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Abstract. The local quadratic convergence of the Gauss-Newton method for convex composite optimization
f = h ◦ F is established for any convex function h with the minima set C, extending Burke and Ferris’ results
in the case when C is a set of weak sharp minima for h.
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1. Introduction

The famous Gauss-Newton method, which was proposed for finding the least-squares
solutions of nonlinear equations by Gauss in the early nineteenth century, is extended
to solve the following convex composite optimization:

min f(x) := h(F(x)),(P)

where h : Rm → R is convex and F : Rn → Rm is continuously differentiable.
This problem has recently been studied in [2,5] and the cited references there, and
justifiable so since many class of problems in optimization theory can be cast within this
framework, e.g., convex inclusion, minimax problems, penalization methods and goal
programming. Moreover, this model provides a unifying framework for the development
and analysis of algorithmic solution techniques.

In 1985, Womersley [16] proved the local quadratic convergence of Gauss-Newton
methods under the assumption of strong uniqueness, extending the work of Jittorntrum
and Osborne [9] for the case when h is a norm. However, Womersley’s assumption just
ensures the Gauss-Newton sequence converges to a local minima of (P). Recently, Burke
and Ferris [5] have made a great progress in the study of convergence of Gauss-Newton
methods. An important distinction from Womersley is that they do not require that the
minima set for h be a singleton or even a bounded set. Their research is based on two
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assumptions: (1) the set of minima for the function h, denoted by C, is a weak sharp
minima for h, and (2) there is a regular point for the inclusion

F(x) ∈ C. (1)

Under the above assumptions, they established the local quadratic convergence of the
Gauss-Newton sequence. In addition, the convergence properties of a globalization
strategy based on a backtracking linear- search were also provided.

Based on the work of Burke and Ferris, we continue carrying out investigation in
this direction. It is unexpected that we find that the local quadratic convergence of the
method is independent of the other properties of the convex function h. The purpose of
this paper is to establish the local quadratic convergence of the Gauss-Newton method for
an arbitrary convex function h and the quadratic convergence of globalization strategies
under a much weaker assumption than Burke and Ferris’. Moreover, we also propose
a relaxation version of the Gauss-Newton method and establish the local superlinear
convergence.

We need some notations. The polar of U ⊂ Rn is the set U◦ := {x∗ ∈ Rn :< x∗, x >

≤ 1,∀x ∈ U} while coneU stands for the cone generated by U . Let ‖ · ‖ denote a norm
on Rn and B be the closed unit ball so that x +rB is the closed ball with center x radius r.
The distance of a point x to a set U is given by d(x, U) := inf{‖x − u‖ : u ∈ U} and
the set of all nearest points to x is denoted by PU(x). Finally, the set kerA represents
the kernel of the linear map A.

2. Preliminaries

For � > 0 and x ∈ Rn , let D�(x) represent the set of solutions to the minimization
problem

min{h(F(x) + F′(x)d) : ‖d‖ ≤ �}. (2)

The basic algorithm considered in [5,8,16] is as follows.

Algorithm 1. Let η ≥ 1,� ∈ (0,+∞] and x0 ∈ Rn be given. For k = 0, 1, · · · , having
xk, determine xk+1 as follows.

If h(F(xk)) = min{h(F(xk) + F′(xk)d) : ‖d‖ ≤ �}, then stop; otherwise, choose
dk ∈ D�(xk) to satisfy ‖dk‖ ≤ ηd(0, D�(xk)), and set xk+1 = xk + dk.

Definition 1. The set C ⊂ Rm is a set of weak sharp minima for h if there is λ > 0 such
that ∀y ∈ Rm

h(y) ≥ hmin + λd(y, C),

where hmin = miny h(y).

There are many examples of convex functions that have a set of weak sharp minima,
see for example [4,7]. This notion generalizes the notion of a sharp [12] or strongly
unique [6,11,16]. Their applications in the convergence analysis can be found in [4,6,9,
12,16]. In [4], Burke and Ferris also provided some sufficient and necessary conditions
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for a minima set for a convex function to be a set of weak sharp minima. However,
most of the convex functions on Rm do not have a set of weak sharp minima. Such an
important class of convex functions is the class of convex functions which are Gateaux
differentiable in every direction on Rm .

Definition 2. A point x̄ ∈ Rn is a regular point for the inclusion (1) if

ker(F′(x̄)T ) ∩ �C(F(x̄)) = {0},
where the multifunction �C : Rm → Rm is given by

�C(y) = (cone(C − y))0 , ∀y ∈ Rm .

The notion of regularity is related to various notions of regularity that can be found in
the papers [1,3,13–15], which have played an important role in the study of nonsmooth
optimizations. Some equivalent conditions on the regular points for (1) are given in
paper [5]. The following proposition is useful to the convergence analysis of the Gauss-
Newton method.

Proposition 1 [5]. If x̄ is a regular point of (1), then for ∀� > d(0, D+∞(x̄)), there is
some neighborhood N(x̄) of x̄ and a β > 0 satisfying

d(0, D�(x)) ≤ βd(F(x), C), ∀x ∈ N(x̄)

and

{d ∈ Rn : ‖d‖ ≤ �, F(x) + F′(x)d ∈ C} �= ∅, ∀x ∈ N(x̄).

3. Quadratic convergence

In [5], Burke and Ferris proved the quadratic convergence theorem under the assumption
that h has a set of weak sharp minima and is Lipschitz continuous [5, Theorem 4.1]. But
the comments of last section show that the assumption that h has a set of weak sharp
minima is strong. The key difference of our approach to Burke and Ferris’ is that we
do not require that h have a set of weak sharp minima. The main theorem is stated as
follows.

Theorem 1. Let x̄ ∈ Rn be a regular point of inclusion (1) where C is a minima set
for h and suppose the conclusions of Proposition 1 are satisfied on the set x̄ + δ̄B for
δ̄ > 0, with δ̄ < �. Assume that F′ is Lipschitz continuous on x̄ + δ̄B with Lipschitz
constant L. If there is δ > 0 such that

a) δ < min{δ̄/2, 1},
b) d(F(x̄), C) < δ/2ηβ and
c) ηLδβ < 2,

then there is a neighborhood M(x̄) of x̄ such that the sequence {xk} generated by
Algorithm 1 with initial point in M(x̄) converges at a quadratic rate to some x∗ with
F(x∗) ∈ C, that is x∗ solves (P).
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Proof. Let L0 be the Lipschitz constant for F on x̄ + δB and define

β̄ = δ − 2ηβd(F(x̄), C)

2ηβL0
, r0 = min{δ, β̄}.

Then for ∀x0 ∈ x̄ + r0 B, we have

d(F(x0), C) ≤ ‖F(x0) − F(x̄)‖ + d(F(x̄), C) ≤ L0β̄ + d(F(x̄), C) ≤ δ

2ηβ
.

It follows from Proposition 1 that

‖d0‖ ≤ ηβd(F(x0), C) ≤ δ

2

and

‖x1 − x̄‖ ≤ ‖d0‖ + ‖x0 − x̄‖ ≤ δ̄.

We claim that for k = 0, 1, 2, · · · ,

‖xk − x̄‖ ≤ δ̄ and ‖dk‖ ≤ 1

2
ηLβ‖dk−1‖2 ≤

(
1

2

)2k

δ. (3)

The proof proceeds by induction on k.
Note that (3) holds for k = 0. Assume that (3) holds for k ≤ s − 1. Then, for k = s,

‖xs − x̄‖ ≤
s−1∑
i=0

‖di‖ + ‖x0 − x̄‖ ≤ δ

s−1∑
i=0

(
1

2

)2i

+ δ ≤ 2δ ≤ δ̄

and so, using Proposition 1 again, we have

‖ds‖ ≤ ηβd(F(xs), C)

≤ ηβ‖F(xs) − F(xs−1) − F′(xs−1)ds−1‖

≤ ηβ‖
∫ 1

0
(F′(xs−1 + tds−1) − F′(xs−1))ds−1dt‖

≤ ηβ

∫ 1

0
Lt‖ds−1‖2dt

= 1

2
ηβL‖ds−1‖2

≤ δ

(
1

2

)2s

.

Hence (3) holds for any k = 0, 1, · · · . This means xk converges to some x∗ at a quadratic
rate and proves the theorem.

��
Now let us consider the quadratic convergence of the global algorithm proposed by

Burke and Ferris in [5]. The algorithm is simply stated as follows.
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Algorithm 2. Let η ≥ 1,� ∈ (0,+∞], c ∈ (0, 1), γ ∈ (0, 1) and x0 ∈ Rn be given.
For k = 0, 1, · · · , having xk determine xk+1 as follows.

i) If h(F(xk)) = min{h(F(xk) + F′(xk)d) : ‖d‖ ≤ �}, then stop; otherwise, choose
dk ∈ D�(xk) to satisfy ‖dk‖ ≤ ηd(0, D�(xk)).

ii) Set xk+1 = xk + tkdk where tk is the maximum value of γ s, for s = 1, 2, · · · , such
that

h(F(xk + γ sdk)) − h(F(xk)) ≤ cγ s[h(F(xk) + F′(xk)dk) − h(F(xk))].

Thus, because of Theorem 1, the same arguments as in the proof of Theorem 5.2
in [5] give the proof of the following theorem.

Theorem 2. Suppose F′ is locally Lipschitz continuous and C is a minima set for h
satisfying

lim
d(y,C)→0

h(y) − hmin

d(y, C)2 = +∞. (4)

Let {xk} be a sequence generated by Algorithm 2 with initial point in Rn and x̄ be
a cluster point of this sequence. If � < +∞ and x̄ is a regular point of (1), then
F(x̄) ∈ C and xk converges to x̄ at a quadratic rate.

Remark. Burke and Ferris [5] proved Theorem 2 under the assumption that C is a set
of weak sharp minima for h. Obviously, condition (4) is much weaker than it. One
important class of convex functions such that (4) holds is the class of convex functions
h that have a set C of weak sharp minima of order s with 1 ≤ s < 2 in the sense that
there exist ε > 0 and αs > 0 satisfying

h(y) ≥ hmin + αsd(y, C)s, ∀y ∈ Rm, d(y, C) ≤ ε.

This notion generalizes the notion of the strong uniqueness of order s in approximation
theory [10]. Clearly it is also a generalization of the concept of weak sharp minima. For
two convex functions h1 and h2 on Rm with the same minima set C, it follows from the
definition that the function h = h1 + h2 has a set of weak sharp minima of order s ≥ 1
if at least one of h1 and h2 does. The following is an example of convex function h that
has a set of weak sharp minima of order 1 < s < 2 but not a set of weak sharp minima.

Example 1. Let 1 < s < 2 and 1 = s1 ≤ s2 ≤ · · · ≤ sm = s. Define h : Rm −→ R as
follows.

h(y) =
m∑

i=1

|yi |si , ∀y = (yi) ∈ Rm .

Then the minima set C = {0} for h is a set of weak sharp minima of order s for h since
it is for the function hm(y) := |ym | but it is not a set of weak sharp minima for h. In
fact, C is not a set of weak sharp minima of order s̄ for any s̄ < s.
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4. A relaxation algorithm

Let us return to the Gauss-Newton method, that is, Algorithm 1. In the iterative pro-
cedure, we must determine the exact solution of the convex optimization problem (2).
However, this is, in practice, very difficult and impossible for the most cases. Thus, the
question arises: Does the Gauss-Newton sequence remain the local quadratic conver-
gence if the correction term dk is replaced by an approximation of the exact solution to
the problem (2)? The purpose of this section is to establish such a result. To this end,
we propose a relaxation version of the Gauss-Newton algorithm as follows.

Let Dk
�(xk) represent the set of all d ∈ Rn satisfying ‖d‖ ≤ � and

h(F(xk) + F′(xk)d) ≤ min{h(F(xk) + F′(xk)d) : ‖d‖ ≤ �} + ‖dk−1‖α.

Relaxation Algorithm 3. Let η ≥ 1, α > 1,� ∈ (0,+∞], x0 ∈ Rn and d−1 ∈ Rn,

d−1 �= 0 be given. For k = 0, 1, · · · , having xk, then determine xk as follows.

i) if

h(F(xk)) ≤ min{h(F(xk) + F′(xk)d) : ‖d‖ ≤ �} + ‖dk−1‖α, (5)

take dk = ‖dk−1‖α−1dk−1; otherwise, choose dk ∈ Dk
�(xk) to satisfy ‖dk‖ ≤

ηd(0, Dk
�(xk)).

ii) set xk+1 = xk + dk.

It should be noted that, in the step i of the algorithm, we need compute min{h(F(xk)+
F′(xk)d) : ‖d‖ ≤ �}. There are a lots of ways to do this, for example, the subgradient
method, the cutting plane method, the bundle method, etc [17]. However, in fact, we
need not the exact value of min{h(F(xk) + F′(xk)d) : ‖d‖ ≤ �} but only to distinguish
(5) holds or not.

Theorem 3. Let x̄ ∈ Rn be a regular point of inclusion (1) where C is a weak sharp
minima set for h and suppose the conclusions of Proposition 1 are satisfied on the set
x̄ + δ̄B for δ̄ > 0, with δ̄ < �. Assume that F′ is Lipschitz continuous on x̄ + δ̄B with
Lipschitz constant L. If there is δ > 0 such that

a) δ < min{δ̄/(c + 1), 1},
b) d(F(x̄), C) < δ/2ηβ and
c) ηLδβ/2 + ηβδα−1/λ < 1,

where p = min{2,
√

α} and c = ∑+∞
i=0 ( 1

2 )pi
, then there is a neighborhood M(x̄) of x̄

such that the sequence {xk} generated by Algorithm 3 with initial point in M(x̄), with
‖d−1‖ ≤ δ/2, converges at a rate of p degree to some x∗ with F(x∗) ∈ C, that is x∗
solves (P).

Proof. Let L0, β̄, r0 be as in the proof of Theorem 1. Then for ∀x0 ∈ x̄ + r0 B, we have

d(F(x0), C) ≤ ‖F(x0) − F(x̄)‖ + d(F(x̄), C) ≤ L0β̄ + d(F(x̄), C) ≤ δ

2ηβ
.
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By Relaxation Algorithm 3, if (5) holds for k = 0, then

‖d0‖ = ‖d−1‖α ≤ δ

2
;

otherwise,

‖d0‖ ≤ ηd
(
0, D0

�(x0)
)
.

Observe that D�(x0) ⊂ D0
�(x0). Thus, in the second case, from Proposition 1, we also

have that

‖d0‖ ≤ ηd
(
0, D�(x0)

) ≤ ηβd(F(x0), C) ≤ δ

2
.

Hence,

‖x1 − x̄‖ ≤ ‖d0‖ + ‖x0 − x̄‖ ≤ δ̄.

In the following, we will establish by induction that for k = 0, 1, 2, · · · ,

‖xk − x̄‖ ≤ δ̄ and ‖dk‖ ≤
(

1

2

)pk

δ. (6)

Note that (6) holds for k = 0. Assume that (6) holds for k ≤ l − 1. Then, for k = l,

‖xl − x̄‖ ≤
l−1∑
i=0

‖di‖ + ‖x0 − x̄‖ ≤ δ

l−1∑
i=0

(
1

2

)pi

+ δ ≤ (c + 1)δ ≤ δ̄.

Applying Relaxation Algorithm 3, if (5) holds for k = l, we have

‖dl = ‖dl−1‖α ≤
(

1

2

)pl

δ,

and otherwise,

‖dl‖ ≤ ηd
(
0, Dl

�(xl)
) ≤ d

(
0, D�(xl)

)
since D�(xl) ⊂ Dl

�(xl ). Then it follows from Proposition 1 that

‖dl‖ ≤ ηβd(F(xl), C)

≤ ηβd(F(xl), Cl−1) + ηβ sup
x∈Cl−1

d(x, C)

≤ ηβ‖F(xl ) − F(xl−1) − F′(xl−1)dl−1‖ + ηβ sup
x∈Cl−1

d(x, C)

= 1

2
ηβL‖dl−1‖2 + ηβ

λ
‖dl−2‖α

≤ 1

2
ηβL

((
1

2

)pl−1

δ

)2

+ ηβ

λ

((
1

2

)pl−2

δ

)α

≤
(

1

2

)pl

δ,
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where

Ck = {
y ∈ Rm : h(y) ≤ hmin + ‖dk−1‖α

}
.

Hence (6) holds for any k = 0, 1, · · · . This means that xk converges to some x∗ at a rate
of p degree and proves the theorem.

��
Remark. Comparing Theorem 3 with Theorem 1, we note that Theorem 3 requires
that C be a set of weak sharp minima for h. It is not surprising since, in Relaxation
Algorithm 3, the correction term dk is an approximating solution to the problem (2)

such that the approximation error of the function value is controlled within a suitable
bound. Thus it is closely related to the extent of the sharpness of h. Of course, the weak
sharpness assumption on the minima set C for h can be replaced by the assumption that
C a set of weak sharp minima of order s ≥ 1 for h. In this case, if α > s, the conclusion
of Theorem 3 remains true for p = min{2, α

s }.
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