
Digital Object Identifier (DOI) 10.1007/s101070100263

Math. Program., Ser. A 91: 201–213 (2002)

Elizabeth D. Dolan · Jorge J. Moré

Benchmarking optimization software with performance
profiles

Received: February 2001 / Accepted: May 2001
Published online October 2, 2001 – Springer-Verlag 2001

Abstract. We propose performance profiles — distribution functions for a performance metric — as a tool
for benchmarking and comparing optimization software. We show that performance profiles combine the best
features of other tools for performance evaluation.

Key words. benchmarking – guidelines – performance – software – testing – metric – timing

1. Introduction

The benchmarking of optimization software has recently gained considerable visibility.
Hans Mittlemann’s [14] work on a variety of optimization software has frequently
uncovered deficiencies in the software and has generally led to software improvements.
Although Mittelmann’s efforts have gained the most notice, other researchers have
been concerned with the evaluation and performance of optimization codes. As recent
examples, we cite [1–4,6,15,19].

The interpretation and analysis of the data generated by the benchmarking process
are the main technical issues addressed in this paper. Most benchmarking efforts involve
tables displaying the performance of each solver on each problem for a set of metrics
such as CPU time, number of function evaluations, or iteration counts for algorithms
where an iteration implies a comparable amount of work. Failure to display such tables
for a small test set would be a gross omission, but they tend to be overwhelming for
large test sets. In all cases, the interpretation of the results from these tables is often
a source of disagreement.

The quantities of data that result from benchmarking with large test sets have
spurred researchers to try various tools for analyzing the data. The solver’s average or
cumulative total for each performance metric over all problems is sometimes used to
evaluate performance [1,4,6]. As a result, a small number of the most difficult problems
can tend to dominate these results, and researchers must take pains to give additional
information. Another drawback is that computing averages or totals for a performance
metric necessitates discarding problems for which any solver failed, effectively biasing

E.D. Dolan: Northwestern University and Mathematics and Computer Science Division, Argonne National
Laboratory, e-mail: dolan@mcs.anl.gov

J.J. Moré: Mathematics and Computer Science Division, Argonne National Laboratory,
e-mail: more@mcs.anl.gov

202 Elizabeth D. Dolan, Jorge J. Moré

the results against the most robust solvers. As an alternative to disregarding some of the
problems, a penalty value can be assigned for failed solver attempts, but this requires
a subjective choice for the penalty. Most researchers choose to report the number of
failures only in a footnote or separate table.

To address the shortcomings of the previous approach, some researchers rank the
solvers [4,6,17,19]. In other words, they count the number of times that a solver comes
in kth place, usually for k = 1, 2, 3. Ranking the solvers’ performance for each problem
helps prevent a minority of the problems from unduly influencing the results. Information
on the size of the improvement, however, is lost.

Comparing the medians and quartiles of some performance metric (for example,
the difference between solver times [4]) appears to be a viable way of ensuring that
a minority of the problems do not dominate the results, but in our testing we have
witnessed large leaps in quartile values of a performance metric, rather than gradual
trends. If only quartile data is used, then information on trends occurring between one
quartile and the next is lost; and we must assume that the journey from one point
to another proceeds at a moderate pace. Also, in the specific case of contrasting the
differences between solver times, the comparison fails to provide any information on
the relative size of the improvement. A final drawback is that if results are mixed,
interpreting quartile data may be no easier than using the raw data; and dealing with
comparisons of more than two solvers might become unwieldy.

The idea of comparing solvers by the ratio of one solver’s runtime to the best
runtime appears in [2], with solvers rated by the percentage of problems for which
a solver’s time is termed very competitive or competitive. The ratio approach avoids
most of the difficulties that we have discussed, providing information on the percent
improvement and eliminating the negative effects of allowing a small portion of the
problems to dominate the conclusions. The main disadvantage of this approach lies
in the author’s arbitrary choice of limits to define the borders of very competitive and
competitive.

In Sect. 2, we introduce performance profiles as a tool for evaluating and comparing
the performance of optimization software. The performance profile for a solver is the
(cumulative) distribution function for a performance metric. In this paper we use the
ratio of the computing time of the solver versus the best time of all of the solvers as
the performance metric. Section 3 provides an analysis of the test set and solvers used
in the benchmark results of Sects. 4 and 5. This analysis is necessary to understand the
limitations of the benchmarking process.

Sections 4 and 5 demonstrate the use of performance profiles with results [9] obtained
with version 2.0 of the COPS[7] test set. We show that performance profiles eliminate the
influence of a small number of problems on the benchmarkingprocess and the sensitivity
of results associated with the ranking of solvers. Performance profiles provide a means
of visualizing the expected performance difference among many solvers, while avoiding
arbitrary parameter choices and the need to discard solver failures from the performance
data.

We conclude in Sect. 6 by showing how performance profiles apply to the data
[14] of Mittelmann for linear programming solvers. This section provides another case
study of the use of performance profiles and also shows that performance profiles can
be applied to a wide range of performance data.

Benchmarking optimization software with performance profiles 203

2. Performance evaluation

Benchmark results are generated by running a solver on a set P of problems and
recording information of interest such as the number of function evaluations and the
computing time. In this section we introduce the notion of a performance profile as
a means to evaluate and compare the performance of the set of solvers S on a test set P .

We assume that we have ns solvers and n p problems. We are interested in using
computing time as a performance measure; although, the ideas below can be used with
other measures. For each problem p and solver s, we define

tp,s = computing time required to solve problem p by solver s.

If, for example, the number of function evaluations is the performance measure of
interest, set tp,s accordingly.

We require a baseline for comparisons. We compare the performance on problem p
by solver s with the best performance by any solver on this problem; that is, we use the
performance ratio

rp,s = tp,s

min{tp,s : s ∈ S} .

We assume that a parameter rM ≥ rp,s for all p, s is chosen, and rp,s = rM if and only
if solver s does not solve problem p. We will show that the choice of rM does not affect
the performance evaluation.

The performance of solver s on any given problem may be of interest, but we would
like to obtain an overall assessment of the performance of the solver. If we define

ρs(τ) = 1

n p
size

{
p ∈ P : rp,s ≤ τ

}
,

then ρs(τ) is the probability for solver s ∈ S that a performance ratio rp,s is within
a factor τ ∈ R of the best possible ratio. The function ρs is the (cumulative) distribution
function for the performance ratio.

We use the term performance profile for the distribution function of a performance
metric. Our claim is that a plot of the performance profile reveals all of the major
performance characteristics. In particular, if the set of problems P is suitably large and
representative of problems that are likely to occur in applications, then solvers with
large probability ρs(τ) are to be preferred.

The term performance profile has also been used for a plot of some performance
metric versus a problem parameter. For example, Higham [12, pp. 296–297] plots
the ratio γ/‖A‖1, where γ is the estimate for the l1 norm of a matrix A produced
by the LAPACK condition number estimator. Note that in Higham’s use of the term
performance profile there is no attempt at determining a distribution function.

The performance profile ρs : R
→ [0, 1] for a solver is a nondecreasing, piecewise
constant function, continuous from the right at each breakpoint. The value of ρs(1) is the
probability that the solver will win over the rest of the solvers. Thus, if we are interested
only in the number of wins, we need only to compare the values of ρs(1) for all of the
solvers.

204 Elizabeth D. Dolan, Jorge J. Moré

The definition of the performance profile for large values requires some care. We
assume that rp,s ∈ [1, rM] and that rp,s = rM only when problem p is not solved by
solver s. As a result of this convention, ρs(rM) = 1, and

ρ∗
s ≡ lim

τ→r−
M

ρs(τ)

is the probability that the solver solves a problem. Thus, if we are interested only in
solvers with a high probability of success, then we need to compare the values of ρ∗

s
for all solvers and choose the solvers with the largest value. The value of ρ∗

s can be
readily seen in a performance profile because ρs flatlines for large values of τ; that is,
ρs(τ) = ρ∗

s for τ ∈ [rS, rM) for some rS < rM .
An important property of performance profiles is that they are insensitive to the

results on a small number of problems. This claim is based on the observation that if ρs
and ρ̂s are defined, respectively, by the observed time sets tp,s and t̂ p,s, where

t̂ p,s = tp,s, p ∈ P \ {q},
for some problem q ∈ P , then r̂ p,s = rp,s for p ∈ P \ {q}. Since only the ratio r̂q,s
changes for any s ∈ S,

|ρs(τ) − ρ̂s(τ)| ≤ 1

n p
, τ ∈ R,

for s ∈ S. Moreover, ρ̂s(τ) = ρs(τ) for τ < min{rq,s, r̂q,s} or τ ≥ max{rq,s, r̂q,s}. Thus,
if n p is reasonably large, then the result on a particular problem q does not greatly affect
the performance profiles ρs .

Not only are performance profiles relatively insensitive to changes in results on
a small number of problems, they are also largely unaffected by small changes in results
over many problems. We demonstrate this property by showing that small changes from
rp,s to r̂ p,s result in a correspondingly small L1 error between ρs and ρ̂s .

Theorem 1. Let ri and r̂i for 1 ≤ i ≤ n p be performance ratios for some solver, and
let ρ and ρ̂ be, respectively, the performance profiles defined by these ratios. If

|ri − r̂i | ≤ ε, 1 ≤ i ≤ n p (1)

for some ε > 0, then ∫ ∞

1

∣∣ρ(t) − ρ̂(t)
∣∣ dt ≤ ε

Proof. Since performance profiles do not depend on the ordering of the data, we can
assume that {ri} is monotonically increasing. We can reorder the sequence {r̂i} so that
it is also monotonically increasing, and (1) still holds. These reorderings guarantee that
ρ(t) = i/n p for t ∈ [ri , ri+1), with a similar result for ρ̂. We now show that for any
integer k with 1 ≤ k ≤ n p,

∫ sk

1

∣∣ρ(t) − ρ̂(t)
∣∣ dt ≤ k

(
ε

n p

)
, (2)

Benchmarking optimization software with performance profiles 205

where sk = max(rk, r̂k), and

|ri − r̂i | ≤ ε, 1 ≤ i ≤ k, and r̂i = ri , k < i ≤ n p. (3)

The proof is completed when k = n p.
The case k = 1 follows directly from the definition of a performance profile, so

assume that (2) holds for any performance data such that (3) holds. We now prove
that (2) holds for k + 1 by proving that

∫ sk+1

sk

∣∣ρ(t) − ρ̂(t)
∣∣ dt ≤

(
ε

n p

)
, k < n p. (4)

Together, (2) and (4) show that (2) holds for k + 1.
We present the proof for the case when r̂k ≤ rk. A similar argument can be made

for rk ≤ r̂k. If r̂k ≤ rk then sk = rk and r̂k ≤ rk ≤ rk+1. The argument depends on the
position of r̂k+1 and makes repeated use of the fact that ρ(t) = k/n p for t ∈ [rk, rk+1),
with a similar result for ρ̂.

If rk+1 ≤ r̂k+1 then ρ(t) = ρ̂(t) in [rk, rk+1). Also note that
∣∣ρ(t) − ρ̂(t)

∣∣ = 1/n p in
[rk+1, r̂k+1). Hence, (4) holds with sk+1 = r̂k+1.

The case where r̂k+1 ≤ rk+1 makes use of the observation that r̂i = ri ≥ rk+1 for
i > k + 1. If rk ≤ r̂k+1 ≤ rk+1, then ρ(t) = ρ̂(t) in [rk, r̂k+1), and

∣∣ρ(t) − ρ̂(t)
∣∣ = 1/n p

in [r̂k+1, rk+1). Hence, (4) holds. On the other hand, if r̂k ≤ r̂k+1 ≤ rk, then we only
need to note that

∣∣ρ(t) − ρ̂(t)
∣∣ = 1/n p in [rk, rk+1) in order to conclude that (4) holds.

We have shown that (2) holds for all integers k with 1 ≤ k ≤ n p. In particular, the
case k = n p yields our result since ρ(t) = ρ̂(t) for t ∈ [sn p,∞).

��

3. Benchmarking data

The timing data used to compute the performance profiles in Sects. 4 and 5 are generated
with the COPS test set, which currently consists of seventeen different applications, all
models in the AMPL [10] modeling language. The choice of the test problem set P
is always a source of disagreement because there is no consensus on how to choose
problems. The COPS problems are selected to be interesting and difficult, but these
criteria are subjective. For each of the applications in the COPS set we use four instances
of the application obtained by varying a parameter in the application, for example, the
number of grid points in a discretization. Application descriptions and complete absolute
timing results for the full test set are given in [9].

Section 4 focuses on only the subset of the eleven optimal control and parameter
estimation applications in the COPS set, while the discussion in Sect. 5 covers the
complete performance results. Accordingly, we provide here information specific to this
subset of the COPS problems as well as an analysis of the test set as a whole. Table 1
gives the quartiles for three problem parameters: the number of variables n, the number
of constraints, and the ratio (n−ne)/n, where ne is the number of equality constraints. In
the optimization literature, n −ne is often called the degrees of freedom of the problem,
since it is an upper bound on the number of variables that are free at the solution.

206 Elizabeth D. Dolan, Jorge J. Moré

Table 1. Problem data for COPS test set

Full COPS COPS subset
min q1 q2 q3 max min q1 q2 q3 max

Num. variables 48 400 1000 2402 5000 100 449 899 2000 4815
Num. constraints 0 150 498 1598 5048 51 400 800 1601 4797
Degrees freedom 0 23 148 401 5000 0 5 99 201 1198
Deg. freedom (%) 0.0 1.0 33.2 100.0 100.0 0.0 0.4 19.8 33.1 49.9

The data in Table 1 is fairly representative of the distribution of these parameters
throughout the test set and shows that at least three-fourths of the problems have the
number of variables n in the interval [400, 5000]. Our aim was to avoid problems
where n was in the range [1, 50] because other benchmarking problem sets tend to
have a preponderance of problems with n in this range. The main difference between
the full COPS set and the COPS subset is that the COPS subset is more constrained
with ne ≥ n/2 for all the problems. Another feature of the COPS subset is that the
equality constraints are the result of either difference or collocation approximations to
differential equations.

We ran our final complete runs with the same options for all models. The options
involve setting the output level for each solver so that we can gather the data we need,
increasing the iteration limits as much as allowed, and increasing the super-basics limits
for MINOS and SNOPT to 5000. None of the failures we record in the final trials
include any solver error messages about having violated these limits. While we relieved
restrictions unnecessary for our testing, all other parameters were left at the solvers’
default settings.

The script for generating the timing data sends a problem to each solver successively,
so as to minimize the effect of fluctuation in the machine load. The script tracks the
wall-clock time from the start of the solve, killing any process that runs 3,600 seconds,
which we declare unsuccessful, and beginning the next solve. We cycle through all the
problems, recording the wall-clock time as well as the combination of AMPL system
time (to interpret the model and compute varying amounts of derivative information
required by each solver) and AMPL solver time for each model variation. We repeat the
cycle for any model for which one of the solvers’ AMPL time and the wall-clock time
differ by more than 10 percent. To further ensure consistency, we have verified that the
AMPL time results we present could be reproduced to within 10 percent accuracy. All
computations were done on a SparcULTRA2 running Solaris 7.

We have ignored the effects of the stopping criteria and the memory requirements
of the solvers. Ideally we would have used the same stopping criteria, but this is not
possible in the AMPL environment. In any case, differences in computing time due to
the stopping criteria are not likely to change computing times by more than a factor of
two. Memory requirements can also play an important role. In particular, solvers that
use direct linear equation solvers are often more efficient in terms of computing time
provided there is enough memory.

The solvers that we benchmark have different requirements. MINOS and SNOPT
use only first-order information, while LANCELOT and LOQO need second-order in-
formation. The use of second-order information can reduce the number of iterations, but
the cost per iteration usually increases. In addition, obtaining second-order information

Benchmarking optimization software with performance profiles 207

is more costly and may not even be possible. MINOS and SNOPT are specifically
designed for problems with a modest number of degrees of freedom, while this is not
the case for LANCELOT and LOQO. As an example of comparing solvers with similar
requirements, Sect. 6 shows the performance of linear programming solvers.

4. Case study: optimal control and parameter estimation problems

We now examine the performance of LANCELOT [5], MINOS [16], SNOPT [11], and
LOQO [18] on the subset of the optimal control and parameter estimation problems in
the COPS [7] test set. Figures 1 and 2 show the performance profiles in different ranges
to reflect various areas of interest. Our purpose is to show how performance profiles
provide objective information for analysis of a large test set.

Fig. 1. Performance profile on [0, 10]

Figure 1 shows the performance profiles of the four solvers for small values of τ . By
showing the ratios of solver times, we eliminate any weight of importance that taking
straight time differences might give to the problems that require a long run time of every
solver. We find no need to eliminate any test problems from discussion. For this reason,
solvers receive their due credit for completing problems for which one or more of the
other solvers fails. In particular, 1 − ρs(τ) is the fraction of problems that the solver

208 Elizabeth D. Dolan, Jorge J. Moré

Fig. 2. Performance profile on [0, 100]

cannot solve within a factor τ of the best solver, including problems for which the solver
in question fails.

From this figure it is clear that LOQO has the most wins (has the highest probability
of being the optimal solver) and that the probability that LOQO is the winner on a given
problem is about .61. If we choose being within a factor of 4 of the best solver as the
scope of our interest, then either LOQO or MINOS would suffice; but the performance
profile shows that the probability that these two solvers can solve a job within a factor
4 of the best solver is only about 70%. SNOPT has a lower number of wins than either
LOQO or MINOS, but its performance becomes much more competitive if we extend
our τ of interest to 7.

Figure 2 shows the performance profiles for all the solvers in the interval [1, 100].
If we are interested in the solver that can solve 75% of the problems with the greatest
efficiency, then MINOS stands out. If we hold to more stringent probabilities of com-
pleting a solve successfully, then SNOPT captures our attention with its ability to solve
over 90% of this COPS subset, as displayed by the height of its performance profile for
τ > 40. This graph displays the potential for large discrepancies in the performance ra-
tios on a substantial percentage of the problems. Another point of interest is that LOQO,
MINOS, and SNOPT each have the best probability ρs(τ) for τ in some interval, with
similar performance in the interval [15, 40].

An observation that emerges from these figures is the lack of consistency in quartile
values of time ratios. The top three solvers share a minimum ratio of 1, and LOQO and
MINOS also share first quartile values of 1. In other words, these two solvers are the

Benchmarking optimization software with performance profiles 209

Fig. 3. Performance profile in a log2 scale

best solvers on at least 25% of the problems. LOQO bests MINOS’s median value with
1 compared with 2.4, but MINOS comes back with a third quartile ratio of 4.3 versus
13.9 for LOQO, with SNOPT mixing results further by also beating LOQO with 12.6.
By looking at Figs. 1 and 2, we see that progress between quartiles does not necessarily
proceed linearly; hence, we really lose information if we do not provide the full data.
Also, the maximum ratio would be rM for our testing, and no obvious alternative value
exists. As an alternative to providing only quartile values, however, the performance
profile yields much more information about a solver’s strengths and weaknesses.

We have seen that at least two graphs may be needed to examine the performance of
the solvers. Even extending τ to 100, we fail to capture the complete performance data
for LANCELOT and LOQO. As a final option, we display a log scale of the performance
profiles. In this way, we can show all activity that takes place with τ < rM and grasp
the full implications of our test data regarding the solvers’ probability of successfully
handling a problem. Since we are also interested in the behavior for τ close to unity, we
use a base of 2 for the scale. In other words, we plot

τ
→ 1

n p
size

{
p ∈ P : log2

(
rp,s

) ≤ τ
}

in Fig. 3. This graph reveals all the features of the previous two graphs and thus captures
the performance of all the solvers. The disadvantage is that the interpretation of the
graph is not as intuitive, since we are using a log scale.

210 Elizabeth D. Dolan, Jorge J. Moré

Fig. 4. Performance profile for full COPS set

Figures 1 and 2 are mapped into a new scale to reflect all data, requiring at least the
interval [0, log2(1043)] in Fig. 3 to include the largest rp,s < rM . We extend the range
slightly to show the flatlining of all solvers. The new figure contains all the information
of the other two figures and, in addition, shows that each of the solvers fails on at least
8% of the problems. This is not an unreasonable performance for the COPS test set
because these problems were generally chosen to be difficult.

5. Case study: the full COPS

We now expand our analysis of the data to include all the problems in version 2.0 of the
COPS [7] test set. We present in Fig. 4 a log2 scaled view of the performance profiles
for the solvers on that test set.

Figure 4 gives a clear indication of the relative performance of each solver. As in the
performance profiles in Sect. 4, this figure shows that performance profiles eliminate the
undue influence of a small number of problems on the benchmarking process and the
sensitivity of the results associated with the ranking of solvers. In addition, performance
profiles provide an estimate of the expected performance difference between solvers.

The most significant aspect of Fig. 4, as compared with Fig. 3, is that on this test
set LOQO dominates all other solvers: the performance profile for LOQO lies above all
others for all performance ratios. The interpretation of the results in Fig. 4 is important.
In particular, these results do not imply that LOQO is faster on every problem. They

Benchmarking optimization software with performance profiles 211

indicate only that, for any τ ≥ 1, LOQO solves more problems within a factor of τ

of any other solver time. Moreover, by examining ρs(1) and ρs(rM), we can also say
that LOQO is the fastest solver on approximately 58% of the problems, and that LOQO
solves the most problems (about 87%) to optimality.

The difference between the results in Sect. 4 and these results is due to a number
of factors. First of all, as can be seen in Table 1, the degrees of freedom for the
full COPS test set is much larger than for the restricted subset of optimal control
and parameter estimation problems. Since, as noted in Sect. 3, MINOS and SNOPT
are designed for problems with a modest number of degrees of freedom, we should
expect the performance of MINOS and SNOPT to deteriorate on the full COPS set.
This deterioration can be seen by comparing Fig. 4 with Fig. 3 and noting that the
performance profiles of MINOS and SNOPT are similar but generally lower in Fig. 4.

Another reason for the difference between the results in Sect. 4 and these results is
that MINOS and SNOPT use only first-order information, while LOQO uses second-
order information. The benefit of using second-order information usually increases as
the number of variables increases, so this is another factor that benefits LOQO.

The results in this section underscore our observation that performance profiles
provide a convenient tool for comparing and evaluating the performance of optimization
solvers, but, like all tools, performance profiles must be used with care. A performance
profile reflects the performance only on the data being used, and thus it is important to
understand the test set and the solvers used in the benchmark.

6. Case study: linear programming

Performance profiles can be used to compare the performance of two solvers, but per-
formance profiles are most useful in comparing several solvers. Because large amounts
of data are generated in these situations, trends in performance are often difficult to see.
As a case study, we use data obtained by Mittelmann [14]. Figure 5 shows a plot of the
performance profile for the time ratios in the data Benchmark of LP solvers on a Linux-
PC (5-25-2000), which includes results for COPL_LP (1.0), PCx (1.1), SOPLEX (1.1),
LPABO (5.6), MOSEK (1.0b), BPMPD (2.11), and BPMPD (2.14).

In keeping with our graphing practices with the COPS set, we designate as failures
those solves that are marked in the original table as stopping close to the final solution
without convergence under the solver’s stopping criteria. One feature we see in the graph
of Mittelmann’s results that does not appear in the COPS graphs is the visual display
of solvers that never flatline. In other words, the solvers that climb off the graph are
those that solve all of the test problems successfully. As with Fig. 3, all of the events in
the data fit into this log-scaled representation. While this data set cannot be universally
representative of benchmarking results by any means, it does show that our reporting
technique is applicable beyond our own results.

As in the case studies in Sects. 4 and 5, the results in Fig. 5 give an indication
of the performance of LP solvers only on the data set used to generate these results.
In particular, the test set used to generate Fig. 5 includes only problems selected by
Mittelmann for his benchmark. The advantage of these results is that, unlike the solvers
in Sects. 4 and 5, all solvers in Fig. 5 have the same requirements.

212 Elizabeth D. Dolan, Jorge J. Moré

Fig. 5. Performance profile for linear programming solvers

7. Conclusions

We have shown that performance profiles combine the best features of other tools for
benchmarking and comparing optimization solvers. Clearly, the use of performance
profiles is not restricted to optimization solvers and can be used to compare solvers in
other areas.

We have not addressed the issue of how to select a collection of test problems to
justify performance claims. Instead, we have provided a tool – performance profiles –
for evaluating the performance of two or more solvers on a given set of test problems.
If the data is obtained by following careful guidelines [8,13], then performance profiles
can be used to justify performance claims. We emphasize that claims on the relative
performance of the solvers on problems not in the test set should be made with care.

The Perl script perf.pl on the COPS site [7] generates performance profiles
formatted as Matlab commands to produce a composite graph as in Figs. 1 and 2. The
script accepts data for several solvers and plots the performance profile on an interval
calculated to show the full area of activity. The area displayed and scale of the graph
can then be adjusted within Matlab to reflect particular benchmarking interests.

Acknowledgements. This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing, U.S. Department of Energy, under

Benchmarking optimization software with performance profiles 213

Contract W-31-109-Eng-38, and by the National Science Foundation (Challenges in Computational Science)
grant CDA-9726385 and (Information Technology Research) grant CCR-0082807.

Version 1.0 of the COPS problems was developed by Alexander Bondarenko, David Bortz, Liz Dolan,
and Michael Merritt. Their contributions were essential because, in many cases, version 2.0 of the problems
are closely related to the original version.

Alex Bondarenko, Nick Gould, Sven Leyffer and Bob Vanderbei contributed interesting and spirited
discussions on problem formulation, while Bob Fourer and David Gay generously shared their AMPL expertise
with us. Hans Mittelmann deserves special note for paving the way for COPS with his benchmarking work.

We also thank the referees and the associate editor, Jorge Nocedal, for their comments. One of the referees
provided a thoughtful report that led to additional details on the sensitivity of performance profiles.

References

1. Benson, H.Y., Shanno, D.F., Vanderbei, R.J. (2000): Interior-point methods for nonconvex nonlinear
programming: Jamming and comparative numerical testing. Technical Report ORFE-00-02, Princeton
University, Princeton, New Jersey

2. Billups, S.C., Dirkse, S.P., Ferris, M.C. (1997): A comparison of algorithms for large-scale mixed
complementarity problems. Comput. Optim. Appl. 7, 3–25

3. Bondarenko, A.S., Bortz, D.M., Moré, J. J. (1998): COPS: Large-scale nonlinearly constrained optimiza-
tion problems. Technical Memorandum ANL/MCS-TM-237, Argonne National Laboratory, Argonne,
Illinois (Revised October 1999)

4. Bongartz, I., Conn, A.R., Gould, N.I.M., Saunders, M.A., Toint, P.L. (1997): A numerical comparison
between the LANCELOT and MINOS packages for large-scale numerical optimization. Report 97/13,
Namur University

5. Conn, A.R., Gould, N.I.M., Toint, P.L. (1992): LANCELOT, no. 17 in Springer Ser. Comput. Math.,
Springer-Verlag

6. Conn, A.R., Gould, N.I.M., Toint, P.L. (1996): Numerical experiments with the LANCELOT package
(Release A) for large-scale nonlinear optimization. Math. Program. 73, 73–110

7. COPS, See http://www.mcs.anl.gov/˜more/cops/
8. Crowder, H., Dembo, R.S., Mulvey, J.M. (1979): On reporting computational experiments with mathe-

matical software. ACM Trans. Math. Softw. 5, 193–203
9. Dolan, E.D., Moré, J. J. (2000): Benchmarking optimization software with COPS. Technical Memoran-

dum ANL/MCS-TM-246, Argonne National Laboratory, Argonne, Illinois
10. Fourer, R., Gay, D.M., Kernighan, B.W. (1993): AMPL: A Modeling Language for Mathematical Pro-

gramming. The Scientific Press
11. Gill, P.E., Murray, W., Saunders, M.A. (1997): SNOPT: An algorithm for large-scale constrained opti-

mization. Report NA97-2, University of California, San Diego
12. Higham, N.J. (1996): Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, Pennsylvania
13. Jackson, R.H.F., Boggs, P.T., Nash, S.G., Powell, S. (1991): Guidelines for reporting results of compu-

tational experiments, Report of the ad hoc committee. Math. Program. 49, 413–426
14. Mittelmann, H.: Benchmarks for optimization software,

See http://plato.la.asu.edu/bench.html
15. Mittelmann, H. (1999): Benchmarking interior point LP/QP solvers. Optim. Methods Softw. 12,

655–670
16. Murtagh, B.A., Saunders, M.A. (1995): MINOS 5.4 user’s guide. Report SOL 83-20R, Stanford

University
17. Nash, S.G., Nocedal, J. (1991): A numerical study of the limited memory BFGS method and the truncated

Newton method for large scale optimization. SIAM J. Optim. 1, 358–372
18. Vanderbei, R.J. (1999): LOQO user’s manual – Version 3.10. Opt. Meth. Software 12, 485–514
19. Vanderbei, R.J., Shanno, D.F. (1999): An interior-point algorithm for nonconvex nonlinear programming.

Comput. Optim. Appl. 13, 231–252

