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Abstract. Letthe DFP algorithm for unconstrained optimization be applied to an objective function that has
continuous second derivatives and bounded level sets, where each line search finds the first local minimum.
It is proved that the calculated gradients are not bounded away from zero if there are only two variables. The
new feature of this work is that there is no need for the objective function to be convex.
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1. Introduction

Itis a pleasure to write a paper that commemorates the contributions of Bill Davidon to
variable metric methods for unconstrained optimization, because his brilliant original
work on achieving quadratic termination (Davidon, 1959) provided the DFP algorithm
that is also described in Fletcher and Powell (1963). Thus my career was helped greatly.
That algorithm achieves wonderful efficiency in comparison with the steepest descent
method, but convergence theorems for general smooth functions did not begin to appear
until about 1970, and then the objective function was assumed to be convex. | am now
particularly interested in convergence theorems or counter-examples for the algorithm
when the objective functioR(x), x€R", has the two properties

The setS = {x : F(x) <F(x,) } is bounded, and \} )
es

The functionF(x), x €S, has continuous second derivati

wherex, is a given initial vector of variables. These properties allow some major
departures from the convex case.

The existence of a convergence theorem or a counter-example depends on the line
search conditions of the iterations of the algorithm. The analysis is interesting, and
is more likely to be possible, if one restricts attention to “exact” line searches, which
means that each step-length is calculated to give a local minimum of the one-dimensional
line search objective function. Then the theorem of Dixon (1972) applies, stating the
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equivalence of other variable metric methods in the Broyden linear family to the DFP
algorithm.

We are going to address the following version of the DFP algorithm, when the number
of variables, namely, is only two. In the descriptiory, is the gradienV F(x,), andd,
is the search direction of theth iteration. The conditions (1) ensure that the operations
of each iteration are well-defined.

Step 0: Pick the starting point; e R", ann x n symmetric positive definite matri®,,
and a positive tolerance Setk to 1.
Step 1: Terminate the calculation if the condition

g, ll < 2)

is achieved.

Step 2: Otherwise, generate the search directipiby satisfyingBy d, = =9,

Step 3: Set the step-lengttik to the largest positive number such that the line search
function F(x,+ad,), « > 0, decreases monotonically fo<Qx < ak. Then let the
initial vector of variables for the next iteration Bg, ; = X+ dy.

Step 4: Calculate the symmetric matriBc,1 by the DFP formula. Thus the quasi-
Newton equation

Bicr1 X1 =) = 9,1 — 9 3

is obeyed in a way that ensures tig&t 1 is positive definite.
Step 5: Increasek by one, and then go back to Step 1.

This method is not suitable for practical computation wheés a general smooth ob-
jective function, because the calculatior®fin Step 3 would require an infinite amount
of work. Therefore we do not expect a convergence proof for the given algorithm to yield
immediate improvements to existing software. On the other hand, the DFP algorithm
has become of fundamental importance within the subject of nonlinear programming,
so we take the view that it is worthwhile to study some theoretical questions that may
help to explain its success.

We are going to prove that,lif=2 and if the conditions (1) hold, then the termination
condition (2) of the given algorithm is satisfied for a finite valu&ofhe details of the
DFP formula forBy,1 are irrelevant when there are only two variables. Indeed, Step 3
implies the property

T de=0  k=1,23,..., (4)

which is equivalent to the orthogonality B]:rll [ to Bk+1dy. Itfollows fromd,, ; =

- Bk‘+11 Gy q @NdXy, 1 — X = akdy thatd,,, is orthogonal toB1 (X 1 —X). Thus
equation (3) provides the first of the conditions

d1(Q,,~8) =0 and  dd,g,, <0 ®)

the other one being the descent property of the DFP algorithm gdihgris calculated.
Expression (5) defines the directiondyf, ; uniquely forn=2, the length ofi, , ; being
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unimportant to the theoretical analysis because of the choieg,af These remarks
allow the matrice8y, k=1, 2, 3, .. ., to be removed from the given version of the DFP
algorithm. Instead, we add to Step O tligtis any vector that satisfiej;fgl <0, we

abolish Step 2, and we replace Step 4 by the statemerd,thais any vector irR? that
has the properties (5), except that there is no need todpickif [ is zero.

The search directions of the conjugate gradient algorithm (Polak and Ribiére, 1969)
also satisfy the conditions (5). Therefore, becamse?2, our analysis applies to that
method too, but some counter-examples to its termination are presented by Powell
(1984). They include a two variable case when the step-length of every iteration gives
the relations

9, d=0 and  FXqp < Fx),  k=123..., (6)
but the line search functiofr(x, +a«d,), 0 < o < ag, is not required to decrease
monotonically. Therefore the monotonicity condition in Step 3 of the given algorithm
is important to our proof of termination.

The proof is divided into three sections, that lead to a contradiction under the
assumption that the inequality

9l > e, k=1,23,..., @)

holds for every positive integés, wheree is the positive tolerance that is set in Step 0.
Now Theorem 2 of Powell (1972) states that, if the sequegeek = 1,2,3,...,
converged tx,, say, therV F(x, ) would be zero. It follows from expression (7) that the
sequence has more than one limit point. The purpose of Sect. 2 is to deduce that all the
limit points ofx,, k=1, 2, 3, ..., are collinear, and thatthe directiahsk=1, 2, 3, .. .,
tend to be parallel to the straight line that contains the limit points. Therefore we assume
in Sects. 3 and 4, without loss of generality, that the convex hull of the limit points is the
straight line segment iR? that joins(—1, 0) to (1, 0), the segment being finite because
of the first part of expression (1).

Further, we introduce the notation

voo =[dFcyydy] L —1sx<1, (®)

for the derivative of the objective function in tlyedirection on the line segment that has
just been mentioned, whereandy are the components afe R?. One of the lemmas
of Sect. 2 establishes thatx), —1 < x <1, is bounded away from zero, and the final
result of Sect. 3 is the property

y(X)
v/ (X)

which is trivial wheny’(x) is zero, due tg/(x) # 0. The justification of this inequality
requires much work. Therefore the analysis is presented in a way that allows Sect. 4 to
be studied before the intricate part of Sect. 3.

The reader will find in Sect. 4 that the inequalities (7) and (9) lead to a contradiction,
which completes the proof of termination of the given algorithm when2. Finally,

‘x—i— >1, —1<x<1, (9)
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there are some remarks in Sect. 5 on whether or not the conditions (1) imply termination
for larger values oh.

The relevance of the analysis to algorithms that employ the PSB updating formula
(Powell, 1970), instead of a variable metric one, is questionable. The PSB update
achieves the quasi-Newton condition (3), but, bec@ise may not be positive definite,
the next trial steq, , ; is usually generated by a trust region method instead of being
given the valued, , ; = — Bk_+119k+1- If Bk+1 were nonsingular, then this value and the
line search of the previous iteration would provide the first of the conditions (5), as
mentioned already. The second of the conditions, however, may fail. For example, if
By 1 is calculated from the data

1 -1 0 10
won= (i) 8(3) 2am() a=() o

then PSB provides the matrix with diagonal elements of one and off-diagonal elements
of o. Thus singularity or loss of positive definiteness occurrif=1 or o] > 1,
respectively. FurthegkT +191 is positive in the casgr| > 1.

2. Proof of collinearity of the limit points

The assumption (7) implies that the number of iterations of the given algorithm is
infinite, and already we have noted that the sequeqc& = 1,2, 3, ..., has more
than one limit point. We consider the piecewise linear patRdrhat is constructed by
drawing the straight line from, to x, , ; for every positive integek, the results of this
section being derived from the asymptotic form of the patk-asco. We let7T c R?
denote the set of points of the asymptotic form, which are defined as follows. Because
Step 3 of the given algorithm ensures that the objective funétian, x € R?, decreases
monotonically on the path, the asymptotic form is contained in théxseF(x) = F,},
whereF, is the limit of the monotonic sequené&x,), k=1,2,3,.... Thereford is

an element off” if and only if F(t) is equal toF,, and there is an infinite sequence of
points on the path that convergeg tén particular,7 includes all the limit points of the
vectors of variableg,, k=1, 2,3, ... . The required properties Gf are presented as
lemmas in order to give some structure to the details of the analysis.

Lemma 1. 7 is closed.

Proof. Lett, be in the closure of” and lety be any positive number. We Iétn) be
an element of7” that satisfieg|t(n) —t,| < %77, and then we let(n) be a point on
the piecewise linear path that satisfiggn) —{(n)| < %77, which gives the condition
It(m) —t, |l <n. Therefore, ify runs through the valugd/2)!, j=1,2,3,..., thenthe
resultant sequence of poirtig)) converges ta, . Further, by combining the continuity
of F with t, in the closure off, we find F(t,) = F.. It follows thatt, is an element of
T as required.

O
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Lemma 2. 7 is connected.

Proof. If 7 were not connected, we could divide it into two paffsand 7, say, such
that 7 = 71 U T2, and such that; € 71 andt, € 72 imply [[t; —t,|| > §, wheres is
a positive constant. Further, we I8t andS» be the sets

Si={x:mint—x| <%} and S,={x:min|t—x||<2%s}, 1
1= x LeTl”‘ Xl=20} 2={x 1€7§||_ x|l <38} 11)

s0S1 andS; are also disjoint. LefC be the set of positive integers such that, for each
kin K, the straight line segment betwegp andx, ; reaches boti$; and S,. The
number of elements df is infinite, because otherwise the piecewise linear path would
not have a limit point inS1 and a limit point inSz, which are required by the choices of
71 and7>. Moreover, for eachk € IC, we can let, be a point on the straight line frorg
to x,, 1 that lies in the gap betwee$ andS,, which gives the propertyt, —t|| > %8,
t € 7. On the other hand, the limit points of the sequetig&k € I, are in7. This
contradiction completes the proof.

]

Lemma 3. For everyt € T, the gradientv F(t) is nonzero.

Proof. We assume thdt, € 7 satisfiesVF(t,) = 0, and we deduce a contradiction.
Lett;, j=1,2,3,..., be a sequence of points on the piecewise linear path that has
been mentioned that converges toFurther, for eactj, we letk(j) be a positive integer
such that; is on the line segment that joing ;) to X,;,,1. The conditionF(t,) = F.

implies that the sequence of integ&($), j =1,2, 3, ..., is divergent. Therefore, by
choosing a subsequencetof j =1,2,3, ..., if necessary, we assume without loss of
generality that the integekg j), j =1, 2,3, ..., increase strictly monotonically. Lét

be the setk(j) : j=1,2,3,...}. Then, also without loss of generality, we repldce
by a subset if necessary, so that the sequexgés: I, andx, , ;, ke I, both converge,
to X, andX, say, respectively. It follows that,, t, andX, are collinear, and thdt is

strictly betweerk, andX,, due to the conditions
IVE&E)I = e, IVFE)II =0 and VXl > e. 12)

Further, the line segment froR) to X, is a subset of, so the objective function takes
the valueF, throughout the line segment. We also assume without loss of generality
that the coordinates ¢f andx, are(0, 0) and(1, 0), respectively, and that the second
component olVF(X,) is positive, the first component 6fF(x) being zero for every
x on the line segment. It follows from expression (12) that we cax |die a point
betweert, andX, such thatVF(x,) has the component, %s). Thusx, is the point
(c, 0), for some numbet that satisfies the strict inequalities<@ < 1.

It also follows from the continuity oV F that we can le§ be a positive constant
such that the conditions

[dF(x,y)] <. 1=c 4 [dF(x,y)
dy Jog = 7 1+cC dy

hold for 0< 6 < §. Now, for every sufficiently largd in IC, the line segment from
Xy to X, 4 cuts both the line segment frotp= (0, 0) to (0, §) and the line segment

Bl

] > e (13)
(c,0)
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fromx, =(c, 0) to (c, 8). We leta, andb, be the points of intersection, and we let the
coordinates of these points 0@ «x) and(c, Bx), respectively, so we are changing the
meaning ofx, temporarily. Therefore the conditions (13) give the relations

1—
Fa) < F. + L& 1_+z°‘k and  F(by) > F. + Lepr. (14)
Further, Step 3 of the algorithm of Sect. 1 provid&s, ) > F(b,) > F.. These remarks
imply the bounds

0 < fk < ak(1-0)/(1+0), (15)

for sufficiently largek in K. Moreover, because the straight line througrandx,, ; is
also the straight line througly andb,, it has the equation

y=ak+ (X/0) (Bk—ak), (X Y)€R? (16)

so it intersects thr-axis at(&, 0), wheres, = ax ¢ / (ak—pk).- It follows from expression
(15) thatéy is in the intervak < & < 2(1+0).

Whenk € K tends to infinity, however, the-coordinate ok, ; converges to one,
so it becomes larger tha}(lJrc). Thus the line segment frogy to x, , ; cuts thex-axis
at a point where the objective function takes the vafyewhich is a contradiction.
Therefore the lemmais true.

]

The final lemma of this section requires a well-known result that is included in
Sect. 3 of Wolfe (1970), for instance. It is that the conditions (1) and (7) imply the

property
S r2, cof bk < oo, 17)
wheref is the angle betweeth, and—g, in the algorithm of Sect. 1.

Lemma 4. The points of7 are collinear.

Proof. We assume that the lemma is false. Therefore we cag leé a circle of
finite radiusy say, that containg’, and that includes at least three pointsjobn its
circumference. Further, because the lemmas so far implyJthata continuous curve
that has two or no end-points, we can fetbe an interior point off” that is on the
circumference of. We assume without loss of generality thagndV F(t,) have the
componentg0, 0) and (0, 1), respectively. The reason for mentioning the circle is to
deduce thatl °F(x, y)/dx? is nonzero ak=t,, wherex andy are still the components
of X. We letFxx(t,) denote this second derivative.

When|$| is very small, the value of at (8, 0) is F,+252Fxx(t,)+0(5?). It follows
from Fy(t,) =1 that the distance from the poid, —382Fyx(t,)) to T is 0(82). Hence
the radius of curvature of att, is 1/|Fxx(t,)|. Therefore, becausg is enclosed by
the circleC, we find the bound

[Fxx(t )l >1/r. (18)
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We write this inequality in the form
dTVEF® d| = [d]?/T, (19)

wheret andd aret, and any vector that is orthogonal ¥ (t, ), respectively.

It follows from the continuity of first and second derivatives IBf and from
VF(t,)#0, that|d TV 2F(t) d| is bounded below by a positive multiple §8 2, if
d is orthogonal tov F(x), wherex andt are any points that are sufficiently closet}o
In other words, there exists a neighbourhoot,pfV" say, such that, if andx are in\/,
and ifd T VF(x) is zero, then the condition

IdTV2F® dl > nd)? (20)

holds, where; is a positive constant.

Now the nonzero curvature gt att, implies that there exists a strictly increasing
sequence of positive integgfssuch thak,, ke IC, tends td, . Further, because nonzero
curvature occurs dte 7 if tis close tdt,, the distance$x,, ; — x|, ke K, converge to
zero. Thus the propertieg € N andx, ,, € NV are achieved for an infinite number of
values ofk. We are going to deduce from condition (20) that @os is bounded away
from zero for all of them, which implies that the left hand side of expression (17) is
infinite. Thus we will obtain a contradiction that completes the proof.

Let x, andx,,, be in V. We pickx = x,,; andd = d,, because then equation
(4) shows the required orthogonality dfto VF(x). We lett be on the line segment
from x, to x,, 1, beginning witht = x, ;. Now Step 3 of the given algorithm implies
that the line search functioR(x, +«d,), « > 0, has a nonnegative second deriva-
tive at @ = ak, which is the conditiorr_ikTVZF(ng) dy > 0. Therefore the modu-
lus signs can be removed from the left hand side of expression (20), which is valid for
everyt in A/ asV 2F is continuous.

We combine condition (20) for the range of valueg wfith the elementary identity

1
Y1 %= / VAR + 0 (X1 =Xkl K1 —X0) A6, (21)

noting that the identity gives the bound
19,1 =Gl = € 1%Xks =Xl (22)

wherec is a positive constant. Specifically, we form the scalar product of both sides
of equation (21) wittd,, keeping the scalar product on the right hand side under the
integral sign. It follows from condition (20) that the new integrand is bounded below by
Al X1 =Xl @SXy, 1 —X is @ positive multiple ofi,. Thus we deduce the relation

A (G, ;=9 = 7 Gl X1 =il > (1/0) el 9, ,; — G, I (23)

the last assertion being due to the bound (22).

Inequality (23) shows that the cosine of the angle betv@eandgkﬂ—gk is at
leastn/c. Moreover, equations (4) and (5) state tggl andd, , ; are orthogonal tal,
andgk+l—gk, respectively, and there are only two variables. Therefore the modulus of
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the cosine of the angle betweép, ; andngrl is the same as the modulus of the cosine
of the angle betweedh, andgk+l—gk. These remarks imply the inequalijtyosfy+1| >
n/c for an infinite number of values df, which gives the required contradiction to
expression (17).

]

As mentioned already, the analysis of this section allows us to assume without
loss of generality thal” is the straight line segment I®? that joins(—1, 0) to (1, 0).
Then the conditiorF(t) = F,., t € 7, and Lemma 3, imply thaV F(t) is a nonzero
multiple of the second coordinate direction for eveig 7. We assume, also without
loss of generality, that the multiple is positive. Thie&,) > F., k=1,2,3,..., and
the definition of7", cause the second componenkpto be positive for all sufficiently
largek, which allows us to assume this property for evkryrherefore, regarding the
x-axis as horizontal iiR?, the sequence, k=1, 2,3, ..., approache§ from above.
Further, becausg, tends to be vertical, it follows from the bound (17) that the search
directionsd,, k=1, 2, 3, ..., tend to be horizontal. In other words, the search directions
become parallel tg in the Iimit k— oo, which is one of the assertions of Sect. 1.

3. Further analysis

Throughout the remainder of the paper, we let the scalings of the search directions have
the property

dig =-lgll>. k=123, ..., (24)

which does not lose generality, and which agrees with the second part of expression (5).
It follows from n= 2 and equation (4) that, fdr> 2, d, has the form—g +Brdy_1.
wheregg € R is determined by the first part of expression (5). Thus we derlve the formula

9 (99 o) 9 (99, )
kO -1 g =g+ 2k _szl d . k=2 (25
= g, |
the last identity being a consequence of equations (4) and (24).
Moreover, the scaling (24) implies that the égderm of inequality (17) has the
value

costk = g, I / lldll, k=1,23,.... (26)
Thus inequality (17) would contradict the assumption (7) if an infinite subsequence of
the norms|d, ||, k=1, 2,3, ..., were bounded. Therefore we may add the property
ldyll > c0 as k— oo 27)

to the conditions that have been noted already.
The limit (27) and equation (25) provide some useful relations. Firstly, because the
assumptions (1) imply that the gradieg&sk: 1,2, 3, ..., arebounded, eveny being
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in S, they show thad, tends to be a multiple ad,_, ask — oo, which confirms the
last remark of Sect. 2. They also give the condition

9 GG )

Il = (1+o) | S 2—5
k-1

Ide_sl.  k=2.3.4,..., (28)

where H-0(1) denotes a factor that tends to onekas oco. The sign of the term inside
the modulus signs of condition (28) is going to be important. Therefore we introduce
the disjoint sets

Ksame= {k : Qz (gk_gk_l) > 0} and Kopp = {k : Qz (gk_gk_l) < 0}' (29)

Thusk € KCsame OF k € Kopp correspond to the cases when the directionl,ofends to
be the same as or opposite to the directiod,of;, respectively. Ifgl 9,—9, ,) were
zero, then formula (25) would reduce dp = —g, , which is not allowed by the limit
(27) for sufficiently largek. Therefore, by deleting a finite number of iterations from
the beginning of the calculation if necessary, we ensure that every iteration number is
in one of the sets (29). Moreover, the analysis of the previous section impligsdfpat
has an infinite number of elements.
Equations (28) and (29) and the Cauchy—Schwarz inequality imply the bound

9, |l g, 12
dJ < (14+0(1 =k _ =K d,
Idgll < (14+0(1)) <”9k1” ||9k1||2) Il
19,1\ lide_4]l
= lg Il (1+oM) [1— —=—) =2 keKopp (30)
lg, Il llg,_,I

Moreover, the facto(l— ||9k||/||9k71||) is no greater than a constant that is strictly less
than one, due to assumption (7) and the boundedneﬁag(g{”. It follows from the
meaning of H-0(1) that there exists a constant integgisuch that the condition

Il /11 < b 11l /G I KEKopp k=ko, (31)

is achieved.

The contradiction that will complete our work will come from an extension of
the property (31). Specifically, letting be any sufficiently large integer iKopp, and
letting £(k) be the greatest element &k, that is less thaik, it will be proved that
||gk||/||9k|| < ||gj ||/||9j | is satisfied for every integer in the interval[£(k), k—1].
Therefore, assuming that the elementsk@f, are arranged in ascending order, and
choosingj = ¢(k), the sequenc¢gk||/||9k||, k € Kopp, Is monotonically decreasing for
sufficiently largek. Thus the elements of the sequence are uniformly bounded, which
implies that the normgd, ||, k € Kopp, are uniformly bounded too. On the other hand,
our assumptions have provided the limit (27), which is the required contradiction.

The proof of inequality (9) occupies the remainder of this section, because it is
needed by the method that gives the relault_ip||/||gk|| < /||gj ||/||9j I, mentioned in

the previous paragraph. The reader is advised to study Sect. 4 first, however, assuming
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that condition (9) is true. Thus a major interruption to the main argument is avoided,
and the motivation for the following analysis is strengthened.

Again the analysis is divided into pieces by the use of lemmas. We employ the
notation

d(X) = X+ y(X) /7' (X), —1<x<1, (32)

for the expression inside the modulus signs of inequality (9). We (e} be +oo if
y'(X) is zero, because we know from Sect. 2 that), —1<x <1, is positive. We will
establish the assertion (9) by supposing that it fails, and deducing a contradiction.

Lemma 5. Ifinequality (9) does not hold, then we can assume without loss of generality
that there exist numbeesandb, satisfying—1<a<b<1, and having the properties

—l<¢p@<1 and y' (x>0, a<x<bh. (33)
Further, there exists, in the set
X ={x:b<x<l y'(x)>0} (34)

such thatp(x,) =inf{¢p(x) : X X'} is achieved, and the choicesa&ndb can provide
the strict inequalityp(a) < ¢(Xy).

Proof. If condition (9) fails whenx = &, say, then it fails for everx in [—1, 1] that
is sufficiently close tad, becauses andy’ are continuous, and because fix) :
—1 < x < 1} = ymin, Say, is positive. Therefore we can Eetbe an interior point of
the interval[—1, 1]. Further, the possibility of replacingby —x throughout the paper
allowsy’(&) > 0 to be assumed without loss of generality. Hence, by puiiidy < 1
anda> —1 in the definition (32), we find the bound (&) > %ymm. Thus the conditions
a<x<landy’(x)> %ymm are satisfied wher=2a.

We let A be the set of values of that minimize¢(x) subject to these conditions,
and then we le& be the greatest elementdf The setA is well-defined and compact,
due to the continuity of andy’, soais well-defined too. This choice and the definition
(32) giveg(a) < ¢(8) <1 andgp(a) > a>a> —1, as required. Further, we Ibtbe any
number in the open intervah, 1) such that the second part of expression (33) is also
achieved, which is easy becays&a) is positive and/’ is continuous.

When considering the existenceaf, the conditiony(x) > ymin > 0, -1 <x <1,
allows us to restrict attention to values»& X such that/’(x) is bounded away from
zero. Thusp is continuous, so the existencexqffollows from the compactness of the
set (34). Ifp(a) < ¢(x,) failed, thenx, would be a point irfb, 1] satisfyingy ' (x,) > 0
and¢(X,) < ¢(a). Further, the last condition would giv&x,)/y'(x,) < 1+¢(@) < 2,
which would implyy " (x,) > %ymm. It follows from x, > b > a that the properties of,
would contradict our choice @& Therefore the proof is complete.

O

There are four more lemmas in this section, and we continue to assume the failure
of condition (9). Therefore we let the numbers andx, be as in Lemma 5. Further,
we let/C, be the set of integetssuch thaixx > b andxm) < a are satisfied, wheng
andxm are the first components gf andx,, respectivelym(k) being the greatest
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integer less thak such thatxm, is not in the open intervak, b). In other words, the
strip {(x, y) € R? : a< x < b} is crossed by the piecewise linear path that joins the
pointsx;, m(k) < j <k, anda<x; <bholds if j is any integer betweem(k) andk. It
follows from the work of Sect. 2 thdt, has an infinite number of elements. We will
find, however, that the statements of Lemma 5 exckuilem K, whenk is sufficiently
large, which is the contradiction that will establish inequality (9).
Ourargumentaddressesthe pointwhere the straight line thsguglandx, cuts the
x-axis inR? for certain integerk. We let this point b&&, 0) throughout the remainder
of this section. Lemma 7 will provide a useful relation betwgeand¢(xk). The proof
of that lemma and other parts of our analysis require the following expressigh-{od.

Lemma 6. Let X = (X, y) be any point of the sef of the conditions (1) such that
—1<x<1holds. TherV F(x) has the form

(39)

YFO0 - (yy <x>+o(y>)’

Y +0(y)

wherey is still the derivative (8), where(y) is a term whose ratio ty tends to zero
asy — 0, and whereO(y) is a term whose modulus is bounded above by a constant
multiple of|y|.

Proof. We are giverk=(x, y), and we letk be the poin{x, 0). The first component of
VF(X) is zero becausE is constant on the straight line segment freai, 0) to (1, 0),

and the second componenjix) by the definition (8). Therefore it is sufficient to show
that the first and second components of the differ&neex)—V F(X) areyy ' (X)+0(y)
andO(y), respectively. We infer the latter condition from the boundedness of second
derivatives on compact sets and from the identity- X|| = |y|. Furthermore, the first
condition can be deduced from the elementary relation

VFX)—VF®) = V) (X—%) + o(|x—K). (36)

Specifically, because—X is the vector0, y) € R?, the first component of the product
V2F(X) (x—X) is exactlyy 2F(X)/ox dy = yy'(X), so the identity|x —X|| = |y| gives
the required result.

]

Lemma 7. Letk be any integer such that the first and second components of the search
directiond, _, are positive and negative, respectively, and gt 0) be the coordinates

of the point where the straight line througfy_; andx, intersects thex-axis. If& < p

holds for anyp € R that is independent &, then& has the property

& = ¢(Xx) +0(1), (37)

whereo(1) is still a term that tends to zero &s— oo. Further,& < p impliesy ’(xx) >0
for sufficiently largek.
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Proof. Straightforward algebra gives the formula
&k = Xk — Yk (Xk—Xk-1)/(Yk— Yk—1)- (38)

wherex, = (X, Yk) andx,_; = (Xk—1, Yk—1). Furthermore, because equation (4) shows
thatd, _, is orthogonal tdv F(x, ), Lemma 6 provides the relation

Xe—Xe-1 y(Xk) + O(Yk) _ y(Xk) +0(1)
Yk— Yk—1 Yy (Xk) + 0(Yk) Vi [y (X) +o(1)]’

the last equation being due {@ — 0 ask — oo, which is one of the conclusions of
Sect. 2. Thereforg has the form

& = X+ [y(x) +o(D1/ [y (X) + o(D)]. (40)

Now the conditions of the lemma wityx > 0 imply xx < & < p, SO, usingy(xx) >
vmin > 0, we deduce from expression (40) thd{xk) is bounded below by a positive
constant for sufficiently largk. It follows that the right hand side of equation (40) has
the formxx+y(xk) /¥’ (xk)+0(1). Thus the definition (32) givek = ¢(xk)+0(1), which
completes the proof of condition (37). This proofincludes the assertiong) > 0 when
k is sufficiently large. Therefore the last statement of the lemma is also true.

(39)

[}

For eacltk e K., we consider the numbegs, m(k)+1 < j <k, wherek, andm(k)
are defined after the proof of Lemma 5. These definitions proigig < a < Xm+1
andxk-1 < b < X, so the first components af, ) andd,_, are positive. It will be
shown next that we may assume without loss of generality that their second components
are negative.

We let(a, y) be the point where the line segment frogy ) to X1 CUtsx=a.
The line search of the algorithm of Sect. 1 satisr_ﬂiﬁ&)ZF(a, y) <0, whichis combined
with another application of Lemma 6. Specifically, lettaiganddy be the components
of d» @nd using the form (35) o7 F(a, ), we find the inequality

dy[Yy' (@ + o(y)] + dy[y@ + O] < 0. (41)

Now y is positive, and.(a) andy ’(a) are positive constants. It follows frody > 0 that

dy <0 occurs for sufficiently largk. Therefore, by deleting some early iterations of the
algorithm if necessary, we obtaily < 0, ke Iy, as claimed. Further, by analogy with
equations (38) and (39), we deduce the bounds

a<émrsl=a—ydx/dy) <a+yy@+0o0ml/[yy'@ +o], (42)
which can be written in the form
a<ému+1 < ¢o@ +o(l), ke .. (43)

We have begun to prove that the second componeth of is negative foik € IC,.
Indeed, the previous paragraph treats the possibiiity) = k— 1. Otherwise, when
m(k) < k—2 occurs, we have < xx_1 < b. Thereforey’(xk_1) > y/i, IS satisfied,
wherey,;, is the constant mify’'(x) : a < x < b}, which is positive due to Lemma 5.
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Hence, remembering1 > 0 andy(Xk—1) > Ymin > 0, we deduce from equation (35)
that both components 8fF(x,_,) are positive for sufficiently largle We avoid the last
proviso by deleting some early iterations of the algorithm if necessary. It follows from
the descent conditiog\f_lyF(gkfl) <0, and from the positivity of the first component
of d,_4, that the second componentdyf , is negative for everkin K,.

Therefore Lemma 7 is applicable foe IC,.. Hence, letting be a constant such that
0> p(X,), we find the bound

& = min[¢(xk)+0(1), pl, ke .. (44)

Now, whenég < p occurs, then the last statement of Lemma 7 provjd&gy) > O for
sufficiently largek. It follows from xi > b thatx, is in the set (34), so the choice xf
giveso(X,) < ¢(xk). Hence condition (44) and> ¢(x,) imply that&g has the property

& = d(X) +0(1), kek,. (45)

The contradiction that will complete the work of this section is suggested by the
relations (43) and (45) whem(k) is k— 1. We see that in this casg is bounded
above byy(a)+0(1) and is bounded below hy(x,)+0(1). On the other hand, Lemma5
establishes the strictinequalitya) < ¢(x,). Therefore the value(k) =k—1 is excluded
for sufficiently largek in K. The analysis of the remaining situation(k) < k—2 will
be assisted by the following lemma.

Lemma 8. Let j be an integer such thai < xj < b andxj_1 < xj are satisfied. If

j is sufficiently large, and iff is in the setCsame Of expression (29), then the strict
inequalityéj;1 <&j is achieved. Moreover, if is sufficiently large, then the conditions
a<Xxj_1<Xj<bare sufficient forj to be in the sesame

Proof. By applying an argumentin the paragraph after expression (43), we deduce from
a<xj < b that both components cgj = VF(x;) are positive for sufficiently largg.
Therefore the line search conditicnggjf1 = 0 implies that the two components of
gj,l have opposite signs, the first component being positive dug to< Xj. Thusé;
is well-defined and satisfi&g > xj.

We also know from the work of Sect. 2 that, for largethe directions ofi;_; and

gj tend to be parallel to thg-axis in R2. Hencexj_1 < Xj and j € KsameCause both
directions to be near the positive coordinate direciiby0). Further, the conditions
ngdjf1 =0 andnggj <0 hold for everyj, andg,/||g || tends to(0, 1) as j — oo.

Therefore, ifLj_1 andLj are the half-lines ifR? that begin ax; and that have the
directionsd;_; andd;, respectively, therLj_1 can be mapped inth; by a small
clockwise rotation abougj. Now y; > 0 implies that a clockwise rotation df;j_,
would decrease the first coordinate of the point whieje; cuts thex-axis. Thus,
becausgé;, 0) and (¢j41, 0) are the points of intersection &fj_1 and L with the
x-axis, the required inequaliy 11 <§; is achieved.

In order to prove the other statement of the lemma, we assusg _1 < Xj <b,
and we seek the sign of the scalar prodg?i(gj _9171)' We recall the elementary
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identity

1
9, —gj_1=/0 VAR ()1 + 01X, —X)_1])(X; —X;_) db. (46)

Because we will find that the scalar product is of the same magnitude-as;j 1/, we
employ the notatiow(|x; —x;j_1|) for terms whose ratio t{xj —xj_1| tends to zero as
j — oo. In particular, the direction cg]- _1 provides the condition

Xj = Xj_1 = Xj — Xj_1 + 0(|Xj —=Xj-1]), (47)
wheregjf1 andgj are the pointgx;_1, 0) and(xj, 0), respectively. Further, because
yj—1 andyj tend to zero ag — oo, we write expression (46) in the form

1
9~ 9]-_1=/0 V2F(X]-_1 + 018 —%;_11) (%] —&;_1) d0 + o(|xj —xj-1])
= VF(&;) — VF(X;_1) + o(IXj —=Xj-1), (48)

where the last line is elementary. Moreovg]r,tends to have the components 0 and
y(Xj) asj — oo. Thus condition (48) gives the equation

9/(9;9;_) = YX)) X)) = ¥(Xj—D] + 01} =X} 1)), (49)

which is valid for all magnitudes ofx; —x;j_1| that are allowed by the assumptions
a<xj_1<Xxj<b.

Now these assumptions imply thaix;)—y(xj_1) is bounded below by the product
(Xj —Xj—1) min{y'(X) : a<x <b}. Therefore equation (49) provides the inequality

979, =9;_p) = Xj=Xj-1) [Ymin¥in +0(D)]. (50)

whereymin andy,, are positive constants that have been defined already. It follows that
j is in the setCsamefor sufficiently largej, which completes the proof of the lemma.
o

Next we apply the lemma to the case when, in additiok¢dC, andm(k) <k—2,
the iteration numbem(k)+1 is in the sefCsame We recall that, ifj satisfiesxj_1 < X;
and j € Ksame thenxj < xj4+1 occurs. Thus the definition ah(k) and the choice
j =m(K)+1 providexmik <a< Xj < Xj+1. Further, the last part of Lemma 8 shows
that, if Xj+1 < b holds and ifj is increased by one, then the ngws also in/Csame
which givesa < xj < X;1 for the newj. By employing these properties recursively for
additions of one tg until xj;1>Dbis obtained, we deduce the conditions

Xmk) < &< Xm+1 < -+ < Xk—1 < b < Xk. (51)

It follows from the first part of Lemma 8 thdt 11 < £; holds for every integef in
the interval[m(k) +1, k— 1], so expression (43) impliek < ¢(a) +0(1). Hence the
inequalities (45) angh(a) < ¢(x,) exclude all large values ¢fas before. It remains to
exclude large values d&fin /C,, satisfyingm(k) <k—2, such tham(k)+1 is an element
of Kopp-
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In this case the definitions of(k) andiCopp ProvideXmp < a< Xm)+2 < Xmd+1 < b.
Most of our analysis of this situation will be presented in Lemma 9, whererres-
ponds tom(k) +2. Specifically, assuming théatis sufficiently large, it will be proved
thatm(k)+2 is in fCopp, Which givesSXmg+2 < Xma+3 < Ema+3- It will also be proved
that&m)+3 has the propert§ima+3 < Emu+1- If Xma+3 > b occurs, therk is equal to
m(k)+ 3. Otherwise we have < Xm+2 < Xm(+3 < b, so the recursive argument of
the previous paragraph allows expression (51) to be replaced by the conditions

Xmk) < @< Xm42 < -+ < Xk—1 < b < Xk. (52)

Further, using the first part of Lemma 8 again, we ffack &m)+3. Thereforeg, <
Emao+3 occurs for all the integerk that are being considered. Thus the assertion
Emio+3 < Em+1 Of the next lemma and expression (43) imgly< ¢(a)+o(1). It
follows yet again that the bound (45) prevekfsom becoming large, which completes

the contradiction of the hypothesis that the number of elements iis infinite. We

have now established the required condition (9), assuming that Lemma 9 is true. Its
proof is the last task of this section.

Lemma 9. Let j be an integer that satisfie§_> <Xxj_1 anda<xj<xj_1<b.If j is
sufficiently large, then the inequalitie$ < Xj+1 <£j4+1 <£&j_1 are achieved.

Proof. The conditionsa < xj_1 < xj < b are assumed in the paragraph that includes
equations (46) to (49), but it is elementary that the derivation of these equations is also
valid for the current conditiona < xj < Xj_1 <b, because the search directions still
tend to be parallel to the-axis. Further, the analogue of inequality (50) is the property

9/ (9, ~9;_p) = Xj=Xj—1) [Ymin¥min+0(L)]. (53)

because now the sign &f —xj_1 is negative. Thug is in the setCqpp Whenj is large.
It follows from xj < xj_1 thatxj < X1 occurs as required.

Therefore we assumge KCopp for the remainder of the proof. The argument at the
beginning of the proof of Lemma 8, withreplaced byj — 1, shows that we may also
assume thagj_; is well-defined and satisfieg_1 > xj_1. Moreover, we letj be at
least the constatkp of condition (31), in order to have the inequality

g,/ 191 = g 1 /11yl (54)

Thus the identity (26) implie8j <6;_1, whereé is still the acute angle between the
directionsd, and—gk for every positive integek. The angle®j_1 andg; are shown in
Fig. 1. B

Let Lk be the straight line througky, andx, , , fork=j—2, j—1, j. Then equation
(4) states thaf&gj 1 and—gj are orthogonal td. j_» andL j_1, respectively. Thus the

figure provides the identities
V-1t 0j—1=yj+0j = 7/2, (55)

wherey is the small acute angle betwekp_; andLy for k=j—1, j. Therefore the
conclusiondj < 6j_1 of the previous paragraph givel§ > ¥j_1. Hence we deduce
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Xj—2

Xj+1

Fig. 1. The angle®; _1 ando;

from the figure that eithek j_ is parallel toL or that these lines meet at a point
whose first coordinate is less thap In other words, the straight line extension from
x; throughx; ,; does not meet j_,. This extension, however, has to leave the region
of R? that is belowL j_», above thex-axis, and to the right of the ling = Xxj41. It
follows thatL j cuts thex-axis at a point that is to the right 0%j 4.1, 0) and to the left of
(¢j—1, 0). Further, this point ig£j 1, 0) according to the definition afj.1. Therefore
&j41 satisfiexj 11 <&j11<£&j_1. The analysis of this section is complete.

]

4. The convergence theorem

The method that will be used to complete the analysis is indicated in the paragraph that
follows expression (31). Therefore we lebe a sufficiently large element &, and

we let¢(K) be the greatest element/Gf,p that is less thak, as before. If is anintegerin

the interval[£(k), k—2], then our justification of the conditiqu||/||9k|| < ||gj ||/||9j I

that has been mentioned requires the following lemma. The only application of the
bound (9) occurs in its proof.

Lemma 10. Let j andk be chosen in the way just described, andddie the ratio
p=min{y(x) : —1<x<1}/maxy(x) : —1<x<1]}, (56)

wherey is the positive, continuous function (8). Then the inequality

190\ (; - 18d ) _ 1+ow )
Ig;] lg ) = 1+0p

holds, wherel+0(1) still denotes a number that tends to onekas cc.

Proof. The definition (29) ofCopp andk € Kopp imply |19, | < g, , II. Thus inequality
(57) is achieved Whegj satisfies||gk_l||/||gj | < 1+ 1+ p)~L. Therefore for the
remainder of the proof we can assume that this property fails, so we have the condition

191l > g, I+ QA+o) Mg Il > g, | + A+p) e, (58)
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the last inequality being due to assumption (7). Moreover, the "52!'81”/”9]- I

is bounded above by/e, where M is the constant Slmgi Ih:i=123,...}.
Thus inequality (57) is also achievedg( satisfies - g l/1g, I < A+p1
(¢/M). Therefore we can assume that this property fails too, which gives the condi-
tion

19, > g + A+p)~Ye/M) g, Il > llg, | + A+p)~2eZ/M).  (59)

We relate inequality (57) to the derivative (8) by lettifg, 0), (xk—1, 0) and(xk, 0)
be the points on the line segment fram1, 0) to (1, 0) in R? that are closest ta;,
X1 andx,, respectively. Then, because the calculated vectors of variables tend to the
line segment, and because the first and second componénks afe zero and positive
there, we have the formulae

Ig. Il = (1+o(D)) y(xi), i € {j, k=1, k}. (60)

Moreover, expressions (58) and (59) show tmg&71||/||gj | and g ll/llg, ,II are
bounded away from one. It follows that assertion (57) is true if we establish the condition

(V(Xk—l) B 1> (1_ y(Xk) ) - 1+0(1) (61)
y(Xj) Y(Xk—1) 1+p

Another advantage of expressions (58) and (59) is that they ensurejthat,_1|
and|xx—1— Xk| are bounded away from zero las> co. Further, because the choice of
j causes every integer in the interyah-1, k— 1] to be in the seitCsame the component
Xk—1 is strictly betweerx; andx for sufficiently largek. Therefore symmetry allows
the assumption

—1<Xj <Xk—1 <Xk <1 (62)

The proof will be completed by deducing inequality (61) from this assumption and the

property (9).
It is elementary that we can write expression (9) in the form

—“1/A+x) <y’ /yx) < 1/(1-X), —-1<x<1. (63)

Hence, ifa andb are any numbers that satisfyl < a < b < 1, integration over the
intervala<x <b gives the bounds

—log(1+b) + log(1+a) < log(y(b)) — log(y(a)) < —log(1—b) + log(1—a), (64)
which are equivalent to the conditions
(14+a)/ (1+b) = y(b) / (@ = (1-a)/ (1-Db), —l<a<b<1l.  (65)
It follows from the ordering (62) that the left hand inequalities of the expression

yOk-1) = [A=x))/A—x-D]¥(Xj) = 2y(Xj) / (1—Xk-1)
[(A4+x0)/A+X-D] y(X) = 2y(X) / (14Xk—-1)

A

(66)

IA

Y(Xk-1)
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are achieved, and the right hand inequalities are dug to—1 andxyx < 1. Thus we
deduce the property

2y(x)) 2V(Xk)j| 3
1—Xk—1 14Xk-1

2y(Xj) 2y(Xx)
1-0° 1+90

< max min
—1<6<1

y(Xk-1) < min[ } . (67)
Further,6 maximizes the right hand side of this bound when the two terms inside the
square brackets are equal, &stakes the valugy(xk) — y(xj)1/ [y(Xx) +y(Xj)]. Thus
condition (67) provides the second of the inequalities

maxy(X;j), y(x] < y(Xk-1) < ¥(Xj) + y(X), (68)

the first of them being due to the assumptions (58) and (59) for large etkough
Now the left hand side of the required bound (61) increases monotonicalkxif;)
runs through the interval (68), so we find the relation

<7/(Xk—l) _1> (1_ (X > Y v(X)) (X

= . (69
y(Xj) y(Xk-1) /) — v(Xj) v(Xj)+y(Xk) Y(Xj) +y(X) (69)

Further, the definition (56) implies that the right hand side of this expression is at most
(14 p)~L. Therefore the lemma is true.

O

Next we establish the conditiq@k||/||gk|| < ||gj ”/”91 I, £(k) < j <k—2, that is the
subject of the opening paragraph of this section.

Lemma 11. There exists a constant integler such that, ifj andk are chosen as in
Lemma 10, thek> k; implies the inequality

Il /19, I < lid; 1/ g, Il (70)

Proof. The choices of andk are such that the integejs-1, j+2,...,k—1are allin
the setlCsame Therefore equation (28) gives the relation

2 T 2
Idil_ g1 2=(1+0(1)) (1— 2 9”)} Il skt

Id_l — lg_,l g1 )| = g 7
(7)

for sufficiently largek, where the last part depends on the remark that the gradients tend
to be multiples of the second coordinate vector, each multiplier being bounded above
and bounded away from zero. We form the product 0wétthe left and right hand sides

of expression (71), except that we retain the middle term of the expression instead of
the right hand term for one value fThus we find the condition

2 T
Ideall _ 19 l” L =(1+o(1)) (1— ki 9”)}. (72)

IId; I lg; 17 j+1sisk-1 g, 12

If the last term in braces were at maegtM, whereM is still the constant sqmgi Il -
i=1,2,3,...}, then condition (72) would impljd, 4 I/1ld; |l < ||gk71||/||gj |, which
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is the same aﬁgk_l||/||gk_l|| < ||gj ||/||9j |I. Further, the property (31) would give

the required result (70). Therefore, for the remainder of the proof, we may make the
assumption

(1+0) (1-¢Tg_,/lIgI?) = e/M,  j+1=i=k-1 (73)

This assumption ang_leQF1 —lg.I1lg,_, Il i — oo, provide the relations

(1+0D) (1-gTg_, /g 1) = (1+o) (1 - g1/l )
(1+0D) (1= lg_, I/ Ig;11) = &/M . (74
lg_4ll /g1l = (1+0(D)(1-e/M) < (1-Fe/M)
wheni is any integer in[j + 1, k— 1] andk is sufficiently large, the first part of the

third property being a reformulation of the second one. By combining the first parts of
expressions (71) and (74), we deduce the equation

[y — {(1+o(1))( EL —1)}, jHlsisk-1. (75)

Idi_qll — lig; i g, 4l

Then we form the product over all valuesicdgain. The product of theto(1) terms

is another 3-o(1) term, becausk— | is bounded above for largedue to the following

three remarks. Firstly, the step-lengths —x;_, I, j +1<i <k—1, are bounded away
from zero due to the third line of expression (74), secondly the directions of these steps
tend to be the same due to the choicg odind thirdly the length of the line segmeént

is finite. Thus equation (75) provides the relation

lIdy g1 %= [ lgl
—= = (1+o) ——— ] -1). (76)
Id; I gl 251 \Igi

Now it is elementary that, i € R andb € R satisfya > 1 andb > 1, then
(a—1)(b—1) <ab—1 holds, which is helpful because, according to expression (74), all
of the ratios||gi ”/”%71” exceed one. By applying this remark recursively to the terms
of the product on the right of equation (76) when there is more than one term, we find

the condition
Iy 19 oIl (1G]
< (140(1) -1]). 77
Id; 1 ( ) Ig, 1\ Tg;l 7

Moreover, inequality (30) gives the bound

I Iy g,
B < (140(D) L (1 =) 78
g = o™ g 7 < g I (78)



300 M.J.D. Powell

By combining expressions (77) and (78), we obtain the property

dill (g, Il 9, |l
”ng < (1+0(1)) ”—J ” ( =k-1" 1) (1_ gk ) (79)
9, IIQJ- I IIQJ- I 19, 4l
It follows from Lemma 10 that inequality (70) is achieved for sufficiently lakge
because is a positive constant. The proof is complete.

[}

It remains to apply the argument in the paragraph after inequality (31). Specifically,
the bound (31) wheA(k) =k—1, and Lemma 11 whef{k) <k—2, provide the condition

Il /Gy =< i I/ 1G4, I k€Kopp, k=maxko, ki, (80)

where (k) is still the greatest element &y, that is less thark. Thus the ratios
Idyll/llg, I, ke Kopp, are uniformly bounded, which contradicts the limit (27), because
the num lBer of elements iGypp is infinite. Therefore we have established the following
result.

Theorem 1. Let the DFP algorithm with exact line searches, as described in Sect. 1, be
applied to an objective function of only two variables that has the properties (1). Then
the termination condition (2) is achieved for some finite intéger

]

5. More than two variables

The work of this paper has made a small contribution to knowledge about properties
of the DFP algorithm with exact line searches. We know after Sect. 2 that, if the
gradients are bounded away from zero, tfienvhich is the limit of the piecewise linear
path that joins the calculated vectors of variables, is a straight line segment. Further,
it is important to the subsequent analysis that the path is confined to one sjde of
This remark, however, depends on the assumption that the number of variables of the
calculation is only two.

For more variables, the limiting path may still be a straight line segment, but infinite
subsequences of, k=1,2,3,..., can occur on all sides of, because in three or
more dimensions there is room for a piecewise linear path to move from one side to
the opposite side of a straight line without intersecting it. Thus it may be possible for
||gk|| >¢g,k=1,2,3,...,to0hold forn> 3, wheres is a positive constant.

Therefore Yu-hong Dai (private communications) and the author have put much
effort into trying to construct an =3 example, where the conditions (1) are satisfied,
and where no iteration of the algorithm of Sect. 1 achieves the termination condition
||g | <& for some prescribed> 0. They restrict attention to the case when the distance
from X, to the first coordinate axis tends to zerdkas oo. Further, lettingx,)j denote
the j-th component ok,, they relatex, , , to x, by the equations

Kyp)1 = (X1 and (X o) =C(X)j» j=2,3,...,n, (81)
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for every iteration numbek, wheret¢ andc are a small positive integer and a constant
from the interval O< ¢ < 1, respectively. Thus the sequence of calculated vectors of
variables is defined by the choicestot andx,, k=1, 2, ..., £. Then, usinq=3, the
gradientsgk, k=1,23,...,are deduced from the properties

9 X 1) =0 and  (X;;1-X) (g —g_,) =0 (82)

of the DFP algorithm with exact line searches, except that all the gradients can be scaled
by a single constant. Examples of this kind are presented by Powell (1984) for the
conjugate gradient method.

Whenn = 3, however, the need for the example to be consistent with the use of
the DFP formula provides a substantial difference from the conjugate gradient method.
This condition can be expressedésonlinear equality constraints on the parameters
of the example. Moreover, the line search of the algorithm of Sect. 1 imposes some
nonlinear inequality constraints on the parameters that are analogous to ones that occur
in Powell (1984). Thus the construction of the required example is expressed as a search
for a feasible point of a nonlinear programming problem.

Several months of work on this problem have been unsuccessful, although Dai and
Powell are very close to achieving a solution. Specifically, a feasible point can be found
if an arbitrarily small relative tolerance is allowed in one of the line search conditions,
and if all the other constraints have to hold. A suitable example does not occur in the
limit as the tolerance tends to zero, because then two of the first compamrgnts
k=1,2,...,¢, tend to coincide.

A paper will not be written yet on that work, because there are still many unexplored
ways of choosing the parameters that may give a feasible point. Indeed, it is hoped that
further research will expose an=3 optimization calculation, where the algorithm of
Sect. 1 does not terminate, and where the conditions (81) are satisfied. The discovery
of such a calculation would provide a nice contrast to the conclusions of our lengthy
analysis of a DFP algorithm with exact line searches, when there are only two variables.
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