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Abstract. In this paper, we propose a non-interior continuation method for solving generalized linear com-

plementarity problems (GLCP) introduced by Cottle and Dantzig. The method is based on a smoothing
function derived from the exponential penalty function first introduced by Kort and Bertsekas for constrained

minimization. This smoothing function can also be viewed as a natural extension of Chen-Mangasarian’s
neural network smooth function. By using the smoothing function, we approximate GLCP as a family of

parameterized smooth equations. An algorithm is presented to follow the smoothing path. Under suitable
assumptions, it is shown that the algorithm is globally convergent and local Q-quadratically convergent. Few
preliminary numerical results are also reported.
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1. Introduction

A matrix N € RM*" " (mg > n) is a vertical block matrix of typémy, ..., mp) if it can
be partitioned, row-wise, into blocks so that théth block,N' € RM>" (i =1, ..., n)
n

andmp = > m;. If the constant vectay € %™ is partitioned conformably witi, i.e.

i=1
Nl ql
N2 q2 ) . n
N=|  |en™™ g=]_ |en™ N ex™" ¢enf™ Y m=mo.
N dn =1

The generalized linear complementarity problem (denoted by GLCP) associated with
N andq is to find a vectox € R" such that
mi
Nx4+q >0 x>0 x[[(Nx+d) =0i=12..,n, 1
q | j]:[l( q), (1)
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wherex; and (N'x +¢'); denoteith element ofx and jth element of(N'x + q')
mi
respectively,[] zj denotesz;z, - - - zy,. This problem was first posed by Cottle and

Dantzig [11]. It has many meaningful applications in different fields such as mathemat-
ical programming, game theory, control theory and economics [14,22,38,39]. Several
authors have studied this problem and some numerical methods have been proposed to
solve GLCP, the interested readers are referred to [12,13,31,32,39,42] and the refer-
ences therein.

If m =1 (@G = 1,...,n), then the GLCP reduces to a linear complementarity
problem (LCP), a special case of the following general complementarity problem (or
CP for short)

Xx>0,FXx >0,xF(x)=0, xeR", )

where F(x) is a mapping fromii" into itself. A useful way for solving CP is to re-
formulate it first as a system of nonsmooth (or smooth) equations and then try to find
the solution of the complementarity problem by solving the correspondent system of
equations. In recent years, reformulation of CPs has become a hot topic in the field
of mathematical programming, and great progress has been made in this direction, for
details see the survey paper [19] and the references therein. Generally speaking, there
are two ways to transform a complementarity problem into a system of equations. The
first one is to introduce some parameters or artificial variables, and then approximate
the original problem as a family of parameterized smooth equations. For example, Chen
and Mangasarian [7,8] introduced a class of smoothing functions and approximated
CPs via a system of parameterized smooth equations, their approach was further studied
by Chen and Xiu [9]. The interesting readers are referred to [5,6,10,24,36,44] and
the references therein for more recent developments in this topic. In most cases, the
solution set of the smooth equations system forms a path as the smooth parameter goes
to zero, this path is usually called the smoothing path. The second way is to cast CPs
as a system of nonsmooth equations via some equivalent transformations. For instance,
by using the so-callefischer-functior{16,17] or the minimum function [23,33], one

can transform CP into a nonsmooth equations system, for more details, see [20,25].
A natural extension of the above mentioned results is to consider smoothing methods
for GLCP.

We note ( as pointed out by one referee ) that in principle, one can also reformulate
the GLCP as a linear complementarity problendif® by introducing some artificial
variables (see Sect. 2.3 in[15], and [21,32,36]) and then apply the smoothing methods
for CPs to solve the reformulated problem. For instance) #£ my = mp--- = mp,
then we get an artificial LCP il™". In this situation, by using Chen-Mangasarian’s
smoothing function (or other smoothing functions) to approximate the reformulated CP,
we get a system of equations $t"". It is of interests to approximate the GLCP as
an equations system in the original spate Different from the above mentioned
approaches, we propose in this paper such a new reformulation for GLEP in

The continuation method is widely used in different fields, it is closely related to the
homotopy method in numerical analysis [1], the path-following algorithms in interior
point algorithm [28], and many smoothing methods for complementarity problems
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developed recently [6-9, 25,26, 43]. The interior point path-following algorithm for CPs
demands that all iterates stay in the positive orthant. In this case, the smoothing path
reduces to the central path, a term often used in the interior point algorithm literature.
Many results about the interior point algorithms for solving CPs have been reported,
see [18] for a survey in this direction. On the other hand, the so-called noninterior
continuation methods does not require the initial point and intermediate iterates to be in
the positive orthant, so they are usually more flexible for numerical implementation.
Consider the constrained optimization problem as follows

min f(x), s.t.gi(x) <0,i=12,..,m. 3)

A useful approach for solving (3) is the penalty methods. In [29], Kort and Bertsekas
proposed the following exponential penalty function

m
_ gi (X)
g(x, t) _tInZexp<T> (4)
i=1
with a penalty parametdrand cast (3) as the following unconstrained optimization
problem
min f(x) + g(x, t).

Bertsekas further studied the functigfx, t) and its applications [2—4]. On the other
hand, it is easy to verify that the problem (3) is equivalent to the following mathematical
programming problem with one constraint

min f(x), s.t.g(x) <0, (5)

whereg(x) = max{gi(x) : i =1, 2, ..., m} is a piecewise smooth function. Sing&) is
not usually differentiable even if adj (x) are differentiable, it is difficult to use classical
methods for constrained optimization problem to solve (5). As a remedy for this point,
Li [30] proposed to approximate the problem (5) as a parameterized programming
problems defined below

min f(x), s.t.g(x,t) <O0.

Some properties af(x, t) were also rediscovered by Li. In [41] Tang and Zhang also
studied the properties of the functigrx, t).

Our approach here follows the ideas of Li. As a consequence, we first use the
functiong(x, t) to approximate the GLCP and reformulate it as a system of parameterized
smooth equations. Then we discuss the regularity of the smoothing path under suitable
conditions, and analyse the distance from the smoothing path to the solution set of the
undertaking GLCP. Thirdly, we propose an algorithm to trace this smoothing path.

The paper is organized as follows: In Sect. 2, we first introduce some concepts
and notations which will be used in this paper. Then some results about the vertical
block matrix N are presented and the behavior of a system of nonsmooth equations
equivalentto GLCP is explored. In Sect. 3, we discuss the interrelations between Chen-
Mangasarian’s smoothing functions and the smoothing fungti®st). Some properties
of the functiong(x, t) (4) are also reported. We smooth the equivalent mapHipg of
GLCP via the functiom(x, t) and approximate the GLCP as a system of parameterized
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smooth equations in Sect. 4. It is shown that, when the parametdY is sufficiently
small, the solution of the smooth equations can approximate the solution set of GLCP to
any desired accuracy. The regularity of the smoothing path is also discussed. We propose
in Sect. 5 an algorithmto follow the smoothing path and establish the global convergence
of the algorithm under suitable assumptions. The local convergence property of the
algorithm is studied in Sect. 6, and some numerical results are presented in Sect. 7.
Finally we end this paper by some remarks.

Few words about our notations: throughout this werk, 9"l | denote the nonnega-
tive orthant and the positive orthantit?, respectivelyj|x|| denotes the 2-norm of a vec-
tor x € R" and||x||1 the 1-norm. For any matrik € R™", M|l = maxx=1 | Mx]|.

2. Preliminaries

First, we state some concepts and notations which will be used in this paper.

Definition 1. [23] A matrixM € R™*" is said to be
(1) a P-matrix, if there is an indek such that

s #0, and(Ms)j -5 > Oforall s#0e RQ".
(2) a Po-matrix, if there is an indek such that
s #0, and(Ms); -5 > Oforall s# 0 e R".
Itis well known any positive definite matrix isRematrix, and any positive semi-definite

matrix is aPp-matrix. For the vertical block matriil, we define

Definition 2. [32] A square submatrix o of ordern is called a representative sub-
matrix, if itsith row is drawn from théth block N' of N, fori = 1, ..., n. Hence,
a vertical block matrix of typéms, ..., my) has at mosﬂ?:1 mj distinct representative
submatrices.

Definition 3. [32] A vertical block matrixN of type(my, ..., m,) is called a vertical
block P-matrix Po-matrix), if all its representative submatrices are P-matric€s-(
matrices).

The properties of the matril play an important role in the analysis of GLCP.
In [40], Sznajder and Gowda presented some properties of the vertical Block)
matrix in the case thah; = mj. In what follows we give some results about general
vertical blockP(or Pp) matrix N . DenoteNiJ be theith row of the block matrix\/,
g' be theith row of the unit matrixi, vj = (vj.0, vj.1, vj.2. ... , vjim) ' € RMTL. We
have

Lemma 1. Suppose thal is a vertical blockPy matrix and the matrixG is defined as
below

vl,oeI + Zinlll ULi Nil
v2,08) + Y v2,iN? (6)

“m
Un,OeI + > nii Nin
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) mj+1 . .
If vj € M, 7, thenG is nonsingular.

Proof. Suppose to the contrary th@tis singular. Then there exists# 0 € %" such
thatGx = 0. It follows that
m;
ijvj,iNijx:—vjsoszgo, i=12....n, 7)
i=1

and the above inequality strictly holdsxf # 0. Sincevj € mTfl, there exists an
index ji € {1,2, ..., mj} such that

xiNlx <0, vx #0. 8)

DenoteN e )i"*" the matrix whosgth row is iji . ThenN is a representative submatrix

of N. By the assumption of the lemm, is a Py matrix. So for any # 0 € %", there
exists an inde) such that

X; ijix >0, xj #0, (9)

which contradicts to (8). This shows the lemmais true.

If N is a vertical blockP-matrix, then we have

Lemma 2. Suppose thaN is a vertical blockP matrix and the matrixG is defined
by (6). Ifvj € mTjH and thatvj = ZEO vji > 0, thenG is nonsingular.

Proof. The proof of this lemma is similar to that of Lemma 1, for completeness, we
give it as follows. Assume thds is singular. Then there must exist£ 0 € %" such
thatGx = 0. It follows that

mj )
ijvj!iNiJX=—vj,0XJ-2§0, i=12...,n, (10)
i=1
. Mj+1 m;j . . .
Sincevj € it,' “andthab; =}, jvji > O,thereexistsanindgx e {1,2,..., m;j}

such that
xijjixgo, i=12,...,n (1)

Let N € ™" be a matrix whoséth row is N-ji, it is a representative submatrix bif

By the assumption of the lemmb, is a P matrix. So for any # 0 € %", there exists
an index such that

X; ijiX >0, x; #0, (12)

which contradicts to (11). This completes the proof of the lemma.
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Let us denotéV' (x) = N'x +q', i = 1,...,n. We can rewrite the GLCP (1) as
follows
mj ] ]
Xi HW} X)=0, x>0, WX >0,i=1,..,n. (13)
j=1

Clearly, (13) is equivalent to the following nonsmooth equations

min{xy, W (x), ..., Wh ()}

HOo = min{xz, le(x.), o WE (0}

min{Xn, W{‘(x.), e W (0}
max{—x1, =W (X), ..., =W} (X)}

max —Xo, —le(.x), e —W2 (X)) o a4

max{—Xn, —W{‘(.x), e =W (X))

BecauséVi (x) are all linear functionsH(x) is a piecewise linear system of equations.
By the definition ofH(x) , it is easy to see that altH;(x), i € {1, ..., n} are piecewise
linear convex functions.

Denote

T={xeR": HXx) =0} (15)
the solution set of the GLCP. Let us defitist(x, T) the distance from to T as follows

dist(x, T) = min ||y — X||. (16)
yeT

Since the graphs dfi(x) are unions of finitely many polyhedral convex se#§x) is
a polyhedral multifunctions [37]. Our next result says that the norrHl©f) plays as
a local error bound for a GLCP if the solution Sebf the GLCP is not empty .

Lemma 3. Supposé is not empty, then there exist consta@ts > 0 such that
dist(x, T) < z[|[HX)||
foranyx € {x € " : ||H(X)|| < €}.

Proof. This lemma is a direct consequence of Proposition 1 in [37], thus the proof is
omitted here.
o

We next study the growth behavior of the normtH(x) under certain conditions. To
continue our analysis, we need the following definition which is a generalization of the
LCP with aRy matrix.
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Definition 4. [21] We say that the GLCP with the vertical block mathixis of type
Ry if
min{xy, Nix, ..., N& x}
H(x) = : =0=x=0.
min{xn, N7'x, ..., NR, X}
Now we have
Lemma 4. GLCP (1) is of typeRyg if and only if

IHEOI _

IxlI—oo [IX]|

17)

holds for some constafl > O.

Proof. «<=: Since the GLCP is of typ&y, it holdsCy = Hiﬂf1||l:|(x)|| > 0. 1f (17)
X||l=

does not hold, i.e., there exists a sequex&g such that

. _JIH(xK
lim x4 = oo, and lim GO _ (18)
k— o0 k

—oo  [IXK]|

Letus denot&k = ﬁ then{x¥} is a bounded sequence. By choosing a subsequence if

necessary, we can assume that the sequeleonverges to an accumulation pogrit
It follows that

I H(xX . . <
lim W = lim [[HO&/ 4D = [ = Co. (19)

The above inequality contradicts to (18).
=: Now we assume that (17) is true. It follows

im |[HX)|| = oo. (20)

[IX[|—00
Suppose that the GLCP is not of typeg, i.e., there exists ax # 0 € )" such that
min{xi, NiX, ..., N x} =0, i = 1,2, ...,n.

Then we have
lim |[JH(X)|] < o0
t—o0

which contradicts (20). This completes the proof of the lemma.
o

The following assumptions will be used numerously in the rest part of this paper.

Assumptions.
(A1): T is nonempty.
(A2): GLCP is of typeRy.

Now we can give one of our main results in this section.
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Theorem 1. Suppose the Assumptions (Al) and (A2) are true. Then there exists a con-
stantr; > 0 such that

distx, ) < t1||[H(X)|l, Vx e Q" (21)

Proof. Suppose to the contrary that the theorem is false. There exists a point sequence
{xK} such that (21) is violated, i.e.,

dist(x¥, T) > bX|[HX9), (22)
where{b¥} is a constant sequence satisfying
lim b = cc. (23)
k— 00

Hence there exists a sufficiently largesuch that
bX > 7, Vk>K,
wherer is the same constant as defined in Lemma 3. By Lemma 3, we have
IH®)| > e Vk> K, (24)

wheree is also the constant defined in Lemma 3. Siiices nonempty, for any fixed
pointx € T we obtain from the definition adist(x, T) that

[IxK — x| > distxk, T) > BIH(X) || > bke. (25)
From (23) and (25) we obtain
lim [IX* — X|| = +oo0.
k— o0

This meangx¥} is an unbounded point sequence. Now it follows immediately from (25)
that

IHO T _ IO X =il _ X< = x| 26)
Ik —x)lxk T bRk
The above inequality gives
HOO XK = x|
ksoo |IXK|| T koo BK|[XK|| ’ 27)

where the last equality follows from (23). (27) contradicts to Lemma 4 because the
GLCP is of typeRp. So (22) is not true. This completes the proof of the theorem.
O

Since a GLCP with a vertical blocR-matrix is of typeRp and its solution is also
unigue [32], we get the following result as a direct consequence of the above theorem.

Corollary 1. Suppose the vertical matrid in GLCP (1) is aP-matrix andx* is the
unique solution of (1). Then there exists a constant 0 such that

X = X*| < 2 HXIl,  ¥x € %" (28)
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3. Chen-Mangasarian’s neural network smooth function and the functiorg(x, t)

The plus function
zy =max{z,0}, zeN

is widely used in the reformulations of complementarity problems. In [7], Chen and
Mangasarian introduced a class of smoothing function to approximate this function
by twice integrating a parameterized probability density function. Chen-Mangasarian’s
function is defined as below

z t 1
B (@) = /_ /_ Yp(%)dg:dt,

wheret € [0, co) is a parameter, ang(é) is a probability density function. Using their
smoothing function, Chen and Mangasarian approximate a complementarity problem
as a system of smoothing equations

X—p(xX—FXx) =0, t>0.

Itis easy to verify that wheh— O, % p (%) is 3-function with all masses concentrated
at origin, hencepg(z) = tIim0 pt(z) = z4. The following lemma summarizes some

properties of the smoothing functign(z) [7,9].

Lemma 5. Suppose the probability density functip(€) satisfies the following condi-
tions:

(A1) p(¢) is continuous, symmetric, and has an infinite support, i.e.,

0 < p&) <& <00, P& = p(—§), V& e (—00, +00);

(A2) [o°EP(E)dE = &2 < oo.

Then the smooth functiqn (z), which defined in Definition 1 with parametet 0, has
the following properties:

(1) pt(2) is continuously differentiable, increasing, and strictly convex with respezt to
(2)0< pi(2 <1land0 < pi(—2) =1 — pi(2) forall z

(3)0 < p{(2) < &1/t forall z;

(4) |p,(2) — py (2| < &tz — ty| for all zandty, tp > 0;

(5)If z # 0, thenpy is differentiable at. In addition,| p;(z) — py(2)| < &t/|z| forall z.

Particularly, if the probability density functiop(é) = exp(—&)/(1 + exp(—§))? is
applied, then one has [7, 8]
z
pt(2) =tin <1+exp(¥)). (29)
This function is also known as neural network smooth function. Our next result establish

a relation between the functigix, t) and Chen-Mangasarian’s neural network smooth
function.
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Lemma 6. Suppose that the aggregate functigex, t) is defined by (4) withm = 2
and thatgi(x) = 0, g2(x) = x. If the smoothing functiop(x) is defined withp(¢) =
exp(—&)/(1+ exp(—g))z, then it holdspt (x) = g(x, t).

Proof. By (4), we have

_ 91(%) %X\ _ X
g(x,t)_tln<exp< n >+exp< n >>_tln<1+exp(t)). (30)

The above equality and (29) imply the lemma is true.

O

Using the smoothing functiop:(z), Chen and Mangasarian [7, 8] reformulated CP
(2) as the following smooth equations

Xi—pxi —FX)=0,i=1,...,n.

In the case thap(2) is given by (29), one has

Xi — pt(xi — Fi(x) =x —tin <1+ exp<Xi%Fi(X)>>

AR
— _th (exp<‘TX‘) —i—exp(_Fti(X))). (31)

Since mirfx;, Fi(X)} = —max—x;, —F(X)} = 0. Letgi(X) = —X; and g2(x) =
—Fi (x). By applying the functiomy(x, t) to approximate the function mfr;, F (x)} we

get
—g(x,t) = —tlIn (exp(?) + exp<_Fti(X)>> . (32)

It follows from (31) and (32) that, if we use Chen-Mangasarian’s neural network smooth
function (29) and the functiog(x, t) (4) to reformulate a CP, then the same system of
equations is derived.

Our following theorem summarizes some interesting properties of the function

Lemma 7. Suppose;(x) are all twice continuously differentiable functions,

900 =, _max_ g

andg(x, t) is defined by (4), then we have:

() g(x,t) is increasing with respect th andg(x) < g(x, t) < g(x) +tinm;
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(ii) g(x,t) is twice continuously differentiable for &l 0, and

m

Vxg(x, t) = Y Xi (X, HVGi (%),
i=1
m

1
L CEDY (Ai (% HVZG (0 + T2 (X, HVG OV (x)T>
i=1

1/m m T
- (Z (X OV (x)) (Z 2 (X, OV (x)) :

i=1 i=1
where
exp(gi (X)/1)
oL exp(g; (0/1)
Particularly, if g; (x) are all linear functions, theg(x, t) is an infinite order differ-
entiable convex function for dl> 0, and that

A% 1) =

m
€01, > rxtH=1
i=1

l m
VXg b = 7 ( Y M HVGOVEG 0T

i=1

m m T
- [in (X, HVg (x)} [Z (X DV (x)] ) :

i=1 i=1
(iii) For any fixedx € %",
Vxg(x, 04) = lim Vxg(x, b = 3 VG 9/k
- i€B(X)

whereB(x) = {i € {1,...m} : gi(X) = MaXcp1 .m 9 (X}, kis the element
number of the index s&(x).
(iv) Supposegi(x) are all linear functions. For anyk € 9", there exists a constant
C1 > Osuch that
tIVZg(x, b < Ci, Vt> 0, (33)
and that

. 2 _
Jim_[[Vigex. b =0 (34)
if k= 1.

(v) For any fixedx € %", g(x,t) is a continuously differentiable, increasing and
convex function of if t > 0. Furthermore, we have

[(x,04) = lim g/(x,t) = Ink, 35
9 (x,0+) = lim gi(x. 1 (35)
and that
) o
jim U=k _ (36)

t—0t t



544 Ji-Ming Peng, Zhenghua Lin

(vi) Foranyx e %" andt > 0, it holdsInk < g{(x,t) < Inm.

Proof. The conclusiongi) and(ii) have been proven in [30,41], we need only to prove
the statement§ii)-(vi) .
By the definition ofj; (x, t), we have

Son(t) " Eron(r)

For any fixedx € %", it holds

exp(M) =1, VieB®X),
and

tIim()exp(M) =0, Vi¢BWX). (37)

It follows from (37) that

Jim Vxgx = 37 Vaix/k
—o ieB(x)

which implies the statemelfii) .
We next prove the assertidiv). By the definition ofy; (x, t), we have

. 1
IIL% M0 = o Vi € B(x), (38)
and that
LA XD .
lim 2222 =0, Vi ¢ B(X).
Jim = 0, Vi ¢ B(x) (39)

Since allxj (x, t) € (0, 1), and allg; (x) are linear, it follows directly from (38), (39) and
(ii) that the resulfiv) is true.
Now we turn to casév). By direct algebraic calculus, we have

1 [m m 2
gD =3 (Z 260 - gPo0 — (Z MY - g <x>) ) >0  (40)
i=1

i=1

where the inequality follows from the convexity of the functidrand the fact that

m
in(x, t)=1 Ai(x,t)>0.
i=1
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Henceg;(x, ) is an increasing function df andg(x, t) is convex with respect tb To
prove (36), we observe

m N .
mo e Lexp(2). e
/ _ g| (X) i=1
g =1InY exp — ) -
i—1

m
9
2o ()
- 9o BEL — na(x, 1
=In[k+ n1(x, )] + _
n1(X, ) P
where
gi (X) — g(X) gi (X) gi (X) — g(X)
i¢B(x) i¢B(X)
For any fixedx € %", one can easily verify that
. 2
im0 0/t =0, (41)
and
tirBL n2(x,t)/t =0. (42)

It follows from (41) and (42) that

i QOGO =ik I 4 t/R) | GO0 MER —
t—0+ t o0+ t K+ n1(x, t)
o In(L4 n1(x, t)/k)
o t—0t+ t
— iim In(1+ m(x,f)/k) . m(_x, 19; _0 (43)
t—0+ n1(x, t)/k kt

This proves (36). (35) follows directly from (36). (35) and (40) imply thak,t) > 0
for all t > 0. It follows thatg(x, t) is also an increasing function of This completes
the proof of the statemeifjt).

Now we turn to the last conclusion of the lemma. For any R", it is easy to see

dm m(xH=m-—k lim n2(x,t) =0, (44)
which implies that
. , .
t—llr-&r-]oo g (X, ) =Inm. (45)

The above equality and the fact thgit(x, t) is an increasing function of give the
conclusion(vi). The proof of the lemma is finished.
|



546 Ji-Ming Peng, Zhenghua Lin

4. A smooth reformulation of GLCP

In the previous section, we have studied the relations between Chen-Mangasarian’s
neural network smooth function and the functigix, t). In this section, we will use

the functiong(x, t) (4) to smoothH(x). In this way we get the following parameterized
smooth equations system

m W(x
tin (exp(—%) + 21: exp| — 1%

=1 t
X2\ M WZ(x)
tl —— —
H(x, t) = — " (eXp( t ) - ,-gleXp< t . (46)

™ W
tin (exp(—?) + % exp (— Jt(x)))
=

By the conclusion (i) of Lemma 7, we have

Lemma 8. SupposeH(x) and H(x, t) are defined by (14) and (46) respectively. Then it
holds

Hi(xX) < Hi(x,t) < HixX) +tIn(m; +1), ie{l2 ..,n} )

By the conclusion (ii) of Lemma 7, we know thatH; (x, t) are all infinite order
differentiable convex function for atl> 0.
Let T(t) be the solution set of the equations (46) defined by

Tt) = {(x e ®": H(x, t) = 0}. (48)
We have

Theorem 2. Suppose the Assumptions (A1) and (A2) are true. Then there exist constants
73, T4 > 0 such that

mi|T1||X —yllz <ntgtinm, dist(x, ) < /nrgtinm,  Vx e T(t),t > 0, (49)
ye

wherem = max{mq, ..., My} + 1.
Proof. By Theorem 1, for anx e T(t), there exists a constant such that
dist(x, ) < z1|[HX)I. (50)

Because all the norms of a vector (or matrix) are in the same order, there exists a constant
73 > 0 such that

min|[x — yll1 < w3||HX)|[1.
yeT
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Sincex € T(t), it follows from (47) that

min||x — <

min|1x - yllz <

<

By using (50) again, we get

disttx, T) < 71

\is

n n
13y [Hi| =13y (—Hi(x)

i=1 i=1

n
73 Z(—Hi (X, t) +tInm) = nzatInm.
i=1

n
> (—Hi(x))?
i=1

=n

\

n
3 (—Hi(x. ) +tinm)2 =zt inm.

i=1

Therefore, the theorem is true.

Let us define the smoothing path= {(x,t) € R" x Ry :

O

H(x,t) = 0}. We

next consider the properties of the Jacobiai (X, t) on the smoothing pathi. For any
t > 0, it follows directly from (46) that

X My
exp(—Tl) el + .Zlexp<_ Jt

WL (x)

) - W (x)!
J

VxH(X, 1) =

Wi (x)

exp(—?) + %ex"(—f)

my
1.T 1n1
rg€ + .Zl)LJ-Nj
J=

mp
24T 2nN\12
rée; —i—jZ:lAij

T m,
n nnin
ro€n + 2 APN;

X L ' i ,
exp(—Tn> e+ jE:lt'-lxp<_ Jt ) WF( )
Xn\ M 1)
expl—— )+ Y exp|—
p( t ) j§l p( t

=1

547
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where
Xj
_ exp(——
M= ( t) : € (0,1, je(l,2 ..,n) (51)
i il e
exp(——) + Z: exp| —
exp B
M= : €01, ie{l,2..m}, je{l2..n}.

(52)
By Lemma 1, we have

Lemma 9. Suppose GLCP is defined with a vertical bldgkmatrix N. If t > 0, then
the matrixVxH(x, t) is nonsingular.

Letk be the closed set of matrices defined by
Kk = co{VxH(x,1),t > 0} (53)

whereco denotes the convex hull of a set. Since)\élle (0, 1) and that

mj )
inlzl, i=12....n (54)
i=0

It follows directly from Lemma 2 that

Lemma 10. Suppose GLCP is defined with a vertical bldékmatrix N. Then any
M € « is nonsingular.

Remark. The above lemma implies that if GLCP is defined with a vertical blBek

matrix N, then the matrivyx H(x, t) is nonsingular for alt > 0. Furthermore, it is easy
to see that is a closed bounded convex set. Since all the matricesne nonsingular,

it follows that||M~1|| is bounded above for aryl € «.

~In what follows we consider the derivatives éf(x, t) with respect tot. Let
WH(x) = xi. DenoteB' (x) the active index set defined by

B'(X) = {j[Hi() =Wj(x), j =0,1,....m.} (55)
andk; the element number @' (x). Then by the result (v) and (vi) of Lemma 7, we get
Lemma 11. For anyi € {1,2,...,n}, Hj(x,t) is a continuously differentiable, de-
creasing and concave function of t. Furthermore, it holds

1 /dHi(x,1) -
= Inki | =0. 56
t0+ t ( aa "N (56)
and that
dHi(x, t -
—In(m +1) < ';;( ) < —Ink;. (57)
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A direct consequence of the above lemma is the following corollary which will be used
repeatedly in the rest of the paper.

Corollary 2. Foranyx € \R" andty, t; > 0, it holds

It1 — to Inki <|Hi(x, t1) — Hi(X, t2)| < [t2 — to] In(m; + 1) (58)
<ti—to|/lnm, 1i=212...,n

Our next result consider the relationships between the smoothingpaitid the
mappingH(x).

Theorem 3. SupposeH(x) and H(x, t) are defined by (14) and (46) respectively. If
(x(t), t) € T, then we have

td Hi (x(t), t)

tinki < Hi(x(t) < — at

<tln(m +1),ie{l,2..,n} (59)

and that

 Hix(®) = tink;
mee <o ©)

Particularly , ifkj = 1, then

m THXOI

0.
t—0t t2

Proof. Since (x(t),t) € I', we haveH;(x(t),t) = 0. By Lemma 11, allH;(x, t) are

concave functions df For anyi € {1, 2,...,n}, it follows
_ o dHix@®),t =
Hi (x(t). ©) + %(t —-B = Hix®. b

> Hi(x(),t) +

W(t_ﬂ, VO <t<t.

Taking limitst — 0 in both sides of the above inequality, we get

Hi(x(D) +t = Hi(x(@®) —tin(mi + 1),

(61)

dH; (x(1), 04) , dHi (x(®), 1)
gt 20z Hix®) + ——5——t

where the last inequality follows from (57). (61) and (56) gives (59). (60) follows from
(59) and (56).
o
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5. A path-following algorithm and its global convergence

In last section, we have reformulated an equivalent system of GLCP as a system of
smooth parameterized equations. It is easy to see that, when the parateatis to

zero, any accumulation point of the smoothing path is a solution point of the GLCP.
In this section, we present a noninterior continuation method to follow this smoothing
pathT" and analyse the global convergence of the algorithm. First we introduce some
neighborhoods around the smoothing path.

Definition 5. (1) A 8 neighbourhood around is defined as\V (8) = {(x,t) € R" x
(0, to] : [IH(X, V|| < Bmin{t, 1}}, whereg > 0is called the width of the neighborhood
N(B), andty > Ois an initial parameter.

(2) Foranyt > O, N (B, 1) = {(Xx,t) € " x Ny : [|H(X, t)|| < Bmin{t, 1}}.

The algorithm can be stated as follows.

Algorithm 1. Given constant numbets > 0,0 € (0,1), o € (0,1), i =1,2, az €
(0,1 —ap), B > 0, an initial parametelpy > 0, initial point (x, to) € N (B, to) and
iterative numbek := 0;

Step 1. The Newton step dfi(x, tx) = 0 at xX:

If VixH(XX, t) is singular, stop ( The algorithm fails);

else if||H(x)|| < o, stop,xX is an approximate solution of GLCP;
Otherwise, compute a Newton stapX satisfying

Vi HOE, 1) AxK 4+ HK 1) = 0; (62)
Step 2. Computex**1: Let hy be the maximum value 6f, a1, o2, . ..} such that
[IHOK + hiedx", 1)l < (1 — ohi) min{t, 18, (63)
andx*t1 = xkK + hAxK;

Step 3. Computéyy1:
If (xX*1, min{as, tk}tk) € N(B, minfas, tk}t), then we set, = 1 — min{a, tk};
Otherwisevk be the maximum value @fo, a%, ...} suchthat

(xk“, (1 - wtc) € N(B. (L= wot), (64)
settyr1 = (1 — vtk;

Step 4. k := k+ 1, return to Step (1).

Remark (a).It is very easy to initialize the above method. One may simply choose any

0
to > 0,x° € ®", andg > Hﬂi(ri({tét,ol)}u'

Remark (b).In Step 3, byws € (0, 1 — a2), we have 1- min{as, tk} € (1 —a3,1) C
(a2, 1), then

1—min{a3,tk}>a2>a%>~~;
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Remark (c).The Step 1 and 2 of our method is similar to that of the method presented
by Chen and Xiu [9]. But we do not calculate approximate Newton step such as in [9].
The iteration ot is also different from that in [9]. As we will see later, this new reducing

step oft plays an important role in the analysis of the local convergence of the algorithm.

Next, we discuss the global convergence of Algorithm 1. First we give a result about
the mappingH(x, t).

Lemma 12. Let H(x, t) is defined by (46). Then for anyy € R" andt > 0, there
exists a constan@; > 0 such that

C
[[H(Y, ) — H(X, 1) — VxH(X, Dy = X)| = nthlly— X2, (65)

Proof. By Lemma 7, we know that al; (x, t) are twice differentiable wheneves 0.
It follows that

(y =T VEH1(X + &1y — %), (Y — )
1| (y =0T VZH2(x + E2(y — %), (Y — X)
H(y, ) =H(X, t) +VxH(X, t)(y—x)+§ . .

(Y = X) TVZH (X 4 &n(y — X), D) (Y — X)
(66)

where&; € (0, 1). By the result (iv) of Lemma 7, there exists a cons@nt> 0 such
that

C .
IIVin(XJr%‘i(y—X))IIfTZ, i=12...,n (67)

The above inequality and (66) prove (65).

Our next results study the properties about the direcigmupdated by (62).

Lemma 13. Suppos&/xH(x, t) is nonsingular for som& € R" witht > 0 and Ax is
a solution of (62) ak. Then for anyh € (O, 1],

nC
IHX+hAX, ] < (L= h)[HX b + 2_t2h2||Ax||2. (68)
Proof. Lety = x + hAX. SinceAXx is a solution of (62) ax, it holds
H(y,t) — H(X, t) — VxH(X, D) (y — X) = H(y, t) — (L = h)H(x, t).

The above equation and (65) yield (68).
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The following assumption play an important role in the analysis of the global linear
convergence of the algorithm.

Assumption. (A3) The matrixVyH(x¥, tx) is nonsingular for alk. In addition, there
exists a constar@ such that| Vy H(x, tk)_lll < Cfor all k.

Remark.If GLCP (1) is defined with a vertical blodRs-matrix, it follows from Lemma 9
that all Vi H(x¥, t*) are nonsingular if¢ > 0. For GLCP with a vertical blocR-matrix,
Lemma 10 implies (A3) is true.

If (A3) is true, then

-1
IAX] = [V HOK, 0™ HOS toll < CIHOK ]| < ACK. (69)
Our next result consider the line search dtepinder the condition (A3).

Lemma 14. Let (xX, ty) be thegth iteration of the al_gorithm. If (A3) is true, then there
exists an independent constént 0 such thathy > h.

Proof. If H(xK, ty) = 0, thenAxX = 0. It follows from the line search rule in Step 2
thathkx = 1.
Assume that (x¥, ty) #+ 0. For anyh € (0, 1], it follows from (68) that

nCy
ITHOK 4+ hAXK, to)]] < (1= h)[[HK, to)l] + z—tkhznAxkn2

nC
< (1—h+ TkZChZqukH) ITHOK, 1o ]

- (1_ (1— ”—gzﬁczh) h) IHOK, ],

where the last two inequalities follow from (69). Liet= nZ(clz;g)Z It is easy to see that
for all h € (0, h], we have
[IHOK + hax® 1ol < (1 = oh)[[HOK, o). (70)

Leth = min{1, a1h}, it is independent ok. Clearly, we havédy > h.
O

We next show the step length for reducingt is also bounded below by a positive
constant.

Lemma 15. Let(xX, ty) be thekth iteration of the algorithm. If (A3) is true, then there
exists an independent constant 0 such thaty > v.

Proof. From Corollary 2 and triangle inequality we get

THOEL o) < THE 1ol + THEE, 1) — HKHL ) (71)
< THOM )1 + w(te — 1),
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whereu > 0 is a constant derived from Corollary 2. It follows from (63) that
IHOHE ]| < (1= ohi) minfti, 18 + u(tc — 1), (72)
By (72) and the line search rule , there exigts- 0 satisfying to
IHOCH, (1= vt < (1= ohi) minfty, 118 + pwt < min{(1 — wote, 1)B.
There are three cases:

(i) 1f (XK1 min{as, tte) € M(B, min{as, t)tk), thenv = 1 — min{as, t} > 1 —
az > 0;

(i) If (XKL (1 —ap)te) € N(B, (1 — a2)tk), then we havey = az;

(iii) Otherwise, by the line search rule in the algorithm, we have

X 1) € N(B k), (P te— (te—tkr1) /) ¢ N (B, tk— (te—ter1) /),
ie.,
IHOMH, = (t — tipn) /) || = minft — (t — ter1) /o2, 11B.
By (72), it holds

. . t — t
mintk — (t — tep1) /o2, 138 < (1 — ohi) min{t, 138 + uka—zk“, (73)

It follows that
azohy B

, it t— (tk —tkp1) /o2 > 1, t > 1;
nw
(tk — 1+ oha2p

tk — tky1 > I if tk—(tk—tg)/a2 <1 tk>1 (74)
tkaoohy B
B+npn '

Sincehg > h, by (74) , we have

if t <1,

th—thra _ t—tga  ohoop

= > , wheneer t > 1, (75)
ty to to(B + 1)
and that
t —t h
k= bar @20hf e g (76)
tk B+nu
Let i i
h
5 — mi { azohp ’azahﬁ’l_as’az}
to(B+wn) B+nu

which is a constant independentlofit is easy to see that > v.
O

Now we are ready to show the global linear convergence of the continuation method.
We assume the algorithm does not terminate finitely andethat 0, then we have
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Theorem 4. Suppose (A3) is true for the infinite sequerigk t} generated by the
algorithm witheg = 0. Then
1. Forallk=1,2,..., we have

t < to(1— D)<, (77)

Namely the sequendt} converges to zero global Q-linearly.
2. The sequendd H(x¥)||} converges to zero globally and r-linearly.
3. The sequendek} is bounded and converges to a solution of the GLCP.

Proof. By Lemma 15, > v at each iteration. Therefore,
tkpr=Q—votk <A —-Dtx, VYk=1,2..., (78)

Result 1 then follows immediately.
For result 2, we have

THOE) < THOE 1ol + THK) — HK, ]| < Bt + ntc Inm, (79)

where the last inequality follows from Lemma 8 amd= max{mz, mp, ... ,mp} + 1
as defined in Section 4. Then results follows from result 1.
For result 3, since

IXHE — K| = (lhkaxK] < [[axK] < CIIHK, to) |
< CBtx < CBto(1 — D)X, (80)

where the first inequality follows from the fact thiat < 1. (80) implies thaf{x¥} is
a Cauchy sequence, so itis bounded and has a unique accumulatiotipBintesult 1,
we haveH(x*) = 0. Thereforex* is a solution of GLCP.

]

Remark. If the GLCP is defined with a vertical blodR-matrix which implies (A3) is
true, the above theorem shows that our method is well-defined and has a global linear
convergence.
If the GLCP is defined with a vertical blodRy-matrix and of typeRo, then we have
the following result.

Theorem 5. Suppose the GLCP is defined with a vertical bld@kmatrix and of
type Ry, Then the sequendg, tx} updated by the algorithm witkp = 0 is bounded ,
and any accumulation point is a solution of GLCP.

Proof. Since the GLCP has a vertical blogg-matrix, it follows from Lemma 9 that
the matrixVx H(x, t) is nonsingular for alt > 0 andx € R". Hence the algorithm is
well-defined.

We now show the slice of neighborhosd ) is bounded for GLCP of typ&y. For
any(x, t) € N(B), it follows from Lemma 8 that

[HOO < IHX) — HX, Il + [THX, D]
<ntlInm+ gt < (nInm+ B)to. (81)
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It follows from Lemma 4 thaiV'(B) is bounded. So the sequer{txé, tk} has at least an
accumulation point, say*, t*). Sincetx decreases monotonically, we haye> t* > 0.
If t* > 0 and{x¥} is bounded, it follows from Lemma 9 that the matfixH(xX, t)
is uniformly bounded above which implies (A3) is true andfge~ 0. This leads to
a contradiction. So it holds® = 0. It follows thatH(x*) = 0 andx* is a solution of
GLCP.

O

6. Local convergence result

In this section, we discuss the local convergence properties of the algorithm. AsSume
is a solution point of GLCP. We say is a strictly complementarity solutionkf® = 1
foranyi € {1,2, ..., n} wherek is the element number of the index 8tx*) defined

by (55) in Sect. 4. Ik* is a strictly complementarity solution of GLCP, then there exists
a neighborhoo@(x*, €) = {X|||x — x*|| < €} of x* such that

k=1, VxeQx*e),Vie{l2...,n)

wherek; is the same as defined in Sect. 4. It follows immediately H@d is differen-
tiable for anyx € Q(x*, ¢) and thatVyH(x) = VxH(x*). Now we give a result about
the mappingH(x, t) and the JacobiaWxH(x, t) in the neighborhoo&(x*, €) of x*.

Lemma 16. Suppose™ is a strictly complementarity solution a2 x*, ¢) be a neigh-
borhood ofx* such that alk; = 1 for anyx e Q(x*, €). If VH(x*) is nonsingular, there
exists a constart; € (0, 1) such that

(a) For anyx € Q(x*, €) andt € (0, cy),

IVxHX D71 < C. (82)

(b) For anyx € Q(x*, €) andt € (0, ¢1), we have|H{(x, | < &
(c) For anyt € (0, cp), then|[H(x, ) — H(X)|| < 5t2.

Proof. Denote the Jacobiaviy H(x) = VxH(X, 0), then it follows from (38), (39) and
the definition ofVyH(x, t) that for anyx € Q(x*, ¢€) ,

lim ||VxH(x, 1) — VxH(X)| = 0. (83)
t—0t
It follows that if VxH(x) is nonsingular, theiVyH(x, t) is also uniformly nonsingular

for any x € Q(x*, ¢) and sufficiently smalt > 0. For simplicity, we use the same
constantC in (82) as in Assumption (A3). This proves the result (a).

_ To prove result (b), we note that for amye Q(x*, ¢) and anyi € {1,2,...,n},
ki = 1. It follows from Lemma 11 that
dHi(x, t -
— (*. b + Ink;
im —dt _ _o,
t—0t t

which implies the result (b).
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Now we consider the last result of the lemma. Wheaa small enough, we have

dH;(x,
Hi(x,t) = Hij(x, 0+) + yt for somet € (0, 1). By Lemma 11 we know that

Hi (x, t) is a concave function dfif t > 0. Further, one has

dH;(x, 0
dhitx. 01) _ 0, Vxe QX e).
dt
It follows that
lim [HX, D) — HX)|] < lim IH (X, t) - H (X, O)I
t—0t+ t2 t—0t+ i1
dHI (X, t)‘
n
< lim ’
t—0*t )

The above relation gives the result (c).

Lemma 17. Suppose&™ is a strictly complementarity solution asel(x*, ¢) is a neigh-
borhood ofx* such that allk; = 1 for anyx € Q(x*, €). Then there exists a constant
c2 € (0, 1) such that for any, y € Q(x*, €) andt € (0, ¢2),

l1-0

H 2
[IH(y, 1) — H(X, t) — VxH(X, (Y — X)|| < mm{ﬂ, TR l} [ly — x|, (84)

Proof. Sincek; = 1 for anyx € Q(x*, €). It follows from result (iv) of Lemma 7 that
lim¢_ o+ ||V>%H(x, t)|| = 0 for anyx € Q(x*, €). Following the proof of Lemma 12, one
can easily show that the above lemma is true.

O

Theorem 6. Suppose* is a strictly complementarity solution of GLCP aWgH (x*, 0)
is nonsingular. Suppose th&(x*, ¢) is a neighborhood ok* such that allk; = 1 for
anyx € Q(x*, €). Then there exists a constansuch that

1. If x € Q(x*, €) andt € (0, ©), thenx + AX € Q(X*, €).
2. The step length updated by the algorithm take the vdiyes 1, vy = 1 — tx and
thatxktl e Q(x*, ¢).
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Proof. We first prove the result 1. From the definitiontk we get

X + AX — X*|| = X + VxH2(x, h H(x, t) — x|
< x4 VxH T 0O H0 — X[ + 1TV H X, 1) — VeH T 0 TH |
+IVxH ™R HIHX, H = HOOl|
= IIVxH . ) = VeH L0 THX) |
FIVxH X DIHX, ) — HOT|
= [I[VxH 1%, ) - VHOO — 11(x = x9) |
+HIVxHH HIHX, H = HOol|
< IVxHTRHOG D] - IV HX ) = Ve HOO - [1x — x|
FIVH I D1 - THX, ©) — HO (85)
where the first inequality is given by triangle inequality, the second and third equalities
follow from the nonsingularity oVx H(x*) and the fact thaVy H(x) = VxH(x*) for all

X € Q(x*, €), and the last inequality given by the definition of the matrix norm. Now
recall (82) and (83), we get

lim_{[IVxH =206 D11 - [9xHOG D = VxHEO - X = x| = 0.
t—0t
Further, by using Lemma 8 and (82), one has
iim_{1VH =0 bl - [HO ) = Heoll} = 0.
t—0F

The above two relations mean the right side of (85) reduces to zdrg@ss to zero.
Hence there is a constary > 0 such that

X+ AX € Q(x*,¢€), if t<cs XxeQKXe). (86)

This proves the first result of the theorem.

We next consider the second statement of the theorem. Bjtex*, 0) is nonsingu-
lar, by result (a) of Lemma 16, for atle Q(x*, €) andti € (0, ¢1), the Assumption (A3)
is true. So the algorithm is well-defined tif < c4 = min{cy, ¢y, c3} andxX € Q(x*, ¢),
then it holdsck + AxK € Q(x*, €). Now from (69) and Lemma 17 we obtain

THOK + AXK 1)l = THOK + AXK 1) — HOXK, 1) — Ve HOK, 1) AxK)|
1—0
< o llAxK|?
C2p
1 — 0 K 2
< T IHS w]
B
< (1= tIHEE 11l < (L — o) [HEE, 1o, (87)

where the first inequality follows from (84), the second inequality follows from (82),
the third by(xk, tk) € N(B, 1) and the last byx < c4 < 1. It follows from the line
search rule in the algorithm that we can chobge- 1.
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Now let us denote\ty = tx — ty+1 and assume that; 1 < tx < c4. It follows

THOM g — At < ITHOA g1 + [HOKH, 1) — HOEL 1 — At
= [HOM, t) — HOK, t) — Ve HOXK, ti) AXK||
FIHORL ) — HOKL by — Aty

1 ko BtkAtk 1 K 5 Pl
< AX — < —||HX ¢ — At
< 202;3” I1”+ > _Zﬁll X5t lle + 5> Ak
B 2 Btk
< —t — At 88
= 2k+ 2 K> ( )

where the first inequality is given by the triangle inequality, the equality is derived from
the choice ofAxK, the second and third inequalities follows from results (a), (b) in
Lemma 16 and Lemma 17, and the last one implied by the(fécty) € NV'(B,1). Now

let us defineC = min{as, C4}. If tx < C, one hasyk = 1 — min{as, tx} = 1 — t. It
follows Aty = tx — tlf. In this situation (88) reduces to

ITHOKL b — At)|] < Bt2. (89)

Therefore, ifty < C, we can sety = 1 — tx which meangx1 = tf. Furthermore, it still
holds||H(X*", t;1)|] < min{tks1, 1}8. The proof of the theorem is completed.

Now we are ready to give our main result in this section.

Theorem 7. Supposex*, 0) is an accumulation point of the sequer¢eX, ty)} gener-
ated by the algorithm withy = 0. If x* is a strictly complementarity solution of GLCP
andVH(x*) is nonsingular, then the sequenioé, t<} converges local Q-quadratically
to (x*, 0).

Proof. By Theorem 6, there exists a neighborhdac*, €) and a constari € (0, 1)
such that, wherkk € Q(x*,¢) andtx < €, the algorithm is well defined and that
tr1 = t2. For simplicity, we assume th#xH~1(x*)|| < C. From this assumption,
result (c) of Lemma 16 and the fact“t1, t;1) € N (B, t) we obtain

IXFE — x|l < CIIHE )| < CIHOM, tiea) — HOKFE 0] + CIIHK, tey) |
385
< C—tg,
= 2 k

where the second inequality is given by triangle inequality. This relation implies

3
K, ) — (%, O] < c75||(xk, t) — (<, 0)]2. (90)

Since(x*, 0) is an accumulation point of the sequer{@rek, tx)}, there exists a point
(XK, t) such thatxk € Q(x*, ) andty < €. The theorem follows immediately from
(90).

|
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7. Numerical results

We have tested the Algorithm 1 for several problems. The algorithm was implemented
in double precision C. For all test problems, we chagse 10710, ¢ = 0.005, «1 =
0.9,a> = 0.85, a3 = 0.001, to = 1.0 . The initial pointx’ = age, wheree =
(1,....,17 e "M andag € N is a constant. The set band width= ||H(X?, to)||1. To

make the algorithm robust, we terminatdif < 3°.

Our first test problem was taken from Example 7.5 of [12], and other problems
are constructed by ourselves. All the vertical block matrices of tested GLCH%are
matrices. The solution points of Problems 1 to 5 are strictly complementarity. We also
modify the Problems 2 a little so that the solution points of the new problems (Problems 6,
7 and 8) may be not strictly complementarity. The numerical results are listed in the
table below, whereg is a real number associated with initial points, IT denotes totally
iteration number(x¢, t.) denotes the approximate solution of GLCP satisfying the stop
condition||H(x)||1 < €o. For convenience, we defing = (W, ... ,WMT, N, =
(NL ..., NMT g = (gl ..., q"T for the casem = m.

Problem 1. N andq are given as Example 7.5 of [12].

Problem 2. n =6, m= 3 andW,(x) = Njx+ ¢, i =1, 2, 3, where
4 -2 2 _2_ 11
T .4 2’N2: —2 4 . ez |2 2 '1’
2 4 —2 _42 _22 12

andg; = (-2,0,5,-3,6,-4)" o2 = (1,-2,10,-3,6,-1) . g3 = (0,0,0,-2,0,—1) "

Problem3. m = 3andWi(x) = xi — 1, i = 1,...,n, Wh(x) = Lx — 1, i =
1,....,n—landWi(x) = X, +1, andWi(x) = 4x1 — 2xp — 1, WE(X) = Xi_1 + 4% —
2Xi11, 1 =2,...,n—1,andWj (X) = Xn_1 + 4Xn.

Problem 4. m = 3 andW(x) = Njx +q;, i =1, 2, 3, where
4 -2 2 -1 11
Ny = -2 .4 ) Ny = .—.1 2 1 Ng= 1 2 l |
-2 4 -1 2 1 f i
andgi = =gz = —ec KW
Problem5. m = 6 andWj(x) = xi — 1, i = L,....n, Ws(x) = Ixj — 1, i =

1,....,n-1 andWQ(x) =Xn+1, andW%(x) = 4X1 — 2% — 1, Wis(x) = Xj_1+ 4% —
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2Xi11, i = 2,...,n—1,andWj (X) = Xn_1+4xn, andWi (x) = Nix+qj, i = 4,5, 6,

where
4 -2 2 -1 !
Na — -2 4 __2’N5: —12‘. . ,Nezl i
-2 4 -1 2 ! fi
andgs =05 =g = —e € R".
Problem6.n = 6, m = 3, Wi(X), i = 1,2, 3 are the same as that defined in

Problem 3. Denot&V; (x) be the functions of the new problem. We cho®sgx) =
Wi (x) — Wi (x*) wherex* = (1,1,0,1,0,1)T € %°is the solution point of Problem 2,
and thatWso (X) = Wo(X), Wa(X) = Wa(X). ;

Problem7.n = 6, m = 3, Wi(x), i = 1,2,3 are the same as that defined in
Problem 2. We choos#/1(X) = W1(X), Wa(X) = Wh(X) —Wa(x*) andWz(X) = W3(X).

Problem 8.n=6,m=3, W(x), i=1,2, 3areihe same as that defined in Problem 2.
We chooseN; (X) = Wi (X), Wa(X) = Wa(X) andWs(X) = Wa(X) — W3(X*).

| Numerical Results |
Example | DIM ap B IHOO) I, | 1T te THX)[l1 | [THXE, to)ll1
1.0 2.2696 1.0 3 7.2e-5 8.7e-12 1.2e-7
1 2 10.0 9.1381 10.0 3 4.2e-5 6.2e-15 1.4e-10
-10.0 23.1753 22.0 4 3.4e-8 0.0 0.0

1.0 10.7386 9.0 3 1.8e-4 2.8e-11 1.5e-7
2 6 10.0 18.1043 18.0 4 4.4e-5 8.8e-16 1.9e-11
-10.0 215.1278 215.0 4 2.2e-8 8.8e-16 3.9e-8

50 5.0 76.2907 86.5 4 2.0e-5 1.0e-12 5.4e-8

100 5.0 151.0446 171.5 4 2.0e-5 2.6e-12 1.3e-7

3 200 5.0 300.5496 341.5 5 4.2e-6 6.4e-15 1.5e-9
100 -5.0 1605.0162 1605.0 4 1.1e-5 4.0e-14 3.4e-9

200 -5.0 3205.0233 3205.0 4 1.1e-5 4.3e-13 3.6e-8

50 5.0 88.6844 56.0 4 2.3e-5 6.6e-13 2.8e-8

100 5.0 173.4037 106.0 4 2.8e-5 1.1e-12 4.1e-8

4 200 5.0 342.8423 206.0 5 5.0e-6 4.3e-11 8.5e-6
100 -5.0 | 2081.3955 208.0 6 5.1e-6 1.5e-11 2.9e-6

200 -5.0 4181.3955 418.0 7 1.2e-6 2.3e-11 1.9e-5

50 5.0 89.3458 52.9 4 3.3e-5 3.4e-12 1.0e-7

100 5.0 178.6970 102.95 5 1.4e-5 1.3e-11 9.3e-7

5 200 5.0 357.3514 202.97 6 2.2e-6 3.4e-11 1.5e-5
100 -5.0 2096.7621 2095.0 5 1.9e-5 9.4e-11 4.7e-6

200 -5.0 4197.4337 4195.0 6 2.9e-6 3.7e-12 1.2e-6

1.0 11.8312 10.0 22 | 2.7e-4 9.7e-T 3.2e-3

6 6 10.0 16.8723 16.0 24 | 1.8e-4 6.1e-7 3.1e-3
-10.0 215.1278 215.0 11 | 9.4e-6 1.9e-8& 2.0e-3
1.0 11.9236 10.0 4 1.0e-5 1.7e-15 1.6e-10

7 6 10.0 15.9961 16.0 3 7.7e-8 0.0e0 0.0e0
-10.0 215.1278 215.0 6 5.1e-7 1.3e-15 2.6e-9

1.0 10.6568 9.0 12 | 4.4e-4 2.2e-6 4.7e-3

8 6 10.0 18.1043 18.0 13 | 3.0e-4 1.7e-6 5.6e-3
-10.0 223.6935 223.0 6 1.9e-5 8.2e-§ 4.2e-3
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The above table indicates that for Problems 1-5, our method finds the strictly com-
plementarity solution points of the problems after few iterations. It is easy to see that
all the pointsx = (1,1,0,1,0, )T +t(1,1,1,1,1,1)7,t > 0 are solution points of
Problem 7 and the solution points are strictly complementarity-if0. Our algorithm
detects the solution point* = (1,1, 0, 1,0, 1)T once, and finds many others solution
point from different initial points.

However, for Problems 6 and 8, the algorithm not only takes more iterations but
also terminates at a point which does not satisfy the stop criterion of the method. The
possible reason of the relatively poor behavior of the algorithm for Problems 6 and 8 is
that the solution points are not strictly complementarity.

8. Conclusion remarks

The generalized complementarity problems are transformed into an equivalent system
of nonsmooth equations. It is shown that, the norm of the nonsmooth equations act as
alocal error bound for GLCP. If some additional conditions are satisfied, then the norm
of the equations also provides a global error bound for GLCP.

The relations between Chen-Mangasarian’s neural network smooth function and
the functiong(x, t) is also explored. It is shown that, for some special choice, these
two different class of smoothing functions act precisely in the same way. By using the
smoothing function, we approximate the GLCP via a system of parameterized smooth
equations. The distance from the smoothing path of the equations to the solution set of
the GLCP is considered. Our results show that, when the parameter tends to zero, we
can approximate the solution set of the GLCP to any desired accuracy. A non-interior
continuation method is proposed to follow the smoothing path of the smooth equations.
Under certain assumptions, the method is globally convergent and locally quadratically
convergent. Preliminary numerical results show the method is promising.

To the authors’ knowledge, this work is the first one which cast GLCP as a system
of smooth equations ifi". There are several ways to extend our results. The first one is
to study the behavior dfi(x) for generalized complementarity problems(GCP). Under
what conditions||H(x)|| provides a local or global error bound for GCP? Some results
about this problem have been reported in the first author’s recent work [34]. However,
this is still an interesting topic deserve further study. The second is to design new and
efficient method for solving GCP via the approach proposed in this paper. We note that,
in a recent work [35], Qi and Liao used the same approach proposed in our paper to
reformulate GCP as a system of parameterized equations. Different from our method,
they try to solve the equatiort$(x, t) = 0 andt = 0. A Newton-type method was also
presented to solve their system.

We observe that if the solution points are not strictly complementarity, then our
algorithm may behave poorly. How to design efficient algorithms without the strictly
complementarity conditions is also an interesting topics.
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