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Abstract. Given a finite number of closed convex sets whose algebraic representation is known, we study
the problem of finding the minimum of a convex function on the closure of the convex hull of the union of
those sets. We derive an algebraic characterization of the feasible region in a higher-dimensional space and
propose a solution procedure akin to the interior-point approach for convex programming.

1. Introduction

The literature in optimality conditions and solution methods for convex programming
is extensive when the feasible set is either given in abstract form or explicitly by convex
constraints. The problem that we address in this article lies in between, namely, we
seek the minimum of a convex function on a closed convex set defined as the closure of
the convex hull of a finite number of individual closed convex sets that have a known
representation.

This mathematical program occurs in the context of disjunctive convex optimization
where the infimum of a convex function is sought over the union of a finite number of
individual closed convex sets. The optimal value of our mathematical problem provides
a lower bound to that of the corresponding disjunctive convex program but, if the objec-
tive function is linear, then the optimal value of both programs coincides and there is at
least one optimal solution that is feasible to both programs. Since any disjunctive convex
program can be formulated with a linear objective function then our framework also
provides a means for solving disjunctive convex programs. Examples of applications
with some nonlinear element in the formulation include market product positioning, pro-
cess synthesis network design, see [6] and references therein, and limited-diversification
portfolio selection, see [3,5]. References of applications in the linear case that are not
of the combinatorial type may be found in [12, Chapters 1,8] and [1].
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In this paper we study the two central issues that arise when tackling these problems,
namely, algebraic representation and solution procedure. We first provide an algebraic
characterization of the set of feasible solutions in a higher-dimensional space, i.e., in-
volving additional variables. Though this characterization is primarily nonconvex, we
are able to obtain an equivalent convex representation through the use of theperspec-
tive functionconcept from convex analysis. However, the new representation does not
inherit fully the differentiability properties of the original functions that characterize the
individual sets and it may not have a closed-form expression at all the points of interest
which, in particular, implies that we cannot directly apply a standard nonlinear pro-
gramming algorithm. We propose a procedure that uses an idea akin to the interior-point
approach of introducing a parameter and a barrier term to the objective function. For
every value of the parameter, the resulting program is convex and amenable by standard
convex programming algorithms. As the barrier parameter goes to zero, any accumula-
tion point of the sequence of optimal points is optimal for the original program. We also
show that the Lagrange multipliers associated with the parameterized programs define
approximations to the dual certificates of optimality for the original program.

Our work extends a well-known special case studied by Balas [2], when the objective
function is linear and every individual set is defined by a set of linear constraints. Our
convexification argument was also used by Jeroslow [9] who assumed that the individual
sets are bounded and contained in the first orthant. Stubbs and Merhotra [13] also used
similar assumptions and argument in the formulation of the cut generation problem for
convex programming with binary variables. Most of our results rely on the excellent
first volume of the book by H. Urruty and C. Lemaréchal [7], from where we have tried
to follow the same notation closely.

The paper is structured in the following way. In the remainder of this section
we introduce some notation and recall some basic results from convex analysis. In
Sect. 2 we provide a higher-dimensional algebraic characterization of the closure of the
convex hull in terms of points and directions of the individual sets without requiring
any special assumptions, boundedness in particular. We show that this characterization
defines a nonconvex set in the higher-dimensional space unless each individual set is
a singleton. We also explain the convex reformulation and relate it to the work of Balas in
the linear case. In Sect. 3 we recall the abstract optimality conditions for the optimization
problem, present optimality conditions involving Lagrange multipliers and show that,
under a constraint qualification, they are also necessary. In Sect. 4 we show that the
optimal solution may be obtained from solving a sequence of parameterized standard
convex programs and show that any accumulation point of the sequence of Lagrange
multipliers for some individual sets provides a dual certificate of optimality concerning
the same individual sets. Finally, in Sect. 5 we draw conclusions and give directions of
future research.

We denote by IRn the n-dimensional real space and by IRn+ the set of nonnegative
vectors of IRn. Elements of IRn can be column vectors or row vectors. The distinction
should be drawn from the context, but often it can also be made from the variable
identificators used, the last letters of the latin alphabet likex, y, z refer to column
vectors and greek letters likeα, β, γ refer to row vectors, although they may also
represent scalars. A sequence of scalars is indexed by a subscript like in{µt} while
a sequence of matrices or vectors is indexed by a superscript like in{λt}. The symbol
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‖ · ‖ denotes anynorm in the primal space IRn and‖α‖∗ ≡ max‖x‖≤1αx defines the
correspondingdual norm, also calledconjugate, on the dual space. A convex function
f : IRn→ IR∪ {−∞,+∞} is convex according to the modern concept that allowsf to
take∞ values, see [7]. The effective domain of the functionf , denoted dom( f ), is the
set of pointsx ∈ IRn for which f(x) < +∞. A function f is closed when all its level
sets are closed. Every convex functionf admits a unique closed extension(cl f )which
results from redefiningf at pointsx 6∈ dom( f ) in such a way that for all level sets

Lδ(cl f ) ≡ {x ∈ IRn : (cl f )(x) ≤ δ} = cl
({

x ∈ IRn : f(x) ≤ δ}) ≡ cl (Lδ( f )).

The set∂ f(x) denotes the subdifferential of the convex functionf at x ∈ IRn. This
set is defined on the dual space and hence, it is composed of row vectors. When∂ f(x)
is singleton then its unique element is called the gradient off at x, denoted∇ f(x),
and again it is a row vector. Iff is continuous atx∗ then ∂ f(x∗) is nonempty and
compact ([7, Theorem 6.2.2]). Furthermore, if{xk} is a sequence converging tox∗ then
lim ∂ f(xk) ⊆ ∂ f(x∗) ([7, Theorem 6.2.4]). Iff = [ fi ]mi=1 is a vector of convex functions
fi then∂ f(x) ⊆ IRm×n denotes the set of matricesSwhose rows are the subgradients of
the functionsfi at x ∈ IRn. If f is a closed convex function then the function denoted
f ′∞ is the recession function off and the functionf̃ is the perspective off . A rigorous
definition and some results with these functions are presented in the appendix.

Given some setP ⊆ IRn, we use the standard topological concepts like theclosure,
denoted cl, therelative interior, denoted ri, and theconvex hull, denoted conv . IfP
is a nonempty closed convex set, therecession coneof P, denotedP∞, is the set of
vectorsd ∈ IRn such that for anyx ∈ P we have thatx + td ∈ P, for everyt ∈ IR+.
A (algebraic)representationof P is of the form

P = {x ∈ IRn : G(x) ≤ 0
}
, (1)

whereG : IRn→ IRm is vector mapping whose components are closed convex functions.
Given two setsA, B ⊆ IRn, we call the(Minkowski) sumof A with B the setA+ B
made of every possible sums of one element inA with one element inB. The symbol
“⊆” means “contained in”, while the symbol “⊂” means “strictly contained in”. The
symbol “≡” denotes a defining equality. The symbol1p, or1I , denotes the simplex
polytope in IRp, or IR|I |.

2. Higher-dimensional characterization

Consider a closed convex setP ⊆ IRn defined by

P ≡ cl conv (K) , K ≡
p⋃

i=1

Ki , (2)

where every setKi is a closed convex set having the following representation

Ki ≡
{

x ∈ IRn : Gi (x) ≤ 0
}
, (3)

andGi : IRn→ IRmi is a vector mapping whose components are closed convex functions.
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In order to provide a higher-dimensional characterization ofP, we will at first
assume that the setK is either bounded below or above, i.e., there exists somex̄ ∈ IRn

such that̄x ≤ x, for everyx ∈ K , or x̄ ≥ x, for everyx ∈ K . As we will see later, the
assumption is not needed but makes the proof simpler.

Proposition 1. Let P be given by (2),I ≡ {i : Ki 6= ∅} and assume that the setK is
bounded below or above. Then,

P = conv
(⋃

i∈I

K i
)
+
∑
i∈I

K i∞. (4)

Proof. We shall prove the mutual inclusion. In order to prove the “⊆” part, let x ∈ P.
By definition,x = limt xt, wherext ∈ conv(K) and after some algebra we can refine
this characterization tox = limt

∑
i∈I λ

t
i

(
ui
)t

, where(ui )t ∈ Ki andλt ≡ (λt
i ) ∈ 1I .

Since1I is compact, there exists some infinite index setT1 such that the subsequence
{λt}t∈T1 converges. Hence,

lim
t∈T1

λt = λ̂ ∈ 1I .

For anyi ∈ I , the sequence{λt
i

(
ui
)t}t∈T1 is bounded, or otherwise, since the setK

is bounded below or above, the sequence{xt} would not converge. Hence, there exists
an index sequenceT2 ⊆ T1 such that the sequence{λt

i

(
ui
)t}t∈T2 converges.

For thosei ∈ I such that̂λi > 0, the sequence{(ui
)t}t∈T2 is bounded, or otherwise

the sequence{λt
i

(
ui
)t}t∈T2 would not converge. Hence, there exists an index sequence

T ⊆ T2 such that

lim
t∈T

λt
i

(
ui
)t = λ̂i û

i ,

where limt∈T
(
ui
)t = ûi ∈ Ki becauseKi is closed.

In the remainder of the proof we show that for thosei ∈ I such that̂λi = 0 we have
that

v̂i ≡ lim
t∈T

λt
i

(
ui
)t ∈ Ki∞.

SinceKi is nonempty, we choose an arbitraryûi ∈Ki . We have to prove thatûi+αv̂i ∈Ki ,
for everyα ≥ 0. Since limt∈T λ

t
i = λ̂i = 0, we have that, for all but a finite number of

t’s in T,

0≤ αλt
i ≤ 1 and

(
1− αλt

i

)
ûi + αλt

i

(
ui
)t ∈ Ki .

Clearly,

lim
t∈T

(
1− αλt

i

)
ûi + αλt

i

(
ui
)t = ûi + αv̂i ,

and so,̂ui + αv̂i ∈ Ki becauseKi is closed. Thus, one inclusion is proved.
In order to prove the “⊇” part, let x ∈ conv

(∪i∈I K i
) +∑i∈I K i∞. After some

algebra,x can be written as

x =
∑
i∈I

λi x
i +

∑
i∈I

di , (5)
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Fig. 1. The optimal solution overP is not in K

wherexi ∈ Ki ,di ∈ Ki∞ andλ = (λi ) ∈ 1I . Now, defineI+ = {i ∈ I : λi > 0} and
I0 = {i ∈ I : λi = 0} and pick an indexj ∈ I+, a nonempty set because

∑
i∈I λi = 1,

so that

xε =
∑

i∈I+\{ j }

(
λi x

i + di )+ (λ j −
∑
i∈I0

εi

)
x j + d j +

∑
i∈I0

(
εi x

i + di ),
whereε = (εi ) is such that 0< εi < λ j / | I0 |, for everyi ∈ I0. For everyεwe have that
xε ∈ conv(∪i∈I K i ). It is now easy to construct a sequence of points in conv(∪i∈I K i )

convergent tox. Hence,x ∈ P and the mutual inclusion is proved.

Note that, from Proposition 1, the Minkowski sum of all the recession cones asso-
ciated with nonempty setsKi is enough to “close” the set conv(∪p

i=1Ki ). See Fig. 1
for an example where the set conv(K1 ∪ K2) does not contain the dashed lines and,
therefore, it is not closed.

Proposition 1 provides an algebraic characterization ofP as the projection into the
space of thex variables of some higher-dimensional set. In fact,x ∈ P if and only if
there exist vectors(λi , zi ,di ), for everyi ∈ I , such that the following nonlinear system
holds

x =
∑
i∈I

λi z
i +

∑
i∈I

di (6)

Gi (zi ) ≤ 0, Gi ′∞(di ) ≤ 0, i ∈ I (7)∑
i∈I

λi = 1, λi ≥ 0, i ∈ I, (8)

whereGi ′∞ is the recession, or asymptotic, function ofGi (see the appendix).
There are two sources of difficulty with the characterization (6)–(8). The first one

comes from the fact that the functionsGi ′∞ do not admit a closed-form expression
in general. The other arises from the presence of the nonlinear equality constraint (6)
which complicates the optimization stage as our next result shows.

Proposition 2. The higher-dimensional setP defined by (6)–(8) is convex if and only
if every setKi , for i ∈ I , is a singleton.

Proof. Let X̃ = (x̃, λ̃, z̃, d̃) and X̂ = (x̂, λ̂, ẑ, d̂) be any two points inP and consider
an arbitrary convex combinationδX̃ + (1− δ)X̂, whereδ ∈ [0,1]. Since

∑
i∈I δλ̃i +
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(1− δ)λ̂i = 1,δz̃i + (1− δ)ẑi ∈ Ki andδd̃i + (1− δ)d̂i ∈ Ki∞ always, thenP is convex
if and only if

δx̃+(1− δ)x̂−
∑
i∈I

(
δλ̃i+(1−δ)λ̂i

)(
δz̃i+(1−δ)ẑi

)
−
∑
i∈I

(
δd̃i+(1−δ)d̂i

)
= 0, (9)

for anyδ ∈ [0,1] and any two feasible points inP . Simplifying the left-hand-side of (9)
we obtain an equivalent expression as

δ(1− δ)
∑
i∈I

(
λ̂i − λ̃i

)(
z̃i − ẑi

)
= 0.

Since we may select̂λi andλ̃i distinctly, the desired result follows.

Though, in the higher-dimensional space, the representation (6)–(8) defines a non-
convex set, there is an alternative representation that defines a convex set. Both repre-
sentations are equivalent in the sense that they project the same set in the space of thex
variables. When theGi ’s are linear mappings the required algebraic manipulation was
referred to asconvexificationby Balas [2]. Theorem 1 below extends this argument to
the nonlinear setting. We note, however, that Jeroslow [9, Example 4.1] had already
found the same result in a more particular setting, namely thatP ⊆ IRn+ and bounded.
Our generality is mainly due to the connection between the convexification argument
and the convex analysis concept of perspective function. In fact, we have already seen
thatx ∈ P if and only if

x =
∑

i∈I : λi>0

λi z
i +

∑
i∈I : λi=0

di ,

for some suitable choice of the remaining variables. This is equivalent to saying that
x = ∑i∈I xi , whereλi Gi (xi /λi ) ≤ 0, for everyi ∈ I : λi > 0 andGi ′∞(xi ) ≤ 0, for
every i ∈ I : λi = 0. The perspective mapping captures these two different expres-
sions into a single one because

(
cl G̃i

) (
λi , xi

) = λi Gi (xi/λi ) wheneverλi > 0 and(
cl G̃i

) (
0, xi

) = Gi ′∞(xi ).

Theorem 1. Let P be given by (2) andI ≡ {i : Ki 6= ∅}. If the setK is bounded below
or above thenx ∈ P if and only if there exist vectors(λi , xi ), for everyi ∈ I , such that
the following nonlinear system is feasible

x =
∑
i∈I

xi (10)

(
cl G̃i ) (λi , x

i
)
≤ 0, i ∈ I, (11)∑

i∈I

λi = 1, λi ≥ 0, i ∈ I, (12)

where, generically,
(
cl G̃

)
(λ, x) denotes the closure of the perspective mapping ofG

at (λ, x).
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Proof. From basic results recalled in the appendix, we have that, for everyi ∈ I ,(
cl G̃i ) (λi , x

i
)
≤ 0 ⇐⇒

{
Gi (xi/λi ) ≤ 0 if λi > 0
Gi ′∞(xi ) ≤ 0 if λi = 0.

Thus, (10)–(12)characterizes all the pointsx that are the sum of a convex combination of
points in every setKi and directions of the same setsKi , for i ∈ I . From Proposition 1,
this is equivalent to saying thatx ∈ P.

Now, we may explain why the boundedness assumption onK is not a requirement
for Proposition 1 and Theorem 1 to hold. In general, we have that

conv
(⋃

i∈I

K i
)
⊆ conv

(⋃
i∈I

K i
)
+
∑
i∈I

K i∞ ⊆ cl conv
(⋃

i∈I

K i
)
= P.

But, characterization (10)–(12), which defines the set in the middle regardless of the
boundedness assumption, defines a closed set because it is the projection into the space
of the x variables of a closed higher-dimensional set. Thus, the second inclusion is
actually an equality and we may conclude that (10)–(12) definesP regardless of the
boundedness assumption.

The convexification argument of Balas whenGi (x) = bi − Ai x becomes a natural
corollary of Theorem 1. In fact, it is easy to check that(

cl G̃i ) (λi , x
i
)
=
{
λi bi − Aivi if λi ≥ 0,
+∞ if λi < 0,

so that that (10)–(12) and Balas’ characterization ofP, see [2], are essentially the same.
Characterization (10)–(12) ofP requires the knowledge of which setsKi are

nonempty. If the set{1, . . . , p} is used instead ofI then it may define a larger convex
set P̂ than the intendedP. We recall that the nonlinear system

(
cl G̃i

) (
0, xi

) ≤ 0
admits the trivial solutionxi = 0 even if the setKi is empty. A necessary and sufficient
condition for P̂ = P is that

p∑
i=1

{
d ∈ IRn : (cl G̃i ) (0,d) ≤ 0

}
=
∑
i∈I

{
d ∈ IRn : (cl G̃i ) (0,d) ≤ 0

}
, (13)

which depends upon the chosen algebraic representation of every setKi . This condition
holds trivially in, at least, two interesting situations. WhenP is the convex hull of the
feasible region of a mixed integer convex program, each setKi corresponds to a particu-
lar assignment of the integer variables. In this case, the set{d ∈ IRn : (cl G̃i

)
(0,d) ≤ 0}

is independent ofi and, thus, condition (13) follows. WhenP is bounded and every
set Ki (or at least the empty ones) contains among its algebraic representation a sub-
set of constraints defining a nonempty polytope, condition (13) also holds because
{d ∈ IRn : (cl G̃i

)
(0,d) ≤ 0} = {0}. These two special cases are natural extensions of

results presented in [2].
Therefore, the problem of finding the minimum of some convex functionf over the

setP defined by (2) can be algebraically formulated as

min f(x)
s.t. (10)–(12)

(14)
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This program is not amenable by standard convex programming algorithms because at
points of the form(0, xi ), the mapping cl̃Gi may not have a closed-form expression
and, in general, it is not differentiable even if theGi ’s are continuously differentiable
everywhere. If we knew in advance the existence of an optimal solution where the
componentsλi , i ∈ I, would all be positive then this difficulty could be overcome by
simply imposing a sufficiently small positive lower bound on the variablesλi , i ∈ I . In
the following sections we will explain a procedure for solving Program (14) in general.
We start by elaborating on necessary and sufficient conditions for optimality in the next
section.

3. Optimality conditions

In this section we focus on deriving optimality conditions for

min
x∈P

f(x), (15)

whereP is defined by (2) andf is a closed convex function. Additionally, we assume
that f and everyGi are continuous in an open set containingP.

First, observe that iff is linear then it is equivalent to solving Program (15) overP
or overK . In fact, letx̂ ∈ P be defined by

x̂ =
∑

i∈I : λ̂i>0

λ̂i ẑ
i +

∑
i∈I : λ̂i=0

d̂i , (16)

where I = {i : Ki 6= ∅} and ẑi ∈ Ki , for everyi ∈ I : λ̂i > 0, d̂i ∈ Ki∞, for every
i ∈ I : λ̂i = 0, (λ̂i ) ∈ 1I . Assume that̂x is optimal for Program (15) andf(x) = cx.
SinceKi ⊆ P, for everyi ∈ I , then

min
zi∈Ki

czi = cẑi = cx̂, i ∈ I : λ̂i > 0,

min
zi∈Ki

czi ≥ cx̂, i ∈ I : λ̂i = 0.
(17)

The reciprocal is also true, i.e., conditions (17) are also sufficient for optimality ofx̂
defined by (16). Therefore, since at least oneλ̂i is positive then it is equivalent to solve
Program (15) overK or overP, in the sense that the optimal value is the same and at least
one optimal solution belongs to both sets. Furthermore, the set of optimal solutionsŜ
can be fully characterized simply by knowing one of the optimal solutions. In fact, the
set of optimal solutionŝS is given by

Ŝ= cl conv
(⋃

i∈I

{
zi ∈ Ki : czi = cx̂

})
.

When f is nonlinear then the minimum value off over P is a lower bound to
that overK . For example, Fig. 1 illustrates a pointx̂ that uniquely minimizes thel2
distance function‖x − x̄‖ over P = cl conv(K1 ∪ K2), but that it is not inK1 ∪ K2.
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Fig. 2. Geometric interpretation of optimality

A point x̂ ∈ P defined by (16) is optimal for Program (15) if and only if there exists
a subgradient̂ξ ∈ ∂ f(x̂) such that

ξ̂(x− x̂) ≥ 0, (18)

for everyx ∈ P, see [7, Theorem VI.1.1.1] for example. Thus, by using (17), this is
equivalent to saying that̂x ∈ P defined by (16) is optimal for Program (15) if and only
if there exists a subgradientξ̂ ∈ ∂ f(x̂) such that for̂α = −ξ̂,

hi (α̂) = α̂ẑi = α̂x̂, i ∈ I : λ̂i > 0,
hi (α̂) ≤ α̂x̂, i ∈ I : λ̂i = 0,

(19)

wherehi (α) ≡ supzi∈Ki αzi . Furthermore, extending an earlier result of Mangasar-
ian [11], Burke and Ferris [4] showed that the set of subgradients that satisfy (18) is the
same for any point̂x in the set of optimal solutionŝS. This implies, for example, that if
f is differentiable in an open set containingP then

Ŝ⊆ cl conv
(⋃

i∈I

{
zi ∈ Ki : ξ̂zi = ξ̂ x̂

})
, (20)

whereξ̂ = ∇ f(x̂). The inclusion may be strict as the two-dimensional example of Fig. 2
shows. Assume that the interior pointx̃ is the unique optimal solution so thatξ̂ = 0.
Then, the set on the right-hand-side of (20) isP = conv(∪4

i=1Ki ), i.e., everything. In
the same figure, suppose thatx̂ is optimal andf is differentiable, the point̂x can only be
expressed as a convex combination of the pointsẑ3 andẑ4. Thus,Ŝ lies in the segment
δẑ3+ (1− δ)ẑ4, for δ ∈ [0,1].

In order to check whether a given pointx̂ ∈ P is optimal we need to solve| I |
optimization problems iff is differentiable, according to (19). If we want to avoid solv-
ing that many optimization problems then we need more explicit optimality conditions
involving Lagrange multipliers. Proposition 3 below shows conditions that are sufficient
for optimality of Program (15). The conditions that we propose involve the following
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set which is related to the normal cone toP at some point̂x defined by (16),

N′G
(
x̂, (λ̂i , ẑ

i , d̂i )i∈I
) ≡ {α ∈ IRn : α ∈ N′

Gi (ẑ
i ), αẑi ≤ αx̂, i ∈ I : λ̂i > 0,

αzi ≤ αx̂, for anyzi ∈ Ki , i ∈ I : λ̂i = 0,

}
.

where, following the notation in [7], the setN′
Gi (ẑ

i ) is related to the normal cone toKi

at ẑi and defined by

N′Gi (ẑ
i ) =

{
α ∈ IRn : α = ui Si , Si ∈ ∂Gi (ẑi ),ui Gi (ẑi ) = 0,ui ≥ 0

}
.

Later, we will show that the sufficient condition for optimality stated in Proposition 3
is also necessary under a constraint qualification. We remark that the setsN′

Gi andN′G
above are defined differently. While in one case,Gi identifies the specific mapping that
algebraically characterizes the setKi , in the other case the “G” is a generic symbol.

Proposition 3. Let x̂ ∈ P be defined by (16). If

0 ∈ ∂ f(x̂)+ N′G
(
x̂, (λ̂i , ẑ

i , d̂i )i∈I
)
, (21)

thenx̂ is optimal for Program (15).

Proof. Let ξ ∈ ∂ f(x̂) be such thatα = −ξ ∈ N′G(x̂, (λ̂i , ẑi , d̂i )i∈I ). SinceN′
Gi (ẑ

i ) ⊆
NKi (ẑi ) ≡ {α : hi (α) = αẑi }, see [7, Lemma VII.2.1.3,page 305], then we have that
αx ≤ αx̂, for everyx ∈ K . Thus, by continuity and from the definition ofα, we conclude
thatξ(x− x̂) ≥ 0, for everyx ∈ P, which shows the optimality of̂x.

We would expect that checking whether a given pointx̂ ∈ P defined by (16) is
optimal for Program (14) to be an easy linear feasibility problem as it usually occurs
with standard differentiable convex programs. This is not the case with the condition
(21) for, suppose that all the functions involved are continuously differentiable just
to make subgradients uniquely determined. SinceN′

Gi (ẑ
i ) ⊆ NKi (ẑi ), for every i ∈

I : I ∩ {i : λ̂i > 0}, see [7, Lemma VI.2.1.3, page 305], condition (21) requires that, not
only we solve| I ∩ {i : λ̂i > 0} | linear feasibility problems in the variablesui , but also
we have to make sure that, forα̂ = −∇ f(x̂),

hi (α̂) = max α̂zi

s.t. zi ∈ Ki ≤ α̂x̂,

for everyi ∈ I : λ̂i = 0. Thus, we also have to solve| I ∩ {i : λ̂i = 0} | optimization
problems or, at least, prove that the optimal value of all of them is bounded byα̂x̂.

A constraint qualification is needed to guarantee the existence of the multipliers
involved in condition (21) at an optimal solution of Program (15), as with any standard
convex program. One possible constraint qualification simply imposes that the cone
N′G(x̂, (λ̂i , ẑi , d̂i )i∈I ) coincides with the normal cone toP at x̂ ∈ P, NP(x̂), defined by

NP(x̂) ≡
{
α ∈ IRn : α(x− x̂) ≤ 0, for everyx ∈ P

}
= {α ∈ IRn : h(α) = αx̂

}
,
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whereh(α) ≡ maxx∈P αx. Note thatN′G(x̂, (λ̂i , ẑi , d̂i )i∈I ) ⊆ NP(x̂) holds at anŷx ∈ P
defined by (16). Our constraint qualification implies that the reciprocal inclusion also
holds for anyx̂ ∈ P.

Definition 1. We say that the basic constraint qualification holds forK defined by (2)
if

N′Gi (z
i ) = NKi (zi ),

for everyzi ∈ Ki and everyi ∈ I .

When p = 1 this definition coincides with the basic constraint qualification in-
troduced in [7] where the concept is also related to other constraint qualifications in
constrained optimization.

Assuming that the basic constraint qualification holds, letα ∈ NP(x̂). In particular,
αzi ≤ αx̂, for everyzi ∈ Ki and for everyi ∈ I . Since

αx̂ =
∑

i∈I : λ̂i>0

λ̂iαẑi +
∑

i∈I : λ̂i=0

αd̂i

andαd̂i ≤ 0, for everyi ∈ I : λ̂i = 0, or otherwise we wouldn’t have a finitehi (α),
then we must haveαẑi = αx̂, for everyi ∈ I : λ̂i > 0. Thus,α ∈ NKi (ẑi ) = N′

Gi (ẑ
i ),

for everyi ∈ I : λ̂i > 0, which implies that

N′G(x̂, (λ̂i , ẑ
i , d̂i )i∈I ) = NP(x̂),

for any x̂ ∈ P defined by (16). Now, since optimality of Program (15) is equivalent to

0 ∈ ∂ f(x̂)+ NP(x̂)

then the basic constraint qualification is enough to guarantee (21) at optimality.
If every functionGi is affine, i.e.,Gi (zi ) = bi − Ai zi then, since the basic constraint

qualification holds, see [7, Proposition VI.2.2.2], the existence of the multipliers at
an optimal solution of Program (15) is guaranteed. If some functionGi is nonlinear
then the basic constraint qualification is hard to check from its definition. However,
a well known sufficient condition forNGi (zi ) = NKi (zi ) to hold for anyzi ∈ Ki is
that the weak Slater condition is satisfied. The weak Slater condition is said to hold for
Ki = {zi : Gi (zi ) ≤ 0} if there exists a vector̃zi ∈ Ki such thatGi

k(z̃
i ) < 0, for every

k ∈ Ji , whereJi denotes the index sets corresponding to the nonlinear functions. So, if
the weak Slater condition holds for every setKi then the existence of multipliers at an
optimal solution of Program (15) is guaranteed.

4. A primal procedure

The optimal solution of Program (15) was characterized in the previous section. In this
section we propose a primal procedure for solving Program (14) by solving a sequence
of convex programs defined by one of the following problems:
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min f(x)− µ∑i∈I lnλi

s.t.

x =∑i∈I xi(
cl G̃i

) (
λi , xi

) ≤ 0, i ∈ I∑
i∈I λi = 1,

λi ≥ 0, i ∈ I,

(22)

min f(x)

s.t.

x =∑i∈I xi(
cl G̃i

) (
λi , xi

) ≤ 0, i ∈ I∑
i∈I λi = 1,

λi ≥ µ, i ∈ I.

(23)

Whenµ > 0 and fixed, both of these programs are convex and have closed level sets.
Moreover, since every setKi is nonempty then every(x, (λi , xi )i∈I ) of any level set is
such thatλi > 0, for everyi ∈ I , meaning that if we use an algorithm that keeps iterates
in the same level set then no points of the form(0, xi ) will be generated. Furthermore,
at any of those points (

cl G̃i ) (λi , x
i
)
= λi G

i (xi /λi ),

so that we may exploit the differentiability properties of the original program. Theorem 2
below states that whenµgoes to zero, any accumulation point of the sequence defined by
the optimal points for Program (22), or Program (23), is optimal for Program (14). The
theorem applies to a particular convergent subsequence. Existence can be guaranteed
under appropriate compactness assumptions.

Theorem 2. Let {xt} be a convergent subsequence of optimal points for Program (22),
or Program (23), for some sequence{µt} of positive numbers converging to zero. Then,
x̂ = lim xt is optimal for Program (14).

Proof. Consider Program (22) first and let(ξ t, (−µt/λ
t
i ,0)i∈I ) be a subgradient of the

objective function at the optimal point of thet-th problem that satisfies

ξ t(x− xt)−
∑
i∈I

µt

λt
i

(
λi − λt

i

) ≥ 0, (24)

for every(x, (λi , xi )i∈I ) ∈ P , the feasible region of Program (22).
Since lim∂ f(xt) ⊆ ∂ f(x̂), which is a compact set becausex̂ ∈ P and f is continuous

at x̂, there exists an accumulation pointξ̂ ∈ ∂ f(x̂) of the sequence{ξ t}. We assume
without loss of generality that{ξ t} converges tôξ.

Now, we show that the sequence{µt/λ
t
i } is bounded, for everyi ∈ I . By contradic-

tion, suppose that there exists a subsequence{µt/λ
t
i }t∈T such that limt∈T µt/λ

t
i = +∞.

In particular, we must have limt∈T λ
t
i = 0 because limt∈T µt = 0. Pick any vector

(x̃, (λ̃i , x̃i )i∈I ) ∈ P such that̃λi > 0. Then, from (24), we have that

ξ t(x̃− xt)−
∑
i∈I

µt

λt
i
(λ̃i − λt

i ) ≥ 0, (25)

for everyt ∈ T. But, we have reached a contradiction because ast ∈ T approaches+∞
the left-hand-side of (25) approaches−∞. Thus, we conclude that{µt/λ

t
i } is bounded,

for everyi ∈ I .
Since both sequences{µt/λ

t
i } and{λt

i} are bounded, letδi andλ̂i be two accumulation
points of these sequences. Note thatδi > 0 implies thatλ̂i = 0 because limt µt = 0.
Taking limits in (24) over these convergent subsequences, we conclude that

ξ̂(x− x̂)−
∑
i∈I

δiλi ≥ 0,
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for every(x, (λi , xi )i∈I ) ∈ P , which in particular implies that̂ξ(x− x̂) ≥ 0, for every
x ∈ P. Thus,x̂ is optimal for Program (14).

Now, consider Program (23) and let(ξ t, (0,0)i∈I ) be the subgradient of the objective
function at the optimal point of thet-th problem that satisfies

ξ t(x− xt) ≥ 0, (26)

for every (x, (λi , xi )i∈I ) ∈ Pµt , the feasible region of Program (23). Since
lim ∂ f(xt) ⊆ ∂ f(x̂), which is a compact set becausex̂ ∈ P and f is continuous at̂x,
there exists an accumulation pointξ̂ ∈ ∂ f(x̂) of the sequence{ξ t}. We assume without
loss of generality that{ξ t} converges tôξ. Since limPµt = P then taking limits (26) we
conclude that̂ξ(x− x̂) ≥ 0, for everyx ∈ P. Thus,x̂ is optimal for Program (14).

Theorem 2 shows that we may solve Program (14) by solving an infinite sequence
of standard convex programs. Since it is not possible to solve such a large number of
problems then the next question is how to verify whether a given pointx̂ is optimal. The
necessary and sufficient condition (18) provided a possible answer becausex̂ is optimal
if and only if for α̂ = −ξ̂

hi (α̂) ≡ max α̂zi

s.t. zi ∈ Ki ≤ α̂x̂,

for everyi ∈ I , which amounts to solving| I | optimization problems iff is differen-
tiable.

We now provide a slightly different version of Theorem 2 by showing that ifx̂ is
an accumulation point of a sequence of KKT points for Program (22) thenx̂ satis-
fies condition (21) for a suitable choice of the multipliers. A suitable analysis can be
carried out for Program (23). For Program (22), the KKT conditions are satisfied at
(x, (λi , xi )i∈I ) ∈ P if there is a multiplier row vector(α, δ, (ui )i∈I ) and subgradients
ξ ∈ ∂ f(x), Si ∈ ∂Gi (xi/λi ) that satisfy

ξ +α = 0,
−αxi /λi +δ = µ/λi

−α +ui Si = 0,

 , i ∈ I,ui ≥ 0, i ∈ I (27)

and the complementarity equations

ui Gi (xi/λi ) = 0, i ∈ I. (28)

For Program (23), the KKT conditions are satisfied at(x, (λi , xi )i∈I ) ∈ Pµ if there is
a multiplier row vector(α, δ, (γi ,ui )i∈I ) and subgradientsξ ∈ ∂ f(x), Si ∈ ∂Gi (xi/λi )

that satisfy

ξ +α = 0,
−αxi /λi +δ −γi = 0
−α +ui Si = 0,

 , i ∈ I,

ui , γi ≥ 0, i ∈ I

(29)
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and the complementarity equations

ui Gi (xi/λi ) = 0,
γi (λi − µ) = 0,

}
, i ∈ I, (30)

Note that, since the KKT conditions are sufficient for optimality then, as explained
before,λi > 0, for everyi ∈ I . We also note that the derivation of the KKT conditions
required the knowledge of the subdifferential of clG̃i in terms of the subdifferential
of Gi . This is explained in the appendix.

Theorem 3 below states that whenµ goes to zero, any accumulation point of the
sequence defined by the KKT points for Program (22) satisfies (21). An analogous result
holds for Program (23).

Theorem 3. Let{xt =∑i∈I (x
i )t}t∈T be a subsequence of KKT points for Program (22)

for some sequence{µt} of positive numbers converging to zero such that

lim
t∈T

λt = λ̂ ∈ 1I ,

lim
t∈T
(xi )t/λt

i = ẑi ∈ Ki , lim
t∈T
(Si )t = Ŝi ∈ ∂Gi (ẑi ), i ∈ I : λ̂i > 0,

lim
t∈T
(xi )t = d̂i ∈ Ki∞, i ∈ I : λ̂i = 0,

lim
t∈T

xt = x̂ ∈ P, lim
t∈T

ξ t = ξ̂ ∈ ∂ f(x̂),


(31)

If ûi , i ∈ I : λ̂i > 0, are accumulation points of the sequence of multipliers{(ui)t}t∈T, i ∈
I : λ̂i > 0, then

x̂ = lim
t∈T

xt =
∑

i∈I : λ̂i>0

λ̂i ẑ
i +

∑
i∈I : λ̂i=0

d̂i ∈ P

satisfies (21) with those values of the multipliers.

Proof. As we saw in the proof of Theorem 2,ξ̂
(
x− x̂

) ≥ 0, for everyx ∈ P. In
particular, sinceKi ⊆ P, we conclude thathi (α̂) ≤ α̂x̂, for everyi ∈ I . Now, consider
only thosei ∈ I : λ̂i > 0. From the second set of equations in (27),

−αt (x
i )t

λt
i
+ δt = µt

λt
i
. (32)

Taking limits in (32) overT, we conclude that the sequence{δt}t∈T1 converges to
δ̂ = α̂ẑi . Moreover, from the third set of equations (27),

−αt +
(
ui
)t (

Si
)t = 0. (33)

Taking limits in (33) overT, we conclude that̂α + ûi Ŝi = 0. The complementarity
ûi Gi (ẑi ) = 0 follows from the continuity ofGi .
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The existence of KKT points for Program (22), or Program (23), is assumed in
Theorem 3. But, if the basic constraint qualification holds then the existence of KKT
points for Program (22) is guaranteed, regardless of the value ofµ, because the constraint
qualification is independent of the objective function.

Most importantly, Theorem 3 shows that if we are solving Program (15) through
solving Program (22), for some sequence of positive numbers{µt} converging to zero
then, the corresponding multipliers(ui )t at thet-th optimal solution and the subgradi-
entξ t define approximated values with which we can verify condition (21). We remark
that checking whetherξ ∈ ∂ f(x̂) is easy in many cases of interest. An especially
important example isf(x) = ‖x− x̄‖ where

∂ f(x) = {ξ ∈ IRn : ξ(x− x̄) = ‖x− x̄‖, ‖ξ‖∗ = 1
}
.

There is a limitation in Theorem 3 in that it does not show any value in the accumu-
lation pointsûi , i ∈ I : λ̂i = 0 of the sequence of multipliers{(ui )t}t∈T, i ∈ I : λ̂i = 0.
However, we think that these multipliersûi , i ∈ I : λ̂i = 0 may considerably speed-up
the verification thathi (α) ≤ αx̂, i ∈ I : λ̂i = 0 in an effort to establish the optimality
of x̂.

Theorem 3 required the existence of accumulation points of the sequence of multipli-
ers. A stronger version of the Slater condition guarantees the existencea priori. We say
that the strong Slater condition holds forK defined by (2) if the strong Slater condition
holds for every setKi , for i ∈ I , see [7, Def VI.2.3.1, page 311] for example. We recall
that the strong Slater condition holds for a convex setKi = {zi : Gi (zi ) ≤ 0} if there
exists a feasible point where the only binding constraints are linear and its normals are
linearly independent. Theorem 4 formalizes the usefulness of this concept by showing
that the multipliers sequence remains in a compact set, which guarantees the existence
of accumulation points.

Theorem 4. Assume that the strong Slater condition holds for the setK defined by
(2) and that (31) holds. Then, the multipliers sequences{(ui )t}t∈T , i ∈ I : λ̂i > 0,
associated with Program (22), for some sequence of parameter values converging to
zero, are bounded.

Proof. Consider only those indicesi ∈ I : λ̂i > 0. Equation (33) is equivalent to

mi∑
j=1

(
ui

j

)t (
Si

j

)t = αt , (34)

where(Si
j )

t denotes thej th row vector of the matrix(Si )t .

Let z̃i be the point inKi where the strong Slater condition is satisfied,J be the set
of the indices corresponding to the non-binding constraints atz̃i and J̃ be the set of the
indices corresponding to the binding ones. By the definition of subgradient, we have
that

0> Gi
j

(
z̃i
)
≥ Gi

j

(
(xi )t/λt

i

)
+
(

Si
j

)t (
z̃i − (xi )t/λt

i

)
,
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for every j ∈ J. SinceGi
j (z̃

i ) = aj z̃i − bj = 0, for every j ∈ J̃, and it holds that

(ui
j )

t Gi
j ((x

i )t/λt
i ) = 0, we have that

∑
j∈J

(
ui

j

)t
Gi

j

(
z̃i
)
≥

mi∑
j=1

(
ui

j

)t (
Si

j

)t (
z̃i − (xi )t/λt

i

)
(35)

= αt
(

z̃i − (xi )t/λt
i

)
. (36)

The left-hand-side of (35) is always non-positive because(ui
j )

t ≥ 0. The right-hand-side

converges to(z̃i − ẑi ) over T. SinceGi
j (z̃

i ) < 0, for every j ∈ J, we conclude that

every sequence{(ui
j )

t}t∈T , with j ∈ J, is bounded.
From (34), we have that∑

j∈ J̃

(
ui

j

)t
aj = αt −

∑
j∈J

(
ui

j

)t (
Si

j

)t
, (37)

for everyt ∈ T. The right-hand-side of (37) is bounded because{(ui
j )

t}t∈T1, for j ∈ J,

is bounded and everything else converges overT1. Suppose that, for somej ∈ J̃, the
sequence{(ui

j )
t}t∈T1 is unbounded. This would imply that the right-hand-side in (37)

would not be bounded, because the set{aj } j∈ J̃ is linearly independent. By contradiction,

we conclude that every sequence{(ui
j )

t}t∈T1, for every j ∈ J̃, is also bounded overT1.

5. Applications and conclusions

In most practical applications of disjunctive convex programming the setP is defined
in (2) by a large numberp of individual sets, frequently exponential in the number
of variables. In these circumstances, the index setI is either unknown or too large.
Therefore, our procedure should be applied within a framework that takes care of the
dimensionality issue in the form of a cutting-plane algorithm, a branch-and-bound
algorithm, or a combination of these.

Basically, the idea behind such a global algorithm is to solve the original problem
wherep is too large by solving a sequence of problems that are defined by a small number
of individual sets. In this setting we envisage two circumstances where our algorithm may
be applied. One occurs when looking for a separating hyperplane between a given point
x̄ and a convex setP defined by (2). For example, in the context of convex programming
with integer variables, the point̄x may be the optimal solution of some nonlinear
programming relaxation̄P such that some componentx̄ j is fractional and it should be
either 0 or 1. Then, it might be the case thatx̄ does not belong toP ≡ cl conv(K0∪K1),
whereK0 = P̄ ∩ {x : xj = 0} andK1 = P̄ ∩ {x : xj = 1}. Then, as implied by Stubbs
and Mehrotra [13], a separating hyperplane betweenx̄ and P may be found by using
the following Fenchel duality result

maxαx̄− h(α)
s.t. ‖α‖∗ = 1,

= min f(x) ≡ ‖x− x̄‖
s.t. x ∈ P

(38)
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whereh(α) ≡ max{αx : x ∈ P}. If x̂ is an optimal solution in (38), i.e.,̂x is the
projection ofx̄ into the setP andξ̂ ∈ ∂ f(x̂) satisfies (18) then the vectorα̂ = −ξ̂ is an
optimal dual solution in (38) defining the following valid inequality forP,

α̂x ≤ h(α̂)
(= α̂x̂

)
,

which is in the all-linear case referred to as thedeepest cutbecause it is the valid
inequality for P that cuts-offx̄ by the largest amount. The value ofα̂ is available at
optimality when the procedure described in the previous sections is used.

Another possible setting occurs when at a given node of the branch-and-bound tree
we want a lower bound on the optimal value of the nonlinear programming relaxations
associated with all the nodes emanating from the current node. Instead of solving all
those problems individually we may consider them as defining the individual sets of
some setP. Thus, our procedure would require solving only one convex program though
with a larger number of variables.

Finally, following a remark of Claude Lemaréchal we have realized that another type
of solution procedure may be envisaged that uses an idea akin to the Bundle method, or
Frank–Wolfe’s algorithm. This is a primal-dual procedure which is particularly interest-
ing in the generation of cutting-planes for convex programming with integer variables
using (38) for two main reasons: one, the procedure can be implemented as a decompos-
ition algorithm and, two, the procedure may be terminated before optimality is achieved
while still guaranteeing a cut. This feature is not found in the primal approach described
in this paper, in which the cut is only found assimptotically. However, this proced-
ure lacks the usage of second-order objective function information that our approach
can use in the same way an interior-point code does. We are in the process of testing
both approaches in the context of solving mixed-integer nonlinear programs through
a cutting-plane algorithm.

Appendix. Recession and perspective functions

We recall and expand some basic results stated in [7, pages 178–183] for recession
functions and [7, pages 160–162] for perspective functions. We consider only the relevant
results to the context of this paper. The interested reader may find in [7,8] a broad
treatment of this topic.

Given a closed convex functionf : IRn → IR ∪ {+∞}, the recession function
f ′∞ : IRn→ IR ∪ {+∞} is defined by

f ′∞(d) ≡ lim
t→∞

f(x0+ td)− f(x0)

t
, (39)

wherex0 is an arbitrary point of dom( f ). If F : IRn → (IR ∪ {+∞})m is a vector
mapping whose components are closed convex functions thenF′∞ is a vector mapping
whose components are the respective recession functions. Recession functions reflect
the behavior off at∞ along a direction.

It is known that the recession function of a closed convex function is also closed
and convex [7, Proposition VI.3.2.2]. Our interest in this function is that ifP =
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{x ∈ IRn : G(x) ≤ 0} then P∞ =
{
d ∈ IRn : G′∞(d) ≤ 0

}
, see [7, Proposition 3.2.5].

It is easy to check that ifG(x) = b− Ax thenG′∞(d) = −Ad, but, in general,G′∞
does not have a closed-form expression.

Given a closed convex functionf : IRn → IR ∪ {+∞}, the perspective function
f̃ : IRn+1→ IR ∪ {+∞} is defined by

f̃ (λ, x) ≡
{
λ f(v/λ) if λ > 0,
+∞ if λ ≤ 0.

(40)

If F : IRn → (IR ∪ {+∞})m is a vector mapping whose components are closed convex
functions theñF is is a vector mapping whose components are the respective perspective
functions.

It is known that the perspective function of a closed convex function is convex,
see [7, Proposition VI.2.2.1], but it need not be closed. The closure off̃ is shown in [7,
Proposition VI.2.2.2] to be defined by,

(
cl f̃

)
(λ, x) =

λ f(x/λ) if λ > 0,
limλ→0+ λ f(x̃− x+ x/λ) if λ = 0,
+∞ if λ < 0,

(41)

wherex̃ is an arbitrary point of ri dom( f ). Our interest in this function is that it is
employed in deriving a convex algebraic characterization of the setP defined by (2).

Proposition 4 below provides a characterization of the subdifferential of(cl f̃ ) in
terms of subdifferential off at all the points of interest to the context of this paper.

Proposition 4. Let f : IRn → IR ∪ {+∞} be a closed convex function and(λ̂, x̂) be
such that̂λ > 0. Then, if we definêz= x̂/λ̂,

1. ∂
(
cl f̃

) (
λ̂, x̂

)
is empty if and only if∂ f(ẑ) is empty.

2. If ∂ f(ẑ) is nonempty then

∂
(
cl f̃

) (
λ̂, x̂

)
= {( f(ẑ)− ξ ẑ, ξ) : ξ ∈ ∂ f(ẑ)

}
. (42)

Proof. Assume that(δ, ξ) ∈ ∂(cl f̃
) (
λ̂, x̂

)
, i.e.,

(
cl f̃

)
(λ, x) ≥ λ̂ f(x̂/λ̂)+ (δ, ξ)

[
λ− λ̂
x− x̂

]
, (43)

for any (λ, x) ∈ IRn+1. In particular, whenλ = λ̂, λ̂ f(x/λ̂) ≥ λ̂ f(ẑ) + ξ (x− x̂
)
, for

everyx ∈ IRn. But, since anyz ∈ IRn can be written asz= x/λ̂ then

f(z) ≥ f(ẑ)+ ξ (z− ẑ
)
,

for every z ∈ IRn, which shows that thatξ ∈ ∂ f(ẑ). Moreover, since (43) can be
equivalently written as

λ
[

f(x/λ)− ξ x

λ
− δ

]
≥ λ̂

[
f(x̂/λ̂)− ξ x̂

λ̂
− δ

]
.
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for any (λ, x) ∈ IRn+1 such thatλ > 0, we can easily conclude thatδ = f(ẑ) − ξ ẑ
by suitably choosing values forλ keepingx/λ = x̂/λ̂. Thus, we have proved that
δ = f(ẑ)− ξû andξ ∈ ∂ f(ẑ).

Now, letξ ∈ ∂ f(ẑ), which in particular implies that̂z ∈ dom( f ). We need to prove
that (

cl f̃
)
(λ, x) ≥ λ̂ f(x̂/λ̂)+ ( f(ẑ)− ξ ẑ, ξ) [λ− λ̂

x− x̂

]
, (44)

for every(λ, x) ∈ IRn+1. This is trivially true whenλ < 0. It also holds whenλ > 0
because (

cl f̃
)
(λ, x) ≥ λ

[
f(ẑ)+ ξ

(
x

λ
− x̂

λ̂

)]
= λ̂ f(ẑ)+ ( f(ẑ)− ξ ẑ, ξ) [λ− λ̂

x− x̂

]
.

In order to prove (44) whenλ = 0 note that, for anyt, we have that, for everyx ∈ IRn,

f(ẑ+ tx)− f(ẑ)

t
) ≥ ξx

H⇒ f ′∞(x) ≥ ξx,
⇐⇒ f ′∞(x) ≥ λ̂ f(ẑ)+ ( f(ẑ)− ξ ẑ, ξ) [0− λ̂

x− x̂

]
,

from where the desired result follows because
(
cl f̃

)
(0, x) = f ′∞(x), see [7, Re-

mark IV.2.2.3]. We have proved both statements.

The characterization of the subdifferential of(cl f̃ ) at points of the form(0, x) is
not so simple or informative. It was shown to us by Claude Lemaréchal ([10]) that if
f : IRn→ IR ∪ {+∞} is a closed convex function then,

∂
(
cl f̃

)
(0,0) =

{
(δ, ξ) ∈ IRn+1 : δ+ f ∗(ξ) ≤ 0

}
,

where f ∗(ξ) ≡ supx∈IRn ξx− f(x) is the conjugate function off atξ. Since⋃
z∈dom( f )

{( f(z)− ξz, ξ) : ξ ∈ ∂ f(z)} ⊆ {(δ, ξ) : δ+ f ∗(ξ) ≤ 0
}
,

we conclude that the set∂
(
cl f̃

)
(0,0) is too large to be of value.

References

1. Balas, E. (1975): Disjunctive programming: cutting planes from logical conditions. In: Nonlinear Pro-
gramming2, pp. 279–312

2. Balas, E. (1985): Disjunctive programming and a hierarchy of relaxations for discrete optimization
problems. SIAM J. Algebraic Discrete Methods6, 466–486

3. Bienstock, D. (1996): Computational study of a family of mixed-integer quadratic programming prob-
lems. Math. Program.74, 121–140



614 Sebastián Ceria, João Soares: Convex programming for disjunctive convex optimization

4. Burke, J., Ferris, M. (1991): Characterization of solution sets of convex programs. Oper. Res. Lett.10,
57–60

5. Butera, G. (1997): The solution of a class of limited diversification portfolio selection problems. PhD
thesis. Department of Computational and Applied Mathematics, Rice University, Houston, Texas, May
1997

6. Duran, M., Grossmann, I. (1986): An outer-approximation algorithm for a class of mixed-integer nonlinear
programs. Math. Program.36, 307–339

7. Hiriart-Urruty, J., Lemaréchal, C. (1993): Convex Analysis and Minimization Algorithms, Vol. 1.
Springer-Verlag, Berlin Heidelberg New York

8. Hiriart-Urruty, J., Lemaréchal, C. (1993): Convex Analysis and Minimization Algorithms, Vol. 2.
Springer-Verlag, Berlin Heidelberg New York

9. Jeroslow, R. (1977): Representability in mixed integer programming, I: Characterization results. Discrete
Appl. Math.17, 223–243

10. Lemaréchal, C. (1997): Geometric characterization of the subdifferential of a perspective function at
points(0, x). Private Communication, May 1997

11. Mangasarian, O. (1988): A simple characterization of solution sets of convex programs. Oper. Res. Lett.
7, 21–26

12. Sherali, H., Shetty, C. (1980): Optimization with disjunctive constraints. In: Beckman, M., Kunzi, H.,
eds., Lect. Notes Econ. Math. Systems181. Springer-Verlag, Berlin Heidelberg New York

13. Stubbs, R., Mehrotra, S. (1996): A branch-and-cut method for 0-1 mixed convex programming. Technical
Report 96-01, Northwestern University, Evanston, Illinois, Jan 1996


