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Abstract. Given a finite number of closed convex sets whose algebraic representation is known, we study
the problem of finding the minimum of a convex function on the closure of the convex hull of the union of
those sets. We derive an algebraic characterization of the feasible region in a higher-dimensional space and
propose a solution procedure akin to the interior-point approach for convex programming.

1. Introduction

The literature in optimality conditions and solution methods for convex programming
is extensive when the feasible set is either given in abstract form or explicitly by convex
constraints. The problem that we address in this article lies in between, namely, we
seek the minimum of a convex function on a closed convex set defined as the closure of
the convex hull of a finite number of individual closed convex sets that have a known
representation.

This mathematical program occurs in the context of disjunctive convex optimization
where the infimum of a convex function is sought over the union of a finite number of
individual closed convex sets. The optimal value of our mathematical problem provides
a lower bound to that of the corresponding disjunctive convex program but, if the objec-
tive function is linear, then the optimal value of both programs coincides and there is at
least one optimal solution that is feasible to both programs. Since any disjunctive convex
program can be formulated with a linear objective function then our framework also
provides a means for solving disjunctive convex programs. Examples of applications
with some nonlinear elementin the formulation include market product positioning, pro-
cess synthesis network design, see [6] and references therein, and limited-diversification
portfolio selection, see [3,5]. References of applications in the linear case that are not
of the combinatorial type may be found in [12, Chapters 1,8] and [1].
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In this paper we study the two central issues that arise when tackling these problems,
namely, algebraic representation and solution procedure. We first provide an algebraic
characterization of the set of feasible solutions in a higher-dimensional space, i.e., in-
volving additional variables. Though this characterization is primarily nonconvex, we
are able to obtain an equivalent convex representation through the usep=rtpec-
tive functionconcept from convex analysis. However, the new representation does not
inherit fully the differentiability properties of the original functions that characterize the
individual sets and it may not have a closed-form expression at all the points of interest
which, in particular, implies that we cannot directly apply a standard nonlinear pro-
gramming algorithm. We propose a procedure that uses an idea akin to the interior-point
approach of introducing a parameter and a barrier term to the objective function. For
every value of the parameter, the resulting program is convex and amenable by standard
convex programming algorithms. As the barrier parameter goes to zero, any accumula-
tion point of the sequence of optimal points is optimal for the original program. We also
show that the Lagrange multipliers associated with the parameterized programs define
approximations to the dual certificates of optimality for the original program.

Our work extends a well-known special case studied by Balas [2], when the objective
function is linear and every individual set is defined by a set of linear constraints. Our
convexification argumentwas also used by Jeroslow [9] who assumed that the individual
sets are bounded and contained in the first orthant. Stubbs and Merhotra [13] also used
similar assumptions and argument in the formulation of the cut generation problem for
convex programming with binary variables. Most of our results rely on the excellent
first volume of the book by H. Urruty and C. Lemaréchal [7], from where we have tried
to follow the same notation closely.

The paper is structured in the following way. In the remainder of this section
we introduce some notation and recall some basic results from convex analysis. In
Sect. 2 we provide a higher-dimensional algebraic characterization of the closure of the
convex hull in terms of points and directions of the individual sets without requiring
any special assumptions, boundedness in particular. We show that this characterization
defines a nonconvex set in the higher-dimensional space unless each individual set is
a singleton. We also explain the convex reformulation and relate it to the work of Balas in
the linear case. In Sect. 3 we recall the abstract optimality conditions for the optimization
problem, present optimality conditions involving Lagrange multipliers and show that,
under a constraint qualification, they are also necessary. In Sect. 4 we show that the
optimal solution may be obtained from solving a sequence of parameterized standard
convex programs and show that any accumulation point of the sequence of Lagrange
multipliers for some individual sets provides a dual certificate of optimality concerning
the same individual sets. Finally, in Sect. 5 we draw conclusions and give directions of
future research.

We denote by R the n-dimensional real space and by} Rhe set of nonnegative
vectors of R. Elements of R can be column vectors or row vectors. The distinction
should be drawn from the context, but often it can also be made from the variable
identificators used, the last letters of the latin alphabet Xkg, z refer to column
vectors and greek letters like, 8, y refer to row vectors, although they may also
represent scalars. A sequence of scalars is indexed by a subscript {ikg iwhile
a sequence of matrices or vectors is indexed by a superscript |{#é}irnThe symbol
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| - || denotes anyiormin the primal space Rand |||, = maxx<1 ax defines the
correspondinglual norm also callecconjugate on the dual space. A convex function
f: R" — RU{—o00, +00} is convex according to the modern concept that alldvis
takeoo values, see [7]. The effective domain of the functigrdenoted donif ), is the
set of pointsx € R" for which f(x) < +o0. A function f is closed when all its level
sets are closed. Every convex functibadmits a unique closed extensi@h f ) which
results from redefining at pointsx ¢ dom(f) in such a way that for all level sets

Lsccl f) = {x e R": (cl f)(x) <8} =cl ({x e R": f(x) <38}) =cl (Ls(f)).

The setd f(x) denotes the subdifferential of the convex functibrat x € R". This
set is defined on the dual space and hence, it is composed of row vectorsd¥ken
is singleton then its unique element is called the gradient at x, denotedV f(x),
and again it is a row vector. If is continuous a* thenaf(x*) is nonempty and
compact ([7, Theorem 6.2.2]). Furthermore(xf} is a sequence convergingxd then
lim 9 f(x¥) < af(x*) ([7, Theorem 6.2.4]). Iff = [ fi]", is a vector of convex functions
fi thena f(x) € R™*" denotes the set of matric&svhose rows are the subgradients of
the functionsf; atx € R". If f is a closed convex function then the function denoted
f/, is the recession function df and the functiorf is the perspective of . A rigorous
definition and some results with these functions are presented in the appendix.
Given some seP C R", we use the standard topological concepts likectbeure
denoted cl, theelative interior, denoted ri, and theonvex hull denoted conv . IfP
is a nonempty closed convex set, tfleeession conef P, denotedP, is the set of
vectorsd € R" such that for ank € P we have thak + td € P, for everyt € R...
A (algebraic)epresentatiorof P is of the form

P={xeR": G(x <0}, 1)

whereG: R" — R™Mis vector mapping whose components are closed convex functions.
Given two setsA, B € R", we call the(Minkowski) sunof A with B the setA + B
made of every possible sums of one elemenAiwith one element irB. The symbol

“C” means “contained in”, while the symbotz” means “strictly contained in”. The
symbol “=" denotes a defining equality. The symhb}, or A, denotes the simplex
polytope in R, or RI'I.

2. Higher-dimensional characterization

Consider a closed convex getC R" defined by

p
P = cl conv (K), KEUKi, 2)
i—1

where every seK' is a closed convex set having the following representation
Kis{xeR”:Gi(x)fol, 3)

andG': R" — R™ is avector mapping whose components are closed convex functions.
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In order to provide a higher-dimensional characterizatiorPofwe will at first
assume that the sét is either bounded below or above, i.e., there exists somdR"
such thatk < x, for everyx € K, or X > x, for everyx € K. As we will see later, the
assumption is not needed but makes the proof simpler.

Proposition 1. Let P be given by (2)] = {i: K # #} and assume that the sktis
bounded below or above. Then,

P:conv(U K‘)+ZKLO. (4)
iel icl
Proof. We shall prove the mutual inclusion. In order to prove th& part, letx € P.
By definition,x = lim¢ x!, wherex! e conv(K) and after some algebra we can refine
this characterization t® = lim¢ >, Al (u')t, where(uh)! € K' anda! = (A1) € A.
SinceA| is compact, there exists some infinite index Besuch that the subsequence
{AY}teT, COnverges. Hence,
imit=1%eA.
teTy
For anyi € I, the sequenca} (ui)t}teT1 is bounded, or otherwise, since the Ket
is bounded below or above, the sequefdég would not converge. Hence, there exists
an index sequenck C Ti such that the sequen(;lzqt (u' )t}teT2 converges.
For thosd € | such that, > 0, the se(;1uenc{z(u‘)t}tg2 is bounded, or otherwise
the sequenc(akit (ui)t}teT2 would not converge. Hence, there exists an index sequence
T C Ty such that

AN S
lim A} (u') =0,
teT
where limeT (u‘)t =0 € Ki becaus«&' is closed.

In the remainder of the proof we show that for those!| such thaf.; = 0 we have
that

. At .
Al t
0" =lim A (u') € K.

teT
SinceK' is nonempty, we choose an arbitréty: K'. We have to prove thét + o' € K',
for everya > 0. Since limet Ait = )i = 0, we have that, for all but a finite number of
t'sinT,
. At .
O<ar <1 and (1—arf)0' + ! (u') e K'
Clearly,
. At . .
lim (1— akit) 0"+ ant (u') =0+ o',
teT

and sofl + ai' € K' becaus' is closed. Thus, one inclusion is proved.
In order to prove the®” part, letx € conv (Uie| K') + Y., KL,. After some

algebrax can be written as
X:Zkixi—i—Zdi, (5)

iel iel
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[—— 4 K1

K2

Fig. 1. The optimal solution oveP is not inK

wherex' € K',d' e KL andx = (n) € Aj. Now, definel . = {i € |: 4 > 0} and
lo={i e I: 4 =0} and pick an indey € |, a nonempty set becaulg,, A = 1,
so that

Xe= Yy (mx +d)+ ()\,j —Zei>xj +d+ > (ax +d),

iel4\{j} iclp iclp

wheree = (¢j) issuchthatO< ¢ < 1j/ | lo |, foreveryi e lo. For every we have that
Xe € conv (Ui K"). It is now easy to construct a sequence of points in ¢ahy K')
convergent tox. Hence x € P and the mutual inclusion is proved.

Note that, from Proposition 1, the Minkowski sum of all the recession cones asso-
ciated with nonempty set&' is enough to “close” the set comwip:lK'). See Fig. 1
for an example where the set cofi! U K2) does not contain the dashed lines and,
therefore, it is not closed.

Proposition 1 provides an algebraic characterizatioR @k the projection into the
space of thex variables of some higher-dimensional set. In facg P if and only if
there exist vectoré.i, Z', d'), for everyi € I, such that the following nonlinear system

holds
X:ZAiZi+Zdi (6)

icl icl
G'(Z)<0, G _(d)<0 el @)
da=1 x=0 el (8)

iel

whereG' ;o is the recession, or asymptotic, function®@f (see the appendix).

There are two sources of difficulty with the characterization (6)—(8). The first one
comes from the fact that the functionﬁ%i>O do not admit a closed-form expression
in general. The other arises from the presence of the nonlinear equality constraint (6)
which complicates the optimization stage as our next result shows.

Proposition 2. The higher-dimensional s@ defined by (6)—(8) is convex if and only
if every seK', fori € I, is a singleton.

Proof. Let X = (%, 1,z d) andX = (X, 4, 2, d) be any two points i and consider
an arbitrary convex combinatiagfX + (1 — ) X, wheres$ € [0, 1]. Since) ;| sAi +
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(1-8)ki = 1,67 +(1—-6)2 e Kl andsd' + (1—6)d" e K always, therP is convex
if and only if

S5+ (L — HK—Y | (axi +(1—5)Xi) (azi +(1—5)2i) = (aa‘ +(1—5)ai) —0, (9)
i€l i€l
foranyé € [0, 1] and any two feasible points . Simplifying the left-hand-side of (9)
we obtain an equivalent expression as

5(1—3)2:@ —Xi) (zi —2i) —0.

iel
Since we may seledt andi; distinctly, the desired result follows.

Though, in the higher-dimensional space, the representation (6)—(8) defines a non-
convex set, there is an alternative representation that defines a convex set. Both repre-
sentations are equivalentin the sense that they project the same set in the spage of the
variables. When th&'’s are linear mappings the required algebraic manipulation was
referred to agonvexificatiorby Balas [2]. Theorem 1 below extends this argument to
the nonlinear setting. We note, however, that Jeroslow [9, Example 4.1] had already
found the same result in a more particular setting, namelyRhatR'} and bounded.

Our generality is mainly due to the connection between the convexification argument
and the convex analysis concept of perspective function. In fact, we have already seen
thatx € P if and only if

X = Z Aizi + Z d,
iel: >0 iel: =0
for some suitable choice of the remaining variables. This is equivalent to saying that
X = Y. X, whereai G (X /Ai) < 0, for everyi € I: 4 > 0andG'/ (x') <0, for
everyi € |: A = 0. The perspective mapping captures these two different expres-
sions into a single one becaug# G') (%, x') = AiG'(x'/1i) wheneven; > 0 and
(cl G') (0,x) = G, (x).

Theorem 1. Let P be given by (2) andl = {i : K' £ #}. If the setK is bounded below
or above therx € P if and only if there exist vectoi&., x'), for everyi € I, such that
the following nonlinear system is feasible

X=X (10)
iel

(cl G (Ai,xi) <0, iel, (11)
Ai=1 A >0, iel, (12)

2

where, generically(cl G) (1, X) denotes the closure of the perspective mappinG of
at (A, X).
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Proof. From basic results recalled in the appendix, we have that, for ewety

G (xi/x)<0ifa >0

G ,(x)<0 ifa=0.

Thus, (10)—(12) characterizes all the poixtkat are the sum of a convex combination of

points in every sek' and directions of the same s&$, fori e |. From Proposition 1,
this is equivalent to saying thate P.

(cl éi)(xi,xi) <0 = {

Now, we may explain why the boundedness assumptioK @not a requirement
for Proposition 1 and Theorem 1 to hold. In general, we have that

conv(U Ki) C conv(U Ki) +> KL c conv(U Ki> =P
i€l i€l iel i€l
But, characterization (10)—(12), which defines the set in the middle regardless of the
boundedness assumption, defines a closed set because it is the projection into the space
of the x variables of a closed higher-dimensional set. Thus, the second inclusion is
actually an equality and we may conclude that (10)—(12) defihesgardless of the
boundedness assumption. . ' '
The convexification argument of Balas whéh(x) = b' — A'x becomes a natural
corollary of Theorem 1. In fact, it is easy to check that
~iv (1 o) _ | b — Al if A >0,
(ClG)(A"X)_{+oo if 34 <0,
so that that (10)—(12) and Balas’ characterizatioR péee [2], are essentially the same.
Characterization (10)—(12) o requires the knowledge of which sek§' are
nonempty. If the sefl, ..., p} is used instead of then it may define a larger convex
set P than the intended®. We recall that the nonlinear systefol G') (0,x') < 0
admits the trivial solutiox' = 0 even if the seK' is empty. A necessary and sufficient
condition forP = P is that
p
Z{d eR": (cIG')(0.d) < o] -y {d eR": (cIG)(0.d) < 0], (13)

i=1 iel

which depends upon the chosen algebraic representation of evéty, Jétis condition
holds trivially in, at least, two interesting situations. Whers the convex hull of the
feasible region of a mixed integer convex program, eack Sebrresponds to a particu-
lar assignment of the integer variables. In this case, thiglseR": (cl G') (0, d) < 0}
is independent of and, thus, condition (13) follows. Whel is bounded and every
setK! (or at least the empty ones) contains among its algebraic representation a sub-
set of constraints defining a nonempty polytope, condition (13) also holds because
{de R": (cI G') (0,d) < 0} = {0}. These two special cases are natural extensions of
results presented in [2].

Therefore, the problem of finding the minimum of some convex functioner the
setP defined by (2) can be algebraically formulated as

min f(x)

st (10)=(12) (14)
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This program is not amenable by standard convex programming algorithms because at
points of the form(0, x'), the mapping cG' may not have a closed-form expression
and, in general, it is not differentiable even if tB&’s are continuously differentiable
everywhere. If we knew in advance the existence of an optimal solution where the
components, i € I, would all be positive then this difficulty could be overcome by
simply imposing a sufficiently small positive lower bound on the variablese |. In

the following sections we will explain a procedure for solving Program (14) in general.
We start by elaborating on necessary and sufficient conditions for optimality in the next
section.

3. Optimality conditions

In this section we focus on deriving optimality conditions for

min f(x), (15)
xeP
whereP is defined by (2) and is a closed convex function. Additionally, we assume
that f and everyG' are continuous in an open set containfg
First, observe that if is linear then it is equivalent to solving Program (15) oler
or overK. In fact, letk € P be defined by

K= > L2+ > d, (16)

iel: >0 iel: A=

wherel = {i: Kl # ¢} and? e K, for everyi € I: 4 > 0,d" e KL, for every
iel: ):.i =0, (Xi) € A). Assume thak is optimal for Program (15) andl(x) = cx.
SinceK' C P, for everyi € I, then

mincz =c2 =cX,iel: i >0,

ZeK! | . 17

min ¢z >cX, iel:A=0. (17)

ZeK!
The reciprocal is also true, i.e., conditions (17) are also sufficient for optimality of
defined by (16). Therefore, since at least anés positive then it is equivalent to solve
Program (15) oveK or overP, inthe sense that the optimal value is the same and at least
one optimal solution belongs to both sets. Furthermore, the set of optimal sol&ions
can be fully characterized simply by knowing one of the optimal solutions. In fact, the
set of optimal solution§is given by

S=cl conv(g{z' eK':cZ = cﬁ})

When f is nonlinear then the minimum value df over P is a lower bound to
that overK. For example, Fig. 1 illustrates a poiktthat uniquely minimizes thg
distance functionix — X|| over P = cl conv(K! U K?), but that it is not inK1 U KZ2.
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KZ

Kl K3

K* 2

Fig. 2. Geometric interpretation of optimality

A pointX € P defined by (16) is optimal for Program (15) if and only if there exists
a subgradient € 9 f(X) such that

A

E(X—X) >0, (18)

for everyx € P, see [7, Theorem VI.1.1.1] for example. Thus, by using (17), this is
equivalent to saying that € P defined by (16) is optimal for Program (15) if and only
if there exists a subgradieate 9 f(X) such that folx = —&,

(19)

whereh'(«) = sup,i i «Z. Furthermore, extending an earlier result of Mangasar-
ian [11], Burke and Ferris [4] showed that the set of subgradients that satisfy (18) is the
same for any point in the set of optimal solutionS. This implies, for example, that if

f is differentiable in an open set containiRghen

Scecl conv(U{zi cK': &7 :éf(}) (20)

iel

wheref = V (X). The inclusion may be strict as the two-dimensional example of Fig. 2
shows. Assume that the interior pois the unique optimal solution so that= 0.
Then, the set on the right-hand-side of (20pis= conv(ui“:lK'), i.e., everything. In
the same figure, suppose tas optimal andf is differentiable, the poirt can only be
expressed as a convex combination of the pdihend2*. Thus,Slies in the segment
8§23+ (1—8)2%, for § € [0, 1].

In order to check whether a given poidte P is optimal we need to solvgl |
optimization problemsiiff is differentiable, according to (19). If we want to avoid solv-
ing that many optimization problems then we need more explicit optimality conditions
involving Lagrange multipliers. Proposition 3 below shows conditions that are sufficient
for optimality of Program (15). The conditions that we propose involve the following
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set which is related to the normal coneRat some poink defined by (16),

f a A N, (2 2 <ak, iel:ii

Ng (% (i 2, d)ict) = Ja e R": @ 5 o (#). ez ek 1eliii=01
aZ <aX, foranyz e K', iel: 2 =0,

where, following the notation in [7], the sel’Gi (2)) is related to the normal cone
at? and defined by

NG (2) = {oze R o=u9, 3 eaG @), uc @) =00 20}.

Later, we will show that the sufficient condition for optimality stated in Proposition 3
is also necessary under a constraint qualification. We remark that thNéjsemd Ng

above are defined differently. While in one caéjdentifies the specific mapping that

algebraically characterizes the $€t, in the other case theG” is a generic symbol.

Proposition 3. LetX € P be defined by (16). If
0 df(%) + Ng (X, (A, 2, d)ier), (21)
thenX is optimal for Program (15).

Proof. Let& e af(X) be such thatr = —& € Ng(X, (4, 2, d)icr). SinceNy; (2) €
Nki(2) = {a: hi(e) = a2}, see [7, Lemma VII.2.1.3, page 305], then we have that
ax < aX, foreveryx € K. Thus, by continuity and from the definition@fwe conclude
thaté(x — X) > 0, for everyx € P, which shows the optimality of.

We would expect that checking whether a given pdint P defined by (16) is
optimal for Program (14) to be an easy linear feasibility problem as it usually occurs
with standard differentiable convex programs. This is not the case with the condition
(21) for, suppose that all the functions involved are continuously differentiable just
to make subgradients uniquely determined. Sihlge(zi) C Ngi(2), for everyi e

l:1N{i: A >0} see [7, Lemma V1.2.1.3, page 305], condition (21) requires that, not
only we solvel | N {i: A;j > 0} | linear feasibility problems in the variables but also
we have to make sure that, for= —V (%),

. ~5l
for everyi € |: 4; = 0. Thus, we also have to solyd N {i: A; = 0} | optimization
problems or, at least, prove that the optimal value of all of them is boundéd.by

A constraint qualification is needed to guarantee the existence of the multipliers
involved in condition (21) at an optimal solution of Program (15), as with any standard
convex program. One possible constraint qualification simply imposes that the cone
N5 (%, (A, 2, d")ier) coincides with the normal cone @atx e P, Np(X), defined by

Np(X) = {o € R": a(x — %) <0, for everyx € P}
={aeeR": h(e) = a¥},
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whereh(a) = maxep ax. Note thatN (%, (Ai, 2, d)ic1) € Np(X) holds atangk € P
defined by (16). Our constraint qualification implies that the reciprocal inclusion also
holds for anyk € P.

Definition 1. We say that the basic constraint qualification holds Kodefined by (2)
if

Ngi () = Ni (2).
for everyz e K' and evenyi € I.

When p = 1 this definition coincides with the basic constraint qualification in-
troduced in [7] where the concept is also related to other constraint qualifications in
constrained optimization.

Assuming that the basic constraint qualification holdsglet Np(X). In particular,
az < aX, foreveryz e K' and for every € |. Since

aX = Z a2 + Z ad

icl: i>0 icl: Ai=0

andad’ < 0, for everyi € |: & = 0, or otherwise we wouldn't have a finité (),
then we must haveZ = oX, for everyi € 1: Aj > 0. Thus,e € Ngi (2") = N’Gi (2,

for everyi € | : i; > 0, which implies that
NG (%, (4, 2, dDiel) = Np(),
for anyX € P defined by (16). Now, since optimality of Program (15) is equivalent to
0 e af(X) + Np(X)

then the basic constraint qualification is enough to guarantee (21) at optimality.

If every functionG' is affine, i.e.G'(Z') = bj — Al Z then, since the basic constraint
qualification holds, see [7, Proposition VI.2.2.2], the existence of the multipliers at
an optimal solution of Program (15) is guaranteed. If some fundBbiis nonlinear
then the basic constraint qualification is hard to check from its definition. However,
a well known sufficient condition foNgi (Z') = Ngi(Z') to hold for anyz' € K' is
that the weak Slater condition is satisfied. The weak Slater condition is said to hold for
K' = {Z': G'(Z) < 0} if there exists a vectdl' € K' such thaiG,(Z') < 0, for every
k € J, whereJ; denotes the index sets corresponding to the nonlinear functions. So, if
the weak Slater condition holds for every $&tthen the existence of multipliers at an
optimal solution of Program (15) is guaranteed.

4. A primal procedure
The optimal solution of Program (15) was characterized in the previous section. In this

section we propose a primal procedure for solving Program (14) by solving a sequence
of convex programs defined by one of the following problems:
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min f(x) — MZiE, In Aj min f(x) '
XZNZieI X ) ) X ZNZieI X ) )

ot (cIG) (ni.x) <0, iel (22) St (cIG) (2, x") <0, iel (23)
Yie A =1, Yie A =1,
Ai>0 iel, A=, iel

Whenu > 0 and fixed, both of these programs are convex and have closed level sets.
Moreover, since every s&t' is nonempty then everg, (i, x))ie|) of any level set is
such thak; > 0, for everyi € |, meaning that if we use an algorithm that keeps iterates
in the same level set then no points of the fafinx ) will be generated. Furthermore,
at any of those points

(C| é') (Xi, X') =AG' X'/A),
so that we may exploit the differentiability properties of the original program. Theorem 2
below states that whengoes to zero, any accumulation point of the sequence defined by
the optimal points for Program (22), or Program (23), is optimal for Program (14). The
theorem applies to a particular convergent subsequence. Existence can be guaranteed
under appropriate compactness assumptions.

Theorem 2. Let{x'} be a convergent subsequence of optimal points for Program (22),
or Program (23), for some sequenge } of positive numbers converging to zero. Then,
% = lim x! is optimal for Program (14).

Proof. Consider Program (22) first and &t (—ut/kit, 0)ic1) be a subgradient of the
objective function at the optimal point of theh problem that satisfies

tx—xy =S Etou —ah) = o, 24
£ (x—x) Z| e i =) (24)
for every(x, (Ai, X)ic|) € P, the feasible region of Program (22).

Since limd f(x') < 3 f(X), whichis a compact set because P andf is continuous
at X, there exists an accumulation pofnte 3f(X) of the sequencés!}. We assume
without loss of generality thd€!} converges tq.

Now, we show that the sequen{q&//\}} is bounded, for every e I. By contradic-
tion, suppose that there exists a subsequémge.! }iet such that linget 1t /At = +o0.
In particular, we must have lifar A} = 0 because limt 1t = 0. Pick any vector
(%, (A, X)jic1) € P such that,; > 0. Then, from (24), we have that

gx—xh - S B —ah =0, (25)
iel )\i

for everyt € T. But, we have reached a contradiction because=a$ approaches-oco
the left-hand-side of (25) approacheso. Thus, we conclude thaﬂt/A}} is bounded,
for everyi € 1.

Since both sequencest/kit} and{)»}} are bounded, It andi; be two accumulation
points of these sequences. Note that- O implies thati; = 0 because limut = 0.
Taking limits in (24) over these convergent subsequences, we conclude that

Ex—% =) 8ix =0,

iel
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for every(x, (Ai, X)icl) € P, which in particular implies that(x — ) > 0, for every
x € P. Thus,X is optimal for Program (14).

Now, consider Program (23) and (&t (0, 0)i<| ) be the subgradient of the objective
function at the optimal point of thieth problem that satisfies

g'(x—x" >0, (26)

for every (x, (A, xDicl) € P, the feasible region of Program (23). Since
lim 3 f(x') < af(X), which is a compact set because= P and f is continuous ax,
there exists an accumulation poéﬂz af(X) of the sequencg!}. We assume without
loss of generality thats'} convergest@. Since limP,, = P then taking limits (26) we
conclude thaé(x — %) > 0, for everyx € P. Thus,X is optimal for Program (14).

Theorem 2 shows that we may solve Program (14) by solving an infinite sequence
of standard convex programs. Since it is not possible to solve such a large number of
problems then the next question is how to verify whether a given gagoptimal. The
necessary and sufficient condition (18) provided a possible answer bédaugimal
if and only if for& = —&

max &z

i Y e .
@) = s.t. 7 e K!

<ax,
for everyi € |, which amounts to solvingl | optimization problems iff is differen-
tiable.

We now provide a slightly different version of Theorem 2 by showing théatig
an accumulation point of a sequence of KKT points for Program (22) theatis-
fies condition (21) for a suitable choice of the multipliers. A suitable analysis can be
carried out for Program (23). For Program (22), the KKT conditions are satisfied at
(X, (A, X"ie)) € P if there is a multiplier row vecto(a, 8, (U')ic) and subgradients
& € 9f(x), S € 3G' (X' /A;) that satisfy

£E4a = 0, .
—axi /i 48 =p/kipiielu =0)iel (27)
— +u'S = 0,

and the complementarity equations
UG (') =0,iel. (28)

For Program (23), the KKT conditions are satisfied»at(xi, xDier) € Py if there is
a multiplier row vectora, 8, (i, U')ic;) and subgradients € df(x), S € dG' (X' /Aj)
that satisfy

£E4a =0,
—ax' /A +6 - —n=0 p,iel
— +u'S =0, (29)

u, % >0, €l
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and the complementarity equations

uGi(xt/x) =0, .
Vi — 1) ZO’},IGL (30)

Note that, since the KKT conditions are sufficient for optimality then, as explained
before,Aj > 0, for everyi € |. We also note that the derivation of the KKT conditions
required the knowledge of the subdifferential ofGil in terms of the subdifferential
of G'. This is explained in the appendix.

Theorem 3 below states that whagngoes to zero, any accumulation point of the
sequence defined by the KKT points for Program (22) satisfies (21). An analogous result
holds for Program (23).

Theorem 3. Let{x! = Yiel (xH}teT be a subsequence of KKT points for Program (22)
for some sequendg;} of positive numbers converging to zero such that

imit=7ieaA,
teT

imxH' /Al =2 e K, IimS)'=8 €9G'(@).iel: 4 >0,
teT teT

. ) N . . N 31
limx)t=d e K., iel:x =0, (31)
teT ; ; .

Iimx' =%xeP, limé& = af(x),

teT < teTs EE ( )

If 0',i e 1: A > 0,areaccumulation pointsofthesequenceofmultipﬁeu;t)t}tg,i €

| : )Aq > 0, then
% = limx' = 22 dep
mxt= D A2+ )
iel: >0 iel: =0
satisfies (21) with those values of the multipliers.
Proof. As we saw in the proof of Theorem é(x — f() > 0, for everyx € P. In

particular, sinceKAi C P, we conclude that' (&) < ax, for everyi € |. Now, consider
only those € | : A; > 0. From the second set of equations in (27),

—ot T s = (32)

Taking limits in (32) overT, we conclude that the sequenfk}icT, converges to
§ = &2'. Moreover, from the third set of equations (27),

ot (ui)t (s’)t —0. (33)

Taking limits in (33) overT, we conclude tha& + 0'S = 0. The complementarity
0'G'(2") = 0 follows from the continuity ofG'.
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The existence of KKT points for Program (22), or Program (23), is assumed in
Theorem 3. But, if the basic constraint qualification holds then the existence of KKT
points for Program (22) is guaranteed, regardless of the vajughaicause the constraint
qualification is independent of the objective function.

Most importantly, Theorem 3 shows that if we are solving Program (15) through
solving Program (22), for some sequence of positive numpagsconverging to zero
then, the corresponding multipliefs')! at thet-th optimal solution and the subgradi-
ent&! define approximated values with which we can verify condition (21). We remark
that checking whethef € df(X) is easy in many cases of interest. An especially
important example if(x) = || x — X|| where

3f00 = {5 € R": (x = %) = Ix = XII, €]l = 1} .

There is a limitation in Theorem 3 in that it does not show any value in the accumu-
lation pointsd', i € I : 4; = 0 of the sequence of multipliefsu’)!}tet,i € 1: 4 = 0.
However, we think that these multiplie@, i € | : 2i = 0 may considerably speed-up
the verification thah () < aX,i € | : A4; = 0 in an effort to establish the optimality
of X.

Theorem 3 required the existence of accumulation points of the sequence of multipli-
ers. A stronger version of the Slater condition guarantees the exisiqn®i. We say
that the strong Slater condition holds f¢rdefined by (2) if the strong Slater condition
holds for every seK', fori < |, see [7, Def VI.2.3.1, page 311] for example. We recall
that the strong Slater condition holds for a convexiéet= {Z : G'(Z') < 0} if there
exists a feasible point where the only binding constraints are linear and its normals are
linearly independent. Theorem 4 formalizes the usefulness of this concept by showing
that the multipliers sequence remains in a compact set, which guarantees the existence
of accumulation points.

Theorem 4. Assume that the strong Slater condition holds for theksedefined by

(2) and that (31) holds. Then, the multipliers sequenced'}ict,i € 1: 4 > 0,
associated with Program (22), for some sequence of parameter values converging to
zero, are bounded.

Proof. Consider only those indicész | : A; > 0. Equation (33) is equivalent to
i) (g) = ot
2 () (8) =e 34

Where(Sj )t denotes thegth row vector of the matrixS)t.

LetZ be the point inK' where the strong Slater condition is satisfi@dye the set
of the indices corresponding to the non-binding constraints and J be the set of the
indices corresponding to the binding ones. By the definition of subgradient, we have
that

0> Gl (2‘) > Gl ((x‘)t/,\}) + (s'j)t (2‘ - (xi)t/A}) ,
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for every j € J. SinceG!(Z) = alZ —bj = 0, for everyj € J, and it holds that
(uij )tG‘j ((xHt/ah) = 0, we have that

> )6 () = N 0) (8) @) e

jed =
:a%?—aWnﬂ. (36)

The left-hand-side of (35) is always non-positive bece(u%;)é > 0. Theright-hand-side
converges tqZ — #) overT. SinceG‘j(Z‘) < 0, for everyj e J, we conclude that

every sequenc{s{u‘j YhteT, with j € J, is bounded.
From (34), we have that

> (u) @l =at =3 (u) (5)', (37)

jed jed
for everyt € T. The right-hand-side of (37) is bounded becausé?)t}teTl, forj e J,

is bounded and everything else converges dyeiSuppose that, for somee J, the
sequenceé(u'j)t}tg1 is unbounded. This would imply that the right-hand-side in (37)

would not be bounded, because the{aélj .3 islinearly independent. By contradiction,
we conclude that every sequer{Ce‘j)t}teTl, for everyj € J, is also bounded ovér.

5. Applications and conclusions

In most practical applications of disjunctive convex programming th&detdefined

in (2) by a large numbep of individual sets, frequently exponential in the number

of variables. In these circumstances, the indexlsist either unknown or too large.
Therefore, our procedure should be applied within a framework that takes care of the
dimensionality issue in the form of a cutting-plane algorithm, a branch-and-bound
algorithm, or a combination of these.

Basically, the idea behind such a global algorithm is to solve the original problem
wherepis too large by solving a sequence of problems that are defined by a small number
ofindividual sets. In this setting we envisage two circumstances where our algorithm may
be applied. One occurs when looking for a separating hyperplane between a given point
x and a convex se? defined by (2). For example, in the context of convex programming
with integer variables, the poit may be the optimal solution of some nonlinear
programming relaxatio® such that some componextis fractional and it should be
either 0 or 1. Then, it might be the case tkabes not belong t& = cl conv(KOUK?),
whereK® = P N {x: x; = 0} andK! = P N {x: xj = 1}. Then, as implied by Stubbs
and Mehrotra [13], a separating hyperplane betweand P may be found by using
the following Fenchel duality result

maxaX —h(e) _ min f(x) =[x = X||

st e, =1~ st xeP (38)
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whereh(a) = maxax: X € P}. If X is an optimal solution in (38), i.eXAis the
projection ofx into the setP and¢ € 9 f(X) satisfies (18) then the vectér= —¢ is an
optimal dual solution in (38) defining the following valid inequality fer

ax<h@  (=a%),

which is in the all-linear case referred to as teepest cutbecause it is the valid
inequality for P that cuts-offx by the largest amount. The value &fis available at
optimality when the procedure described in the previous sections is used.

Another possible setting occurs when at a given node of the branch-and-bound tree
we want a lower bound on the optimal value of the nonlinear programming relaxations
associated with all the nodes emanating from the current node. Instead of solving all
those problems individually we may consider them as defining the individual sets of
some seP. Thus, our procedure would require solving only one convex program though
with a larger number of variables.

Finally, following a remark of Claude Lemaréchal we have realized that another type
of solution procedure may be envisaged that uses an idea akin to the Bundle method, or
Frank—Wolfe’s algorithm. This is a primal-dual procedure which is particularly interest-
ing in the generation of cutting-planes for convex programming with integer variables
using (38) for two main reasons: one, the procedure can be implemented as a decompos-
ition algorithm and, two, the procedure may be terminated before optimality is achieved
while still guaranteeing a cut. This feature is not found in the primal approach described
in this paper, in which the cut is only found assimptotically. However, this proced-
ure lacks the usage of second-order objective function information that our approach
can use in the same way an interior-point code does. We are in the process of testing
both approaches in the context of solving mixed-integer nonlinear programs through
a cutting-plane algorithm.

Appendix. Recession and perspective functions

We recall and expand some basic results stated in [7, pages 178-183] for recession
functions and [7, pages 160-162] for perspective functions. We consider only the relevant
results to the context of this paper. The interested reader may find in [7,8] a broad
treatment of this topic.

Given a closed convex functiofi: R™ — R U {+o0}, the recession function
flo: R" - RU {+o0} is defined by

0 — §(x0
im f(x” +td) f(x)7 (39)

li
—00 t

féo(d) =,

wherex? is an arbitrary point of donif). If F: R" — (R U {+00})™ is a vector
mapping whose components are closed convex functionsRfeis a vector mapping
whose components are the respective recession functions. Recession functions reflect
the behavior off atoco along a direction.

It is known that the recession function of a closed convex function is also closed
and convex [7, Proposition VI.3.2.2]. Our interest in this function is thal it=
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{x e R": G(x) <0} then Py, = {d € R": G/, (d) < 0}, see [7, Proposition 3.2.5].
It is easy to check that iG(x) = b — Ax thenG/_(d) = —Ad, but, in generalG/
does not have a closed-form expression.

Given a closed convex functioh: R" — R U {+o0}, the perspective function
f: R™! — RU {+o0} is defined by

Af(v/r) if & > 0,

too  ifA<O. (40)

fo,x = {
If F: R" — (RU {+o0})Mis a vector mapping whose components are closed convex
functions therF is is a vector mapping whose components are the respective perspective
functions.
It is known that the perspective function of a closed convex function is convex,
see [7, Proposition VI.2.2.1], but it need not be closed. The closuféo$hown in [7,
Proposition VI.2.2.2] to be defined by,

A F(x/2) if A >0,
(cl T) %) = { lim; o+ A F(X — x4+ X/2) if L =0, (41)
+00 if L <O,

whereX is an arbitrary point of ri donif). Our interest in this function is that it is

employed in deriving a convex algebraic characterization of th® sktfined by (2).
Proposition 4 below provides a characterization of the subdifferenti@dlof) in

terms of subdifferential of at all the points of interest to the context of this paper.

Propositign 4, Lletf: R" - RU {+oo}A be a closed convex function arid, k) be
such that. > 0. Then, if we defing = X/,

1. 9(cl T) (f\, f() is empty if and only i f(2) is empty.
2. If 9f(2) is nonempty then

a(cl f)(ﬂf()={(f(2)—§2,§):geaf(2)}. (42)

Proof. Assume thats, £) € a(cl ) (X, f() ie.

(€ F) o) 2 A TR/ + 6§ [i - g} | (43)

for any (1, x) € R™2. In particular, wherk = &, A f(x/A) > A f(2) + & (x — %), for
everyx € R". But, since anyg € R" can be written ag = x/A then

fo) > f@+&(z-2),

for everyz € R", which shows that thaf € df(Z). Moreover, since (43) can be
equivalently written as
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for any (1, x) € R™1 such that. > 0, we can easily conclude that= f(2) — £2
by suitably choosing values for keepingx/A = %/A. Thus, we have proved that
§ = f(2) — 0 andg € 0f(2).

Now, leté € df(2), which in particular implies that € dom( ). We need to prove
that

(cl f) (%) = Af&/A) + (f(2) — £2.€) [’\ B %} : (44)

X—X

for every (1, x) € R™1. This is trivially true whem. < 0. It also holds whei. > 0
because

F N X X
(cl ) (%) zk[f(z)+$<x— I)}

=if@) + (f(2) —£2,¢) [’\_q.

X — X
In order to prove (44) wheh = 0 note that, for any, we have that, for every € R",

f(2+txt) - f(i)) -
= fL(X) > &x,

= L0 =if@+ (f —62,8) [2:?(}

EX

from where the desired result follows becayst ) (0,x) = f, (x), see [7, Re-
mark IV.2.2.3]. We have proved both statements.

The characterization of the subdifferential(@f f) at points of the form0, x) is
not so simple or informative. It was shown to us by Claude Lemaréchal ([10]) that if
f: R" - R U {400} is a closed convex function then,

8(cl 1) 0.0 =[5, e R™: 5+ 1§ <0},
where f*(¢§) = sup.gn £X — f(X) is the conjugate function of at&. Since

U {(f@—éz.8 :Ecaf@} < {5,866+ 7§ <0},
zedom(f)

we conclude that the sé(cl f) (0, 0) is too large to be of value.
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