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Abstract. In this paper we consider a two-person zero-sum discounted stochastic game with ARAT structure
and formulate the problem of computing a pair of pure optimal stationary strategies and the corresponding
value vector of such a game as a vertical linear complementarity problem. We show that Cottle-Dantzig’s

algorithm (a generalization of Lemke’s algorithm) can solve this problem under a mild assumption.
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1. Introduction

In this paper we consider a two-person discounted zero-sum stochastic game in which
for each statg, Player | and Player Il have a finite set of actiohsandBs respectively.

Let Sbe the set of states and lebe its cardinality. When the game is played in stte
Player | chooses an actiore As and Player Il chooses an actigre Bs, the payoff to
Player | isr(s, i, j); the payoff to Player Il is-r(s, i, j). The game makes a transition

to statet with probability p(t|s, i, j) on the next day. The stream of resulting payoffs to
Player | over an infinite number of days, i.e., the time horizon of the game, is evaluated
by the total discounted surﬁ:‘,’\j’zlﬁ’\‘—lr(s i, j) assuming that on dail the game

is played in states, and the actions chosen by players am@nd j respectively. The
transition probabilityp(t|s, i, j) and the reward function(s, i, j) satisfy the following
additive property:

p(tls i, j) = pa(tls, i) + pa(tls, j)
r(s i, j) =ru(si)+ra(s j)

Due to this additive property assumed on the transition and reward functions, the game

is calleds-discounted zero-sum ARAT (Additive Reward & Additive Transition) Game.

As is usual in game theory, players are allowed to choose a probability distribution over
the set of actions available to them in each state and then choose an action with the
probability specified by the chosen distribution. The space of probability distributions
overAgis called the space ofixed strategiefor player | in states. A mixed strategy that

assigns probability mass 1 to a particular action is callpdra strategyln a stochastic

game the players are required to choose a mixed strategy each day and such a sequence
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of actions or mixed strategies chosen by a player may be caldi@y. A policy is

said to bestationaryif the mixed strategies chosen on any day are the same whenever
the game is played at a specified state, i.e., the chosen strategies depend only on the
state the game is played. A stationary policy may therefore be identified with a mixed
strategy at a particular state. For more details on these and related concepts see [14]
and [3]. We denote the matriXp1(t|s,i),t € S i € Ag)) asP1(s) whereSis the set

of states. This is a1(s) x k matrix wherems(s) is the cardinality ofAs andk is the
cardinality of S Similarly the matrixP2(s) of orderma(s) x k is defined wherenx(s)

denotes the cardinality of the sBg.

ARAT games have been studied in the literature earlier by Raghavan et al. [17]. See
also [16] and [3]. Both the discounted and the limiting average criterion of evaluation of
strategies have been considered. It is known for example, thatfatiscounted zero-
sum ARAT game, the value exists and both players have stationary optimal strategies,
which may also be taken as pure strategies. In [17] a finite step method to compute a pair
of pure stationary optimal strategies and the value of the game has been suggested.
However this approach involves solving a series (finite number) of Markov decision
problems. It is interesting to ask whether one can firmha step solution methditte
solving one linear program or one LCP instead of solving a series of Markov decision
problems. (Recall that a Markov decision problem can be solved as a linear program.
See [17, p. 459] in this connection.) We shall show in this paper that this is indeed
possible, with the following assumption on the ARAT game: Either fossahd for
all j € Bs, pz(sls, j) is positive or for alls, and for eaclt there exists a € As
such thatpi(t|s,i) > 0 andP2(s) is not a null matrix. In otherwords, a pair of pure
stationary optimal strategies and the corresponding value for a zero-sum discounted
ARAT game with the above assumption, can be computed by solving a single vertical
linear complementarity problem.

In Sect. 2, we define the vertical linear complementarity problem (VLCP) and
supply relevant material on the VLCP. In Sect. 3, we formulate the zero-sum discounted
ARAT game as a vertical linear complementarity problem. In Sect. 4, we show that the
Cottle-Dantzig algorithm can process this problem under a mild assumption.

2. Vertical linear complementarity problem

Foragiven square matrid € R"™"and avectolg € R" the linear complementarity
problem (denoted by LG®, M)) is to find vectoraw, z € R" such that

w—Mz=0q, w>0,z>0 (1)
w'z=0 (2)

A pair (w, 2) of vectors satisfying (1) and (2) is called a solution to theP(q, M).
This problem is well studied in the literature over the years. For the recent books on this
topic see Cottle, Pang and Stone [2] and Murty [7]. The problem arises in some classes of
stochastic game problems, for example, see [18], [10] and [11]. The algorithm presented
by Lemke and Howson [6] to compute an equilibrium pair of strategies to a bimatrix
game, later extended by Lemke [5] to solvé@P(g, M) contributed significantly to
the development of the linear complementarity theory.
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Cottle and Dantzig [1] extended the problem considered above to a problem in which
the matrixM is not a square matrix. The generalization of the linear complementarity
problem introduced by them is given below:

Al
We say that amn x k matrix A with the partitioned formA = | : | is a vertical
Ak
block matrix of type(ms, my, ..., my) if Al is of ordermj x k, 1 < j < kand
k
2j=1mj = m
Given a vertical block matrixA € R™K (m > k) of type (my,...,mg) and

g€ R™ wherem = le(:l mj, the generalized linear complementarity problem is to
findw € R™ andz € R¥ such that

w— Az

m;
. ]
Zj l_[ wj
i=1

g w=>0,2z>0 3)

00 j=12...k (4)

This generalization is also known gertical generalization of the linear complemen-
tarity problem[1] and it is denoted by/LCRq, A).

2.1. Algorithm for solving the vertical linear complementarity problem

Cottle and Dantzig [1] describe a procedure for solving a vertical linear complemen-
tarity problem, which is an extension of Lemke’s algorithm for the ordinary linear
complementary problem. For the sake of completeness we present this algorithm below.
The Cottle-Dantzig algorithm for théLC R, A) starts with the initial solution to (3)

and (4)

w=0q+dz; z=0

wherez is large enough so that > 0 andd € R™ is a given positive vector. Lel; =
{L.2,....my} andletd = {2 ymj+1 Y T imy+2.. Yo mj) 2<i <k

Step 1: Decreaseyg to Zg =min{zp | q + dz > 0, zg > 0} so that one of the
variableswi, 1 <i < m, saywyp, is reduced to zero. We now have a basic
feasible solution witlzg in place ofwp. This is the initial almost proper basic
feasible solution. Now lat be the unique index, £ r <k, suchthatp e J.

We have exactly one pair of non-basic varialiigs wp) which belong to the
same set of related variables.

Step 2: At each iteration, there is exactly one pair of non-basic variables belonging to
the same set of related variables. Of these, one has been eliminated from the
basis in the previous iteration; the other is now selected to be included in the
basis. For example, in the second iteratipris selected to be included in the
basis.
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Step 3: If the variable selected at Step 2 to enter the basis can be arbitrarily increased,
then the procedure terminates in an almost proper ray, to be caksrbadary
proper ray.If a new basic feasible solution is obtained witfy = 0, or zp
is non-basic, then we have solved (3) and (4) and have a solution for the
VLCRQg, A). Otherwise, we have obtained a new almost proper basic feasible
solution and a new pair of nonbasic variabl&s, yr) belonging to the same
set of related variables, say tH8 set, where eithefxg, yr) = (zs, w), with
te Jsor(Xg ¥r) = (wy, wy), Witht, to € Js.

We repeat Step 2.

The Cottle-Dantzig algorithm (Algorithm CD) consists of the repeated application of
Steps 2 and 3. Under the standard nondegeneracy assumption (see [8]), the procedure
either terminates in solutionto theVLCRq, A) or in asecondary proper ray.

In [8], Mohan et al. have shown that if the input matrix satisfies some property
(i.e., if A belongs to certain classes) then the Cottle Dantzig algorithm can solve the
VLCRQg, A). See also [9].

Definition 1. Aissaidto be a vertical block(d)-matrix for somel > 0if VLCRd, A)
has a unique solutiom =d, z= 0.

Definition 2. A is said to be a vertical bloclRy-matrix if VLCRO, A) has a unique
solutionw =0, z=0.

In what follows we denote the class of vertical bloEkd) matrices asvBE(d) and

the class of vertical blociRy matrices byVBRy. If the vertical block matrixA €
VBE(d) N VBRythenVLCRQ, A) is processable by Cottle-Dantzig’s algorithm. In the
next section, we show that the vertical block matrix arising out of discounted zero-sum
ARAT games belongs tdBE(d) N VBRy when the component; (s) andP»(s) of the
transition probability matrices satisfy a mild condition.

3. Computing optimal pure strategies of a discounted zero-sum ARAT game

We first state the following result.
Theorem 1. (Theorem 6.4.2 in [3]) For ARAT stochastic games

(i) Both players possegsdiscounted optimal stationary strategies that are pure.

(iiy These strategies are optimal for the average reward criterion as well.

(iif) The ordered field property holds for the discounted as well as the average reward
criterion.

To formulate ARAT stochastic games we make use of the result that there is always
an optimal stationary strategy among the pure strategies for both the players and the
Shapley equations hold for this game.

The Shapley equations give us the following for s&ats € S

Val[r(s,i, )+ B p(tls i, Dus®] = vs(9)
t



Vertical linear complementarity and discounted zero-sum stochastic games with ARAT structure

This implies

res i, j)+ /32 p(tls i, Hup(t) < vg(s) foralli and for any fixed.
t

In particular, suppose the optimal pure strategy in staseig for Player | andjo for
Player II. Then

ri(s. i) +r2(s jo) + 8 Y patls. vp®) + By patls. jo)vp(t) < vp(9) Vi.
t t

These inequalities yield

rs i)+ By putls Hus(®) < vp(s) — np(9) = Ep(S) Vi
t

whereng(s) =ra(s, jo) + B Y pa(tls, jo)vs(t) and
t

£5(9) =r1(S.i0) + B ) Pa(tls io)vs(t) and
t
§p(S) + np(s) = vg(9).

Thus the inequalities are

ris i)+ B paltls DEs() — &5(9) + B Y pultls i)p(t) <OVie A seS
(5)
and similarly the inequalities for Player Il are
ra(s )+ B pa(tls Dns® —ng(s) +BY_ pa(tls D& =0V j € Bs, se S
(6)

Also for eachs, in (5) there is ari(s) such that equality holds. Similarly, for eash
in (6) there is gj(s) such that equality holds.

Let wi(s, i) = —r1(s.i) — B pa(tls Hnp(t) +&4(S)

—BY_ ptlsHE® =0, ieAs  (7)
and  wa(s ) =ra(s ) —np() + B Y paltls, Pnp®)

+B8_ palts Dés(t) =0V j € Bs.  (8)

We may assume without loss of generality thats), £s(s) are strictly positive. Since

there is at least one inequality in (7) for eaxle Sthat holds as an equality and one

641

inequality in (8) for eacls € Sthat holds as an equality, the following complementarity

conditions will hold.

n,g(s)l_[ w1(s, i) = 0forl<s<kand (9)
ieAs
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£p(9) [ wa(s h=0fori<s=<k (10)
j€Bs

The inequalities (7) and (8) along with the complementarity conditions (9), (10) lead
to the VLCRQq, A) where the matriA is of the form

_ -BP1  E-—pBP1 =)
A_[—E+ﬁP2 BP; } a”dq‘[rz(-,-) }

In the above VLCPP; = [pa(t]s, i)], P> = [p2(t]s, j)] and

et 0...0
0 ...0
E= .
0. .. &

is a vertical block identity matrix where!, 1 < j < ks a column vector of all 1's of
appropriate order.

In the next section, to show the convergence of Cottle-Dantzig algorithm we show
that the vertical block matrix arising from a zero-sum discounted ARAT game belongs
to a processable class under a mild assumption.

4. Convergence of Cottle-Dantzig algorithm

We first observe the following property of the additive compondntand P, of the
transition probability matrixP.

Lemma 1. If pa(t]s, j) = Oforall t € Sand for someg € B(s), thenP»(s) = 0.

Proof. Supposepa(t|s, j% = 0 for all t. From the condition
k k
Y ptls i)+ Y pactis jO) =1,
t=1 t=1
we obtain thaE{‘zl pi(ts,i) = 1. Let j # j° Now since

k k
Y pattis )+ Y pattls ) = 1.

t=1 t=1

it follows that Z{‘zl pa2(t]s, j) = O for all j # j°. Thus the matrixP>(s) = 0. This
completes the proof.
o
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We have the following theorem.

Theorem 2. Consider the vertical block matripd arising from the zero-sum ARAT
game. TherA € VBE(e) whereeis the vector each of whose entriedlis

dl
Proof. Letd = [

dz} whered! > 0 andd? > 0. Consider the VLCRI, A) where

A=|: -BP1 E—.Bpl:|
—E+pP P |°

We shall show by contradiction tha¥LCRd, A) has only the trivial solution
w=4d, z=0, whend =e.

wl ng . wt d! ng
Let [wz} , [gﬁ} be a solution to/LCRd, A). Then[wz} = [dz} + A[EJ .

0 *
Assume[ gﬂ * [0} . Letvg(s) = &g(9) + ng(s) andvg(s’) = rQEaSXU,g(s).

Now vg(s*) = £g(s*) + ng(s*) > 0.

Case 1.Letng(s") > 0. Then there exists aine As- such that

dt — B patls', DEs(H) — B Pa(tls’, mp(H) + &5(s") = 0.

or, £4(s") = —d + B Y pa(tls*, Hvp(t). (11)
We also have from the feasibility condition
d?+ B pa(tls’, Hup(® = np(s) (12)
From (11) and (12), we have
d?—dl+ B pitis*.i. ug(t) = vp(sh).
Note that for our choice af, d? = d{ so that
B ptIS*, i, Dup(t) = vp(s").

which is a contradiction unlesg(s*) = 0 orvg(t) = 0, for all t or &g(t) = ng(t) = 0,
for all t.

Case 2.Let&g(s*) > 0. Then by complementarity there exist§ & Bs- such that
d? = np(s") + B _ paltls”, hup(t) =0

or, djz +8 Z P2(t|s*, ug(t) = np(s")

Sincedj2 > 0, it follows thatng(s*) > 0. Hence the theorem follows.



644 S.R. Mohan et al.

Theorem 3. Consider the vertical block matriA arising from zero-sum ARAT game.
ThenA € VBR if either the condition (a) or the set of conditions (b) stated below is
satisfied.

(a) For eachsand eachj € Bs, p2(s|s, j) > 0.
(b) (i) Foreachs, the matrixP1(s) does not contain any zero column and
(i) the matrix P2(s) is not a null matrix.

Proof. Consider the VLCR, A) where

A=|: -BP1 E—.Bpl:|
—E+pP, P |°

We shall show by contradiction that VLQ® A) has only the trivial solution
w=0, z=0.

wl n . wl 0 n
Let .| "2 | be a solution to VLCRO, A). Then = Al 8.
[wz} [5/9} 0.4 [wz} [O}Jr [éﬂ}

Suppos gﬂ + [8} . Letvg(s) = £g(9) + np(s) and letvg(s*) = maSXU,g(s).
Se

Now vg(s*) = &g(s*) + ng(s*) > 0.

Case 1.Letng(s*) > 0. Then by complementarity there existsiaa As+ such that

—BY " pultls’ . DEg() — B Y pa(tls™. hnp(D) + £4(s") = 0.

This impliesg ) ~ pa(t|s*, Dvg(t) = £4(s"). (13)
We also have from the feasibility condition
By patls’, Dup(® = ns(sh) (14)
From (13) and (14), we have
B ptIS*, i, Dup(t) = vp(s").

which is a contradiction unlesg(s*) = 0 orvg(t) = 0, for all t or £g(t) = ng(t) =0,
for all t.

Case 2.Next supposeg(s*) = 0. This implies&g(s*) > 0. Therefore, by the vertical
block complementarity condition there exist$ & Bs+ such that

B paltls®, us(t) = ng(s").
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Suppose now condition (a) holds. Note that by this conditmiis*|s*, j) > 0 and
vp(s*) > 0.

Sinceng(s) = B Z pa(t|s, j)vg(t) and bothpo(s*|s*, j) andvg(s*) are positive,
it follows thatng(s*) > 0. Hence Case 2 does not arise if condition (a) holds.

Now suppose the set of conditions (b) holds. Since for saéf(s) does not have
a 0 column, we have by the feasibility condition

£p(9)€>s — BPL((np +&p) = O

wheree® denotes the vector of ord¢As| of 1's. From here it follows thagg(s) is
positive for eacts. It follows from here that fos = s* we have

np(s’) =B pa(tls’, hup(® > 0.

Thus again Case 2 does not arise if the set of conditions (b) holds. This completes the

proof.
O

The following example shows that if neither (a) nor (b) holds then, Theorem 3 may
not hold. In otherwords if both (a) and (b) are violated tARénCRO, A) may have
a nontrivial solution.

Example 1.Consider a two player zero-sum discounted ARAT game w/ith2 states.
In each state each of the two players has 2 actions. The transition probabilities are given

by
P11 =3 m@[L)=0

pr(111,2) =3, p1(2|1,2) =0,
P1(112,1) =0, p(2]2,1) =
P1(112,2) =0, p1(2|2,2) =
P2(111, D) =3, p2(2|1,1) =
P2(111,2) =0, p2(2]1,2) =
P2(112,1) =0, p2(2|2,1) =
P2(112,2) = 2 andpz(2]2,2) = 0.

Note thatp(t|s, i, J) = pa(t]s, i) + pa(t]s, j).

Let the discount facto = 3. The matrixA is given by

NP NIRE O NIFNI-

I 5 -
E 0 1 0
-1 o 2 o
o -3 o 3

1 3

a_| 0 -5 0
-3 o 1 o0
-1 3 o i

3 1
o -3 o 1
B )
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whereA is a vertical block matrix of typé2, 2, 2, 2).

Now it is easy to verify that for this matrix, neither condition (a) nor the set of
conditions (b) holds. Also it is easy to verify that = 2 = & = 0,& = 1is
a nontrivial solution to/LCRO, A). ThusA is not a vertical blockrg matrix.

Even though we have shown the convergence of Cottle and Dantzig’s algorithm under
the conditions (a) or (b) of Theorem 3, in practical implementation, Cottle-Dantzig’s
algorithm seems to succeed in computing a solution even when the assumption is not
satisfied.

To see this consider the following example.

Example 2.To Example 1 we add the following rewards to complete the description of
an ARAT game.

ri(l,1) =4,r1(1,2) =5,r1(2,1) = 3andr1(2, 2) = 4.
r2(1,1) =3,r2(1,2) =6,r2(2, 1) =6 andra(2,2) = 2.r(s,i, j) =ra(s, i) +ra(s j).

For this game our formulation leads to thé CRq, A) where the vertical block
matrix A is as in Example 1 and

4
5
_3
_a
=1 3

6
6
- 2_.
Although the vertical block matriA is not a vertical blocky matrix, Cottle-Dantzig
algorithm processes this matrix with the covering vect@asd produces the following
solution.ng(1) = 7, np(2) = 6,£5(1) = 9 and&g(2) = 7.33. w(1l) = 1.0,w(2) =0,
w(3) = 1.0,w(4) = 0O,w(5) = O,w(6) = 2.33,w(7) = 3.33 andw(8) = 0.
Therefore an optimal pure strategy for the players in the various states are as follows:
Player | chooses action 2 in states 1 and 2. Player Il chooses action 2 in states 1 and 2.

Remark 1.1t is relevant to note here that a giva/LCRq, A) can be equivalently
formulated as dCP(g, M) as in [8]. This requires constructing the square matrix
M from the given vertical block matriyA by copying itsj!" column as many times
as thej™ block size. We say that the matrik is a vertical blockE(0) matrix if

the equivalent square matriM satisfies the following condition(w, z), z # 0 is

a solution to theLCP(0, M) = there exists & > 0, x # 0, x € R" such that
y=—M!x>0, x <z y < w. lItis known that Cottle-Dantzig algorithm processes
VLCRaq, A) if VLCRd, A) has the unique solutiom = d, z = 0 andA is a vertical
block E(0) matrix. Itis interesting to note that the vertical block matiin the example
above is also not a vertical blodk(0) matrix.

Remark 2.The method of Raghavan et al. [17] requires solving a finite number of
Markov decision problems. Each Markov decision problem can be solved as a linear
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program. But on the other hand, the Cottle-Dantzig algorithm can solve the VLCP
formulation of the game problem if one of the conditions (a) or (b) stated in Theorem 3
holds. Then for such games a pair of pure stationary optimal strategies and the value can
be computed by solving a single VLCP. However we are not sure of the computational
superiority of the Cottle-Dantzig procedure over the procedure that solves a sequence of
Markov decision problems as linear programs. The question of solvingltiaR(q, A)

for these stochastic games when the vertical block méatiiboes not satisfy one of the
conditions (a) or (b) by using Cottle-Dantzig algorithm still remains open. However the
VLCR{q, A) arising from such a game may also be solved by other methods such as
the the enumerative algorithm (finite step) of Garcia and Lemke [4] for computation of
pure strategies and the value vector of this game. See also [19].

Remark 3.We can enumerate various special cases where one of (a) or (b) holds. Notice
that it is also easy to verify the conditions in general by examining the entries of the
matricesP; and P. In particular, when botlP; and P, are positive both (a) and (b)
hold. If P> is positive condition (a) holds. Whel, is positive andP,(s) is not a null
matrix for eachs condition (b) holds.

5. Conclusion

In this paper we considered the zerosum discounted stochastic game with ARAT struc-
ture and showed that a pair of stationary optimal pure strategies for both the players
(such optimal strategies are known to exist) and the corresponding value can be obtained
as a solution to a vertical linear complementarity problem. To show that the resulting
VLCP can be solved by Cottle-Dantzig algorithm, we had to impose certain conditions
on the VLCP, which restricted the scope of this approach to some extent. The possibility
of solving the VLCP arising from a general zerosum discounted stochastic game with
ARAT structure by Cottle-Dantzig algorithm is still open.

AcknowledgementsThe authors wish to thank the unknown referees who have patiently gone through this
paper and whose suggestions have improved its presentation and readability considerably.
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