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Abstract. For a polytope in the [0, 1]n cube, Eisenbrand and Schulz showed recently that the maximum
Chvátal rank is bounded above by O(n2logn) and bounded below by (1 + ε)n for some ε > 0. Chvátal cuts
are equivalent to Gomory fractional cuts, which are themselves dominated by Gomory mixed integer cuts.
What do these upper and lower bounds become when the rank is defined relative to Gomory mixed integer
cuts? An upper bound of n follows from existing results in the literature. In this note, we show that the lower
bound is also equal to n. This result still holds for mixed 0,1 polyhedra with n binary variables.
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1. Introduction

Consider a mixed integer program PI ≡ {(x, y) ∈ Zn+ × Rp
+| Ax + Gy ≤ b},

where A and G are given rational matrices (dimensions m × n and m × p respec-
tively) and b is a given rational column vector (dimension m). Let P ≡ {(x, y) ∈
Rn+p

+ | Ax + Gy ≤ b} be its standard linear relaxation. Assume w.l.o.g. that x ≥ 0,
y ≥ 0 and 0 ≤ 1 are part of the constraints Ax + Gy ≤ b (thus any valid inequality
for P is of the form u(Ax + Gy) ≤ ub for u ∈ Rm+). In [13], Gomory introduced
a family of valid inequalities for PI , called mixed integer cuts, that can be used to
strengthen P. These cuts are obtained from P by considering an equivalent equality
form. Let P′ = {(x, y, s) ∈ Rn+p+m

+ | Ax + Gy + s = b} and P′
I = {(x, y, s) ∈

Zn+ × Rp+m
+ | Ax + (G, I )

(y
s

) = b}. Introduce z = (y
s

)
. For any u ∈ Rm , let ā = u A,

ḡ = u(G, I ) and b̄ = ub. Let āi = �āi� + fi and b̄ = �b̄� + f0. Gomory showed that
the following inequality is valid for P′

I :

∑

(i: fi ≤ f0)

fi xi + f0

1 − f0

∑

(i: fi > f0)

(1 − fi)xi +
∑

( j :ḡ j≥0)

ḡ j z j

− f0

1 − f0

∑

( j :ḡ j<0)

ḡ j z j ≥ f0. (1)
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Plugging s = b − Ax − Gy into it, we get a valid inequality for PI . Any such inequality
αu x + γu y ≤ βu is called a mixed integer cut. The convex set P1 defined as the
intersection of P with all mixed integer cuts is called the mixed integer closure of P.
In fact P1 is a polyhedron (see below). By recursively taking the mixed integer closure
of Pk−1, for integers k ≥ 2, we obtain the polyhedron Pk . Clearly PI ⊆ Pk ⊆
Pk−1 . . . ⊆ P1 ⊆ P. We say that PI is a mixed 0,1 program with n binary variables
if P ⊆ [0, 1]n × Rp

+. For mixed 0,1 programs, there is always a finite k such that
Pk = Conv(PI ) (see below). The smallest such k is called the mixed integer rank of P.
In this note, we show the following.

Theorem 1. The maximum mixed integer rank of P, taken over all mixed 0,1 programs
PI with n binary variables, is equal to n.

In particular, the maximum mixed integer rank for a pure integer program in the
[0, 1]n cube is equal to n. This is in contrast to the maximum Chvátal rank which was
shown by Eisenbrand and Schulz [11] to lie in the interval (1 + ε)n to O(n2logn) for
some ε > 0.

2. Disjunctive cuts

In this section, we review three results from the literature. To prove Theorem 1, we
use the equivalence between mixed integer cuts and disjunctive cuts from 2-term dis-
junctions shown by Nemhauser and Wolsey [16]. Disjunctive cuts were introduced by
Balas [1], [2]. The disjunctive cuts from 2-term disjunctions were also studied by Cook,
Kannan and Schrijver [9] under the name of split cuts. We use this terminology in the
remainder. Given the polyhedron P ≡ {(x, y) ∈ Rn+p

+ | Ax + Gy ≤ b}, an inequality is
called a split cut if it is valid for Conv((P ∩ {x| πx ≤ π0}) ∪ (P ∩ {x| πx ≥ π0 + 1}))
for some (π, π0) ∈ Zn+1.

Many of the classical cutting planes can be interpreted as split cuts. For instance, in
the case of pure integer programs, Chvátal cuts [5] are split cuts where at least one of
the two polyhedra P ∩ {x| πx ≤ π0} or P ∩ {x| πx ≥ π0 + 1} is empty. (Indeed, if say
P ∩ {x| πx ≥ π0 + 1} is empty, then πx < π0 + 1 is valid for P, which implies that the
split cut πx ≤ π0 is a Chvátal cut and, conversely, any Chvátal cut can be obtained this
way). As another example, it is well known that the lift-and-project cuts [3] are split
cuts obtained from the disjunction x j ≤ 0 or x j ≥ 1, i.e. they are valid inequalities for
Conv((P ∩ {x| x j ≤ 0}) ∪ (P ∩ {x| x j ≥ 1})).

Nemhauser and Wolsey [16] showed that split cuts are equivalent to mixed integer
cuts, using the concepts of MIR inequalities and superadditive inequalities as interme-
diate steps. In the next theorem, we give a direct proof of this equivalence. The convex
set defined as the intersection of all split cuts is called the split closure of P.

Theorem 2. The split closure of P is identical to the mixed integer closure of P.

Proof. We first show that any split cut cx + hy ≤ c0 that is not valid for P is equal
to or dominated by a mixed integer cut. From the definition of a split cut, there exists
(π, π0) ∈ Zn+1 such that the inequality cx + hy ≤ c0 is valid for both polyhedra
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P ∩{x| πx ≤ π0} and P ∩{x| πx ≥ π0 +1}. It follows from linear programming duality
that there exist scalars α, β > 0 such that

cx + hy − α(πx − π0) ≤ c0 (2)

cx + hy + β(πx − π0 − 1) ≤ c0 (3)

are both valid inequalities for P. Introduce nonnegative slack variables t1 and t2 in (2)
and (3) respectively. Since these inequalities are valid for P, it follows that t1 = u1s
and t2 = u2s for some vectors u1, u2 ∈ Rm+. Let u = u2 − u1, u+

i = max{0, ui} and
u−

i = max{0,−ui}. Subtract (2) with its slack from (3) with its slack. The resulting
equality

πx − 1

α + β
u−s + 1

α + β
u+s = π0 + β

α + β
(4)

is valid for the higher dimensional equality form P′ of P. Now apply Gomory’s formula
(1) to equation (4) to obtain the following mixed integer cut:

β

α

1

α + β
u−s + 1

α + β
u+s ≥ β

α + β
.

This cut is equal to or dominates:

β

α

1

α + β
t1 + 1

α + β
t2 ≥ β

α + β
.

Replacing t1 and t2 by their expressions in (2) and (3) yields:

cx + hy ≤ c0.

Conversely, the standard proof that mixed integer cuts are valid for PI shows that
they are split cuts. Indeed, let āx + ḡz = b̄ be a valid equality for P′. Rewrite this
equality by separating the integer and fractional parts of āi and b̄, and by grouping all
the integer parts together. Thus

∑

(i: fi ≤ f0)

fi xi −
∑

(i: fi > f0)

(1 − fi)xi + ḡz = f0 − πx + π0 (5)

is a valid equality for P′, for some (π, π0) ∈ Zn+1. It follows that
∑

(i: fi ≤ f0)

fi xi −
∑

(i: fi > f0)

(1 − fi)xi + ḡz ≥ f0 (6)

is valid for P ∩ {x| πx ≤ π0} and that

−
∑

(i: fi ≤ f0)

fi xi +
∑

(i: fi > f0)

(1 − fi)xi − ḡz ≥ 1 − f0 (7)

is valid for P ∩ {x| πx ≥ π0 + 1}. Since x ≥ 0 and z ≥ 0, it is easy to verify that the
inequality (1) is dominated by both (6) and (7), so it is valid for Conv((P∩{x| πx ≤ π0})
∪ (P ∩ {x| πx ≥ π0 + 1})). Therefore it is a split cut.

��
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Cook, Kannan and Schrijver [9] showed that the split closure of P is a polyhedron: it
is the intersection of finitely many sets Conv((P∩{x|πx ≤ π0})∪(P∩{x|πx ≥ π0+1}))
for (π, π0) ∈ Zn+1. Therefore the mixed integer closure P1 is also a polyhedron. By
induction, Pk defined above is a polyhedron for all integers k ≥ 1. If there exists an
integer k such that Pk = Conv(PI ), the smallest such k was defined above as the mixed
integer rank of P. In general, mixed integer programs do not have a finite mixed integer
rank, as shown by Cook, Kannan and Schrijver [9] using a simple example with two
integer variables and one continuous variable.

Theorem 3. There exist mixed integer programs PI such that Pk �= Conv(PI ) for all
finite integers k.

Proof. Let PI ≡ {(x1, x2, y) ∈ Z2+ × R+| x1 − y ≥ 0, x2 − y ≥ 0, x1 + x2 + 2y ≤ 2}.
Then P is the convex hull of (0, 0, 0), (2, 0, 0), (0, 2, 0) and ( 1

2,
1
2 , 1

2 ), whereas Conv(PI )

is the convex hull of the first three points. The inequality y ≤ 0 is valid for Conv(PI )

but it is easy to show by induction that y ≤ 0 is not valid for Pk for any finite integer k.
Indeed, assume (induction hypothesis) that Pk contains points (x1, x2, y) with y > 0 for
any (x1, x2) such that x1 > 0, x2 > 0, x1 + x2 < 2. Then, for any (π, π0) ∈ Z3, the set
� ≡ Conv((Pk ∩{x| πx ≤ π0})∪ (Pk ∩{x| πx ≥ π0 +1})) contains a point (x1, x2, y)
with y > 0 and x1 > 0, x2 > 0, x1 + x2 < 2. Since � also contains the points
(0, 0, 0), (2, 0, 0), (0, 2, 0) and is convex, � contains points (x1, x2, y) with y > 0 for
any (x1, x2) such that x1 > 0, x2 > 0, x1 + x2 < 2. Since Pk+1 is the intersection of
finitely many sets of this form, the induction hypothesis holds for Pk+1.

��
Mixed 0,1 programs have the property that the disjunction x j ≤ 0 or x j ≥ 1 is facial,

i.e. both P ∩ {x| x j ≤ 0} and P ∩ {x| x j ≥ 1} define faces of P. If follows from a result
of Balas [2] on facial disjunctive programs that the mixed integer rank of a mixed 0,1
program is at most n.

Theorem 4. For a mixed 0,1 program PI with n binary variables, Pn = Conv(PI ).

Proof. Define P0 ≡ P and, for k = 1, . . . , n, let Pk ≡ Conv((Pk−1 ∩ {xk = 0}) ∪
(Pk−1 ∩ {xk = 1})).

We claim that Pk = Conv(P ∩ Sk) where Sk ≡ {0, 1}k × [0, 1]n−k × Rp.
The claim is true for k = 1. Let k ≥ 2 and assume Pk−1 = Conv(P ∩ Sk−1). Then

Pk = Conv((Conv(P ∩ Sk−1) ∩ {xk = 0}) ∪ (Conv(P ∩ Sk−1) ∩ {xk = 1}))
= Conv(Conv(P ∩ Sk−1 ∩ {xk = 0}) ∪ (Conv(P ∩ Sk−1 ∩ {xk = 1}))

because, when a set S lies entirely in the closed half-space limited by a hyperplane H ,
Conv(S)∩H = Conv(S∩H ). Now, since Conv(Conv(A)∪Conv(B)) = Conv(A∪B),

Pk = Conv((P ∩ Sk−1 ∩ {xk = 0}) ∪ (P ∩ Sk−1 ∩ {xk = 1}))
= Conv(P ∩ Sk).

The claim implies that Pn = Conv(PI ). Since Pn ⊆ Pn , the theorem follows.
��

New results in this direction were obtained recently by Balas and Perregaard [4].
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3. Proof of Theorem 1

Theorem 4 shows the upper bound in Theorem 1. Next, we exhibit an example with
a lower bound of n, thus completing the proof of Theorem 1.

We show that the mixed integer rank of the following well-known polytope studied
by Chvátal, Cook, and Hartmann [6] is exactly n:

Pn ≡ {x ∈ [0, 1]n|
∑

j∈J

x j +
∑

j �∈J

(1 − x j) ≥ 1

2
, for all J ⊆ {1, 2, · · · , n}}

just as its Chvátal rank is.
Let Fj be the set of all vectors x ∈ Rn such that j components of x are 1

2 and each
of the remaining n − j components are equal to 0 or 1. The polyhedron Pn is the convex
hull of F1.

Lemma 1. If a polyhedron P ⊆ Rn contains Fj , then its mixed integer closure P1

contains Fj+1.

Proof. It suffices to show that, for every (π, π0) ∈ Zn+1, the polyhedron � =
Conv((P ∩ {x| πx ≤ π0}) ∪ (P ∩ {x| πx ≥ π0 + 1})) contains Fj+1. Let v ∈ Fj+1 and
assume w.l.o.g. that the first j + 1 elements of v are equal to 1

2 . If πv ∈ Z , then clearly
v ∈ �. If πv �∈ Z , then at least one of the first j +1 components of π is nonzero. Assume
w.l.o.g. that π1 > 0. Let v1, v2 ∈ Fj be equal to v except for the first component which
is 0 and 1 respectively. Notice that v = v1+v2

2 . Clearly, each of the intervals [πv1, πv]
and [πv, πv2] contains an integer. Since πx is a continuous function, there are points ṽ1
on the line segment Conv(v, v1) and ṽ2 on the line segment Conv(v, v2) with πṽ1 ∈ Z
and πṽ2 ∈ Z . This means that ṽ1 and ṽ2 are in �. Since v ∈ Conv(ṽ1, ṽ2), this implies
v ∈ �.

��
Starting from P = Pn and applying the lemma recursively, it follows that the (n−1)st

mixed integer closure Pn−1
n contains Fn , which is nonempty. Since Conv((Pn)I ) is

empty, the mixed integer rank of Pn is at least n. This completes the proof of Theorem 1.

4. Concluding remarks

In this note, we considered Gomory’s mixed integer procedure applied to polytopes
P in the n-dimensional 0, 1-cube. Lovász and Schrijver [14] introduced a different
procedure, based on a semi-definite relaxation of PI for strengthening a polytope P in
the n-dimensional 0, 1-cube. Recently, Cook and Dash [8] and Goemans and Tuncel [12]
established that the semi-definite rank of polytopes in the n-dimensional 0, 1-cube is
equal to n, in the worst case, by showing that the semi-definite rank of Pn (as defined
in Sect. 3) is equal to n. Although the mixed integer and semi-definite closures are
incomparable (neither contains the other in general), both are contained in the lift-and-
project closure as introduced by Balas, Ceria and Cornuéjols [3]. Since the lift-and-
project rank is at most n [3] and the semi-definite and mixed integer ranks of Pn equal
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Fig. 1. Maximum rank of polytopes in the [0, 1]n cube

n, it follows that, in the worst case, all three procedures have rank n. We summarize
this in Fig. 1 where A → B means that the corresponding elementary closures satisfy
PA ⊇ PB and the inclusion is strict for some instances, and A not related to B in
the figure means that for some instances PA �⊆ PB and for other instances PB �⊆ PA.
A figure comparing elementary closures derived from several other cuts can be found
in [10].

Cook and Dash [8] also considered the intersection of the Chvátal closure and the
semi-definite closure. They showed that, even for this Chvátal + semi-definite closure,
it is still the case that the rank of Pn equals n. In a similar way, we can define the
disjunctive + semi-definite closure of a mixed 0,1 program PI as the intersection of the
disjunctive closure and the semi-definite closure of P. Using the approach of Cook and
Dash and Sect. 3 above, it is easy to show that the mixed integer + semi-definite rank of
Pn is equal to n.

Theorem 5. The mixed integer + semi-definite rank of Pn is exactly n.

Acknowledgements. We are indebted to a referee for simplifying our proof of Theorem 1.
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