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Abstract. The hedging of contingent claims in the discrete time, discrete state case is analyzed from the
perspective of modeling the hedging problem as a stochastic program. Application of conjugate duality leads
to the arbitrage pricing theorems of financial mathematics, namely the equivalence of absence of arbitrage
and the existence of a probability measure that makes the price process into a martingale. The model easily
extends to the analysis of options pricing when modeling risk management concerns and the impact of
spreads and margin requirements for writers of contingent claims. However, we find that arbitrage pricing in
incomplete markets fails to model incentives to buy or sell options. An extension of the model to incorporate
pre-existing liabilities and endowments reveals the reasons why buyers and sellers trade in options. The model
also indicates the importance of financial equilibrium analysis for the understanding of options prices in
incomplete markets.
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1. Introduction

This paper develops a mathematical structure for contingent claims analysis from the
unique perspective of managing the claim as a liability of the writer. The hedging
problem is modeled as a stochastic program and analyzed using the mathematical
technique of conjugate duality (cf. Rockafellar [21]). The dual problem turns out to
require the existence of a valuation operator that integrates the claim’s future cash flows
against a martingale probability measure. In complete markets this step establishes
the fundamental pricing theorems of contingent claims as in Ross [22], Harrison and
Kreps [11], and Harrison and Pliska [12], since a complete market is one in which there
is a unique valuation operator.

But incomplete markets can support many valuation operators, and different players
can have different optimal valuation operators. Risk aversion, bid-ask spreads, transac-
tions costs, shorting costs, margin requirements, etc, all affect the valuation operator.
The goal of this paper is to indicate the ways that optimization models of the manage-
ment of claims can contribute to an understanding of how valuation operators can be
formed and what impact they may have on observed market prices. The advantage of
the framework is that it shows how options pricing can be linked to optimal actions of
investors. In particular, the development of this model shows that probably the most
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important influence on pricing options actually arises from the pre-existing liability
structures or endowments of the various market players.

This paper treats the finite state theory, as surveyed recently by Naik [18], Duffie [7,
Chap. 2], and Pliska [19]. It is intended for readers in optimization and mathematical
programming looking for an introduction to the interesting field of finance, as well as for
researchers in finance looking for a framework in which the tools of optimization can be
brought to bear on key issues in pricing claims in incomplete markets. Recent work in
the modeling of claims in incomplete markets using realistic investor models focusses
on taxes and transactions costs as the driver of market imperfections. See Jouini and
Kallal [13], Dermody and Prisman [5], a recent contribution of Wang and Poon [23],
and the references cited in these papers. However, such extensions of simple arbitrage
pricing frameworks do not adequately model the incentives for buyers and sellers of
options. One must introduce pre-existing liability structures or endowments to complete
the picture for options pricing, as in Sect. 8 of the present paper.

A recent paper of Cvitanic, Shachermayer and Wang [4], which the author received
while the present paper was in process, investigates the structure of the investor’s
problem of Sect. 8 in the continuous semi-martingale setting. Their paper is an important
step in the development of a theory of financial equilibrium in incomplete markets,
essentially resolving the specification of the dual problem in a much more sophisticated
mathematical setting than the one of this paper. It is hoped that the simple structures
investigated in this paper may lead to useful progress in understanding options pricing
in incomplete markets. The developments of the present paper will be extended to
continuous time and states in a future paper (King and Korf [17]).

The outline of the paper is as follows. The first two sections show how arbitrage and
pricing arise from duality considerations. The third section presents the main result of
the paper, which is the connection between boundedness and feasibility of the hedging
problem of the writer of the claim and arbitrage pricing theory. The next section discusses
who would buy the claim offered by the writer. It concludes that one must introduce
differences in writer and buyer’s problems in order to model actual buying and selling.
The next two sections develop models with various differences in risk aversion and
transactions costs, but we show that these extensions do not in themselves lead to actual
transactions in options. The next section introduces pre-existing liability positions or
endowments, and analyzes the impact on models for valuation operators and market
prices. In this case, simple assumptions on the desirability of the option as the price
moves do lead to the possibility of a market-clearing price for the option. At this point
we are in the realm of equilibrium theory and outside of the subject of the paper, so
must leave the remainder of the analysis for future work.

2. Martingales and absence of arbitrage

This section develops the model of the decision space of the investor when security
prices evolve on a discrete-time, discrete-state path space. The concept of arbitrage
is introduced and shown to be equivalent to the impossibility of finding a solution to
a certain set of equations that comprise the dual to the investor’s decision space.
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All random quantities in this paper will be supported on a finite probability space
(�,F, P) whose atoms are sequences of real-valued vectors (security prices and pay-
ments) over discrete time periods t = 0, . . . , T . It is convenient to model a finite
probability space by a scenario tree, in which the partition of probability atoms ω ∈ �

generated by matching path histories up to time t corresponds one-to-one with nodes
n ∈ Nt at depth t in the tree. The root node n = 0 corresponds to the trivial partition
N0 = � consisting of the entire probability space, and the leaf nodes n ∈ NT correspond
one-to-one with the probability atoms ω ∈ �. (Although we do not need to use them
in this finite-state probability setup, the σ-algebras Ft generated by the partitions Nt
satisfy the usual properties: F0 = {φ,�}, Ft ⊂ Ft+1 for all 0 ≤ t < T , and FT = F .)

In the scenario tree, every node n ∈ Nt for 1 ≤ t ≤ T has a unique parent denoted
by a(n) ∈ Nt−1, and every node n ∈ Nt for 0 ≤ t ≤ T −1 has a (nonempty) set of child
nodes C(n) ⊂ Nt+1. The probability distribution P is modeled by attaching weights
pn > 0 to each leaf node n ∈ NT so that

∑
n∈NT

pn = 1. For each non-terminal node
one has, recursively,

pn =
∑

m∈C(n)

pm ∀n ∈ Nt, t = T − 1, . . . , 0

and so each node receives a probability mass equal to the combined mass of the paths
passing through it. The ratios pm/pn , m ∈ C(n), are the conditional probabilities that
the child node m occurs given that the parent node n = a(m) has occurred.

A random variable X is a real-valued function defined on �. It can be lifted to the
nodes of a partition Nt of � if each level set {X−1(a) : a ∈ R} is either the empty-set
or is a finite union of elements of the partition. In other words, X can be lifted to Nt

if it can be assigned a value on each node of Nt that is consistent with its definition
on �. Such a random variable is said to be measurable (or observable, or knowable)
with respect to the information contained in the nodes ofNt . A stochastic process {Xt}
is a time-indexed collection of random variables such that each Xt is measurable with
respect toNt . The expected value of Xt is uniquely defined by the sum

E P [ Xt ] :=
∑

n∈Nt

pn Xn .

Since the node collection Nt is contained in the one-step-ahead collection Nt+1, it
follows that Xt+1 cannot generally be lifted toNt . Its conditional expectation

E P [ Xt+1|Nt ] :=
∑

m∈C(n)

pm

pn
Xm

is a random variable taking values over the nodes n ∈ Nt .
The market consists of J + 1 tradable securities indexed by j = 0, . . . , J whose

prices at each node n are denoted by the vector Sn = (S0
n, . . . , SJ

n ). Following Harrison
and Pliska [12], suppose one of the securities, security 0, say, always has strictly positive
values. This security is chosen to be the numeraire. Introduce the discounts βn = (1/S0

n)

and let Z j
n = βn S j

n for j = 0, . . . , J denote the discounted security prices relative to
the numeraire. The price Z0

n of the numeraire in any state n is exactly 1.
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Investors have no influence on the prices of any security and may undertake trades at
every time-step based on information accumulated up to time t. The amount of security
j held by the investor in state n ∈ Nt is denoted θ

j
n . The (discounted) value of the

portfolio in state n is

Zn · θn :=
J∑

j=0

Z j
nθ

j
n

An arbitrage is a sequence of portfolio holdings that begins with zero initial value at
time 0, maintains a non-negative value in each future state, and has a positive probability
of achieving at least one strictly positive value in some terminal state, all through self-
financing portfolio transactions

Zn · θn = Zn · θa(n) n > 0

which states that the funds available for investment at state n are restricted to those
generated by price changes in the portfolio held at state a(n).

Arbitrage is a way of making something out of nothing. This important concept can
be simplified in a couple of ways without losing generality. First, non-negative portfolio
values need hold only at the terminal states n ∈ NT . (Harrison and Pliska [12, page 228]
demonstrate how to construct an arbitrage from a portfolio process with non-negative
terminal values and one strictly negative value in a non-terminal state.) Second, since
a discrete nonnegative random variable has a positive probability of a strictly positive
value if and only if its expected value is strictly positive, then the arbitrage conditions are
equivalent to having non-negative values in each terminal state with a positive expected
value overall.

To find an arbitrage one can solve an optimization problem, called a stochastic
program (an optimization problem in which some parameters are random variables, see
Birge [2]). The following is called the arbitrage problem.

max(θ)

∑
n∈NT

pn Zn · θn

subject to Z0 · θ0 = 0 : y0

Zn · [ θn − θa(n) ] = 0 (n ∈ Nt , t ≥ 1) : yn

Zn · θn ≥ 0 (n ∈ NT ) : xn

(1)

A positive optimal value for this stochastic program corresponds to an arbitrage: it
begins with a portfolio that has value 0, makes self-financing trades at each time step,
has non-negative terminal values in every scenario, and has a positive expected value
at time T . In fact one can easily verify that the problem is unbounded if an arbitrage
exists. The price process is called an arbitrage-free market price process if no arbitrage
is possible.

The basic theme of this paper is to analyze the problem of the investor through
a closely related (indeed, equivalent) problem called the dual. Computing the dual in
the discrete time and state setting of this paper is a basic calculation whose steps should
be familiar to students of linear programming. The interesting detail comes from the
fact that problem (1) is a stochastic program, and as such describes special relationships
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between time-indexed variables and constraints. The first step in calculating the the dual
is to multiply all the constraints through by the dual variables (indicated in the right
margin) to form the Lagrangian:

L(θ; x, y) =
∑

n∈NT

pn Zn · θn −

T∑

t=1

∑

n∈Nt

yn Zn · [ θn − θa(n) ] −
∑

n∈NT

xn Zn · θn

(xn ≤ 0)

and rearrange to isolate terms in θn:

=
∑

n∈NT

[ pn − xn − yn ] Zn · θn −

T−1∑

t=0

∑

n∈Nt

[ yn Zn −
∑

m∈C(n)

ym Zm ] · θn

(xn ≤ 0).

The dual problem is generated by maximizing over the unrestricted primal variables θn .
Constraints in the dual arise from the requirement that the factors of θn must evaluate
to zero for a feasible dual solution. Since there is no term not involving θn , the dual
program reduces to a feasibility problem in the dual variables (x, y):

xn ≤ 0 (n ∈ NT )

[ pn − yn − xn ] Zn = 0 (n ∈ NT )

yn Zn − ∑
m∈C(n) ym Zm = 0 (n ∈ Nt , t ≤ T − 1).

(2)

The basic theorem of linear programming states that problem (1) has an optimal solution
if and only if the dual (2) does too, and both optimal values are equal. Furthermore,
since the problem (1) is always feasible, it follows again from the basic theory of linear
programming that it has an optimal solution if and only if it is bounded.

The last equation in the dual system resembles a martingale condition: that the value
of each coordinate of Zn equal its conditional expected value one step ahead. Martingale
properties needed for this paper are formalized in the following definition.

Definition 1. If there exists a probability measure Q such that

Zt = EQ [ Zt+1|Nt ] (t ≤ T − 1) (3)

then the (vector) process {Zt} is called a (vector-valued) martingale under Q and Q
is called a martingale probability measure for the process. If one has (coordinatewise)
Zt ≥ EQ [ Zt+1|Nt ] (respectively, Zt ≤ EQ [ Zt+1|Nt ] ) the process called a (vector)
supermartingale (respectively, submartingale) under Q.

The following theorem develops the key link between arbitrage and martingales.
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Theorem 1. The discrete state stochastic vector process {Zt} is an arbitrage-free market
price process if and only if there is at least one probability measure Q equivalent to P
under which {Zt} is a martingale.

Proof. If there is no arbitrage, then the problem (1) is bounded. It is always feasible,
and hence has an optimal solution, as discussed above. By linear programming duality,
it follows that the dual system (2) must have an optimal solution, say (x, y). Now, the
value of the numeraire Z0 in each state is exactly 1, so the nonpositivity of xn in the first
system of equalities implies

yn ≥ pn, n ∈ NT .

The last system of equalities implies
∑

m∈C(n)

ym = yn .

It follows that yn is a strictly positive process such that the sum of yn over all states
n ∈ Nt in each time period t is equal to y0. Construct the numbers qn = yn/y0, for
each n ∈ NT , and let Q be the probability measure with weights qn . Rewriting the last
system of equations gives the vector equalities

∑

m∈C(n)

qm Zm = qn Zn (n ∈ Nt t ≤ T − 1)

from which (3) follows. Thus Q is an equivalent martingale probability measure for the
process {Zt}.

For the other direction, suppose there exists an equivalent martingale measure Q.
Define y0 = max{pn/qn | n ∈ NT }, set yn = qn y0 for n ∈ �, and let xn = pn − yn for
n ∈ NT . Note that xn = pn − qn y0 ≤ pn − qn(pn/qn) = 0. The vector pair (x, y) is
thus a feasible solution to (2). By weak duality it follows that (1) is bounded and hence
there can be no arbitrage.

��
It is important to notice that Theorem 1 is invariant with respect to the underlying

probability measure P. That is, if there exists a solution y to the dual problem (2)
for a particular probability P, then there exists a solution y′ for any other probability
measure P′ that is equivalent to P. To see this, suppose Q is the martingale measure
that is constructed from y. Then Q can be transformed into a solution for the dual under
P′ by multiplying qn through by a large enough multiplier y′

0 to guarantee qn y′
0 ≥ p′

n .
This is summarized in the following.

Corollary 1. The conclusions of Theorem 1 are invariant with respect to the actual
probability; that is, if under some probability measure P the process {Zt} is shown
either to be arbitrage-free or to have arbitrage then this same conclusion holds for all
probability measures equivalent to P.

The theorem is easily extended to cover dividend or interest payments. (The nu-
meraire is assumed not to pay dividends.)
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Corollary 2. Suppose that each security j = 1, . . . , J pays dividend payments D j
n in

state n. Then market prices are arbitrage free if and only if there exists a probability
measure Q equivalent to P such that

Zt = EQ [ Zt+1 + βt+1 Dt+1 |Nt ] (t ≤ T − 1). (4)

Proof. In the arbitrage linear program (1) the self-financing condition becomes

Zn · θn − [ Zn + βn Dn ] · θa(n) = 0 n ∈ Nt , t ≥ 1.

The rest of the argument follows exactly as in Theorem 1.
��

At the risk of abusing the terminology, the probability measure of Corollary 2 will
continue to be referred to as an equivalent martingale measure on the market price
process. When dividends are not paid, the “martingale” condition is (3); when they are
paid the condition is (4).

Corollary 2 also shows how security prices are related to future cash flows in an
arbitrage-free market. The security prices today must satisfy

β0S0 = EQ [
T∑

t=1

βt Dt + βT ST ] :=
T∑

t=1

∑

n∈Nt

βn Dnqn +
∑

n∈NT

βn Snqn.

This amounts to saying that feasible martingale measures on market price processes
have the property that the integral of discounted dividend payouts equal current market
prices.

To complete the discussion of martingale measures, define the set Q of martingale
probability measures that are equivalent to P and also the slightly larger set Q of all
martingale probability measures on {Zt} (equivalent or not). The following proposition
describes relevant properties ofQ andQ.

Proposition 1. The setQ of equivalent martingale probability measures is convex, and
the set Q of all martingale probability measures is its closure.

Proof. An alternative representation for elements Q ∈ Q is

qn > 0 n ∈ NT

qn Zn − ∑
m∈C(n) qm Zm = 0 (n ∈ Nt, t ≤ T − 1)

q0 = 1 .

This set is clearly convex. The representation of Q is identical except that qn ≥ 0 for
n ∈ NT . HenceQ is the closure ofQ.

��
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3. Financing of contingent claims

A contingent claim F with lifetime less than or equal to the horizon T has payouts Fn that
are determined by the events n in the market price process. These are redundant securities
that do not introduce any additional uncertainty. Currency futures and equity options
are examples of traded contingent claims; but many bond agreements, collateralized
obligations, etc., have embedded contingency features and are traded on liquid markets.

The great insight of Black, Scholes and Merton was that a portfolio of a bond
and the underlying security can be constantly traded to risklessly generate payouts Fn

through self-financing transactions. This idea can be captured in a stochastic program
which determines the minimum amount needed to start a trading strategy that produces
payouts Fn with no risk.

min(θ) Z0 · θ0

subject to Zn · [ θn − θa(n) ] = −βn Fn (n ∈ Nt, t ≥ 1)

Zn · θn ≥ 0 (n ∈ NT ).

(5)

Note that any surplus remaining in the portfolio at the terminal stage is simply discarded
in this formulation.

In the next theorem, the dual to this problem will be shown to be equivalent to

max
Q∈Q

EQ [
T∑

t=1

βt Ft ] . (6)

This equation computes the maximum expected value of the discounted payouts over
all possible martingale measures.

Proposition 2. Let Fn be a contingent claim on an arbitrage-free market price process
{Zt}. The claim is attainable if and only if its price F0 satisfies

β0 F0 ≥ max
Q∈Q

EQ [
T∑

t=1

βt Ft ] (7)

where Q is the set of martingale probability measures on {Zt}.
Proof. With the labeling of the dual variables as in (1), one arrives at the following
Lagrangian

∑

n∈NT

[ −xn − yn ] Zn · θn −
T−1∑

t=1

∑

n∈Nt

[ yn Zn −
∑

m∈C(n)

ym Zm ] · θn +
T∑

t=1

∑

n∈Nt

ynβn Fn

− [ Z0 −
∑

m∈C(0)

ym Zm ] · θ0 (xn ≤ 0).

Minimizing out in the θ variables, and observing again that the numeraire value Z0
n is

always equal to one, leads to the dual problem (6). If F0 is the price of the option then
its value β0 F0 in terms of the numeraire must equal the optimal value of (6) in order to
be feasible.

��
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4. The writer’s problem

The previous section computed the minimum initial investment F0 required to hedge
the claim F with no risk of falling short. Now consider the position of the “writer” of
the contingent claim who has received F0 in return for a promise to pay Fn in the future
and who will then invest this money to try to generate a profit.

If the writer is confident that P is the true probability distribution and wishes to
invest in such a way as to maximize expected value while hedging the claim F, then the
writer’s problem may be modeled as the stochastic program

max(θ)

∑
n∈NT

pn Zn · θn

subject to Z0 · θ0 = β0 F0

Zn · [ θn − θa(n) ] = −βn Fn (n ∈ Nt, t ≥ 1)

Zn · θn ≥ 0 (n ∈ NT ).

(8)

The connection of the writer’s problem to the developments of the previous two
sections is direct. By linear programming theory, the writer’s problem has an optimal
solution if and only if it is both bounded and feasible. Theorem 1 analyzes what is
required to bound the writer’s problem. Proposition 2 discusses what is required to have
a feasible solution to the writer’s problem. The conclusions one can draw from these
relationships are summarized in the following theorem.

Theorem 2. The writer’s problem has an optimum if and only if

1. The collectionQ of equivalent martingale probability measures on the market price
process {Zt} is nonempty, and

2. The price F0 charged by the writer to generate the payouts Fn satisfies

β0 F0 ≥ max
Q∈Q

EQ [
T∑

t=1

βt Ft ] (9)

where the maximum is taken over the collection of all martingale probability mea-
sures Q on {Zt}. This price is invariant under changes of the original probability
measure P.

At a price F0 satisfying (9) the writer earns the expected profit

W∗ = y∗
0

[
β0 F0 − EQ∗ [

T∑

t=1

βt Ft ] ] ≥ 0 (10)

where Q∗ is the equivalent martingale probability measure generated by the dual
solution y∗ and y∗

0 equals the maximum of the ratios {pn/q∗
n | n ∈ NT }.

Proof. The development preceding Theorem 1 and the analysis in its proof may be
applied to show that the problem dual to (8) is equivalent to

min(y) β0 F0 y0 − ∑T
t=1

∑
n∈Nt

βn Fn yn

subject to yn ≥ pn (n ∈ NT )

yn Zn − ∑
m∈C(n) ym Zm = 0 (n ∈ Nt, t ≤ T − 1).

(11)
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By linear programming theory, the writer’s problem has an optimal solution if and
both primal and dual are feasible. Feasibility of the dual was shown in Theorem 1 to
correspond to a nonempty set of equivalent martingale probability measures Q. The
feasibility of the primal was shown in Proposition 2 to be equivalent to (9).

The final statement is proved by applying the analysis of Corollary 1 to the current
setting. Since the process is arbitrage-free, the writers problem has an optimal value. So
suppose that y∗ is an optimal solution for the dual. Construct the equivalent martingale
measure Q∗ by q∗

n = y∗
n/y∗

0 as in the proof of Theorem 1. Fixing this Q∗, the dual
problem can be written as a minimization in y0

min
y0

y0β0
[
F0 −

∑

n>0

βn Fnq∗
n

]

subject to the constraint that y0 q∗
n ≥ pn for n ∈ NT . This minimum is attained at the

maximum of the ratios pn/q∗
n for n ∈ NT , since β0 F0 − ∑T

t=1
∑

n∈Nt
βn Fnq∗

n > 0.
��

One can show that the profit maximizing portfolio for the writer’s problem (8) takes
the form of a lottery. It selects the event that contains the maximum defining y∗

0 in (10)
and bets all its surplus wealth there, so the payoff is spectacularly positive in one event
and zero elsewhere. The following example illustrates this behavior.

Example 1. A trivial one-period example of the writer’s surplus can be developed as
follows. Let there be two securities, a stock and a bond. The stock, currently valued at 1,
takes values (0.90, 1.05, 1.25) in the next period; the interest rate for the bond over the
period is 5 percent. Normalizing with respect to the bond, Z takes values (0.86, 1.0, 1.19)

(approximately). Let P be equally weighted, and consider a call option struck at 1.1
(units of the numeraire). The payoff of the claim F is (0, 0, 0.09). Solving the linear
program (5) gives the arbitrage price of the claim as (approximately) F∗

0 = 0.0382.
Solving the writer’s problem (8) with the arbitrage price F∗

0 leads to the following
conclusions. The writer takes this money, purchases approximately 0.273 units of stock
and borrows approximately 0.235 units of the bond. In the next period, the writer pays out
the claim F, and the terminal distribution of his portfolio values equals approximately
(0.0, 0.0382, 0.0). In the event that the true probability distribution is P, the writer
makes a positive expected profit W∗ = 0.0126.

5. The buyer’s problem and the arbitrage interval

The buyer’s problem is the reverse of the writer’s: one pays F0 in return for a promise of
payments Fn in each state n > 0. Assuming the buyer has the same capability to trade
in the market and wishes to maximize expected value at the end of the horizon, then the
problem of the buyer is:

max(θ)

∑
n∈NT

pn Zn · θn

subject to Z0 · θ0 = −β0 F0

Zn · [ θn − θa(n) ] = βn Fn (n ∈ Nt , t ≥ 1)

Zn · θn ≥ 0 (n ∈ NT ).
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The analysis of the writer’s problem does not depend on the sign of F. In the setting
developed so far in this paper, the buyer’s acceptable price F0 might be computed just
by reversing signs in (9) and so will satisfy

β0 F0 ≤ min
Q∈Q

EQ [
T∑

t=1

βt Ft ]

where the minimum is taken over the collection of all martingale probability measures
Q on {Zt}.

Compare the writer’s minimum offering price,

Fw
0 := β−1

0 max
Q∈Q

EQ [
T∑

t=1

βt Ft ]

to the buyer’s maximum acceptable price

Fb
0 := β−1

0 min
Q∈Q

EQ [
T∑

t=1

βt Ft ] .

One has Fb
0 ≤ Fw

0 . The interval [Fb
0 , Fw

0 ] is called the arbitrage interval, in the sense
that prices in this interval will not induce either writer or buyer to wish to sell or buy
infinite amounts of F. They may be thought of as bounds on the price of F, as in Ritchken
and Kuo [20]. But it is not clear what further use one can make of this arbitrage interval.
Note that the price Fw

0 is the minimum acceptable price for the seller and Fb
0 is the

maximum acceptable price for the buyer. When these are not equal, as is generally the
case in incomplete markets, then there will be no trading activity under the assumptions
of the modeling so far.

6. Risk aversion

It is often believed that the solution to pricing in incomplete markets is to model risk
aversion in the hedging problem simply through the introduction of a utility function.
But risk aversion alone does not introduce any fundamentally new incentives for buyers
and sellers to trade options.

To fix ideas, consider the utility function in the model for the writer’s problem (8).
One may write it as

uw(v) = v − δv≥0(v)

where the function δv≥0(v) (the indicator function of convex analysis) equals 0 if v ≥ 0
and is +∞ if v < 0. The writer’s utility uw(·) is −∞ for values below zero, has an
infinite vertical leap at the point 0 and then continues as a linear function of unit slope
on the positive reals.

The mathematical content of Theorem 2 is that the boundedness of the arbitrage
problem (1)and the feasibility of the financing problem (5)turn out to be the boundedness
and feasibility conditions, respectively, for the writer’s problem (8). The analysis of the
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next theorem reveals that these relationships depend only on two large-scale features of
the utility, namely that it is concave and increasing and that its domain is the nonnegative
reals.

Theorem 3. If the writer invests to maximize expected utility of terminal value

max(θ)

∑
n∈NT

pnu(Zn · θn)

subject to Z0 · θ0 = β0 F0

Zn · [ θn − θa(n) ] = −βn Fn (n ∈ Nt, t ≥ 1)

(12)

for any strictly increasing closed concave utility function u that has domain equal to
the nonnegative real numbers, then (12) has an optimum if and only if

1. The collectionQ of equivalent martingale probability measures on the market price
process {Zt} is nonempty, and

2. The option price F0 satisfies

β0 F0 ≥ max
Q∈Q

EQ [
T∑

t=1

βt Ft ]

where the maximum is taken over the collection of all martingale probability mea-
suresQ on {Zt}.

Proof. Primal feasibility is governed by the domain of u. Since u and uw have the same
domain, it follows that the writer’s problem is feasible if and only if F0 satisfies (9).
Dual feasibility is governed by the domain of the dual problem

min(y) β0 F0 y0 − ∑T
t=1

∑
n∈Nt

βn Fn yn − ∑
n∈NT

pnu∗(yn/pn)

subject to yn Zn − ∑
m∈C(n) ym Zm = 0 (n ∈ Nt , t ≤ T − 1)

(13)

where u∗ is the concave conjugate of u

u∗(y) = inf
v

[yv − u(v)].

Since u is closed, concave, and the domain of the primal problem is polyhedral and
non-empty, Fenchel’s Duality Theorem [21, Theorem 31.1] guarantees the attainment
of the optimal solutions and the equality of their optimal values whenever the dual
problem is feasible. Since u is strictly increasing, it follows that the subgradient sets
∂u(·) are bounded below by a positive constant, say c > 0. The domain of u∗ is thus
strictly greater than 0, so the domain of the dual problem (13) is equivalent to the domain
of the dual writer’s problem (11).

��
Thus risk aversion modeled in this way makes no difference to prices of contingent

claims. There are only two issues that would alter these conclusions. One is that the
utility u is merely non-decreasing and not strictly increasing. In this case it is easy to
see that the martingale condition be relaxed to allow any probability measure.
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Corollary 3. If u is only non-decreasing, then criteria (1) may be weakened to the
existence of a probability measure Q (not necessarily equivalent to P) under which
{Zt} is a martingale.

The other issue arises when the domain of the utility u is bounded away from zero,
say if u(v) in Theorem 3 is shifted by an amount α > 0 to u(v−α). This would guarantee
that the portfolio value would not fall below α in the terminal stage. Computing the
conjugate throws up an additional term −α

∑
n∈NT

yn in the dual problem (13), and
consequently, boundedness of the dual will require lifting the price by exactly that
amount. A related issue arises when the domain of the utility does not include the point
α (like the logarithm or power utilities).

Corollary 4. If the domain of u equals [α,+∞) where α > 0, then criteria (2) must be
strengthened to

β0 F0 ≥ max
Q∈Q

EQ [
T∑

t=1

βt Ft ] + α. (14)

Furthermore, if the domain of u equals (α,+∞) then the inequality is strengthened to
a strict inequality.

In conclusion, prices of contingent claims in these models are unaffected by risk
aversion behavior or by the investor’s assumptions concerning the original probability P.
(Of course, the actual portfolios selected by the investor are affected both by the risk
aversion and the probability estimates.) Differences between acceptable loss levels α

for buyer and seller might cause a transaction to take place. But this begs the question:
why would either the buyer or the seller be willing to accept the risk of loss? We reserve
discussing this issue until Sect. 8.

7. Access to markets: spreads and margins

A further key difference between market players concerns the relative expense of trading.
Transaction costs induce a spread between the bid and ask price of a security, and
furthermore, selling a security short typically yields something less than the bid price
to the short seller because of the risk that the short seller may go bankrupt. Differences
between investor’s access to markets can be modeled by such spreads, see Dermody and
Rockafellar [6].

Let Ss denote the vector of shorting prices (the money a short seller would receive),
Sb denote the selling (bid) prices, and Sa denote the buying (ask) prices. One has

Ss ≤ Sb ≤ Sa.

For simplicity, assume that the bid price and the ask price (but not the shorting price)
of the numeraire security are equal, and as before, let βt = 1/S0,a

t = 1/S0,b
t denote the

discount process for this numeraire. Define the normalized prices Z [s,a,b]
t = βt S[s,a,b]

t ,
and note as before that the normalized price for buying and selling (but not shorting)
the numeraire is exactly 1 in all states.
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The formulation of the investor’s problem is made more complex by the require-
ment to keep track of the long and short portfolios and the buying, selling and shorting
transactions. Let θ+

n ≥ 0 and θ−
n ≥ 0 denote the long and short portfolio holdings, re-

spectively. A portfolio transaction in the long portfolio will be indicated by the variables
δa

n ≥ 0, buying at the ask price, and δb
n ≥ 0, selling at the bid price:

θ+
n − θ+

a(n) = δa
n − δb

n n > 0 (15a)

θ+
0 = δa

0 − δb
0 (15b)

and transactions in the short portfolio

θ−
n − θ−

a(n) = εs
n − εa

n n > 0 (15c)

θ−
0 = εs

0 − εa
0 (15d)

where an increase in the short portfolio corresponds to a short sale εs
n ≥ 0 and a decrease

to a purchase εa
n ≥ 0.

Suppose that the writer has a utility function as in Theorem 3, then the writer’s
problem with spreads may be written as a maximization in the nonnegative variables
θ [+,−], δ[a,b] and ε[s,a]:

max
∑

n∈NT
pnu

(
Zb

n · θ+
n − Za

n · θ−
n

)

subject to Za
0 · [δa

0 − δb
0

] − Zs
0 · [

εs
0 − εa

0

] = β0 F0

Za
n · [ δa

n + εa
n ] − Zb

n · δb
n − Zs

n · εs
n = −βn Fn (n ∈ Nt, t ≥ 1).

(16)

Some presentations of this problem allow inequalities in the self-financing conditions. In
the model presented here, bid-ask prices for the numeraire are equal so any excess cash
can be placed in the numeraire without cost. For an analysis of hedging with spreads
without the assumption of costless transactions in the numeraire, see Edirisinghe, Naik
and Uppal [9].

Equations (15) are assumed to be part of the writer’s linear program. Assign the
dual variables U+ and U−, respectively, to these (vector) equations, and let the dual
assignments for the other equations be as in (8). The dual to the investor’s problem with
spreads may be written as follows.

min(y,U+,U−) β0 F0 y0 − ∑T
t=1

∑
n∈Nt

βn Fn yn− ∑
n∈NT

pnu∗(yn/pn)

subject to U+
n − ∑

m∈C(n) U+
m ≥ 0 (n ∈ Nt, t ≤ T − 1)

U−
n − ∑

m∈C(n) U−
m ≤ 0 (n ∈ Nt, t ≤ T − 1)

yn Za
n ≥ U+

n ≥ yn Zb
n ∀n

yn Za
n ≥ U−

n ≥ yn Zs
n ∀n.

(17)

The numeraire’s buying and selling cost are equal to one, hence it follows that U0,+
n = yn

and one has

y0 ≥
∑

n∈N1

yn ≥ . . . ≥
∑

n∈NT

yn .



Duality and martingales: a stochastic programming perspective on contingent claims 557

But the shorting cost Z0,s
n is less than one, so one only has

Z0,s
0 y0 ≤

∑

n∈NT

yn.

The yn are positive because the utility function is strictly increasing, but since the sum
of the yn over each period may not be constant, it cannot be interpreted as a measure.
Define qn as the terminal probabilities generated by the yn:

qn := yn/
∑

n∈NT

yn, n ∈ NT

and extend qn to the intermediate nodes in the usual way. Introduce the (variable)
parameters

γn := yn

qn y0
, ∀n.

By construction γ0 = 1. The values γn multiplies all the state flows and prices of the
system, so it may be thought of as a variable that multiplies the discount factor. This
leads to the following. The proof follows the pattern of Theorem 3.

Theorem 4. Under the assumptions on the utility function in Theorem 3, the writer’s
problem with spreads (16) has a solution if and only if there exist a probability measure
Q and a discount multiplier process {γt} with γ0 = 1 such that

There is a (vector) Q-supermartingale U+
t ∈ [

γt Za
t , γt Zb

t

]
(18a)

There is a (vector) Q-submartingale U−
t ∈ [

γt Za
t , γt Zs

t

]
(18b)

and the price charged by the writer satisfies

β0 F0 ≥ sup
Q,γ

EQ [
T∑

t=1

γtβt Ft ] (19)

where the supremum is taken over all probability measures Q and discount multiplier
processes {γt} satisfying (18) and γ0 = 1.

Since the bid-ask spread is 0 for the numeraire, it follows from (18) that {γt}
is a supermartingale. Furthermore one can also establish that γn = ∑

n∈NT
yn/y0

∈ [Z0,s
0 , 1] for n ∈ NT so that 0 ≥ γn ≥ Z0,s

0 for all n. I am indebted to M.A.H. Dempster
for the observation that the discount multiplier {γt} acts to steepen the discount relative
to the numeraire, due to the requirement on the investor to borrow funds at a spread
above the numeraire in this model.

Investors often are required to limit their short positions to some proportion of
their long position; this is called a margin requirement. Margin requirements are easily
modeled in the setting of this section. Consider a margin requirement of the form

Zb
nθ

+
n ≥ MZa

nθ−
n , (n ∈ Nt, t ≤ T − 1). (20)
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This says that the investor’s long position must be a multiple M of the short position
in every state except the terminal states (in which all positions are closed). Adding this
requirement to the problem (16), and denoting the dual multipliers for (20) as wn , the
following corollary is obtained.

Corollary 5. If the investor of problem (16) has margin requirements of the form (20),
then the dual martingale conditions for U+

t and U−
t are refined as follows

γtU
+
t − wtγt Zb

t ≥ EQ [
γt+1U+

t+1

∣∣Nt
]

γtU
−
t − Mwtγt Za

t ≤ EQ [
γt+1U−

t+1

∣∣Nt
]
.

Furthermore, the supremum in (19) must be performed over the set of feasible w as well.

Let us now examine the arbitrage interval from the perspective of Theorem 4. The
writer’s minimum price satisfies

Fw
0 = β−1

0 sup
Q,γ

EQ [
T∑

t=1

γtβt Ft ]

and the buyer’s maximum price satisfies

Fb
0 = β−1

0 inf
Q,γ

EQ [
T∑

t=1

γtβt Ft ] .

Since the dual system with spreads or margins is less constrained than the system (13)
it follows that the gap between buyer and seller is wider if both buyer and seller face
spreads or margins! Even if buyer and seller face different spreads or margins (as
opposed to different prices) this gap will never be smaller than the situation with no
spreads or margins. It follows that buyer and seller will not trade even when transactions
costs are introduced.

8. Liability structures and endowments

Neither differential attitudes to risk nor differential transactions costs will induce trading
between buyers and sellers of contingent claims in the framework so far developed. It
seems reasonable to consider extending the framework to try to see what will. In this
section we introduce existing liability structures or endowments for investors and explore
the consequences for options pricing.

An existing liability structure or endowment of an investor can be modeled as if
it were a contingent claim: in each state n there is a payout (positive or negative)
denoted Ln . The liability may not itself be a tradeable security (perhaps for policy
reasons internal to the investor) but its flows are correlated with the market. As is
common in microeconomic modeling, the utility functions of the investors are assumed
to be nondecreasing and to have domain equal to or contained in the nonnegative reals.
The development will be in the setting of Theorem 3 (a similar development applies to the
situation covered by Theorem 4). The investor optimizes the problem (12) replacing the
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contingent flows Fn with the liability flows Ln . The value L0 then has the interpretation
of the net capital of the investor and the optimal dual solution y∗ gives rise to the
investor’s own “valuation operator”.

Now consider the investor’s attitude to a contingent claim F with payouts Fn offered
on the market for the price F0. The investor would buy the claim if

β0 F0 y∗
0 <

T∑

t=1

∑

n∈Nt

βn Fn y∗
n

and would sell the claim if

β0 F0 y∗
0 >

T∑

t=1

∑

n∈Nt

βn Fn y∗
n .

Now that the claim has been introduced into the universe of possible investments, the
following problem determines how many shares of F the investor wishes to purchase:

max(θ,ε0)

∑
n∈Nt

pnu(Zn · θn)

subject to Z0θ0 = β0 L0 − ε0β0 F0

Zn · [ θn − θa(n) ] = −βn Ln + ε0βn Fn (n ∈ Nt, t ≥ 1).

(22)

In keeping with the theme of this paper, let us examine the dual

min(y) β0 L0 y0 − ∑T
t=1

∑
n∈Nt

βn Ln yn − ∑
n∈NT

pnu∗(yn/pn)

subject to yn Zn − ∑
m∈C(n) ym Zm = 0 (n ∈ Nt , t ≤ T − 1)

y0β0 F0 = ∑T
t=1

∑
n∈Nt

ynβn Fn .

(23)

The last constraint in the dual system shows that the introduction of the security F alters
the investor’s optimal dual solution. For example, to be a buyer of the option one has to
have had

β0 F0 < EQ∗
b [

T∑

t=1

βt Ft ] (24)

but after incorporation of the claim into the optimal portfolio, the buyer’s martingale
measure must in fact satisfy a “risk-neutral” valuation of F — namely,

β0 F0 = EQ∗
b [

T∑

t=1

βt Ft ] . (25)

A similar statement holds for sellers. Every investor will change their valuation operator
so that the current price equals the expectation of the cash-flows.

The quantity that is actually transacted is min(εb
0, ε

s
0), and the price F0 may shift in

response to the supply-demand imbalance. A partial equilibrium argument for the price
of the claim F could go as follows. Suppose that some investors will desire to buy F
if the price is sufficiently low (prices are permitted to be negative) and some desire to
sell if the price is sufficiently high. Then as the price moves from such a sufficiently
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low value to higher values there exists a price F∗
0 at which the excess demand function

F0 �→ (εb
0 − εs

0) crosses zero. We have not actually shown that investors will desire to
trade precisely the quantities needed to clear the market at the price F∗

0 . The question
comes down to the existence of a market clearing price.

Definition 2. Suppose that there is a finite population of investors, k = 1, . . . , K each
solving problem (22). We say that a market clearing price F∗

0 for the contingent claim

F exists when each investor’s optimal choice εk
0 of the claim satisfies

∑K
k=1 εk

0 = 0 and
there is at least one investor with εk

0 > 0.

An examination of the dual problem (23) shows that each investor’s dual problem is
more tightly constrained in general, so that each investor’s optimal value is the same or
higher after the introduction of the claim F. If there exists a market clearing price, then
there is at least one investor whose optimal dual solution satisfied equation (24) without
F and satisfies (25) after the introduction of F. Since (25) was infeasible for this investor
before the introduction of F it follows that the optimal value of their investment problem
must be strictly higher after the introduction of the claim (because the dual (23) is more
tightly constrained). We have finally proved a theorem that indicates unequivocally why
there is buyer and seller interest in contingent claims.

Theorem 5. Suppose that a contingent claim F is introduced into a marketplace and
that there exists a market clearing price F∗

0 for the claim. Then every investor’s optimal
valuation operator values the claim at the market clearing price. After the introduction
of the claim, every investor’s optimal utility will be the same or higher and at least two
investors will have a strictly higher optimal utility.

The question of existence of market clearing prices involves technical conditions that
at least guarantee no infinite jumps in the excess demand function. In addition one must
introduce a dynamic “tatonnement” process by which market clearing prices are found.
Of course, in general, F will not be the only security available to investors to hedge the
risks of their structural liabilities or endowments and so the simple outlines of the partial
equilibrium argument may not suffice. The study of general financial equilibrium issues
in incomplete markets is an active research area that is outside the scope of this paper.
For more on this topic, see for instance, Allen and Gale [1] or Grossman and Hart [10].

9. Conclusions and discussion

The connections drawn in this paper between arbitrage, contingent claims pricing and
martingales arise from quite elementary analyses of duality relationships. Nevertheless,
they provide a rich mathematical structure. Extensions of the models are quite natural, as
the sections on risk aversion, liability structures, and spreads and margins demonstrate.

This framework extends naturally to those of asset-liability management problems
with side constraints, such as those of regulated insurance pools or pension funds (cf.
Cariño, et al [3]), or those of financial intermediaries with reserve capital constraints, or
even problems having real production processes — as in the emerging energy markets
of our time (cf. King, Birge, Takriti and Wu [16] and King and Ahmed [15]).
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It is interesting to speculate on the interpretation of the optimal dual variable y0.
In Theorem 2 it appears as a multiplier of the difference between the price charged by
the writer and the writer’s valuation of the claim. In the interpretation of the investor’s
problem (22) it appears to be the optimal value to the investor of increasing their capital
L0 by one additional unit. One suspects that the investors of Sect. 8 who participate
in a market for contingent claims ought to have y∗

0 equal to the expected return of one
share of equity in a financial intermediary firm.

The investors of Sect. 8 do not in general know the appropriate probability distri-
bution — they must infer it from observed prices of series of options. This problem is
treated in the framework of this paper by King, Streltchenko and Yesha [14].

There are powerful computational approaches to the solution of stochastic program-
ming problems like the ones developed in this paper. Decomposition and sampling are
natural for this class of problems, and very large problems can now be solved. For
a survey of recent progress in stochastic programming, see Birge [2]. A recent paper
of Edirisinghe [8] investigates techniques for establishing bounds deriving from the
observation that the dual problem is a version of the well-known “moments problem”.
The specialized structure of the models of this paper may in particular be well-suited
for stochastic programming methods adapted to the stochastic structures of market
processes.
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