc} ∪�c = {xc, y1, y2}. Since
y2 is the farthest point from xc, it will be removed from the sample set. If the trial step sc lies on the taboo
region the new set of sample points, {x+} ∪�+ = {x+, xc, y1}, will be degenerate

As mentioned in Sect. 2, we would also like to avoid steps sc that are very close
to the taboo region, so that the system (3.2) is not too ill-conditioned, and to ensure
that the sample points are reasonably spaced out. To achieve this, we demand that the
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Fig. 2. Example for n = 2. Steps s that fall in the shaded area will satisfy (3.4), and will not belong to the
taboo region Tc. The circle represents the trust region

magnitude of the cosine of the angle between the step sc and the normal bc is not less
than a given constant γ ∈ (0, 1), i.e.,

|bT
c s| ≥ γ ‖bc‖‖s‖. (3.4)

We call inequality (3.4) the wedge constraint, and the parameter γ determines the
“width” of the wedge; see Fig. 2. We compute a trial step sc by solving

min
s

mc(xc + s) = f(xc)+ gT
c s (3.5a)

subject to ||s|| ≤ �c (3.5b)

|bT
c s| ≥ γ ||bc|| ||s||. (3.5c)

This problem can be easily solved. If we ignore the wedge constraint (3.5c), the
solution is sTR = −(�c/‖gc‖)gc. If sTR satisfies (3.5c) (i.e., if it lies “outside” the wedge),
then sc = sTR is the solution of the subproblem (3.5). Otherwise, the wedge constraint
is active, and it is easy to verify that an optimal solution lies in the span of gc and bc.
By rotating sTR in the plane span{sTR, bc} we find the two points on this plane at which
the wedge constraint is satisfied as an equality, and we chose the one with lowest model
objective. This provides a global solution to subproblem (3.5), which is unique—except
in the case when bT

c gc = 0, when there are exactly two global solutions.

4. Quadratic models

In order to uniquely define a quadratic model

mc(xc + s) = f(xc)+ gT
c s + 1

2 sT Gcs (4.1)

that interpolates a set of points, we need to determine the coefficients gc ∈ IRn , and
the symmetric n × n matrix Gc, a total of m = 1

2 (n + 1)(n + 2)− 1 scalar unknowns.
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Thus, in addition to the current approximation to the minimizer xc, we will maintain m
satellites

yl = xc + sl l = 1, . . . , m.

The quadratic model (4.1) can be expressed as (we drop the subscript c from the elements
of Gc to keep the notation simple)

mc(xc + s) = f(xc)+ gT
c s +

∑
i< j

Gi j si s j + 1
2

∑
i Gii s2

i

≡ f(xc)+ ĝT
c ŝ, (4.2)

where we have collected the elements of gc and Gc in the m-vector of unknowns

ĝc ≡
(

gT
c , {Gi j }i< j ,

{
1√
2

Gii

})T
, (4.3)

and defined the m-vector

ŝ ≡
(

sT , {sis j }i< j ,
{

1√
2
s2

i

})T
.

Since the model (4.2) has the same form as (3.1), the determination of the vector of
unknown coefficients ĝ will be done as in the linear case. We deduce, from (4.2), that
the interpolation conditions take the form

(ŝl )T ĝc = f(yl )− f(xc) l = 1, . . . , m, (4.4)

where

ŝl ≡
(
(sl )T , {sl

i s
l
j }i< j ,

{
1√
2

(
sl

i

)2
})T

l = 1, . . . , m.

The model (4.1) will thus be uniquely determined if and only if the system (4.4) has
a unique solution, or equivalently, if and only if the set

{ŝl : l = 1, . . . , m} (4.5)

is linearly independent. This is the condition that the set of sample points must satisfy
in order to be non-degenerate. The taboo region is defined as

span
{
ŝl : l = 1, . . . , m; l �= lout

}
, (4.6)

and can also be expressed as

Tc =
{
ŝ ∈ IRm : b̂T

c ŝ = 0
}
, (4.7)

where b̂c ∈ IRm is perpendicular to the subspace (4.6). As in the linear case, we define
a region that contains Tc by demanding that the magnitude of the cosine of the angle
between ŝ and the normal b̂c be greater than or equal to a given scalar γ ∈ (0, 1), i.e.,

∣∣b̂T
c ŝ

∣∣ ≥ γ‖b̂c‖‖ŝ‖. (4.8)
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All that is left to do is to express this condition and the taboo region (4.7) in terms
of the variables s ∈ IRn of the original problem. Writing b̂c in the form (4.3) we have

b̂c ≡
(

bT
c , {Bi j }i< j ,

{
1√
2

Bii

})T
(4.9)

where bc ∈ IRn . We now let Bc be the n × n symmetric matrix with upper triangular
elements given by {Bi j }i≤ j . The taboo region (4.7) is thus given by

Tc =
{

s ∈ IRn : bT
c s + 1

2 sT Bcs = 0
}

, (4.10)

and is therefore the set of solutions to a quadratic equation. Let us assume without loss

of generality that the vector b̂c is normalized so that ‖b̂c‖ =
√
‖bc‖2 + 1

2‖Bc‖2F = 1.
Then the wedge condition (4.8) can be written as

∣∣bT
c s + 1

2 sT Bcs
∣∣ ≥ γ

√
‖s‖2 + 1

2‖s sT ‖2F . (4.11)

Since

‖ssT ‖F = ‖s‖2,
inequality (4.11) can be written as

∣∣bT
c s + 1

2 sT Bcs
∣∣ ≥ γ‖s‖

√
1+ 1

2‖s‖2.

This defines the wedge constraint when the model is quadratic.
To determine the coefficients gc, Gc, bc and Bc we compute the QR factorization

of the matrix whose columns are the vectors {ŝl} in (4.5). Using this factorization we
can then solve for ĝc the system (4.4), obtaining gc and Gc through (4.3). The QR
factorization also gives us the vector b̂c in (4.7), and through (4.9), the vector bc and
the matrix Bc.

The step sc is therefore defined as an approximate solution of

min
s

mc(xc + s) = f(xc)+ gT
c s + 1

2 sT Gcs (4.12a)

subject to ‖s‖ ≤ �c (4.12b)∣∣bT
c s + 1

2 sT Bcs
∣∣ ≥ γ‖s‖

√
1+ 1

2‖s‖2. (4.12c)

The step sc is thus dependent on the parameter γ , whose choice can have an impact
on the efficiency of the wedge algorithm. If γ is too large, the wedge constraint may rule
out steps that make significant progress toward the solution. To avoid these inefficiencies,
we will include in the algorithm a procedure for decreasing γ , if necessary. The update
of γ will be performed while computing an approximate solution to (4.12), as will be
described in the next subsection.
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Fig. 3. Example for n = 2 of the feasible region of subproblem (4.12). The circle centered at xc represents
the trust region. The solid curves depict the taboo region (4.10) (in this example Bc is indefinite), and the
boundary of the region defined by the wedge constraint (4.12c) is plotted using dashed lines

4.1. Step computation

It is difficult to compute an optimal solution of subproblem (4.12) since Gc may be
indefinite and the feasible region is usually non-convex; see Fig. 3. We will, however,
content ourselves with finding an approximate solution of (4.12), and we will do so
using a procedure that is analogous to that employed in the linear case. While solving
the subproblem we will also determine if the value of the wedge parameter γ needs to
be decreased.

We first use the technique described by Moré and Sorensen [8] to compute a solution
sTR of the trust region problem (4.12a)–(4.12b), ignoring the wedge constraint. If sTR

satisfies (4.12c), then the solution of the subproblem (4.12) will be given by sc = sTR.
Otherwise, starting from sTR, we compute a sequence of trial steps si , i = 1, 2, . . . ,
with ‖si‖ = ‖sTR‖, that move away from the taboo region in a direction along which
the violation of the wedge constraint (4.12c) initially decreases. We generate trial steps
until the wedge constraint is satisfied or until the value of the quadratic model (4.12a)

has increased too much with respect to its value at sTR, in which case γ is decreased.
More precisely, let us define the left hand side in (4.12c) by φ(s), i.e.,

φ(s) = ∣∣bT
c s + 1

2 sT Bcs
∣∣.

Its gradient is given by

∇φ(s) = sign
(
bT

c s + 1
2 sT Bcs

)
(Bcs + bc),

provided φ(s) �= 0. We compute the trial steps si , i = 1, 2, . . . , by incrementally
rotating sTR on the plane span{sTR, BcsTR+ bc}, and in the direction of ∇φ(sTR). Note that
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BcsTR + bc is the normal to the taboo region at sTR, and by moving along this normal,
we move away from the taboo region. (The gradient of φ indicates whether we should
move along the normal or the negative of it.)

By means of this rotation, the violation of the wedge constraint initially decreases,
as φ initially decreases and the right hand side of (4.12c) remains constant due to the
equality ‖si‖ = ‖sTR‖ for all i.

As we generate the trial steps si , we monitor the value of the quadratic model
(4.12a); we continue the rotation until a trial step si satisfies (4.12c) or until the value
of mc has increased too much, in the sense that

pred(si) ≥ 1
2 pred(sTR) (4.13)

where pred(s) = mc(xc)− mc(xc + s), with s ∈ IRn . We take this as an indication that
the wedge parameter γ is too large. We then set sc = si and “close the wedge,” i.e.,
reduce γ , so that the most current trial step si satisfies (4.12c) as an equality,

γ = ∣∣bT
c sc + 1

2 sT
c Bcsc

∣∣ / (
‖sc‖

√
1+ 1

2‖sc‖2
)
. (4.14)

This new choice of γ will be passed onto the next iteration, so that the values of γ form
a non-increasing sequence.

This step computation procedure is described below. Here s(θ) denotes a rotation
of sTR, by an angle θ , in the span{sTR, BcsTR + bc} and in the direction of ∇φ(sTR).

Procedure QuadStep
The input parameters are gc, Gc, bc, Bc, γ , �c and δθ .

Solve the trust region subproblem (4.12a)–(4.12b) to obtain sTR.
If sTR satisfies (4.12c), return sc = sTR, and γ ; Stop
Else

Set θ = δθ

Repeat until s(θ) satisfies (4.12c) or pred(s(θ)) ≥ 1
2 pred(sTR)

θ ← θ + δθ

End Repeat
Set sc = s(θ)
If sc violates (4.12c), define γ by (4.14)

End if
Return sc and γ ; Stop

5. Numerical results

To assess the robustness and efficiency of the wedge algorithm, we will compare it with
three other methods for derivative-free optimization on a selection of problems from the
CUTE collection [1]. In this section we denote the kth iterate by xk; the subscript k will
also be used in all the quantities associated with xk ( fk = f(xk), �k, etc.)

All the experiments were performed on a Sun Ultra 5 with 384 MB of memory. Dou-
ble precision IEEE arithmetic was used, except for COBYLA [10], which is written in



300 Marcelo Marazzi, Jorge Nocedal

single precision. The wedge algorithm was implemented in Matlab, whereas COBYLA
is written in Fortran.

The trust region parameters in Step 5 of Algorithm 1 were set to α = 0 and β = 1/2,
and the trust region update strategy was as follows:

If ared(sk) ≤ 0
�k+1 = 1

2‖sk‖
Else

If ‖sk‖ = �k, �k+1 = 2�k

Else, �k+1 = �k
End if

Other strategies are possible, but the one described here appears to work well in practice
because it permits the trust region radius � to increase fast, allowing larger steps.

We first tested the linear version of the wedge algorithm (WEDlin) and COBYLA,
a trust region method that uses linear interpolation models. The starting point x0 in this,
and all the results reported below, was supplied by CUTE. The n + 1 initial satellites
required by the first iteration of WEDlin were defined as

yi = x0 ±�0 ei, i = 1, . . . , n, (5.1)

where the initial trust region radius was set to �0 = 1, ei denotes the ith canonical
vector, and the sign in (5.1) was chosen randomly. To account for the randomness
introduced in the selection of the initial sample points in both the linear and quadratic
versions of the wedge algorithm, each test problem was run five times. The median
results, in terms of function evaluations, are reported.

The wedge parameter in WEDlin was chosen as γ = 0.4, and was kept constant
throughout the iteration (only the algorithm that uses quadratic models reduces the value
of γ ). The parameter rhoend (size of the simplex at termination) in COBYLA was
set to 10×macheps, where macheps denotes double precision unit roundoff. Similarly,
WEDlin is terminated if

�k ≤ 10×macheps, (5.2)

which is taken as an indication that no further progress can be made.
The stopping tests for WEDlin and COBYLA were as follows. We first solved each

problem using the KNITRO software package [2], which for unconstrained problems
amounts to a Newton method using exact second derivatives. KNITRO was stopped
when ‖∇ f(xk)‖ < 10−6 and its final function value f∗ was recorded. WEDlin and
COBYLA were stopped when

fk − f∗
f0 − f∗

≤ ε, or equivalently, f0 − fk ≥ (1− ε)( f0 − f∗), (5.3)

where ε = 10−6 and f0 is the objective value at the initial point. Therefore we require
that the decrease f0 − fk obtained by the algorithms is at least 1− ε times the decrease
obtained by KNITRO. A stopping test of the form (5.3) is also used in [6]. A limit of
8000 function evaluations was imposed in all runs. The results are given in Table 1,
where we report the number of function evaluations and the final value of the objective
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Table 1. Comparison of COBYLA with WEDGElin : Number of function evaluations, final objective
function value and percentage of iterations in which the wedge constraint was active in WEDquad. The boxes
indicate that an algorithm required at least 50 fewer function evaluations than the other; if both algorithms
reached the limit of 8000 function evaluations, the boxes indicate the algorithm that obtained a lower function
value

# of evaluations final f % wed
n COB WEDlin COB WEDlin act

AKIVA 2 (1) 3184 6.1660e+00 25
BEALE 2 427 286 1.4070e-05 1.2190e-05 25

BIGGS6 6 244 347 2.4254e-01 2.4257e-01 33

BOX3 3 375 2276 7.2034e-06 1.8831e-06 33
BRKMCC 2 148 115 1.6905e-01 1.6904e-01 20
BROWNAL 10 11 629 0.0000e+00 2.6477e-04 38

BROWNDEN 4 392 310 8.5830e+04 8.5830e+04 31

BRYBND 10 8000 8000 8.1488e-03 3.2411e-02 31
CLIFF 2 4 3 1.0008e+00 1.0009e+00 0
CRAGGLVY 10 1085 1065 1.8899e+00 1.8898e+00 32
CUBE 2 8000 6231 2.9539e-03 7.4876e-04 25
DENSCHNA 2 30 28 5.9490e-06 2.1462e-06 19
DIXMAANK 15 1244 907 1.0004e+00 1.0003e+00 29

DQDRTIC 10 3272 2704 1.4387e-02 1.4435e-02 28
EDENSCH 6 102 96 3.9292e+01 3.9303e+01 22
EIGENALS 6 993 7 9.9986e-07 0.0000e+00 0
ENGVAL1 2 21 28 3.4571e-06 1.2317e-05 8

ENGVAL2 3 8000 8000 8.5447e-03 2.5925e-03 34

FMINSURF 16 439 506 1.0000e+00 1.0000e+00 31

FREUROTH 2 6470 4106 4.9040e+01 4.8984e+01 25

GROWTHLS 3 5089(3) 8000 1.2695e+01 1.2425e+01 36

GULF 3 8000 8000 6.0838e+00 5.5864e+00 34

HAIRY 2 3195 98 2.0000e+01 2.0000e+01 25

HATFLDE 3 8000 8000 3.5948e-04 1.0446e-04 38

HEART6LS 6 8000 8000 4.3838e+00 2.8673e+00 33
JENSMP 2 2425 918 1.2437e+02 1.2436e+02 25

KOWOSB 4 3756(3) 8000 3.6637e-04 3.1584e-04 36
MANCINO 10 140 131 1.2200e-01 9.5097e-02 24

MOREBV 10 8000 8000 2.1123e-06 1.7340e-06 30
OSBORNEA 5 (2) 8000 1.5742e-03 38

PFIT1LS 3 8000 8000 3.3536e-02 3.8083e-03 34

POWER 10 88 141 2.9705e-03 2.8584e-03 26

ROSENBR 2 8000 5049 8.1733e-04 2.4151e-05 25

SCHMVETT 3 245 68 -3.0000e+00 -3.0000e+00 18
SISSER 2 14 11 1.1430e-06 1.7838e-06 11
SNAIL 2 8000 1915 7.8217e+00 1.0883e-05 25

VARDIM 10 16 103 8.0418e-01 2.1317e+00 37

WATSON 12 8000 8000 8.0928e-04 1.6597e-04 37

WOODS 4 175 130 1.0903e-02 1.0758e-02 22

function obtained by each algorithm. We also report (% wed act) the percentage of
iterations in WEDlin where the wedge constraint was active.

Though COBYLA was mainly designed for constrained optimization, these re-
sults suggest that WEDlin is competitive with COBYLA on unconstrained problems.
It is interesting to note also that the wedge constraint is active in a significant frac-
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tion of the iterations, showing that this constraint does play an important role in the
method.

We now comment on the abnormal terminations of COBYLA. (1) As mentioned
before, COBYLA is written in single precision. In problem AKIVA, the single precision
version of CUTE gives an initial function value f(x0) = 2.70488, which is lower than
the optimal objective value obtained by KNITRO, f∗ = 6.16604. Therefore COBYLA
satisfies (5.3), and hence terminates, at the starting point, without performing a single
iteration. However, when we run WEDlin in double precision, we obtain the initial
function value f(x0) = 14.5561, which is well above the stopping value f∗ = 6.16604.
(2) COBYLA crashes when it tries to evaluate f at a point where f is not defined.
(3) COBYLA stopped because the size of the simplex (rhoend) is less than or equal
to 10×macheps; this is a built-in stopping test.

Next we compare the quadratic version of the wedge algorithm (WEDquad) with the
quasi-Newton code L-BFGS-B [14] using finite differences to approximate the gradient
(QNfinDiff), and all its default settings.

The initial value of the wedge parameter in WEDquad was chosen as γ = 0.4, and
as explained in Sect. 4, it is allowed to change over the iterations. The value δθ = π/600
was used in procedure QuadStep. As suggested in [11], the 1

2 (n + 1)(n + 2) sample
points required to define the initial quadratic interpolation model can be chosen as the
vertices and the mid-points of a simplex. This was done in WEDquad, using the simplex
defined by x0 and the points (5.1).

The results are reported in Table 2. In addition to the number of function evaluations,
the final function value and the percentage of iterations (% wed act) in which the wedge
constraint was active, we also report the final value of the wedge parameter γ . As
mentioned earlier, WEDquad was run five times and the median of the results are
reported. The stopping test was (5.3).

The results show that WEDquad is sometimes, but not always, more efficient than
the finite-difference quasi-Newton algorithm. However, WEDquad appears to be more
reliable, with one failure, compared to five failures of QNfinDiff.

In problem AKIVA, QNfinDiff returned the function value−∞ at the second itera-
tion and terminated. Most of the failures of QNfinDiff are attributed to lack of progress
in the line search due to errors in the finite-difference approximations to the gradients
(the code uses forward differences).

Finally, we compare WEDquad with the code DFO [3] that implements a trust
region method using quadratic interpolation models. At the time of writing, DFO was
not available to the public1, and the comparisons reported below are based on the results
reported in [5], plus results on additional problems supplied by Katya Scheinberg [12].
For this reason, WEDquad was stopped when

fk ≤ fDFO, (5.4)

where fDFO denotes the final objective values obtained by DFO. Both algorithms were run
five times for each problem and the median of the results is reported. The initial satellites

1 Note added during the revision: DFO is now available as open source software.
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Table 2. Comparison of QNfinDiff with WEDGEquad : Number of function evaluations, final objective
function value, percentage of iterations in which the wedge constraint was active in WEDquad, and final
value of the wedge parameter γ . The boxes indicate that an algorithm required at least 50 fewer function
evaluations than the other. A (*) indicates that the quasi-Newton code could not make further progress and
terminated. The symbol # indicates that WEDquad reached the maximum number of function evaluations
allowed

# of evaluations final f % wed final
n QNfinDiff WEDquad QNfinDiff WEDquad act γ

AKIVA 2 5(∗) 38 1.45561e+01 6.1660e+00 39 1.7e-06
BEALE 2 44 31 6.6203e-06 5.7477e-07 27 1.1e-03
BIGGS6 6 100 63 2.2235e-01 2.2763e-01 11 1.3e-03
BOX3 3 42 49 6.7426e-07 2.9466e-07 28 7.3e-05
BRKMCC 2 20 11 1.6904e-01 1.6904e-01 67 5.1e-04

BROWNAL 10 90 143 7.5175e-05 2.2297e-04 10 2.7e-04

BROWNDEN 4 122 70 8.5827e+04 8.5827e+04 5 5.2e-04

BRYBND 10 442 537 1.4670e-04 9.2160e-05 4 2.1e-06

CLIFF 2 53 6 4.4956e+02 1.0009e+00 0 0.4e+00

CRAGGLVY 10 387 530 1.8896e+00 1.8897e+00 3 1.5e-04

CUBE 2 119 128 1.9725e-04 7.3466e-04 13 5.1e-08
DENSCHNA 2 29 22 6.7846e-08 3.4250e-06 12 8.3e-04

DIXMAANK 15 338 682 1.0001e+00 1.0003e+00 3 9.9e-05

DQDRTIC 10 145 71 6.8361e-04 1.1992e-18 50 2.0e-03

EDENSCH 6 114 153 3.9291e+01 3.9303e+01 5 1.7e-03

EIGENALS 6 86 28 1.9489e-07 0.0000e+00 0 0.4e+00
ENGVAL1 2 38 31 1.5099e-06 3.7017e-06 15 2.3e-03

ENGVAL2 3 118 67 5.0904e-04 4.0162e-04 27 6.1e-07

FMINSURF 16 376 764 1.0000e+00 1.0000e+00 2 1.4e-04

FREUROTH 2 65 28 4.8984e+01 4.8984e+01 43 1.3e-04
GROWTHLS 3 45(∗) 1445 3.5421e+03 1.0895e+00 4 2.9e-09
GULF 3 274 234 1.2715e-06 1.1460e-05 8 4.1e-06

HAIRY 2 146 40 2.0000e+01 2.0000e+01 11 1.3e-03
HATFLDE 3 58 70 2.0464e-05 3.7258e-05 8 5.8e-05
HEART6LS 6 4558(∗) 8000(#) 4.9343e-02 2.2899e-01 1 1.0e-08
JENSMP 2 145(∗) 44 2.5958e+02 1.2436e+02 23 1.3e-04

KOWOSB 4 167 101 3.0780e-04 3.0780e-04 11 4.1e-06

MANCINO 10 35 133 6.8355e-03 2.6684e-02 16 3.3e-05

MOREBV 10 585 115 6.2161e-09 1.3512e-08 22 5.2e-07

OSBORNEA 5 13(∗) 1128 8.7903e-01 5.5500e-05 10 1.2e-10

PFIT1LS 3 210 93 4.5981e-04 7.9554e-04 14 4.8e-06

POWER 10 178 312 2.0331e-03 2.0220e-03 3 4.1e-05

ROSENBR 2 140 86 1.2816e-06 1.9314e-05 7 6.8e-05
SCHMVETT 3 46 35 -3.0000e+00 -3.0000e+00 31 3.8e-04
SISSER 2 29 35 1.8357e-06 2.2536e-06 20 4.9e-04

SNAIL 2 29 297 4.0694e-06 1.6856e-06 5 2.0e-04

VARDIM 10 200 692 1.8900e+00 2.1709e+00 1 5.3e-05

WATSON 12 873 460 2.9748e-05 2.9340e-05 3 7.8e-06
WOODS 4 97 114 3.3756e-03 1.0954e-02 13 1.4e-04

and all other parameters of WEDquad were chosen as in the previous experiment. The
results are given in Table 3.

It is difficult to design an adequate stopping test for comparing derivative free
methods, and this last comparison is an example of that. The code DFO may require
a significant number of evaluations to recognize convergence to its best value of f [3,12]
(which occurs by default when �k < 10−4). As a result, using the stopping test (5.4)

may be adverse to DFO. On the other hand, WEDquad does not employ any special
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termination mechanism. Its default stop test is (5.2), and in this respect it is completely
analogous to gradient-based trust region methods.

Table 3. Comparison of DFO with WEDGEquad : Number of function evaluations, final objective function
value, percentage of iterations in which the wedge constraint was active in WEDquad, and final value of the
wedge parameter γ . The boxes indicate that an algorithm required at least 50 fewer function evaluations than
the other

# of evaluations final f % wed final
n DFO WEDquad DFO WEDquad act γ

AKIVA 2 68 38 6.1660e+00 6.1660e+00 39 1.7e-06
BEALE 2 55 35 1.1011e-08 1.3360e-10 36 4.0e-05

BIGGS6 6 1364 362 1.7195e-05 1.5875e-05 6 9.9e-05
BOX3 3 81 51 2.2859e-07 1.1230e-07 36 7.3e-05
BRKMCC 2 24 11 1.6904e-01 1.6904e-01 67 5.1e-04
BROWNAL 10 837 234 9.2867e-07 8.7100e-07 9 1.0e-06
BROWNDEN 4 110 71 8.5822e+04 8.5822e+04 5 1.1e-03

BRYBND 10 528 618 9.9818e-08 8.0361e-08 6 4.1e-09
CLIFF 2 75 57 1.9979e-01 1.9979e-01 35 4.7e-07

CRAGGLVY 10 1026 553 1.8866e+00 1.8866e+00 3 5.7e-05
CUBE 2 107 138 2.6504e-07 2.2024e-07 13 5.1e-08
DENSCHNA 2 24 24 3.7212e-08 1.5670e-09 23 1.4e-04
DIXMAANK 15 1118 691 1.0000e+00 1.0000e+00 3 6.4e-05

DQDRTIC 10 403 75 1.6263e-20 3.1892e-21 60 5.3e-04

EDENSCH 6 177 167 3.9287e+01 3.9287e+01 6 1.6e-03
EIGENALS 6 211 28 8.9164e-07 0.0000e+00 0 0.4e+00
ENGVAL1 2 29 34 1.0550e-07 8.4608e-09 29 2.3e-05

ENGVAL2 3 149 80 2.8479e-07 7.3229e-08 20 4.1e-06

FMINSURF 16 1210 764 1.0000e+00 1.0000e+00 2 1.4e-04
FREUROTH 2 75 28 4.8984e+01 4.8984e+01 43 1.3e-04
GROWTHLS 3 243 123 1.2396e+01 1.2394e+01 23 8.5e-09

GULF 3 411 167 1.4075e-03 1.2626e-03 10 2.4e-05
HAIRY 2 51 40 2.0000e+01 2.0000e+01 11 1.3e-03
HATFLDE 3 95 85 3.8660e-06 2.9474e-06 17 4.4e-06

HEART6LS 6 1350 912 4.3167e-01 4.3161e-01 4 2.5e-07

JENSMP 2 97 44 1.2436e+02 1.2436e+02 23 1.3e-04

KOWOSB 4 117 62 3.6359e-04 3.5956e-04 11 1.7e-04

MANCINO 10 276 140 1.5268e-07 6.6249e-08 12 2.2e-05

MOREBV 10 476 104 6.0560e-07 6.5589e-08 21 1.2e-05

OSBORNEA 5 329 137 9.3144e-03 3.1947e-03 8 1.1e-05

PFIT1LS 3 180 94 4.2637e-04 4.0025e-04 14 4.8e-06

POWER 10 206 500 2.6064e-06 2.3942e-06 2 4.1e-05
ROSENBR 2 81 88 1.9716e-07 1.2083e-08 9 1.6e-05
SCHMVETT 3 53 35 -3.0000e+00 -3.0000e+00 31 3.8e-04
SISSER 2 27 38 1.2473e-06 9.2610e-07 18 4.9e-04

SNAIL 2 246 300 1.2661e-08 1.6242e-09 5 2.0e-04

VARDIM 10 2061 1156 2.6730e-07 2.0213e-08 1 2.4e-06

WATSON 12 1919 441 4.3239e-05 4.3197e-05 3 7.8e-06
WOODS 4 122 143 3.3079e-07 3.0107e-07 15 7.3e-04

Note from Tables 2–3 that, on most problems, the wedge parameter γ is reduced
significantly from its initial value of 0.4, and that at the same time, the wedge constraint
is active fairly often. Therefore the algorithm appears to have achieved a good balance
between the geometric condition requirement and the desire to allow full trust region
steps when possible.
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The results also suggest that the quadratic interpolation model together with the
mechanism that governs the accuracy of the model (Step 6 in Algorithm 1) may be
sufficiently robust by themselves—in the sense that an implementation of WEDquad
without the wedge constraint may be quite efficient on many problems. This observation
is based on the very small final values of γ in most runs.

We conclude by noting that choosing the initial satellites in WEDquad as the vertices
and midpoints of a simplex is not an efficient strategy since it requires O(n2) function
evaluations to start the algorithm. It would be more efficient to use, for example,
linear (or underdetermined quadratic) models during the early iterations, but we have
not yet experimented with this option. Other refinements that are likely to improve
performance include the option of increasing the wedge parameter in certain iterations.
This can be done either directly (e.g., when sTR in procedure QuadStep satisfies the
wedge constraint (4.12c)); or indirectly, by relaxing the (quite demanding) requirement
that the approximate solution of the quadratic subproblem satisfy the test (4.13). An
alternative test could be pred(si) ≥ 1

2 pred(sCA), where sCA is the Cauchy point [9] for
subproblem (4.12a)–(4.12b).
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