
Digital Object Identifier (DOI) 10.1007/s101070000147

Math. Program., Ser. B 87: 281–301 (2000)

M.J.D. Powell

On the convergence of the DFP algorithm for
unconstrained optimization when there are only
two variables

This paper is dedicated to William C. Davidon, and commemorates his 70th birthday.

Received: June 16, 1999 / Accepted: December 24, 1999
Published online March 15, 2000 – Springer-Verlag 2000

Abstract. Let the DFP algorithm for unconstrained optimization be applied to an objective function that has
continuous second derivatives and bounded level sets, where each line search finds the first local minimum.
It is proved that the calculated gradients are not bounded away from zero if there are only two variables. The
new feature of this work is that there is no need for the objective function to be convex.
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1. Introduction

It is a pleasure to write a paper that commemorates the contributions of Bill Davidon to
variable metric methods for unconstrained optimization, because his brilliant original
work on achieving quadratic termination (Davidon, 1959) provided the DFP algorithm
that is also described in Fletcher and Powell (1963). Thus my career was helped greatly.
That algorithm achieves wonderful efficiency in comparison with the steepest descent
method, but convergence theorems for general smooth functions did not begin to appear
until about 1970, and then the objective function was assumed to be convex. I am now
particularly interested in convergence theorems or counter-examples for the algorithm
when the objective functionF(x), x∈Rn, has the two properties

The setS = {x : F(x)≤F(x1) } is bounded, and

The functionF(x), x∈S, has continuous second derivatives

}
, (1)

where x1 is a given initial vector of variables. These properties allow some major
departures from the convex case.

The existence of a convergence theorem or a counter-example depends on the line
search conditions of the iterations of the algorithm. The analysis is interesting, and
is more likely to be possible, if one restricts attention to “exact” line searches, which
means that each step-length is calculated to give a local minimum of the one-dimensional
line search objective function. Then the theorem of Dixon (1972) applies, stating the
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equivalence of other variable metric methods in the Broyden linear family to the DFP
algorithm.

We are going to address the following version of the DFP algorithm, when the number
of variables, namelyn, is only two. In the description,g

k
is the gradient∇F(xk), anddk

is the search direction of thek-th iteration. The conditions (1) ensure that the operations
of each iteration are well-defined.

Step 0: Pick the starting pointx1∈Rn, ann×n symmetric positive definite matrixB1,
and a positive toleranceε. Setk to 1.

Step 1: Terminate the calculation if the condition

‖g
k
‖ ≤ ε (2)

is achieved.
Step 2: Otherwise, generate the search directiondk by satisfyingBk dk=−g

k
.

Step 3: Set the step-lengthαk to the largest positive number such that the line search
function F(xk+αdk), α≥ 0, decreases monotonically for 0≤α≤αk. Then let the
initial vector of variables for the next iteration bexk+1=xk+αk dk.

Step 4: Calculate the symmetric matrixBk+1 by the DFP formula. Thus the quasi-
Newton equation

Bk+1 (xk+1−xk) = g
k+1
−g

k
(3)

is obeyed in a way that ensures thatBk+1 is positive definite.
Step 5: Increasek by one, and then go back to Step 1.

This method is not suitable for practical computation whenF is a general smooth ob-
jective function, because the calculation ofαk in Step 3 would require an infinite amount
of work. Therefore we do not expect a convergenceproof for the given algorithm to yield
immediate improvements to existing software. On the other hand, the DFP algorithm
has become of fundamental importance within the subject of nonlinear programming,
so we take the view that it is worthwhile to study some theoretical questions that may
help to explain its success.

We are going to prove that, ifn=2 and if the conditions (1) hold, then the termination
condition (2) of the given algorithm is satisfied for a finite value ofk. The details of the
DFP formula forBk+1 are irrelevant when there are only two variables. Indeed, Step 3
implies the property

gT
k+1

dk = 0, k=1,2,3, . . . , (4)

which is equivalent to the orthogonality ofB−1
k+1 g

k+1
to Bk+1 dk. It follows fromdk+1=

−B−1
k+1 g

k+1
andxk+1−xk = αk dk that dk+1 is orthogonal toBk+1 (xk+1−xk). Thus

equation (3) provides the first of the conditions

d T
k+1(gk+1

−g
k
) = 0 and d T

k+1 g
k+1

< 0, (5)

the other one being the descent property of the DFP algorithm whendk+1 is calculated.
Expression (5) defines the direction ofdk+1 uniquely forn=2, the length ofdk+1 being
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unimportant to the theoretical analysis because of the choice ofαk+1. These remarks
allow the matricesBk, k=1,2,3, . . . , to be removed from the given version of the DFP
algorithm. Instead, we add to Step 0 thatd1 is any vector that satisfiesd T

1 g
1
< 0, we

abolish Step 2, and we replace Step 4 by the statement thatdk+1 is any vector inR2 that
has the properties (5), except that there is no need to pickdk+1 if g

k+1
is zero.

The search directions of the conjugate gradient algorithm (Polak and Ribière, 1969)
also satisfy the conditions (5). Therefore, becausen= 2, our analysis applies to that
method too, but some counter-examples to its termination are presented by Powell
(1984). They include a two variable case when the step-length of every iteration gives
the relations

gT
k+1

dk = 0 and F(xk+1) < F(xk), k=1,2,3, . . . , (6)

but the line search functionF(xk+αdk), 0 ≤ α ≤ αk, is not required to decrease
monotonically. Therefore the monotonicity condition in Step 3 of the given algorithm
is important to our proof of termination.

The proof is divided into three sections, that lead to a contradiction under the
assumption that the inequality

‖g
k
‖ > ε, k=1,2,3, . . . , (7)

holds for every positive integerk, whereε is the positive tolerance that is set in Step 0.
Now Theorem 2 of Powell (1972) states that, if the sequencexk, k = 1,2,3, . . . ,
converged tox?, say, then∇F(x?)would be zero. It follows from expression (7) that the
sequence has more than one limit point. The purpose of Sect. 2 is to deduce that all the
limit points ofxk,k=1,2,3, . . . , are collinear, and that the directionsdk, k=1,2,3, . . . ,
tend to be parallel to the straight line that contains the limit points. Therefore we assume
in Sects. 3 and 4, without loss of generality, that the convex hull of the limit points is the
straight line segment inR2 that joins(−1,0) to (1,0), the segment being finite because
of the first part of expression (1).

Further, we introduce the notation

γ(x) =
[

dF(x, y)/dy
]
(x,0)

, −1≤x≤1, (8)

for the derivative of the objective function in they-direction on the line segment that has
just been mentioned, wherex andy are the components ofx∈R2. One of the lemmas
of Sect. 2 establishes thatγ(x), −1≤ x≤ 1, is bounded away from zero, and the final
result of Sect. 3 is the property∣∣∣x+ γ(x)

γ ′(x)

∣∣∣ ≥ 1, −1≤x≤1, (9)

which is trivial whenγ ′(x) is zero, due toγ(x) 6=0. The justification of this inequality
requires much work. Therefore the analysis is presented in a way that allows Sect. 4 to
be studied before the intricate part of Sect. 3.

The reader will find in Sect. 4 that the inequalities (7) and (9) lead to a contradiction,
which completes the proof of termination of the given algorithm whenn= 2. Finally,
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there are some remarks in Sect. 5 on whether or not the conditions (1) imply termination
for larger values ofn.

The relevance of the analysis to algorithms that employ the PSB updating formula
(Powell, 1970), instead of a variable metric one, is questionable. The PSB update
achieves the quasi-Newton condition (3), but, becauseBk+1 may not be positive definite,
the next trial stepdk+1 is usually generated by a trust region method instead of being
given the valuedk+1=−B−1

k+1 g
k+1

. If Bk+1 were nonsingular, then this value and the
line search of the previous iteration would provide the first of the conditions (5), as
mentioned already. The second of the conditions, however, may fail. For example, if
Bk+1 is calculated from the data

xk+1−xk =
(

1
0

)
, g

k
=
(−1

0

)
, g

k+1
=
(

0
σ

)
, Bk =

(
1 0
0 1

)
, (10)

then PSB provides the matrix with diagonal elements of one and off-diagonal elements
of σ . Thus singularity or loss of positive definiteness occurs if|σ | = 1 or |σ | > 1,
respectively. Further,dT

k+1 g
k+1

is positive in the case|σ |>1.

2. Proof of collinearity of the limit points

The assumption (7) implies that the number of iterations of the given algorithm is
infinite, and already we have noted that the sequencexk, k = 1,2,3, . . . , has more
than one limit point. We consider the piecewise linear path inR2 that is constructed by
drawing the straight line fromxk to xk+1 for every positive integerk, the results of this
section being derived from the asymptotic form of the path ask→∞. We letT ⊂R2

denote the set of points of the asymptotic form, which are defined as follows. Because
Step 3 of the given algorithm ensures that the objective functionF(x), x∈R2, decreases
monotonically on the path, the asymptotic form is contained in the set{x : F(x)= F?},
whereF? is the limit of the monotonic sequenceF(xk), k= 1,2,3, . . . . Thereforet is
an element ofT if and only if F(t) is equal toF?, and there is an infinite sequence of
points on the path that converges tot. In particular,T includes all the limit points of the
vectors of variablesxk, k= 1,2,3, . . . . The required properties ofT are presented as
lemmas in order to give some structure to the details of the analysis.

Lemma 1. T is closed.

Proof. Let t? be in the closure ofT and letη be any positive number. We lett̂(η) be
an element ofT that satisfies‖t̂(η)− t?‖ ≤ 1

2η, and then we lett(η) be a point on
the piecewise linear path that satisfies‖t(η)− t̂(η)‖ ≤ 1

2η, which gives the condition
‖t(η)−t?‖≤η. Therefore, ifη runs through the values(1/2) j , j =1,2,3, . . . , then the
resultant sequence of pointst(η) converges tot?. Further, by combining the continuity
of F with t? in the closure ofT , we find F(t?)= F?. It follows thatt? is an element of
T as required.

ut
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Lemma 2. T is connected.

Proof. If T were not connected, we could divide it into two parts,T1 andT2 say, such
that T = T1 ∪ T2, and such thatt1 ∈ T1 and t2 ∈ T2 imply ‖t1− t2‖ ≥ δ, whereδ is
a positive constant. Further, we letS1 andS2 be the sets

S1 =
{

x : min
t∈T1

‖t−x‖≤ 1
4δ
}

and S2 =
{

x : min
t∈T2

‖t−x‖≤ 1
4δ
}
, (11)

soS1 andS2 are also disjoint. LetK be the set of positive integers such that, for each
k in K, the straight line segment betweenxk and xk+1 reaches bothS1 andS2. The
number of elements ofK is infinite, because otherwise the piecewise linear path would
not have a limit point inS1 and a limit point inS2, which are required by the choices of
T1 andT2. Moreover, for eachk∈K, we can lettk be a point on the straight line fromxk
to xk+1 that lies in the gap betweenS1 andS2, which gives the property‖tk−t‖> 1

4δ,
t ∈ T . On the other hand, the limit points of the sequencetk, k ∈ K, are inT . This
contradiction completes the proof.

ut
Lemma 3. For everyt∈T , the gradient∇F(t) is nonzero.

Proof. We assume thatt? ∈ T satisfies∇F(t?) = 0, and we deduce a contradiction.
Let t j , j = 1,2,3, . . . , be a sequence of points on the piecewise linear path that has
been mentioned that converges tot?. Further, for eachj , we letk( j) be a positive integer
such thatt j is on the line segment that joinsxk( j) to xk( j)+1. The conditionF(t?)= F?
implies that the sequence of integersk( j), j = 1,2,3, . . . , is divergent. Therefore, by
choosing a subsequence oft j , j =1,2,3, . . . , if necessary, we assume without loss of
generality that the integersk( j), j =1,2,3, . . . , increase strictly monotonically. LetK
be the set{k( j) : j = 1,2,3, . . . }. Then, also without loss of generality, we replaceK
by a subset if necessary, so that the sequencesxk, k∈K, andxk+1, k∈K, both converge,
to x̂? and x̌? say, respectively. It follows that̂x?, t? and x̌? are collinear, and thatt? is
strictly between̂x? andx̌?, due to the conditions

‖∇F(x̂?)‖ ≥ ε, ‖∇F(t?)‖ = 0 and ‖∇F(x̌?)‖ ≥ ε. (12)

Further, the line segment from̂x? to x̌? is a subset ofT , so the objective function takes
the valueF? throughout the line segment. We also assume without loss of generality
that the coordinates oft? andx̌? are(0,0) and(1,0), respectively, and that the second
component of∇F(x̌?) is positive, the first component of∇F(x) being zero for every
x on the line segment. It follows from expression (12) that we can letx? be a point
betweent? and x̌? such that∇F(x?) has the components(0, 1

2ε). Thusx? is the point
(c,0), for some numberc that satisfies the strict inequalities 0<c<1.

It also follows from the continuity of∇F that we can letδ be a positive constant
such that the conditions[

dF(x, y)

dy

]
(0,θ)
≤ 1

4ε
1−c

1+c
and

[
dF(x, y)

dy

]
(c,θ)
≥ 1

4ε (13)

hold for 0≤ θ ≤ δ. Now, for every sufficiently largek in K, the line segment from
xk to xk+1 cuts both the line segment fromt? = (0,0) to (0, δ) and the line segment
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from x?= (c,0) to (c, δ). We letak andbk be the points of intersection, and we let the
coordinates of these points be(0, αk) and(c, βk), respectively, so we are changing the
meaning ofαk temporarily. Therefore the conditions (13) give the relations

F(ak) ≤ F? + 1
4ε

1−c

1+c
αk and F(bk) ≥ F? + 1

4εβk. (14)

Further, Step 3 of the algorithm of Sect. 1 providesF(ak)≥ F(bk)> F?. These remarks
imply the bounds

0< βk ≤ αk (1−c)/(1+c), (15)

for sufficiently largek in K. Moreover, because the straight line throughxk andxk+1 is
also the straight line throughak andbk, it has the equation

y = αk + (x/c) (βk−αk), (x, y)∈R2, (16)

so it intersects thex-axis at(ξk,0), whereξk=αk c/(αk−βk). It follows from expression
(15) thatξk is in the intervalc<ξk≤ 1

2(1+c).
Whenk∈K tends to infinity, however, thex-coordinate ofxk+1 converges to one,

so it becomes larger than12(1+c). Thus the line segment fromxk to xk+1 cuts thex-axis
at a point where the objective function takes the valueF?, which is a contradiction.
Therefore the lemma is true.

ut
The final lemma of this section requires a well-known result that is included in

Sect. 3 of Wolfe (1970), for instance. It is that the conditions (1) and (7) imply the
property ∑∞

k=1 cos2 θk <∞, (17)

whereθk is the angle betweendk and−g
k

in the algorithm of Sect. 1.

Lemma 4. The points ofT are collinear.

Proof. We assume that the lemma is false. Therefore we can letC be a circle of
finite radius,r say, that containsT , and that includes at least three points ofT on its
circumference. Further, because the lemmas so far imply thatT is a continuous curve
that has two or no end-points, we can lett? be an interior point ofT that is on the
circumference ofC. We assume without loss of generality thatt? and∇F(t?) have the
components(0,0) and(0,1), respectively. The reason for mentioning the circle is to
deduce thatd2F(x, y)/dx2 is nonzero atx= t?, wherex andy are still the components
of x. We letFxx(t?) denote this second derivative.

When|δ| is very small, the value ofF at (δ,0) is F?+ 1
2δ

2Fxx(t?)+o(δ2). It follows
from Fy(t?)=1 that the distance from the point(δ,−1

2δ
2Fxx(t?)) to T is o(δ2). Hence

the radius of curvature ofT at t? is 1/|Fxx(t?)|. Therefore, becauseT is enclosed by
the circleC, we find the bound

|Fxx(t?)| ≥ 1/ r. (18)
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We write this inequality in the form

|dT∇ 2F(t) d| ≥ ‖d‖2/ r, (19)

wheret andd aret? and any vector that is orthogonal to∇F(t?), respectively.
It follows from the continuity of first and second derivatives ofF, and from

∇F(t?) 6=0, that |dT∇ 2F(t) d| is bounded below by a positive multiple of‖d‖2, if
d is orthogonal to∇F(x), wherex andt are any points that are sufficiently close tot?.
In other words, there exists a neighbourhood oft?,N say, such that, ift andx are inN ,
and ifd T∇F(x) is zero, then the condition

|dT∇ 2F(t) d| ≥ η ‖d‖2 (20)

holds, whereη is a positive constant.
Now the nonzero curvature ofT at t? implies that there exists a strictly increasing

sequence of positive integersK such thatxk, k∈K, tends tot?. Further, because nonzero
curvature occurs att∈T if t is close tot?, the distances‖xk+1−xk‖, k∈K, converge to
zero. Thus the propertiesxk ∈N andxk+1 ∈N are achieved for an infinite number of
values ofk. We are going to deduce from condition (20) that cosθk+1 is bounded away
from zero for all of them, which implies that the left hand side of expression (17) is
infinite. Thus we will obtain a contradiction that completes the proof.

Let xk and xk+1 be inN . We pick x = xk+1 andd = dk, because then equation
(4) shows the required orthogonality ofd to ∇F(x). We let t be on the line segment
from xk to xk+1, beginning witht = xk+1. Now Step 3 of the given algorithm implies
that the line search functionF(xk+α dk), α ≥ 0, has a nonnegative second deriva-
tive at α = αk, which is the conditiondT

k ∇ 2F(xk+1) dk ≥ 0. Therefore the modu-
lus signs can be removed from the left hand side of expression (20), which is valid for
everyt inN as∇ 2F is continuous.

We combine condition (20) for the range of values oft with the elementary identity

g
k+1
− g

k
=
∫ 1

θ=0
∇ 2F(xk + θ [xk+1−xk] ) (xk+1−xk) dθ, (21)

noting that the identity gives the bound

‖g
k+1
−g

k
‖ ≤ c‖xk+1−xk‖, (22)

wherec is a positive constant. Specifically, we form the scalar product of both sides
of equation (21) withdk, keeping the scalar product on the right hand side under the
integral sign. It follows from condition (20) that the new integrand is bounded below by
η ‖dk‖ ‖xk+1−xk‖, asxk+1−xk is a positive multiple ofdk. Thus we deduce the relation

dT
k (gk+1

−g
k
) ≥ η ‖dk‖ ‖xk+1−xk‖ ≥ (η/c) ‖dk‖ ‖gk+1

−g
k
‖, (23)

the last assertion being due to the bound (22).
Inequality (23) shows that the cosine of the angle betweendk andg

k+1
−g

k
is at

leastη/c. Moreover, equations (4) and (5) state thatg
k+1

anddk+1 are orthogonal todk
andg

k+1
−g

k
, respectively, and there are only two variables. Therefore the modulus of
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the cosine of the angle betweendk+1 andg
k+1

is the same as the modulus of the cosine
of the angle betweendk andg

k+1
−g

k
. These remarks imply the inequality| cosθk+1|≥

η/c for an infinite number of values ofk, which gives the required contradiction to
expression (17).

ut
As mentioned already, the analysis of this section allows us to assume without

loss of generality thatT is the straight line segment inR2 that joins(−1,0) to (1,0).
Then the conditionF(t) = F?, t ∈ T , and Lemma 3, imply that∇F(t) is a nonzero
multiple of the second coordinate direction for everyt in T . We assume, also without
loss of generality, that the multiple is positive. ThusF(xk) > F?, k= 1,2,3, . . . , and
the definition ofT , cause the second component ofxk to be positive for all sufficiently
largek, which allows us to assume this property for everyk. Therefore, regarding the
x-axis as horizontal inR2, the sequencexk, k=1,2,3, . . . , approachesT from above.
Further, becauseg

k
tends to be vertical, it follows from the bound (17) that the search

directionsdk, k=1,2,3, . . . , tend to be horizontal. In other words, the search directions
become parallel toT in the limit k→∞, which is one of the assertions of Sect. 1.

3. Further analysis

Throughout the remainder of the paper, we let the scalings of the search directions have
the property

d T
k g

k
= −‖g

k
‖2, k=1,2,3, . . . , (24)

which does not lose generality, and which agrees with the second part of expression (5).
It follows from n= 2 and equation (4) that, fork≥ 2, dk has the form−g

k
+βk dk−1,

whereβk∈R is determined by the first part of expression (5). Thus we derive the formula

dk = −g
k
+

gT
k
(g

k
−g

k−1
)

dT
k−1(gk

−g
k−1
)

dk−1 = −g
k
+

gT
k
(g

k
−g

k−1
)

‖g
k−1
‖2 dk−1, k≥2, (25)

the last identity being a consequence of equations (4) and (24).
Moreover, the scaling (24) implies that the cosθk term of inequality (17) has the

value

cosθk = ‖gk
‖ / ‖dk‖, k=1,2,3, . . . . (26)

Thus inequality (17) would contradict the assumption (7) if an infinite subsequence of
the norms‖dk‖, k=1,2,3, . . . , were bounded. Therefore we may add the property

‖dk‖ →∞ as k→∞ (27)

to the conditions that have been noted already.
The limit (27) and equation (25) provide some useful relations. Firstly, because the

assumptions (1) imply that the gradientsg
k
, k=1,2,3, . . . , are bounded, everyxk being
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in S, they show thatdk tends to be a multiple ofdk−1 ask→∞, which confirms the
last remark of Sect. 2. They also give the condition

‖dk‖ =
(
1+o(1)

) ∣∣∣∣∣g
T
k
(g

k
−g

k−1
)

‖g
k−1
‖2

∣∣∣∣∣ ‖dk−1‖, k=2,3,4, . . . , (28)

where 1+o(1) denotes a factor that tends to one ask→∞. The sign of the term inside
the modulus signs of condition (28) is going to be important. Therefore we introduce
the disjoint sets

Ksame=
{
k : gT

k
(g

k
−g

k−1
) > 0

}
and Kopp=

{
k : gT

k
(g

k
−g

k−1
) < 0

}
. (29)

Thusk∈Ksameor k∈Kopp correspond to the cases when the direction ofdk tends to
be the same as or opposite to the direction ofdk−1, respectively. IfgT

k
(g

k
−g

k−1
) were

zero, then formula (25) would reduce todk =−g
k
, which is not allowed by the limit

(27) for sufficiently largek. Therefore, by deleting a finite number of iterations from
the beginning of the calculation if necessary, we ensure that every iteration number is
in one of the sets (29). Moreover, the analysis of the previous section implies thatKopp

has an infinite number of elements.
Equations (28) and (29) and the Cauchy–Schwarz inequality imply the bound

‖dk‖ ≤
(
1+o(1)

) ( ‖gk
‖

‖g
k−1
‖ −

‖g
k
‖2

‖g
k−1
‖2
)
‖dk−1‖

= ‖g
k
‖ (1+o(1)

)(
1− ‖gk

‖
‖g

k−1
‖

)
‖dk−1‖
‖g

k−1
‖ , k∈Kopp. (30)

Moreover, the factor(1−‖g
k
‖/‖g

k−1
‖) is no greater than a constant that is strictly less

than one, due to assumption (7) and the boundedness of‖g
k−1
‖. It follows from the

meaning of 1+o(1) that there exists a constant integerk0 such that the condition

‖dk‖ / ‖gk
‖ ≤ ‖dk−1‖ / ‖gk−1

‖, k∈Kopp, k≥k0, (31)

is achieved.
The contradiction that will complete our work will come from an extension of

the property (31). Specifically, lettingk be any sufficiently large integer inKopp, and
letting `(k) be the greatest element ofKopp that is less thank, it will be proved that
‖dk‖/‖gk

‖ ≤ ‖d j‖/‖gj
‖ is satisfied for every integerj in the interval[`(k), k−1].

Therefore, assuming that the elements ofKopp are arranged in ascending order, and
choosingj = `(k), the sequence‖dk‖/‖gk

‖, k∈Kopp, is monotonically decreasing for
sufficiently largek. Thus the elements of the sequence are uniformly bounded, which
implies that the norms‖dk‖, k∈Kopp, are uniformly bounded too. On the other hand,
our assumptions have provided the limit (27), which is the required contradiction.

The proof of inequality (9) occupies the remainder of this section, because it is
needed by the method that gives the relation‖dk‖/‖gk

‖ ≤ /‖d j‖/‖gj
‖, mentioned in

the previous paragraph. The reader is advised to study Sect. 4 first, however, assuming
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that condition (9) is true. Thus a major interruption to the main argument is avoided,
and the motivation for the following analysis is strengthened.

Again the analysis is divided into pieces by the use of lemmas. We employ the
notation

φ(x) = x+ γ(x)/γ ′(x), −1≤x≤1, (32)

for the expression inside the modulus signs of inequality (9). We letφ(x) be+∞ if
γ ′(x) is zero, because we know from Sect. 2 thatγ(x),−1≤x≤1, is positive. We will
establish the assertion (9) by supposing that it fails, and deducing a contradiction.

Lemma 5. If inequality (9) does not hold, then we can assume without loss of generality
that there exist numbersa andb, satisfying−1<a<b<1, and having the properties

−1<φ(a)<1 and γ ′(x)>0, a≤x≤b. (33)

Further, there existsx? in the set

X = {x : b≤x≤1, γ ′(x)≥0} (34)

such thatφ(x?)= inf{φ(x) : x∈X } is achieved, and the choices ofa andb can provide
the strict inequalityφ(a)<φ(x?).

Proof. If condition (9) fails whenx = â, say, then it fails for everyx in [−1,1] that
is sufficiently close tôa, becauseγ andγ ′ are continuous, and because min{γ(x) :
−1≤ x ≤ 1} = γmin, say, is positive. Therefore we can letâ be an interior point of
the interval[−1,1]. Further, the possibility of replacingx by−x throughout the paper
allowsγ ′(â)>0 to be assumed without loss of generality. Hence, by puttingφ(â)<1
andâ>−1 in the definition (32), we find the boundγ ′(â)> 1

2γmin. Thus the conditions
â≤x≤1 andγ ′(x)≥ 1

2γmin are satisfied whenx= â.
We letA be the set of values ofx that minimizeφ(x) subject to these conditions,

and then we leta be the greatest element ofA. The setA is well-defined and compact,
due to the continuity ofγ andγ ′, soa is well-defined too. This choice and the definition
(32) giveφ(a)≤φ(â)<1 andφ(a)>a≥ â>−1, as required. Further, we letb be any
number in the open interval(a,1) such that the second part of expression (33) is also
achieved, which is easy becauseγ ′(a) is positive andγ ′ is continuous.

When considering the existence ofx?, the conditionγ(x)≥ γmin> 0,−1≤ x≤ 1,
allows us to restrict attention to values ofx∈X such thatγ ′(x) is bounded away from
zero. Thusφ is continuous, so the existence ofx? follows from the compactness of the
set (34). Ifφ(a)<φ(x?) failed, thenx? would be a point in[b,1] satisfyingγ ′(x?)>0
andφ(x?)≤ φ(a). Further, the last condition would giveγ(x?)/γ ′(x?)≤ 1+φ(a) < 2,
which would implyγ ′(x?)> 1

2γmin. It follows from x?≥b>a that the properties ofx?
would contradict our choice ofa. Therefore the proof is complete.

ut
There are four more lemmas in this section, and we continue to assume the failure

of condition (9). Therefore we let the numbersa, b andx? be as in Lemma 5. Further,
we letK? be the set of integersk such thatxk≥b andxm(k)≤a are satisfied, wherexk

andxm(k) are the first components ofxk andxm(k), respectively,m(k) being the greatest
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integer less thank such thatxm(k) is not in the open interval(a,b). In other words, the
strip {(x, y) ∈ R2 : a≤ x ≤ b} is crossed by the piecewise linear path that joins the
pointsx j , m(k)≤ j ≤k, anda< xj <b holds if j is any integer betweenm(k) andk. It
follows from the work of Sect. 2 thatK? has an infinite number of elements. We will
find, however, that the statements of Lemma 5 excludek fromK? whenk is sufficiently
large, which is the contradiction that will establish inequality (9).

Our argument addresses the point where the straight line throughxk−1 andxk cuts the
x-axis inR2 for certain integersk. We let this point be(ξk,0) throughout the remainder
of this section. Lemma 7 will provide a useful relation betweenξk andφ(xk). The proof
of that lemma and other parts of our analysis require the following expression for∇F(x).

Lemma 6. Let x = (x, y) be any point of the setS of the conditions (1) such that
−1≤x≤1 holds. Then∇F(x) has the form

∇F(x) =
(

yγ ′(x)+o(y)

γ(x)+O(y)

)
, (35)

whereγ is still the derivative (8), whereo(y) is a term whose ratio toy tends to zero
as y→ 0, and whereO(y) is a term whose modulus is bounded above by a constant
multiple of|y|.

Proof. We are givenx=(x, y), and we let̂x be the point(x,0). The first component of
∇F(x̂) is zero becauseF is constant on the straight line segment from(−1,0) to (1,0),
and the second component isγ(x) by the definition (8). Therefore it is sufficient to show
that the first and second components of the difference∇F(x)−∇F(x̂) areyγ ′(x)+o(y)
andO(y), respectively. We infer the latter condition from the boundedness of second
derivatives on compact sets and from the identity‖x− x̂‖= |y|. Furthermore, the first
condition can be deduced from the elementary relation

∇F(x)−∇F(x̂) = ∇2F(x̂) (x− x̂)+ o(‖x− x̂‖). (36)

Specifically, becausex− x̂ is the vector(0, y)∈R2, the first component of the product
∇2F(x̂) (x− x̂) is exactlyy∂2F(x̂)/∂x ∂y= yγ ′(x), so the identity‖x− x̂‖= |y| gives
the required result.

ut

Lemma 7. Letk be any integer such that the first and second components of the search
directiondk−1 are positive and negative, respectively, and let(ξk,0) be the coordinates
of the point where the straight line throughxk−1 andxk intersects thex-axis. Ifξk≤ρ
holds for anyρ∈R that is independent ofk, thenξk has the property

ξk = φ(xk)+ o(1), (37)

whereo(1) is still a term that tends to zero ask→∞. Further,ξk≤ρ impliesγ ′(xk)>0
for sufficiently largek.
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Proof. Straightforward algebra gives the formula

ξk = xk − yk (xk−xk−1)/(yk−yk−1), (38)

wherexk= (xk, yk) andxk−1= (xk−1, yk−1). Furthermore, because equation (4) shows
thatdk−1 is orthogonal to∇F(xk), Lemma 6 provides the relation

xk−xk−1

yk−yk−1
= − γ(xk)+O(yk)

ykγ ′(xk)+ o(yk)
= − γ(xk)+ o(1)

yk [γ ′(xk)+ o(1)], (39)

the last equation being due toyk→ 0 ask→∞, which is one of the conclusions of
Sect. 2. Thereforeξk has the form

ξk = xk + [γ(xk)+ o(1)] / [γ ′(xk)+ o(1)]. (40)

Now the conditions of the lemma withyk>0 imply xk<ξk≤ρ, so, usingγ(xk)≥
γmin> 0, we deduce from expression (40) thatγ ′(xk) is bounded below by a positive
constant for sufficiently largek. It follows that the right hand side of equation (40) has
the formxk+γ(xk)/γ

′(xk)+o(1). Thus the definition (32) givesξk=φ(xk)+o(1), which
completes the proof of condition (37). This proof includes the assertionγ ′(xk)>0 when
k is sufficiently large. Therefore the last statement of the lemma is also true.

ut
For eachk∈K?, we consider the numbersξ j , m(k)+1≤ j ≤k, whereK? andm(k)

are defined after the proof of Lemma 5. These definitions providexm(k) ≤a< xm(k)+1
andxk−1 < b≤ xk, so the first components ofdm(k) anddk−1 are positive. It will be
shown next that we may assume without loss of generality that their second components
are negative.

We let(a, ȳ) be the point where the line segment fromxm(k) to xm(k)+1 cutsx=a.

The line search of the algorithm of Sect. 1 satisfiesdT
m(k)∇F(a, ȳ)≤0, which is combined

with another application of Lemma 6. Specifically, lettingdx anddy be the components
of dm(k), and using the form (35) of∇F(a, ȳ), we find the inequality

dx [ȳγ ′(a)+ o(ȳ)] + dy [γ(a)+O(ȳ)] ≤ 0. (41)

Now ȳ is positive, andγ(a) andγ ′(a) are positive constants. It follows fromdx>0 that
dy<0 occurs for sufficiently largek. Therefore, by deleting some early iterations of the
algorithm if necessary, we obtaindy< 0, k∈K?, as claimed. Further, by analogy with
equations (38) and (39), we deduce the bounds

a< ξm(k)+1 = a− ȳ (dx/dy) ≤ a+ ȳ [γ(a)+O(ȳ)] / [ȳγ ′(a)+ o(ȳ)], (42)

which can be written in the form

a< ξm(k)+1 ≤ φ(a)+ o(1), k∈K?. (43)

We have begun to prove that the second component ofdk−1 is negative fork∈K?.
Indeed, the previous paragraph treats the possibilitym(k) = k−1. Otherwise, when
m(k) ≤ k−2 occurs, we havea ≤ xk−1 ≤ b. Thereforeγ ′(xk−1) ≥ γ ′min is satisfied,
whereγ ′min is the constant min{γ ′(x) : a≤ x≤ b}, which is positive due to Lemma 5.
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Hence, rememberingyk−1> 0 andγ(xk−1)≥ γmin> 0, we deduce from equation (35)
that both components of∇F(xk−1) are positive for sufficiently largek. We avoid the last
proviso by deleting some early iterations of the algorithm if necessary. It follows from
the descent conditiondT

k−1∇F(xk−1)<0, and from the positivity of the first component
of dk−1, that the second component ofdk−1 is negative for everyk in K?.

Therefore Lemma 7 is applicable fork∈K?. Hence, lettingρ be a constant such that
ρ>φ(x?), we find the bound

ξk ≥ min[φ(xk)+o(1), ρ], k∈K?. (44)

Now, whenξk≤ρ occurs, then the last statement of Lemma 7 providesγ ′(xk)>0 for
sufficiently largek. It follows from xk≥b thatxk is in the set (34), so the choice ofx?
givesφ(x?)≤φ(xk). Hence condition (44) andρ>φ(x?) imply thatξk has the property

ξk ≥ φ(x?)+ o(1), k∈K?. (45)

The contradiction that will complete the work of this section is suggested by the
relations (43) and (45) whenm(k) is k−1. We see that in this caseξk is bounded
above byφ(a)+o(1) and is bounded below byφ(x?)+o(1). On the other hand, Lemma 5
establishes the strict inequalityφ(a)<φ(x?). Therefore the valuem(k)=k−1 is excluded
for sufficiently largek in K?. The analysis of the remaining situationm(k)≤k−2 will
be assisted by the following lemma.

Lemma 8. Let j be an integer such thata≤ x j ≤ b and xj−1 < xj are satisfied. If
j is sufficiently large, and ifj is in the setKsame of expression (29), then the strict
inequalityξ j+1<ξ j is achieved. Moreover, ifj is sufficiently large, then the conditions
a≤xj−1<xj ≤b are sufficient forj to be in the setKsame.

Proof. By applying an argument in the paragraph after expression (43), we deduce from
a≤ xj ≤ b that both components ofg

j
=∇F(x j ) are positive for sufficiently largej .

Therefore the line search conditiongT
j

d j−1 = 0 implies that the two components of
dj−1 have opposite signs, the first component being positive due tox j−1< xj . Thusξ j

is well-defined and satisfiesξ j >xj .
We also know from the work of Sect. 2 that, for largej , the directions ofdj−1 and

dj tend to be parallel to thex-axis inR2. Hencexj−1< xj and j ∈Ksamecause both
directions to be near the positive coordinate direction(1,0). Further, the conditions
gT

j
d j−1= 0 andgT

j
d j < 0 hold for every j , andg

j
/‖g

j
‖ tends to(0,1) as j →∞.

Therefore, ifL j−1 and L j are the half-lines inR2 that begin atx j and that have the
directionsdj−1 and dj , respectively, thenL j−1 can be mapped intoL j by a small
clockwise rotation aboutx j . Now yj > 0 implies that a clockwise rotation ofL j−1
would decrease the first coordinate of the point whereL j−1 cuts thex-axis. Thus,
because(ξ j ,0) and (ξ j+1,0) are the points of intersection ofL j−1 and L j with the
x-axis, the required inequalityξ j+1<ξ j is achieved.

In order to prove the other statement of the lemma, we assumea≤ x j−1< xj ≤ b,
and we seek the sign of the scalar productgT

j
(g

j
−g

j−1
). We recall the elementary
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identity

g
j
− g

j−1
=
∫ 1

0
∇ 2F

(
x j−1+ θ [x j−x j−1]

)
(x j−x j−1) dθ. (46)

Because we will find that the scalar product is of the same magnitude as|x j−xj−1|, we
employ the notationo(|x j−xj−1|) for terms whose ratio to|x j−xj−1| tends to zero as
j→∞. In particular, the direction ofdj−1 provides the condition

x j − x j−1 = x̂ j − x̂ j−1+ o(|xj−xj−1|), (47)

wherex̂ j−1 and x̂ j are the points(xj−1,0) and(xj ,0), respectively. Further, because
yj−1 andyj tend to zero asj→∞, we write expression (46) in the form

g
j
− g

j−1
=
∫ 1

0
∇ 2F

(
x̂ j−1+ θ [x̂ j− x̂ j−1]

)
(x̂ j− x̂ j−1) dθ + o(|xj−xj−1|)

= ∇F(x̂ j )−∇F(x̂ j−1)+ o(|xj−xj−1|), (48)

where the last line is elementary. Moreover,g
j

tends to have the components 0 and

γ(xj ) as j→∞. Thus condition (48) gives the equation

gT
j
(g

j
−g

j−1
) = γ(xj ) [γ(xj )−γ(xj−1)] + o(|xj−xj−1|), (49)

which is valid for all magnitudes of|x j −xj−1| that are allowed by the assumptions
a≤xj−1<xj ≤b.

Now these assumptions imply thatγ(x j )−γ(xj−1) is bounded below by the product
(xj−xj−1)min{γ ′(x) : a≤x≤b}. Therefore equation (49) provides the inequality

gT
j
(g

j
−g

j−1
) ≥ (xj−xj−1) [γminγ

′
min+o(1)], (50)

whereγmin andγ ′min are positive constants that have been defined already. It follows that
j is in the setKsamefor sufficiently largej , which completes the proof of the lemma.

ut
Next we apply the lemma to the case when, in addition tok∈K? andm(k)≤k−2,

the iteration numberm(k)+1 is in the setKsame. We recall that, ifj satisfiesx j−1< xj

and j ∈ Ksame, then xj < xj+1 occurs. Thus the definition ofm(k) and the choice
j =m(k)+1 providexm(k) ≤ a< xj < xj+1. Further, the last part of Lemma 8 shows
that, if xj+1 < b holds and if j is increased by one, then the newj is also inKsame,
which givesa<xj <xj+1 for the new j . By employing these properties recursively for
additions of one toj until x j+1≥b is obtained, we deduce the conditions

xm(k) ≤ a< xm(k)+1 < · · · < xk−1 < b≤ xk. (51)

It follows from the first part of Lemma 8 thatξ j+1 < ξ j holds for every integerj in
the interval[m(k)+1, k−1], so expression (43) impliesξk ≤ φ(a)+o(1). Hence the
inequalities (45) andφ(a)<φ(x?) exclude all large values ofk as before. It remains to
exclude large values ofk in K?, satisfyingm(k)≤k−2, such thatm(k)+1 is an element
of Kopp.
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In this case the definitions ofm(k)andKoppprovidexm(k)≤a<xm(k)+2<xm(k)+1<b.
Most of our analysis of this situation will be presented in Lemma 9, wherej corres-
ponds tom(k)+2. Specifically, assuming thatk is sufficiently large, it will be proved
thatm(k)+2 is inKopp, which givesxm(k)+2<xm(k)+3<ξm(k)+3. It will also be proved
thatξm(k)+3 has the propertyξm(k)+3<ξm(k)+1. If xm(k)+3≥b occurs, thenk is equal to
m(k)+3. Otherwise we havea< xm(k)+2< xm(k)+3< b, so the recursive argument of
the previous paragraph allows expression (51) to be replaced by the conditions

xm(k) ≤ a< xm(k)+2 < · · · < xk−1 < b≤ xk. (52)

Further, using the first part of Lemma 8 again, we findξk < ξm(k)+3. Thereforeξk ≤
ξm(k)+3 occurs for all the integersk that are being considered. Thus the assertion
ξm(k)+3 < ξm(k)+1 of the next lemma and expression (43) implyξk ≤ φ(a)+o(1). It
follows yet again that the bound (45) preventsk from becoming large, which completes
the contradiction of the hypothesis that the number of elements inK? is infinite. We
have now established the required condition (9), assuming that Lemma 9 is true. Its
proof is the last task of this section.

Lemma 9. Let j be an integer that satisfiesx j−2< xj−1 anda≤ xj < xj−1≤b. If j is
sufficiently large, then the inequalitiesx j <xj+1<ξ j+1<ξ j−1 are achieved.

Proof. The conditionsa≤ x j−1< xj ≤ b are assumed in the paragraph that includes
equations (46) to (49), but it is elementary that the derivation of these equations is also
valid for the current conditionsa≤ x j < xj−1≤ b, because the search directions still
tend to be parallel to thex-axis. Further, the analogue of inequality (50) is the property

gT
j
(g

j
−g

j−1
) ≤ (xj−xj−1) [γminγ

′
min+o(1)], (53)

because now the sign ofxj−xj−1 is negative. Thusj is in the setKopp when j is large.
It follows from xj <xj−1 thatxj <xj+1 occurs as required.

Therefore we assumej ∈Kopp for the remainder of the proof. The argument at the
beginning of the proof of Lemma 8, withj replaced byj−1, shows that we may also
assume thatξ j−1 is well-defined and satisfiesξ j−1 > xj−1. Moreover, we letj be at
least the constantk0 of condition (31), in order to have the inequality

‖g
j
‖ / ‖dj ‖ ≥ ‖gj−1

‖ / ‖dj−1‖. (54)

Thus the identity (26) impliesθ j ≤ θ j−1, whereθk is still the acute angle between the
directionsdk and−g

k
for every positive integerk. The anglesθ j−1 andθ j are shown in

Fig. 1.
Let Lk be the straight line throughxk andxk+1 for k= j−2, j−1, j . Then equation

(4) states that−g
j−1

and−g
j

are orthogonal toL j−2 andL j−1, respectively. Thus the
figure provides the identities

ψ j−1+ θ j−1 = ψ j+ θ j = π/2, (55)

whereψk is the small acute angle betweenLk−1 andLk for k= j−1, j . Therefore the
conclusionθ j ≤ θ j−1 of the previous paragraph givesψ j ≥ ψ j−1. Hence we deduce
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•

•
•

•

x j−2

x j−1

−gj−1

x j

−g
j x j+1

θ j−1

ψ j−1

θ j

ψ j

Fig. 1. The anglesθ j−1 andθ j

from the figure that eitherL j−2 is parallel toL j or that these lines meet at a point
whose first coordinate is less thanx j . In other words, the straight line extension from
x j throughx j+1 does not meetL j−2. This extension, however, has to leave the region

of R2 that is belowL j−2, above thex-axis, and to the right of the linex = x j+1. It
follows thatL j cuts thex-axis at a point that is to the right of(x j+1,0) and to the left of
(ξ j−1,0). Further, this point is(ξ j+1,0) according to the definition ofξ j+1. Therefore
ξ j+1 satisfiesxj+1<ξ j+1<ξ j−1. The analysis of this section is complete.

ut

4. The convergence theorem

The method that will be used to complete the analysis is indicated in the paragraph that
follows expression (31). Therefore we letk be a sufficiently large element ofKopp, and
we let`(k)be the greatest element ofKopp that is less thank, as before. Ifj is an integer in
the interval[`(k), k−2], then our justification of the condition‖dk‖/‖gk

‖≤‖d j‖/‖gj
‖

that has been mentioned requires the following lemma. The only application of the
bound (9) occurs in its proof.

Lemma 10. Let j andk be chosen in the way just described, and letρ be the ratio

ρ = min{γ (x) : −1≤x≤1} /max{γ (x) : −1≤x≤1}, (56)

whereγ is the positive, continuous function (8). Then the inequality(‖g
k−1
‖

‖g
j
‖ − 1

)(
1− ‖g

k
‖

‖g
k−1
‖

)
≤ 1+ o(1)

1+ ρ (57)

holds, where1+o(1) still denotes a number that tends to one ask→∞.

Proof. The definition (29) ofKopp andk∈Kopp imply ‖g
k
‖<‖g

k−1
‖. Thus inequality

(57) is achieved wheng
j

satisfies‖g
k−1
‖/‖g

j
‖ ≤ 1+ (1+ρ)−1. Therefore for the

remainder of the proof we can assume that this property fails, so we have the condition

‖g
k−1
‖ > ‖g

j
‖ + (1+ρ)−1‖g

j
‖ > ‖g

j
‖ + (1+ρ)−1ε, (58)
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the last inequality being due to assumption (7). Moreover, the ratio‖g
k−1
‖/‖g

j
‖

is bounded above byM/ε, where M is the constant sup{‖g
i
‖ : i = 1,2,3, . . . }.

Thus inequality (57) is also achieved ifg
k

satisfies 1−‖g
k
‖/‖g

k−1
‖ ≤ (1+ ρ)−1

(ε/M). Therefore we can assume that this property fails too, which gives the condi-
tion

‖g
k−1
‖ > ‖g

k
‖ + (1+ρ)−1(ε/M) ‖g

k−1
‖ > ‖g

k
‖ + (1+ρ)−1(ε2/M). (59)

We relate inequality (57) to the derivative (8) by letting(x j ,0), (xk−1,0) and(xk,0)
be the points on the line segment from(−1,0) to (1,0) in R2 that are closest tox j ,
xk−1 andxk, respectively. Then, because the calculated vectors of variables tend to the
line segment, and because the first and second components of∇F are zero and positive
there, we have the formulae

‖g
i
‖ = (1+o(1)

)
γ(xi ), i ∈ { j, k−1, k}. (60)

Moreover, expressions (58) and (59) show that‖g
k−1
‖/‖g

j
‖ and ‖g

k
‖/‖g

k−1
‖ are

bounded away from one. It follows that assertion (57) is true if we establish the condition(
γ(xk−1)

γ(xj )
− 1

)(
1− γ(xk)

γ(xk−1)

)
≤ 1+ o(1)

1+ ρ . (61)

Another advantage of expressions (58) and (59) is that they ensure that|x j−xk−1|
and|xk−1−xk| are bounded away from zero ask→∞. Further, because the choice of
j causes every integer in the interval[ j+1, k−1] to be in the setKsame, the component
xk−1 is strictly betweenx j andxk for sufficiently largek. Therefore symmetry allows
the assumption

−1≤ xj < xk−1 < xk ≤ 1. (62)

The proof will be completed by deducing inequality (61) from this assumption and the
property (9).

It is elementary that we can write expression (9) in the form

−1/ (1+x) ≤ γ ′(x) / γ(x) ≤ 1/ (1−x), −1≤x≤1. (63)

Hence, ifa andb are any numbers that satisfy−1≤ a< b≤ 1, integration over the
intervala≤x≤b gives the bounds

− log(1+b)+ log(1+a) ≤ log(γ(b))− log(γ(a)) ≤ − log(1−b)+ log(1−a), (64)

which are equivalent to the conditions

(1+a) / (1+b) ≤ γ(b) / γ(a) ≤ (1−a) / (1−b), −1≤a<b≤1. (65)

It follows from the ordering (62) that the left hand inequalities of the expression

γ(xk−1) ≤ [(1−xj )/(1−xk−1)] γ(xj ) ≤ 2γ(xj ) / (1−xk−1)

γ(xk−1) ≤ [(1+xk)/(1+xk−1)] γ(xk) ≤ 2γ(xk) / (1+xk−1)

}
(66)
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are achieved, and the right hand inequalities are due tox j ≥−1 andxk≤ 1. Thus we
deduce the property

γ(xk−1) ≤ min

[
2γ(xj )

1−xk−1
,

2γ(xk)

1+xk−1

]
≤ max−1≤θ≤1

min

[
2γ(xj )

1−θ ,
2γ(xk)

1+θ
]
. (67)

Further,θ maximizes the right hand side of this bound when the two terms inside the
square brackets are equal, soθ takes the value[γ(xk)−γ(xj )] / [γ(xk)+γ(xj )]. Thus
condition (67) provides the second of the inequalities

max[γ(xj ), γ(xk)] ≤ γ(xk−1) ≤ γ(xj )+ γ(xk), (68)

the first of them being due to the assumptions (58) and (59) for large enoughk.
Now the left hand side of the required bound (61) increases monotonically ifγ(xk−1)

runs through the interval (68), so we find the relation(
γ(xk−1)

γ(xj )
− 1

)(
1− γ(xk)

γ(xk−1)

)
≤ γ(xk)

γ(xj )

γ(xj )

γ(xj )+γ(xk)
= γ(xk)

γ(xj )+γ(xk)
. (69)

Further, the definition (56) implies that the right hand side of this expression is at most
(1+ρ)−1. Therefore the lemma is true.

ut
Next we establish the condition‖dk‖/‖gk

‖≤‖d j‖/‖gj
‖, `(k)≤ j≤k−2, that is the

subject of the opening paragraph of this section.

Lemma 11. There exists a constant integerk1 such that, if j and k are chosen as in
Lemma 10, thenk≥k1 implies the inequality

‖dk‖ / ‖gk
‖ ≤ ‖d j‖ / ‖gj

‖. (70)

Proof. The choices ofj andk are such that the integersj+1, j+2, . . . , k−1 are all in
the setKsame. Therefore equation (28) gives the relation

‖di‖
‖di−1‖

= ‖g
i
‖2

‖g
i−1
‖2
{(

1+o(1)
)(

1−
gT

i
g

i−1

‖g
i
‖2
)}

<
‖g

i
‖2

‖g
i−1
‖2 , j+1≤ i ≤k−1,

(71)

for sufficiently largek, where the last part depends on the remark that the gradients tend
to be multiples of the second coordinate vector, each multiplier being bounded above
and bounded away from zero. We form the product overi of the left and right hand sides
of expression (71), except that we retain the middle term of the expression instead of
the right hand term for one value ofi . Thus we find the condition

‖dk−1‖
‖d j‖

≤
‖g

k−1
‖2

‖g
j
‖2 min

j+1≤i≤k−1

{(
1+o(1)

)(
1−

gT
i

g
i−1

‖g
i
‖2
)}

. (72)

If the last term in braces were at mostε/M, whereM is still the constant sup{‖g
i
‖ :

i =1,2,3, . . . }, then condition (72) would imply‖dk−1‖/‖d j‖≤‖gk−1
‖/‖g

j
‖, which
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is the same as‖dk−1‖/‖gk−1
‖ ≤ ‖dj ‖/‖gj

‖. Further, the property (31) would give
the required result (70). Therefore, for the remainder of the proof, we may make the
assumption(

1+o(1)
)(

1− gT
i

g
i−1
/ ‖g

i
‖2
)
≥ ε/M, j+1≤ i ≤k−1. (73)

This assumption andgT
i

g
i−1
→‖g

i
‖ ‖g

i−1
‖, i→∞, provide the relations

(
1+o(1)

)(
1− gT

i
g

i−1
/ ‖g

i
‖2
)
= (1+o(1)

)(
1− ‖g

i−1
‖ / ‖g

i
‖
)

(
1+o(1)

)(
1− ‖g

i−1
‖/ ‖g

i
‖
)
≥ ε/M

‖g
i−1
‖ / ‖g

i
‖ ≤ (1+o(1)

)(
1−ε/M

)
<
(

1− 1
2ε/M

)


, (74)

when i is any integer in[ j+1, k−1] andk is sufficiently large, the first part of the
third property being a reformulation of the second one. By combining the first parts of
expressions (71) and (74), we deduce the equation

‖di‖
‖di−1‖

= ‖g
i
‖

‖g
i−1
‖

{(
1+o(1)

)( ‖gi
‖

‖g
i−1
‖ − 1

)}
, j+1≤ i ≤k−1. (75)

Then we form the product over all values ofi again. The product of the 1+o(1) terms
is another 1+o(1) term, becausek− j is bounded above for largek due to the following
three remarks. Firstly, the step-lengths‖xi−xi−1‖, j+1≤ i ≤k−1, are bounded away
from zero due to the third line of expression (74), secondly the directions of these steps
tend to be the same due to the choice ofj , and thirdly the length of the line segmentT
is finite. Thus equation (75) provides the relation

‖dk−1‖
‖d j‖

= (1+o(1)
) ‖gk−1

‖
‖g

j
‖

k−1∏
i= j+1

( ‖g
i
‖

‖g
i−1
‖ − 1

)
. (76)

Now it is elementary that, ifa ∈ R and b ∈ R satisfy a > 1 and b > 1, then
(a−1)(b−1)<ab−1 holds, which is helpful because, according to expression (74), all
of the ratios‖g

i
‖/‖g

i−1
‖ exceed one. By applying this remark recursively to the terms

of the product on the right of equation (76) when there is more than one term, we find
the condition

‖dk−1‖
‖dj ‖

≤ (1+o(1)
) ‖gk−1

‖
‖g

j
‖

(‖g
k−1
‖

‖g
j
‖ − 1

)
. (77)

Moreover, inequality (30) gives the bound

‖dk‖
‖g

k
‖ ≤

(
1+o(1)

) ‖dk−1‖
‖g

k−1
‖

(
1− ‖g

k
‖

‖g
k−1
‖

)
. (78)
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By combining expressions (77) and (78), we obtain the property

‖dk‖
‖g

k
‖ ≤

(
1+o(1)

) ‖dj‖
‖g

j
‖

(‖g
k−1
‖

‖g
j
‖ − 1

)(
1− ‖g

k
‖

‖g
k−1
‖

)
. (79)

It follows from Lemma 10 that inequality (70) is achieved for sufficiently largek,
becauseρ is a positive constant. The proof is complete.

ut
It remains to apply the argument in the paragraph after inequality (31). Specifically,

the bound (31) wheǹ(k)=k−1, and Lemma 11 wheǹ(k)≤k−2, provide the condition

‖dk‖ / ‖gk
‖ ≤ ‖d`(k)‖ / ‖g`(k)‖, k∈Kopp, k≥max[k0, k1], (80)

where`(k) is still the greatest element ofKopp that is less thank. Thus the ratios
‖dk‖/‖gk

‖, k∈Kopp, are uniformly bounded, which contradicts the limit (27), because
the number of elements inKopp is infinite. Therefore we have established the following
result.

Theorem 1. Let the DFP algorithm with exact line searches, as described in Sect. 1, be
applied to an objective function of only two variables that has the properties (1). Then
the termination condition (2) is achieved for some finite integerk.

ut

5. More than two variables

The work of this paper has made a small contribution to knowledge about properties
of the DFP algorithm with exact line searches. We know after Sect. 2 that, if the
gradients are bounded away from zero, thenT , which is the limit of the piecewise linear
path that joins the calculated vectors of variables, is a straight line segment. Further,
it is important to the subsequent analysis that the path is confined to one side ofT .
This remark, however, depends on the assumption that the number of variables of the
calculation is only two.

For more variables, the limiting path may still be a straight line segment, but infinite
subsequences ofxk, k= 1,2,3, . . . , can occur on all sides ofT , because in three or
more dimensions there is room for a piecewise linear path to move from one side to
the opposite side of a straight line without intersecting it. Thus it may be possible for
‖g

k
‖>ε, k=1,2,3, . . . , to hold forn≥3, whereε is a positive constant.
Therefore Yu-hong Dai (private communications) and the author have put much

effort into trying to construct ann=3 example, where the conditions (1) are satisfied,
and where no iteration of the algorithm of Sect. 1 achieves the termination condition
‖g

k
‖≤ε for some prescribedε>0. They restrict attention to the case when the distance

from xk to the first coordinate axis tends to zero ask→∞. Further, letting(xk) j denote
the j -th component ofxk, they relatexk+` to xk by the equations

(xk+`)1 = (xk)1 and (xk+`) j = c (xk) j , j=2,3, . . . ,n, (81)
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for every iteration numberk, where` andc are a small positive integer and a constant
from the interval 0< c< 1, respectively. Thus the sequence of calculated vectors of
variables is defined by the choices of`, c andxk, k=1,2, . . . , `. Then, usingn=3, the
gradientsg

k
, k=1,2,3, . . . , are deduced from the properties

gT
k
(xk−xk−1) = 0 and (xk+1−xk)

T(g
k
−g

k−1
) = 0 (82)

of the DFP algorithm with exact line searches, except that all the gradients can be scaled
by a single constant. Examples of this kind are presented by Powell (1984) for the
conjugate gradient method.

Whenn = 3, however, the need for the example to be consistent with the use of
the DFP formula provides a substantial difference from the conjugate gradient method.
This condition can be expressed as` nonlinear equality constraints on the parameters
of the example. Moreover, the line search of the algorithm of Sect. 1 imposes some
nonlinear inequality constraints on the parameters that are analogous to ones that occur
in Powell (1984). Thus the construction of the required example is expressed as a search
for a feasible point of a nonlinear programming problem.

Several months of work on this problem have been unsuccessful, although Dai and
Powell are very close to achieving a solution. Specifically, a feasible point can be found
if an arbitrarily small relative tolerance is allowed in one of the line search conditions,
and if all the other constraints have to hold. A suitable example does not occur in the
limit as the tolerance tends to zero, because then two of the first components(xk)1,
k=1,2, . . . , `, tend to coincide.

A paper will not be written yet on that work, because there are still many unexplored
ways of choosing the parameters that may give a feasible point. Indeed, it is hoped that
further research will expose ann=3 optimization calculation, where the algorithm of
Sect. 1 does not terminate, and where the conditions (81) are satisfied. The discovery
of such a calculation would provide a nice contrast to the conclusions of our lengthy
analysis of a DFP algorithm with exact line searches, when there are only two variables.
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