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Abstract. In this paper, we propose a non-interior continuation method for solving generalized linear com-
plementarity problems (GLCP) introduced by Cottle and Dantzig. The method is based on a smoothing
function derived from the exponential penalty function first introduced by Kort and Bertsekas for constrained
minimization. This smoothing function can also be viewed as a natural extension of Chen-Mangasarian’s
neural network smooth function. By using the smoothing function, we approximate GLCP as a family of
parameterized smooth equations. An algorithm is presented to follow the smoothing path. Under suitable
assumptions, it is shown that the algorithm is globally convergent and local Q-quadratically convergent. Few
preliminary numerical results are also reported.

Key words. generalized linear complementarity problem – non-interior continuation method – Newton
method – Q-quadratical convergence

1. Introduction

A matrix N ∈ <m0×n, (m0 ≥ n) is a vertical block matrix of type(m1, ...,mn) if it can
be partitioned, row-wise, inton blocks so that thei th block,Ni ∈ <mi×n (i = 1, ...,n)

andm0 =
n∑

i=1
mi . If the constant vectorq ∈ <m0 is partitioned conformably withN, i.e.

N =


N1

N2

...

Nn

 ∈ <m0×n, q =


q1

q2

...

qn

 ∈ <m0, Ni ∈ <mi×n, qi ∈ <mi ,

n∑
i=1

mi = m0.

The generalized linear complementarity problem (denoted by GLCP) associated with
N andq is to find a vectorx ∈ <n such that

Ni x+ qi ≥ 0, x ≥ 0, xi

mi∏
j=1

(
Ni x+ qi

)
j
= 0, i = 1,2, ...,n, (1)
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where xi and
(
Ni x+ qi

)
j denotei th element ofx and j th element of

(
Ni x+ qi

)
respectively,

mi∏
j=1

zj denotesz1z2 · · · zmi . This problem was first posed by Cottle and

Dantzig [11]. It has many meaningful applications in different fields such as mathemat-
ical programming, game theory, control theory and economics [14,22,38,39]. Several
authors have studied this problem and some numerical methods have been proposed to
solve GLCP, the interested readers are referred to [12,13,31,32,39,42] and the refer-
ences therein.

If mi = 1 (i = 1, ...,n), then the GLCP reduces to a linear complementarity
problem (LCP), a special case of the following general complementarity problem (or
CP for short)

x ≥ 0, F(x) ≥ 0, xi Fi (x) = 0, x ∈ <n, (2)

where F(x) is a mapping from<n into itself. A useful way for solving CP is to re-
formulate it first as a system of nonsmooth (or smooth) equations and then try to find
the solution of the complementarity problem by solving the correspondent system of
equations. In recent years, reformulation of CPs has become a hot topic in the field
of mathematical programming, and great progress has been made in this direction, for
details see the survey paper [19] and the references therein. Generally speaking, there
are two ways to transform a complementarity problem into a system of equations. The
first one is to introduce some parameters or artificial variables, and then approximate
the original problem as a family of parameterized smooth equations. For example, Chen
and Mangasarian [7,8] introduced a class of smoothing functions and approximated
CPs via a system of parameterized smooth equations, their approach was further studied
by Chen and Xiu [9]. The interesting readers are referred to [5,6,10,24,36,44] and
the references therein for more recent developments in this topic. In most cases, the
solution set of the smooth equations system forms a path as the smooth parameter goes
to zero, this path is usually called the smoothing path. The second way is to cast CPs
as a system of nonsmooth equations via some equivalent transformations. For instance,
by using the so-calledfischer-function[16,17] or the minimum function [23,33], one
can transform CP into a nonsmooth equations system, for more details, see [20,25].
A natural extension of the above mentioned results is to consider smoothing methods
for GLCP.

We note ( as pointed out by one referee ) that in principle, one can also reformulate
the GLCP as a linear complementarity problem in<m0 by introducing some artificial
variables (see Sect. 2.3 in [15], and [21,32,36]) and then apply the smoothing methods
for CPs to solve the reformulated problem. For instance, ifm = m1 = m2 · · · = mn,
then we get an artificial LCP in<mn. In this situation, by using Chen-Mangasarian’s
smoothing function (or other smoothing functions) to approximate the reformulated CP,
we get a system of equations in<mn. It is of interests to approximate the GLCP as
an equations system in the original space<n. Different from the above mentioned
approaches, we propose in this paper such a new reformulation for GLCP in<n.

The continuation method is widely used in different fields, it is closely related to the
homotopy method in numerical analysis [1], the path-following algorithms in interior
point algorithm [28], and many smoothing methods for complementarity problems
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developed recently [6–9,25,26,43]. The interior point path-following algorithm for CPs
demands that all iterates stay in the positive orthant. In this case, the smoothing path
reduces to the central path, a term often used in the interior point algorithm literature.
Many results about the interior point algorithms for solving CPs have been reported,
see [18] for a survey in this direction. On the other hand, the so-called noninterior
continuation methods does not require the initial point and intermediate iterates to be in
the positive orthant, so they are usually more flexible for numerical implementation.

Consider the constrained optimization problem as follows

min f(x), s.t.gi (x) ≤ 0, i = 1,2, ...,m. (3)

A useful approach for solving (3) is the penalty methods. In [29], Kort and Bertsekas
proposed the following exponential penalty function

g(x, t) = t ln
m∑

i=1

exp
(

gi (x)

t

)
(4)

with a penalty parametert and cast (3) as the following unconstrained optimization
problem

min f(x)+ g(x, t).

Bertsekas further studied the functiong(x, t) and its applications [2–4]. On the other
hand, it is easy to verify that the problem (3) is equivalent to the following mathematical
programming problem with one constraint

min f(x), s.t.g(x) ≤ 0, (5)

whereg(x) = max{gi (x) : i = 1,2, ...,m} is a piecewise smooth function. Sinceg(x) is
not usually differentiable even if allgi (x) are differentiable, it is difficult to use classical
methods for constrained optimization problem to solve (5). As a remedy for this point,
Li [30] proposed to approximate the problem (5) as a parameterized programming
problems defined below

min f(x), s.t.g(x, t) ≤ 0.

Some properties ofg(x, t) were also rediscovered by Li. In [41] Tang and Zhang also
studied the properties of the functiong(x, t).

Our approach here follows the ideas of Li. As a consequence, we first use the
functiong(x, t) to approximate the GLCP and reformulate it as a system of parameterized
smooth equations. Then we discuss the regularity of the smoothing path under suitable
conditions, and analyse the distance from the smoothing path to the solution set of the
undertaking GLCP. Thirdly, we propose an algorithm to trace this smoothing path.

The paper is organized as follows: In Sect. 2, we first introduce some concepts
and notations which will be used in this paper. Then some results about the vertical
block matrix N are presented and the behavior of a system of nonsmooth equations
equivalent to GLCP is explored. In Sect. 3, we discuss the interrelations between Chen-
Mangasarian’s smoothing functions and the smoothing functiong(x, t). Some properties
of the functiong(x, t) (4) are also reported. We smooth the equivalent mappingH(x) of
GLCP via the functiong(x, t) and approximate the GLCP as a system of parameterized
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smooth equations in Sect. 4. It is shown that, when the parametert > 0 is sufficiently
small, the solution of the smooth equations can approximate the solution set of GLCP to
any desired accuracy. The regularity of the smoothing path is also discussed. We propose
in Sect. 5 an algorithm to follow the smoothing path and establish the global convergence
of the algorithm under suitable assumptions. The local convergence property of the
algorithm is studied in Sect. 6, and some numerical results are presented in Sect. 7.
Finally we end this paper by some remarks.

Few words about our notations: throughout this work,<n+,<n++ denote the nonnega-
tive orthant and the positive orthant in<n, respectively.‖x‖ denotes the 2-norm of a vec-
tor x ∈ <n and‖x‖1 the 1-norm. For any matrixM ∈ <n×n, ‖M‖ = max‖x‖=1 ‖Mx‖.

2. Preliminaries

First, we state some concepts and notations which will be used in this paper.

Definition 1. [23] A matrix M ∈ <n×n is said to be
(1) a P-matrix, if there is an indexi such that

si 6= 0, and(Ms)i · si > 0 for all s 6= 0 ∈ <n.

(2) a P0-matrix, if there is an indexi such that

si 6= 0, and(Ms)i · si ≥ 0 for all s 6= 0 ∈ <n.

It is well known any positive definite matrix is aP-matrix, and any positive semi-definite
matrix is aP0-matrix. For the vertical block matrixN, we define

Definition 2. [32] A square submatrix ofN of ordern is called a representative sub-
matrix, if its i th row is drawn from thei th block Ni of N, for i = 1, ...,n. Hence,
a vertical block matrix of type(m1, ...,mn) has at most

∏n
j=1 mj distinct representative

submatrices.

Definition 3. [32] A vertical block matrixN of type(m1, ...,mn) is called a vertical
block P-matrix (P0-matrix), if all its representative submatrices are P-matrices (P0-
matrices).

The properties of the matrixN play an important role in the analysis of GLCP.
In [40], Sznajder and Gowda presented some properties of the vertical blockP(or P0)
matrix in the case thatmi = mj . In what follows we give some results about general

vertical blockP(or P0) matrix N . DenoteN j
i be thei th row of the block matrixN j ,

eT
i be thei th row of the unit matrixI , v j = (v j,0, v j,1, v j,2, . . . , v j,mj )

T ∈ <mj+1 . We
have

Lemma 1. Suppose thatN is a vertical blockP0 matrix and the matrixG is defined as
below

G =


v1,0eT

1 +
∑m1

i=1 v1,i N1
i

v2,0eT
2 +

∑m2
i=1 v2,i N2

i
...

vn,0eT
n +

∑mn
i=1 vn,i Nn

i

 . (6)
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If v j ∈ <mj+1
++ , thenG is nonsingular.

Proof. Suppose to the contrary thatG is singular. Then there existsx 6= 0 ∈ <n such
thatGx= 0. It follows that

mj∑
i=1

xjv j,i N
j
i x = −v j,0x2

j ≤ 0, j = 1,2, . . . ,n, (7)

and the above inequality strictly holds ifx j 6= 0. Sincev j ∈ <mj+1
++ , there exists an

index ji ∈ {1,2, . . . ,mj } such that

xj N
j
ji
x < 0, ∀ xj 6= 0. (8)

DenoteN̄ ∈ <n×n the matrix whosej th row isN j
ji

. ThenN̄ is a representative submatrix

of N. By the assumption of the lemma,N̄ is a P0 matrix. So for anyx 6= 0 ∈ <n, there
exists an indexj such that

xj N
j
ji
x ≥ 0, xj 6= 0, (9)

which contradicts to (8). This shows the lemma is true.
ut

If N is a vertical blockP-matrix, then we have

Lemma 2. Suppose thatN is a vertical blockP matrix and the matrixG is defined

by (6). Ifv j ∈ <mj+1
+ and thatv̄ j =∑mj

i=0 v j,i > 0 , thenG is nonsingular.

Proof. The proof of this lemma is similar to that of Lemma 1, for completeness, we
give it as follows. Assume thatG is singular. Then there must existx 6= 0 ∈ <n such
thatGx= 0. It follows that

mj∑
i=1

xjv j,i N
j
i x = −v j,0x2

j ≤ 0, j = 1,2, . . . ,n, (10)

Sincev j ∈ <mj+1
+ and that̄v j =∑mj

i=0 v j,i > 0, there exists an indexji ∈ {1,2, . . . ,mj }
such that

xj N
j
ji
x ≤ 0, j = 1,2, . . . ,n. (11)

Let N̄ ∈ <n×n be a matrix whosej th row is N j
ji

, it is a representative submatrix ofN.

By the assumption of the lemma,N̄ is a P matrix. So for anyx 6= 0 ∈ <n, there exists
an indexi such that

xj N
j
ji
x > 0, xj 6= 0, (12)

which contradicts to (11). This completes the proof of the lemma.
ut



538 Ji-Ming Peng, Zhenghua Lin

Let us denoteWi (x) = Ni x + qi , i = 1, ...,n. We can rewrite the GLCP (1) as
follows

xi

mi∏
j=1

Wi
j (x) = 0, x ≥ 0, Wi (x) ≥ 0, i = 1, ...,n. (13)

Clearly, (13) is equivalent to the following nonsmooth equations

H(x) =


min{x1,W1

1(x), ...,W
1
m1
(x)}

min{x2,W2
1(x), ...,W

2
m2
(x)}

...

min{xn,Wn
1 (x), ...,W

n
mn
(x)}



= −


max{−x1,−W1

1(x), ...,−W1
m1
(x)}

max{−x2,−W2
1(x), ...,−W2

m2
(x)}

...

max{−xn,−Wn
1 (x), ...,−Wn

mn
(x)}

 = 0. (14)

BecauseWi
j (x) are all linear functions,H(x) is a piecewise linear system of equations.

By the definition ofH(x) , it is easy to see that all−Hi (x), i ∈ {1, ...,n} are piecewise
linear convex functions.

Denote

T = {x ∈ <n : H(x) = 0} (15)

the solution set of the GLCP. Let us definedist(x, T) the distance fromx to T as follows

dist(x, T) = min
y∈T
‖y− x‖. (16)

Since the graphs ofH(x) are unions of finitely many polyhedral convex sets,H(x) is
a polyhedral multifunctions [37]. Our next result says that the norm ofH(x) plays as
a local error bound for a GLCP if the solution setT of the GLCP is not empty .

Lemma 3. SupposeT is not empty, then there exist constantse, τ > 0 such that

dist(x, T) ≤ τ||H(x)||
for anyx ∈ {x ∈ <n : ||H(x)|| ≤ e}.
Proof. This lemma is a direct consequence of Proposition 1 in [37], thus the proof is
omitted here.

ut
We next study the growth behavior of the norm ofH(x) under certain conditions. To

continue our analysis, we need the following definition which is a generalization of the
LCP with aR0 matrix.
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Definition 4. [21] We say that the GLCP with the vertical block matrixN is of type
R0 if

H̄(x) =
min{x1, N1

1 x, ..., N1
m1

x}
...

min{xn, Nn
1 x, ..., Nn

mn
x}

 = 0⇐⇒ x = 0.

Now we have

Lemma 4. GLCP (1) is of typeR0 if and only if

lim‖x‖→∞
‖H(x)‖
‖x‖ ≥ C0 (17)

holds for some constantC0 > 0.

Proof. ⇐: Since the GLCP is of typeR0, it holds C̄0 = inf||x||=1
||H̄(x)|| > 0. If (17)

does not hold, i.e., there exists a sequence{xk} such that

lim
k→∞‖x

k‖ →∞, and lim
k→∞

||H(xk)||
‖xk‖ = 0. (18)

Let us denotēxk = xk

‖xk‖ , then{x̄k} is a bounded sequence. By choosing a subsequence if

necessary, we can assume that the sequence{x̄k} converges to an accumulation pointx̄∗.
It follows that

lim
k→∞

||H(xk)||
‖xk‖ = lim

k→∞ ||H(x
k/||xk||)|| = ‖H̄(x̄∗)‖ ≥ C̄0. (19)

The above inequality contradicts to (18).
⇒: Now we assume that (17) is true. It follows

lim||x||→∞ ||H(x)|| = ∞. (20)

Suppose that the GLCP is not of typeR0, i.e., there exists anx 6= 0 ∈ <n such that

min{xi , Ni
1x, ..., Ni

mi
x} = 0, i = 1,2, ...,n.

Then we have
lim

t→∞||H(tx)|| <∞
which contradicts (20). This completes the proof of the lemma.

ut
The following assumptions will be used numerously in the rest part of this paper.

Assumptions.
(A1): T is nonempty.
(A2): GLCP is of typeR0.

Now we can give one of our main results in this section.



540 Ji-Ming Peng, Zhenghua Lin

Theorem 1. Suppose the Assumptions (A1) and (A2) are true. Then there exists a con-
stantτ1 > 0 such that

dist(x, T) ≤ τ1‖H(x)‖, ∀x ∈ <n. (21)

Proof. Suppose to the contrary that the theorem is false. There exists a point sequence
{xk} such that (21) is violated, i.e.,

dist(xk, T) > bk‖H(xk)‖, (22)

where{bk} is a constant sequence satisfying

lim
k→∞ bk = ∞. (23)

Hence there exists a sufficiently largeK such that

bk > τ, ∀k ≥ K,

whereτ is the same constant as defined in Lemma 3. By Lemma 3, we have

‖H(xk)‖ > e, ∀k > K, (24)

wheree is also the constant defined in Lemma 3. SinceT is nonempty, for any fixed
point x̄ ∈ T we obtain from the definition ofdist(x, T) that

||xk − x̄|| ≥ dist(xk, T) > bk‖H(xk)‖ ≥ bke. (25)

From (23) and (25) we obtain

lim
k→∞‖x

k − x̄‖ = +∞.

This means{xk} is an unbounded point sequence. Now it follows immediately from (25)
that

‖H(xk)‖
‖xk‖ =

‖H(xk)‖
‖xk − x̄‖ ·

‖xk − x̄‖
‖xk‖ ≤ ‖x

k − x̄‖
bk‖xk‖ . (26)

The above inequality gives

lim
k→∞

‖H(xk)‖
‖xk‖ ≤ lim

k→∞
‖xk − x̄‖
bk‖xk‖ = 0, (27)

where the last equality follows from (23). (27) contradicts to Lemma 4 because the
GLCP is of typeR0. So (22) is not true. This completes the proof of the theorem.

ut
Since a GLCP with a vertical blockP-matrix is of typeR0 and its solution is also

unique [32], we get the following result as a direct consequence of the above theorem.

Corollary 1. Suppose the vertical matrixN in GLCP (1) is aP-matrix andx∗ is the
unique solution of (1). Then there exists a constantτ2 > 0 such that

‖x− x∗‖ ≤ τ2‖H(x)‖, ∀x ∈ <n. (28)
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3. Chen-Mangasarian’s neural network smooth function and the functiong(x, t)

The plus function
z+ = max{z,0}, z ∈ <

is widely used in the reformulations of complementarity problems. In [7], Chen and
Mangasarian introduced a class of smoothing function to approximate this function
by twice integrating a parameterized probability density function. Chen-Mangasarian’s
function is defined as below

pt(z) =
∫ z

−∞

∫ t

−∞
1

t
p

(
ξ

t

)
dξdt,

wheret ∈ [0,∞) is a parameter, andp(ξ) is a probability density function. Using their
smoothing function, Chen and Mangasarian approximate a complementarity problem
as a system of smoothing equations

x− pt(x− F(x)) = 0, t > 0.

It is easy to verify that whent → 0, 1
t p
(
ξ
t

)
is δ-function with all masses concentrated

at origin, hencep0(z) = lim
t→0

pt(z) = z+. The following lemma summarizes some

properties of the smoothing functionpt(z) [7,9].

Lemma 5. Suppose the probability density functionp(ξ) satisfies the following condi-
tions:

(A1) p(ξ) is continuous, symmetric, and has an infinite support, i.e.,

0< p(ξ) ≤ ξ̄1 <∞, p(ξ) = p(−ξ), ∀ξ ∈ (−∞, +∞);

(A2)
∫∞

0 ξp(ξ)dξ = ξ̄2 <∞.
Then the smooth functionpt(z), which defined in Definition 1 with parametert > 0, has
the following properties:
(1) pt(z) is continuously differentiable, increasing, and strictly convex with respect toz;
(2) 0< p′t(z) < 1 and0< p′t(−z) = 1− p′t(z) for all z;
(3) 0< p′′t (z) < ξ̄1/t for all z;
(4) |pt2(z)− pt1(z)| ≤ ξ̄2|t2− t1| for all z andt1, t2 ≥ 0;
(5) If z 6= 0, thenp0 is differentiable atz. In addition,|p′t(z)− p′0(z)| ≤ ξ̄2t/|z| for all z.

Particularly, if the probability density functionp(ξ) = exp(−ξ)/(1 + exp(−ξ))2 is
applied, then one has [7,8]

pt(z) = t ln
(

1+ exp
(z

t

))
. (29)

This function is also known as neural network smooth function. Our next result establish
a relation between the functiong(x, t) and Chen-Mangasarian’s neural network smooth
function.
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Lemma 6. Suppose that the aggregate functiong(x, t) is defined by (4) withm = 2
and thatg1(x) ≡ 0, g2(x) = x. If the smoothing functionpt(x) is defined withp(ξ) =
exp(−ξ)/(1+ exp(−ξ))2, then it holdspt(x) = g(x, t).

Proof. By (4), we have

g(x, t) = t ln
(

exp
(

g1(x)

t

)
+ exp

(
g2(x)

t

))
= t ln

(
1+ exp

(x

t

))
. (30)

The above equality and (29) imply the lemma is true.
ut

Using the smoothing functionpt(z), Chen and Mangasarian [7,8] reformulated CP
(2) as the following smooth equations

xi − pt(xi − Fi (x)) = 0, i = 1, . . . ,n.

In the case thatpt(z) is given by (29), one has

xi − pt(xi − Fi (x)) = xi − t ln
(

1+ exp
(

xi − Fi (x)

t

))
= −t

(
ln exp

(−xi

t

)
+ ln

(
1+ exp

(
xi − Fi (x)

t

)))
= −t ln

(
exp

(−xi

t

)
+ exp

(−Fi (x)

t

))
. (31)

Since min{xi , Fi (x)} = −max{−xi ,−Fi (x)} = 0. Let g1(x) = −xi and g2(x) =
−Fi (x). By applying the functiong(x, t) to approximate the function min{xi , Fi (x)} we
get

−g(x, t) = −t ln

(
exp

(−xi

t

)
+ exp

(−Fi (x)

t

))
. (32)

It follows from (31) and (32) that, if we use Chen-Mangasarian’s neural network smooth
function (29) and the functiong(x, t) (4) to reformulate a CP, then the same system of
equations is derived.

Our following theorem summarizes some interesting properties of the function
g(x, t) (4).

Lemma 7. Supposegi (x) are all twice continuously differentiable functions,

g(x) = max
i∈{1,...,m} gi (x)

andg(x, t) is defined by (4), then we have:

(i) g(x, t) is increasing with respect tot, andg(x) ≤ g(x, t) ≤ g(x)+ t ln m;
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(ii) g(x, t) is twice continuously differentiable for allt > 0, and

∇xg(x, t) =
m∑

i=1

λi (x, t)∇gi (x),

∇2
xg(x, t) =

m∑
i=1

(
λi (x, t)∇2gi (x)+ 1

t
λi (x, t)∇gi (x)∇gi (x)

T
)

−1

t

(
m∑

i=1

λi (x, t)∇gi (x)

)(
m∑

i=1

λi (x, t)∇gi (x)

)T

,

where

λi (x, t) = exp(gi (x)/t)∑m
j=1 exp(gj (x)/t)

∈ (0,1),
m∑

i=1

λi (x, t) = 1,

Particularly, if gi (x) are all linear functions, theng(x, t) is an infinite order differ-
entiable convex function for allt > 0, and that

∇2
x g(x, t) = 1

t

 m∑
i=1

λi (x, t)∇gi (x)∇gi (x)
T

−
[

m∑
i=1

λi (x, t)∇gi (x)

][
m∑

i=1

λi (x, t)∇gi (x)

]T
 .

(iii) For any fixedx ∈ <n,

∇xg(x,0+) = lim
t→0+
∇xg(x, t) =

∑
i∈B(x)

∇gi (x)/k̄,

where B(x) = {i ∈ {1, ...,m} : gi (x) = maxi∈{1,...,m} gi (x)}, k̄ is the element
number of the index setB(x).

(iv) Supposegi (x) are all linear functions. For anyx ∈ <n, there exists a constant
C1 > 0 such that

t‖∇2
x g(x, t)‖ ≤ C1, ∀t > 0, (33)

and that

lim
t→0+
‖∇2

x g(x, t)‖ = 0 (34)

if k̄ = 1.
(v) For any fixedx ∈ <n , g(x, t) is a continuously differentiable, increasing and

convex function oft if t > 0. Furthermore, we have

g′t(x,0+) = lim
t→0+

g′t(x, t) = ln k̄, (35)

and that

lim
t→0+

g′t(x, t)− ln k̄

t
= 0. (36)
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(vi) For anyx ∈ <n andt > 0, it holdsln k̄ ≤ g′t(x, t) ≤ ln m.

Proof. The conclusions(i) and(ii) have been proven in [30,41], we need only to prove
the statements(iii)-(vi) .

By the definition ofλi (x, t), we have

λi (x, t) =
exp

(
gi (x)

t

)
m∑

j=1
exp

(
gj (x)

t

) = exp
(

gi (x)−g(x)
t

)
m∑

j=1
exp

(
gj (x)−g(x)

t

) .
For any fixedx ∈ <n, it holds

exp
(

gi (x)− g(x)

t

)
≡ 1, ∀i ∈ B(x),

and

lim
t→0

exp

(
gi (x)− g(x)

t

)
= 0, ∀i /∈ B(x). (37)

It follows from (37) that

lim
t→0+∇xg(x, t) =

∑
i∈B(x)

∇gi (x)/k̄

which implies the statement(iii) .
We next prove the assertion(iv). By the definition ofλi (x, t), we have

lim
t→0+

λi (x, t) = 1

k̄
, ∀i ∈ B(x), (38)

and that

lim
t→0+

λi (x, t)

t
= 0, ∀i 6∈ B(x). (39)

Since allλi (x, t) ∈ (0,1), and allgi (x) are linear, it follows directly from (38), (39) and
(ii) that the result(iv) is true.

Now we turn to case(v). By direct algebraic calculus, we have

g′′t (x, t) =
1

t3

 m∑
i=1

λi (x, t) · g2
i (x)−

(
m∑

i=1

λi (x, t) · gi (x)

)2
 ≥ 0 (40)

where the inequality follows from the convexity of the functiont2 and the fact that

m∑
i=1

λi (x, t) = 1, λi (x, t) ≥ 0.



A non-interior continuation method for generalized linear complementarity problems 545

Henceg′t(x, t) is an increasing function oft, andg(x, t) is convex with respect tot. To
prove (36), we observe

g′t(x, t) = ln
m∑

i=1

exp

(
gi (x)

t

)
−

m∑
i=1

exp
(

gi (x)
t

)
· gi (x)

t

m∑
j=1

exp
(

gj (x)
t

)
= ln[k̄+ η1(x, t)] + g(x) η1(x,t)

t − η2(x, t)

k̄+ η1(x, t)

where

η1(x, t) =
∑

i /∈B(x)

exp

(
gi (x)− g(x)

t

)
, η2(x, t) =

∑
i /∈B(x)

gi (x)

t
exp

(
gi (x)− g(x)

t

)
.

For any fixedx ∈ <n, one can easily verify that

lim
t→0+

η1(x, t)/t
2 = 0, (41)

and

lim
t→0+

η2(x, t)/t = 0. (42)

It follows from (41) and (42) that

lim
t→0+

g′t(x, t)− ln k̄

t
= lim

t→0+

{
ln(1+ η1(x, t)/k̄)

t
+ g(x) η1(x,t)

t2 − η2(x,t)
t

k̄+ η1(x, t)

}

= lim
t→0+

ln(1+ η1(x, t)/k̄)

t

= lim
t→0+

ln(1+ η1(x, t)/k̄)

η1(x, t)/k̄
· η1(x, t)

k̄t
= 0. (43)

This proves (36). (35) follows directly from (36). (35) and (40) imply thatg′t(x, t) ≥ 0
for all t > 0. It follows thatg(x, t) is also an increasing function oft. This completes
the proof of the statement(v).

Now we turn to the last conclusion of the lemma. For anyx ∈ <n, it is easy to see

lim
t→+∞ η1(x, t) = m− k̄, lim

t→+∞ η2(x, t) = 0, (44)

which implies that

lim
t→+∞ g′t(x, t) = ln m. (45)

The above equality and the fact thatg′t(x, t) is an increasing function oft give the
conclusion(vi). The proof of the lemma is finished.

ut
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4. A smooth reformulation of GLCP

In the previous section, we have studied the relations between Chen-Mangasarian’s
neural network smooth function and the functiong(x, t). In this section, we will use
the functiong(x, t) (4) to smoothH(x). In this way we get the following parameterized
smooth equations system

H(x, t) = −



t ln

(
exp

(
−x1

t

)
+

m1∑
j=1

exp

(
−W1

j (x)

t

))

t ln

(
exp

(
−x2

t

)
+

m2∑
j=1

exp

(
−W2

j (x)

t

))
...

t ln

(
exp

(
−xn

t

)
+

mn∑
j=1

exp

(
−Wn

j (x)

t

))


. (46)

By the conclusion (i) of Lemma 7, we have

Lemma 8. SupposeH(x) andH(x, t) are defined by (14) and (46) respectively. Then it
holds

Hi (x) ≤ Hi (x, t) ≤ Hi (x)+ t ln(mi + 1), i ∈ {1,2, ...,n}. (47)

By the conclusion (ii) of Lemma 7, we know that−Hi (x, t) are all infinite order
differentiable convex function for allt > 0.

Let T(t) be the solution set of the equations (46) defined by

T(t) = {x ∈ <n : H(x, t) = 0}. (48)

We have

Theorem 2. Suppose the Assumptions (A1) and (A2) are true. Then there exist constants
τ3, τ4 > 0 such that

min
y∈T
||x− y||1 ≤ nτ3t ln m̄, dist(x, T) ≤ √nτ4t ln m̄, ∀x ∈ T(t), t > 0, (49)

wherem̄= max{m1, ...,mn} + 1.

Proof. By Theorem 1, for anyx ∈ T(t), there exists a constantτ1 such that

dist(x, T) ≤ τ1||H(x)||. (50)

Because all the norms of a vector (or matrix) are in the same order, there exists a constant
τ3 > 0 such that

min
y∈T
||x− y||1 ≤ τ3||H(x)||1.
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Sincex ∈ T(t), it follows from (47) that

min
y∈T
||x− y||1 ≤ τ3

n∑
i=1

|Hi (x)| = τ3

n∑
i=1

(−Hi (x))

≤ τ3

n∑
i=1

(−Hi (x, t)+ t ln m̄) = nτ3t ln m̄.

By using (50) again, we get

dist(x, T) ≤ τ1

√√√√ n∑
i=1

(−Hi (x))2

≤ τ1

√√√√ n∑
i=1

(−Hi (x, t)+ t ln m̄)2 = √nτ1t ln m̄.

Therefore, the theorem is true.
ut

Let us define the smoothing path0 = {(x, t) ∈ <n × <++ : H(x, t) = 0}. We
next consider the properties of the Jacobian∇x H(x, t) on the smoothing path0. For any
t > 0, it follows directly from (46) that

∇x H(x, t) =



exp
(
−x1

t

)
eT

1 +
m1∑
j=1

exp

(
−W1

j (x)

t

)
·W1

j (x)
′

exp
(
−x1

t

)
+

m1∑
j=1

exp

(
−W1

j (x)

t

)
...

exp
(
−xn

t

)
eT

n +
mn∑
j=1

exp

(
−Wn

j (x)

t

)
·Wn

j (x)
′

exp
(
−xn

t

)
+

mn∑
j=1

exp

(
−Wn

j (x)

t

)



=



λ1
0eT

1 +
m1∑
j=1
λ1

j N
1
j

λ2
0eT

2 +
m2∑
j=1
λ2

j N
2
j

...

λn
0eT

n +
mn∑
j=1
λn

j Nn
j


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where

λ
j
0 =

exp
(
−xj

t

)
exp

(
−xj

t

)
+

m∑
l=1

exp

(
−Wj

l (x)

t

) ∈ (0,1), j ∈ {1,2, ...,n}, (51)

λ
j
i =

exp

(
−Wj

i (x)

t

)

exp
(
−xj

t

)
+

mj∑
l=1

exp

(
−Wj

l (x)

t

) ∈ (0,1), i ∈ {1,2, ...,mi }, j ∈ {1,2, ...,n}.

(52)

By Lemma 1, we have

Lemma 9. Suppose GLCP is defined with a vertical blockP0-matrix N. If t > 0, then
the matrix∇x H(x, t) is nonsingular.

Let κ be the closed set of matrices defined by

κ = co{∇xH(x, t), t > 0} (53)

wherecodenotes the convex hull of a set. Since allλ
j
i ∈ (0,1) and that

mj∑
i=0

λ
j
i = 1, j = 1,2, . . . ,n. (54)

It follows directly from Lemma 2 that

Lemma 10. Suppose GLCP is defined with a vertical blockP-matrix N. Then any
M ∈ κ is nonsingular.

Remark. The above lemma implies that if GLCP is defined with a vertical blockP-
matrix N, then the matrix∇x H(x, t) is nonsingular for allt > 0. Furthermore, it is easy
to see thatκ is a closed bounded convex set. Since all the matrices inκ are nonsingular,
it follows that‖M−1‖ is bounded above for anyM ∈ κ.

In what follows we consider the derivatives ofH(x, t) with respect tot. Let
Wi

0(x) = xi . DenoteBi (x) the active index set defined by

Bi (x) = { j |Hi(x) = Wi
j (x), j = 0,1, ...,mi .} (55)

andk̄i the element number ofBi (x). Then by the result (v) and (vi) of Lemma 7, we get

Lemma 11. For any i ∈ {1,2, . . . ,n}, Hi (x, t) is a continuously differentiable, de-
creasing and concave function of t. Furthermore, it holds

lim
t→0+

1

t

(
dHi (x, t)

dt
+ ln k̄i

)
= 0. (56)

and that

− ln(mi + 1) ≤ dHi (x, t)

dt
≤ − ln k̄i . (57)
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A direct consequence of the above lemma is the following corollary which will be used
repeatedly in the rest of the paper.

Corollary 2. For anyx ∈ <n andt1, t2 ≥ 0, it holds

|t1− t2| ln k̄i ≤|Hi (x, t1)− Hi (x, t2)| ≤ |t1− t2| ln(mi + 1) (58)

≤|t1− t2| ln m̄, i = 1,2, . . . ,n.

Our next result consider the relationships between the smoothing path0 and the
mappingH(x).

Theorem 3. SupposeH(x) and H(x, t) are defined by (14) and (46) respectively. If
(x(t), t) ∈ 0, then we have

t ln k̄i ≤ Hi (x(t)) ≤ −t
dHi (x(t), t)

dt
≤ t ln(mi + 1), i ∈ {1,2, ...,n}, (59)

and that

lim
t→0+

Hi (x(t))− t ln k̄i

t2 = 0. (60)

Particularly , if k̄i ≡ 1, then

lim
t→0+

‖H(x(t))‖
t2 = 0.

Proof. Since(x(t), t) ∈ 0, we haveHi (x(t), t) = 0. By Lemma 11, allHi (x, t) are
concave functions oft. For anyi ∈ {1,2, . . . ,n}, it follows

Hi (x(t), t̄)+ dHi(x(t), t̄)

dt
(t − t̄) ≥ Hi (x(t), t)

≥ Hi (x(t), t̄)+ dHi(x(t), t)

dt
(t − t̄), ∀0< t̄ ≤ t.

Taking limits t̄ → 0 in both sides of the above inequality, we get

Hi (x(t))+ t
dHi (x(t),0+)

dt
≥ 0≥ Hi (x(t))+ dHi(x(t), t)

dt
t ≥ Hi (x(t))− t ln(mi + 1),

(61)

where the last inequality follows from (57). (61) and (56) gives (59). (60) follows from
(59) and (56).

ut
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5. A path-following algorithm and its global convergence

In last section, we have reformulated an equivalent system of GLCP as a system of
smooth parameterized equations. It is easy to see that, when the parametert tends to
zero, any accumulation point of the smoothing path is a solution point of the GLCP.
In this section, we present a noninterior continuation method to follow this smoothing
path0 and analyse the global convergence of the algorithm. First we introduce some
neighborhoods around the smoothing path.

Definition 5. (1) A β neighbourhood around0 is defined asN (β) = {(x, t) ∈ <n ×
(0, t0] : ||H(x, t)|| ≤ βmin{t,1}}, whereβ > 0 is called the width of the neighborhood
N (β), andt0 > 0 is an initial parameter.
(2) For anyt > 0,N (β, t) = {(x, t) ∈ <n ×<+ : ||H(x, t)|| ≤ βmin{t,1}}.

The algorithm can be stated as follows.

Algorithm 1. Given constant numbersε0 ≥ 0, σ ∈ (0,1), αi ∈ (0,1), i = 1,2, α3 ∈
(0,1− α2), β > 0, an initial parametert0 > 0, initial point (x0, t0) ∈ N (β, t0) and
iterative numberk := 0;

Step 1. The Newton step ofH(x, tk) = 0 at xk:
If ∇x H(xk, tk) is singular, stop ( The algorithm fails);
else if‖H(xk)‖ ≤ ε0, stop,xk is an approximate solution of GLCP;
Otherwise, compute a Newton step1xk satisfying

∇x H(xk, tk)1xk + H(xk, tk) = 0; (62)

Step 2. Computexk+1: Let hk be the maximum value of{1, α1, α
2
1, . . . } such that

||H(xk+ hk1xk, tk)|| ≤ (1− σhk)min{tk,1}β, (63)

andxk+1 = xk + hk1xk;

Step 3. Computetk+1:
If (xk+1,min{α3, tk}tk) ∈ N (β,min{α3, tk}tk), then we setνk = 1−min{α3, tk};
Otherwiseνk be the maximum value of{α2, α

2
2, . . . } such that(

xk+1, (1− νk)tk
)
∈ N (β, (1− νk)tk), (64)

settk+1 = (1− νk)tk;

Step 4. k := k+ 1, return to Step (1).

Remark (a).It is very easy to initialize the above method. One may simply choose any

t0 > 0, x0 ∈ <n, andβ ≥ ‖H(x0,t0)‖
min{t0,1} .

Remark (b).In Step 3, byα3 ∈ (0,1− α2), we have 1−min{α3, tk} ∈ (1− α3,1) ⊂
(α2,1), then

1−min{α3, tk} > α2 > α
2
2 > · · · ;
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Remark (c).The Step 1 and 2 of our method is similar to that of the method presented
by Chen and Xiu [9]. But we do not calculate approximate Newton step such as in [9].
The iteration oft is also different from that in [9]. As we will see later, this new reducing
step oft plays an important role in the analysis of the local convergence of the algorithm.

Next, we discuss the global convergence of Algorithm 1. First we give a result about
the mappingH(x, t).

Lemma 12. Let H(x, t) is defined by (46). Then for anyx, y ∈ <n and t > 0, there
exists a constantC2 > 0 such that

||H(y, t)− H(x, t)−∇x H(x, t)(y− x)|| ≤ nC2

2t
||y− x||2. (65)

Proof. By Lemma 7, we know that allHi (x, t) are twice differentiable whenevert > 0.
It follows that

H(y, t)=H(x, t)+∇xH(x, t)(y− x)+ 1

2


(y− x)T∇2

x H1(x+ ξ̄1(y− x), t)(y− x)
(y− x)T∇2

x H2(x+ ξ̄2(y− x), t)(y− x)
...

(y− x)T∇2
x Hn(x+ ξn(y− x), t)(y− x)

.
(66)

whereξi ∈ (0,1). By the result (iv) of Lemma 7, there exists a constantC2 > 0 such
that

‖∇2
x Hi (x+ ξi (y− x))‖ ≤ C2

t
, i = 1,2, . . . ,n. (67)

The above inequality and (66) prove (65).
ut

Our next results study the properties about the direction1x updated by (62).

Lemma 13. Suppose∇xH(x, t) is nonsingular for somex ∈ <n with t > 0 and1x is
a solution of (62) atx. Then for anyh ∈ (0,1],

‖H(x+ h1x, t)‖ ≤ (1− h)‖H(x, t)‖ + nC2

2t
h2‖1x‖2. (68)

Proof. Let y = x+ h1x. Since1x is a solution of (62) atx, it holds

H(y, t)− H(x, t)−∇x H(x, t)(y− x) = H(y, t)− (1− h)H(x, t).

The above equation and (65) yield (68).
ut
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The following assumption play an important role in the analysis of the global linear
convergence of the algorithm.

Assumption. (A3) The matrix∇x H(xk, tk) is nonsingular for allk. In addition, there

exists a constantC such that‖∇x H(xk, tk)
−1‖ ≤ C for all k.

Remark.If GLCP (1) is defined with a vertical blockP0-matrix, it follows from Lemma 9
that all∇x H(xk, tk) are nonsingular iftk > 0. For GLCP with a vertical blockP-matrix,
Lemma 10 implies (A3) is true.

If (A3) is true, then

‖1xk‖ = ‖∇x H(xk, tk)
−1

H(xk, tk)‖ ≤ C‖H(xk, tk)‖ ≤ βCtk. (69)

Our next result consider the line search stephk under the condition (A3).

Lemma 14. Let (xk, tk) be thekth iteration of the algorithm. If (A3) is true, then there
exists an independent constanth̄ > 0 such thathk ≥ h̄.

Proof. If H(xk, tk) = 0, then1xk = 0. It follows from the line search rule in Step 2
thathk = 1.

Assume thatH(xk, tk) 6= 0. For anyh ∈ (0,1], it follows from (68) that

||H(xk+ h1xk, tk)|| ≤ (1− h)||H(xk, tk)|| + nC2

2tk
h2||1xk||2

≤
(

1− h+ nC2

2tk
Ch2||1xk||

)
||H(xk, tk)||

≤
(

1−
(

1− nC2

2
βC2h

)
h

)
||H(xk, tk)||,

where the last two inequalities follow from (69). Letĥ = 2(1−σ)
nC2βC2 . It is easy to see that

for all h ∈ (0, ĥ], we have

||H(xk+ h1xk, tk)|| ≤ (1− σh)||H(xk, tk)||. (70)

Let h̄ = min{1, α1ĥ}, it is independent ofk. Clearly, we havehk ≥ h̄.
ut

We next show the step lengthνk for reducingt is also bounded below by a positive
constant.

Lemma 15. Let (xk, tk) be thekth iteration of the algorithm. If (A3) is true, then there
exists an independent constantν̄ > 0 such thatνk ≥ ν̄.

Proof. From Corollary 2 and triangle inequality we get

‖H(xk+1, t)‖ ≤ ‖H(xk+1, tk)‖ + ‖H(xk+1, tk)− H(xk+1, t)‖ (71)

≤ ‖H(xk+1, tk)‖ + µ(tk − t),
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whereµ > 0 is a constant derived from Corollary 2. It follows from (63) that

||H(xk+1, t)|| ≤ (1− σhk)min{tk,1}β + µ(tk − t). (72)

By (72) and the line search rule , there existsνk > 0 satisfying to

||H(xk+1, (1− νk)tk)|| ≤ (1− σhk)min{tk,1}β + µνktk ≤ min{(1− νk)tk,1}β.
There are three cases:

(i) If (xk+1,min{α3, tk}tk) ∈ N (β,min{α3, tk}tk), thenνk = 1−min{α3, tk} ≥ 1−
α3 > 0;

(ii) If (xk+1, (1− α2)tk) ∈ N (β, (1− α2)tk), then we haveνk = α2;
(iii) Otherwise, by the line search rule in the algorithm, we have

(xk+1, tk+1) ∈ N (β, tk+1), (x
k+1, tk−(tk−tk+1)/α2) /∈ N (β, tk−(tk−tk+1)/α2),

i.e.,

||H(xk+1, tk − (tk − tk+1)/α2)|| ≥ min{tk − (tk − tk+1)/α2,1}β.
By (72), it holds

min{tk − (tk − tk+1)/α2,1}β ≤ (1− σhk)min{tk,1}β + µ tk − tk+1

α2
, (73)

It follows that

tk − tk+1 ≥



α2σhkβ

µ
, if tk − (tk − tk+1)/α2 ≥ 1, tk > 1;

(tk − 1+ σhk)α2β

β + µ , if tk − (tk − tk+1)/α2 ≤ 1, tk > 1;
tkα2σhkβ

β + µ , if tk ≤ 1,

(74)

Sincehk ≥ h̄, by (74) , we have

tk − tk+1

tk
≥ tk − tk+1

t0
≥ σ h̄α2β

t0(β + µ), whenever tk > 1, (75)

and that

tk − tk+1

tk
≥ α2σ h̄β

β + µ , if tk ≤ 1. (76)

Let

ν̄ = min

{
α2σ h̄β

t0(β + µ),
α2σ h̄β

β + µ ,1− α3, α2

}
which is a constant independent ofk. It is easy to see thatνk ≥ ν̄.

ut
Now we are ready to show the global linear convergence of the continuation method.

We assume the algorithm does not terminate finitely and thatε0 = 0, then we have
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Theorem 4. Suppose (A3) is true for the infinite sequence{xk, tk} generated by the
algorithm withε0 = 0. Then
1. For all k = 1,2, . . . , we have

tk ≤ t0(1− ν̄)k. (77)

Namely the sequence{tk} converges to zero global Q-linearly.
2. The sequence{‖H(xk)‖} converges to zero globally and r-linearly.
3. The sequence{xk} is bounded and converges to a solution of the GLCP.

Proof. By Lemma 15,νk ≥ ν̄ at each iteration. Therefore,

tk+1 = (1− νk)tk ≤ (1− ν̄)tk, ∀k = 1,2, . . . , (78)

Result 1 then follows immediately.
For result 2, we have

‖H(xk)‖ ≤ ‖H(xk, tk)‖ + ‖H(xk)− H(xk, tk)‖ ≤ βtk + ntk ln m̄, (79)

where the last inequality follows from Lemma 8 andm̄ = max{m1,m2, . . . ,mn} + 1
as defined in Section 4. Then results follows from result 1.

For result 3, since

‖xk+1 − xk‖ = ‖hk1xk‖ ≤ ‖1xk‖ ≤ C‖H(xk, tk)‖
≤ Cβtk ≤ Cβt0(1− ν̄)k, (80)

where the first inequality follows from the fact thathk ≤ 1. (80) implies that{xk} is
a Cauchy sequence, so it is bounded and has a unique accumulation pointx∗. By result 1,
we haveH(x∗) = 0. Thereforex∗ is a solution of GLCP.

ut
Remark. If the GLCP is defined with a vertical blockP-matrix which implies (A3) is
true, the above theorem shows that our method is well-defined and has a global linear
convergence.

If the GLCP is defined with a vertical blockP0-matrix and of typeR0, then we have
the following result.

Theorem 5. Suppose the GLCP is defined with a vertical blockP0-matrix and of
typeR0, Then the sequence{xk, tk} updated by the algorithm withε0 = 0 is bounded ,
and any accumulation point is a solution of GLCP.

Proof. Since the GLCP has a vertical blockp0-matrix, it follows from Lemma 9 that
the matrix∇x H(x, t) is nonsingular for allt > 0 andx ∈ <n. Hence the algorithm is
well-defined.

We now show the slice of neighborhoodN (β) is bounded for GLCP of typeR0. For
any(x, t) ∈ N (β), it follows from Lemma 8 that

‖H(x)‖ ≤ ‖H(x)− H(x, t)‖ + ‖H(x, t)‖
≤ nt ln m̄+ βt ≤ (n ln m̄+ β)t0. (81)
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It follows from Lemma 4 thatN (β) is bounded. So the sequence{xk, tk} has at least an
accumulation point, say(x∗, t∗). Sincetk decreases monotonically, we havetk→ t∗ ≥ 0.
If t∗ > 0 and{xk} is bounded, it follows from Lemma 9 that the matrix∇x H(xk, tk)
is uniformly bounded above which implies (A3) is true and sotk → 0. This leads to
a contradiction. So it holdst∗ = 0. It follows thatH(x∗) = 0 andx∗ is a solution of
GLCP.

ut

6. Local convergence result

In this section, we discuss the local convergence properties of the algorithm. Assumex∗
is a solution point of GLCP. We sayx∗ is a strictly complementarity solution ifk∗i = 1
for anyi ∈ {1,2, . . . ,n}wherek∗i is the element number of the index setBi (x∗) defined
by (55) in Sect. 4. Ifx∗ is a strictly complementarity solution of GLCP, then there exists
a neighborhood�(x∗, ε) = {x|‖x− x∗‖ ≤ ε} of x∗ such that

k̄i = 1, ∀x ∈ �(x∗, ε), ∀i ∈ {1,2, . . . ,n}
wherek̄i is the same as defined in Sect. 4. It follows immediately thatH(x) is differen-
tiable for anyx ∈ �(x∗, ε) and that∇x H(x) = ∇x H(x∗). Now we give a result about
the mappingH(x, t) and the Jacobian∇x H(x, t) in the neighborhood�(x∗, ε) of x∗.

Lemma 16. Supposex∗ is a strictly complementarity solution and�(x∗, ε) be a neigh-
borhood ofx∗ such that all̄ki ≡ 1 for anyx ∈ �(x∗, ε). If ∇H(x∗) is nonsingular, there
exists a constantc1 ∈ (0,1) such that
(a) For anyx ∈ �(x∗, ε) andt ∈ (0, c1),

‖∇x H(x, t)−1‖ ≤ C. (82)

(b) For anyx ∈ �(x∗, ε) andt ∈ (0, c1), we have‖H ′t (x, t)‖ ≤ βt
2 ;

(c) For anyt ∈ (0, c1), then||H(x, t)− H(x)|| ≤ β
2 t2.

Proof. Denote the Jacobian∇x H(x) = ∇x H(x,0), then it follows from (38), (39) and
the definition of∇x H(x, t) that for anyx ∈ �(x∗, ε) ,

lim
t→0+
‖∇x H(x, t)−∇x H(x)‖ = 0. (83)

It follows that if ∇x H(x) is nonsingular, then∇x H(x, t) is also uniformly nonsingular
for any x ∈ �(x∗, ε) and sufficiently smallt > 0. For simplicity, we use the same
constantC in (82) as in Assumption (A3). This proves the result (a).

To prove result (b), we note that for anyx ∈ �(x∗, ε) and anyi ∈ {1,2, . . . ,n},
k̄i = 1. It follows from Lemma 11 that

lim
t→0+

dHi (x, t)

dt
+ ln k̄i

t
= 0,

which implies the result (b).
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Now we consider the last result of the lemma. Whent is small enough, we have

Hi (x, t) = Hi (x,0+)+ dHi (x, ξt)

dt
t for someξ ∈ (0,1). By Lemma 11 we know that

Hi (x, t) is a concave function oft if t > 0. Further, one has

dHi(x,0+)
dt

= 0, ∀x ∈ �(x∗, ε).

It follows that

lim
t→0+

‖H(x, t)− H(x)‖
t2 ≤ lim

t→0+

{
n∑

i=1

|Hi(x, t)− Hi (x,0)|
t2

}

≤ lim
t→0+


n∑

i=1

∣∣∣∣dHi (x, t)

dt

∣∣∣∣
t

 = 0.

The above relation gives the result (c).
ut

Lemma 17. Supposex∗ is a strictly complementarity solution and�(x∗, ε) is a neigh-
borhood ofx∗ such that allk̄i ≡ 1 for any x ∈ �(x∗, ε). Then there exists a constant
c2 ∈ (0,1) such that for anyx, y ∈ �(x∗, ε) andt ∈ (0, c2),

||H(y, t)− H(x, t)− ∇xH(x, t)(y− x)|| ≤ min
{

1

2C2β
,

1− σ
C2β

,1
}
||y− x||2. (84)

Proof. Sincek̄i ≡ 1 for anyx ∈ �(x∗, ε). It follows from result (iv) of Lemma 7 that
limt→0+ ‖∇2

x H(x, t)‖ = 0 for anyx ∈ �(x∗, ε). Following the proof of Lemma 12, one
can easily show that the above lemma is true.

ut

Theorem 6. Supposex∗ is a strictly complementarity solution of GLCP and∇xH(x∗,0)
is nonsingular. Suppose that�(x∗, ε) is a neighborhood ofx∗ such that allk̄i ≡ 1 for
anyx ∈ �(x∗, ε). Then there exists a constantc̄ such that

1. If x ∈ �(x∗, ε) andt ∈ (0, c̄), thenx+1x ∈ �(x∗, ε).
2. The step length updated by the algorithm take the valueshk = 1, νk = 1− tk and
that xk+1 ∈ �(x∗, ε).
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Proof. We first prove the result 1. From the definition of1x we get

‖x+1x− x∗‖ = ‖x+∇x H−1(x, t)H(x, t)− x∗‖
≤ ‖x+∇x H−1(x)H(x)− x∗‖ + ‖[∇x H−1(x, t)−∇x H−1(x)]H(x)‖
+‖∇x H−1(x, t)[H(x, t)− H(x)]‖
= ‖[∇x H−1(x, t)−∇x H−1(x)]H(x)‖
+‖∇x H−1(x, t)[H(x, t)− H(x)]‖
= ‖[∇x H−1(x, t) · ∇x H(x)− I ](x− x∗)‖
+‖∇x H−1(x, t)[H(x, t)− H(x)]‖
≤ ‖∇x H−1(x, t)‖ · ‖∇x H(x, t)−∇x H(x)‖ · ‖x− x∗‖
+‖∇x H−1(x, t)‖ · ‖H(x, t)− H(x)‖ (85)

where the first inequality is given by triangle inequality, the second and third equalities
follow from the nonsingularity of∇x H(x∗) and the fact that∇x H(x) = ∇x H(x∗) for all
x ∈ �(x∗, ε), and the last inequality given by the definition of the matrix norm. Now
recall (82) and (83), we get

lim
t→0+

{
‖∇x H−1(x, t)‖ · ‖∇x H(x, t)−∇x H(x)‖ · ‖x− x∗‖

}
= 0.

Further, by using Lemma 8 and (82), one has

lim
t→0+

{
‖∇x H−1(x, t)‖ · ‖H(x, t)− H(x)‖

}
= 0.

The above two relations mean the right side of (85) reduces to zero ast goes to zero.
Hence there is a constantc3 > 0 such that

x+1x ∈ �(x∗, ε), if t ≤ c3, x ∈ �(x∗, ε). (86)

This proves the first result of the theorem.
We next consider the second statement of the theorem. Since∇xH(x∗,0) is nonsingu-

lar, by result (a) of Lemma 16, for allx ∈ �(x∗, ε) andtk ∈ (0, c1), the Assumption (A3)
is true. So the algorithm is well-defined. Iftk ≤ c4 = min{c1, c2, c3} andxk ∈ �(x∗, ε),
then it holdsxk +1xk ∈ �(x∗, ε). Now from (69) and Lemma 17 we obtain

‖H(xk+1xk, tk)‖ = ‖H(xk+1xk, tk)− H(xk, tk)−∇x H(xk, tk)1xk‖
≤ 1− σ

C2β
‖1xk‖2

≤ 1− σ
β
‖H(xk, tk)‖2

≤ (1− σ)tk‖H(xk, tk)‖ ≤ (1− σ)‖H(xk, tk)‖, (87)

where the first inequality follows from (84), the second inequality follows from (82),
the third by(xk, tk) ∈ N (β, tk) and the last bytk ≤ c4 < 1. It follows from the line
search rule in the algorithm that we can choosehk = 1.
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Now let us denote1tk = tk − tk+1 and assume thattk+1 ≤ tk ≤ c4. It follows

||H(xk+1, tk −1tk)|| ≤ ‖H(xk+1, tk)|| + ‖H(xk+1, tk)− H(xk+1, tk −1tk)||
= ‖H(xk+1, tk)− H(xk, tk)−∇x H(xk, tk)1xk||
+‖H(xk+1, tk)− H(xk+1, tk −1tk)||

≤ 1

2C2β
||1xk||2+ βtk1tk

2
≤ 1

2β
||H(xk, tk)||2+ βtk

2
1tk

≤ β
2

t2
k +

βtk
2
1tk, (88)

where the first inequality is given by the triangle inequality, the equality is derived from
the choice of1xk, the second and third inequalities follows from results (a), (b) in
Lemma 16 and Lemma 17, and the last one implied by the fact(xk, tk) ∈ N (β, t). Now
let us definēc = min{α3, c4}. If tk < c̄, one hasνk = 1− min{α3, tk} = 1− tk. It
follows1tk = tk − t2

k . In this situation (88) reduces to

||H(xk+1, tk −1tk)|| ≤ βt2
k . (89)

Therefore, iftk ≤ c̄, we can setνk = 1− tk which meanstk+1 = t2
k . Furthermore, it still

holds||H(xk+1, tk+1)|| ≤ min{tk+1,1}β. The proof of the theorem is completed.

Now we are ready to give our main result in this section.

Theorem 7. Suppose(x∗,0) is an accumulation point of the sequence{(xk, tk)} gener-
ated by the algorithm withε0 = 0. If x∗ is a strictly complementarity solution of GLCP
and∇H(x∗) is nonsingular, then the sequence{xk, tk} converges local Q-quadratically
to (x∗,0).

Proof. By Theorem 6, there exists a neighborhood�(x∗, ε) and a constant̄c ∈ (0,1)
such that, whenxk ∈ �(x∗, ε) and tk ≤ c̄, the algorithm is well defined and that
tk+1 = t2

k . For simplicity, we assume that‖∇x H−1(x∗)‖ ≤ C. From this assumption,
result (c) of Lemma 16 and the fact(xk+1, tk+1) ∈ N (β, t) we obtain

‖xk+1 − x∗‖ ≤ C‖H(xk+1)‖ ≤ C‖H(xk+1, tk+1)− H(xk+1,0)‖ + C‖H(xk+1, tk+1)‖
≤ C

3β

2
t2
k ,

where the second inequality is given by triangle inequality. This relation implies

||(xk+1, tk+1)− (x∗,0)|| ≤ C
3β

2
||(xk, tk)− (x∗,0)||2. (90)

Since(x∗,0) is an accumulation point of the sequence{(xk, tk)}, there exists a point
(xk, tk) such thatxk ∈ �(x∗, ε) and tk ≤ c̄. The theorem follows immediately from
(90).

ut



A non-interior continuation method for generalized linear complementarity problems 559

7. Numerical results

We have tested the Algorithm 1 for several problems. The algorithm was implemented
in double precision C. For all test problems, we chooseε0 = 10−10, σ = 0.005, α1 =
0.9, α2 = 0.85, α3 = 0.001, t0 = 1.0 . The initial pointx0 = a0e, wheree =
(1, . . . ,1)T ∈ <n anda0 ∈ < is a constant. The set band widthβ = ||H(x0, t0)||1. To
make the algorithm robust, we terminate ifhk ≤ α50

1 .
Our first test problem was taken from Example 7.5 of [12], and other problems

are constructed by ourselves. All the vertical block matrices of tested GLCPs areP0-
matrices. The solution points of Problems 1 to 5 are strictly complementarity. We also
modify the Problems 2 a little so that the solution points of the new problems (Problems 6,
7 and 8) may be not strictly complementarity. The numerical results are listed in the
table below, wherea0 is a real number associated with initial points, IT denotes totally
iteration number.(xε, tε) denotes the approximate solution of GLCP satisfying the stop
condition||H(xε)||1 < ε0. For convenience, we defineWi = (W1

i , . . . ,W
n
i )

T , Ni =
(N1

i , . . . , Nn
i )

T , qi = (q1
i , . . . ,q

n
i )

T for the casemi ≡ m.

Problem 1. N andq are given as Example 7.5 of [12].

Problem 2. n = 6, m= 3 andWi (x) = Ni x+ qi , i = 1,2,3, where

N1 =


4 −2

−2 4
. . .

. . .
. . . −2
−2 4

, N2 =


2 −2

−2 4
. . .

. . .
. . . −2
−2 4 −2
−2 2

, N3 =


1 1

1 2
. . .

. . .
. . . 1
1 2

,

andq1 = (–2,0,5,–3,6,–4)T,q2 = (1,–2,10,–3,6,–1)T,q3 = (0,0,0,–2,0,–1)T.

Problem 3. m = 3 andWi
1(x) = xi − 1, i = 1, . . . ,n, Wi

2(x) = i
n xi − 1, i =

1, . . . ,n−1 andWn
2 (x) = xn+1, andW1

3(x) = 4x1−2x2−1, Wi
3(x) = xi−1+4xi −

2xi+1, i = 2, . . . ,n− 1, andWn
3 (x) = xn−1+ 4xn.

Problem 4. m= 3 andWi (x) = Ni x+ qi , i = 1,2,3, where

N1 =


4 −2

−2 4
. . .

. . .
. . . −2
−2 4

, N2 =


2 −1

−1 2
. . .

. . .
. . .

. . . −1
−1 2

, N3 =


1 1

1 2
. . .

. . .
. . . 1
1 2 1

1 1

 ,

andq1 = q2 = q3 = −e∈ <n.

Problem 5. m = 6 andWi
1(x) = xi − 1, i = 1, . . . ,n, Wi

2(x) = i
n xi − 1, i =

1, . . . ,n−1 andWn
2 (x) = xn+1, andW1

3(x) = 4x1−2x2−1, Wi
3(x) = xi−1+4xi −
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2xi+1, i = 2, . . . ,n−1, andWn
3 (x) = xn−1+4xn, andWi (x) = Ni x+qi , i = 4,5,6,

where

N4 =


4 −2

−2 4
. . .

. . .
. . . −2
−2 4

, N5 =


2 −1

−1 2
. . .

. . .
. . . −1
−1 2

, N6 =


1 1

1 2
. . .

. . .
. . . 1
1 2 1

1 1

 ,

andq4 = q5 = q6 = −e∈ <n.

Problem 6. n = 6, m = 3, Wi (x), i = 1,2,3 are the same as that defined in
Problem 3. DenoteWi (x) be the functions of the new problem. We chooseW1(x) =
W1(x)−W1(x∗)wherex∗ = (1,1,0,1,0,1)T ∈ <6 is the solution point of Problem 2,
and thatW2(x) = W2(x),W3(x) = W3(x). ;

Problem 7. n = 6, m = 3, Wi (x), i = 1,2,3 are the same as that defined in
Problem 2. We chooseW1(x) = W1(x),W2(x) = W2(x)−W2(x∗) andW3(x) = W3(x).

Problem 8. n = 6,m= 3, Wi (x), i = 1,2,3 are the same as that defined in Problem 2.
We chooseW1(x) = W1(x),W2(x) = W2(x) andW3(x) = W3(x)−W3(x∗).

Numerical Results

Example DIM a0 β ||H(x0)||1 IT tε ||H(xε)||1 ||H(xε, tε)||1
1.0 2.2696 1.0 3 7.2e-5 8.7e-12 1.2e-7

1 2 10.0 9.1381 10.0 3 4.2e-5 6.2e-15 1.4e-10
-10.0 23.1753 22.0 4 3.4e-8 0.0 0.0

1.0 10.7386 9.0 3 1.8e-4 2.8e-11 1.5e-7
2 6 10.0 18.1043 18.0 4 4.4e-5 8.8e-16 1.9e-11

-10.0 215.1278 215.0 4 2.2e-8 8.8e-16 3.9e-8

50 5.0 76.2907 86.5 4 2.0e-5 1.0e-12 5.4e-8
100 5.0 151.0446 171.5 4 2.0e-5 2.6e-12 1.3e-7

3 200 5.0 300.5496 341.5 5 4.2e-6 6.4e-15 1.5e-9
100 -5.0 1605.0162 1605.0 4 1.1e-5 4.0e-14 3.4e-9
200 -5.0 3205.0233 3205.0 4 1.1e-5 4.3e-13 3.6e-8

50 5.0 88.6844 56.0 4 2.3e-5 6.6e-13 2.8e-8
100 5.0 173.4037 106.0 4 2.8e-5 1.1e-12 4.1e-8

4 200 5.0 342.8423 206.0 5 5.0e-6 4.3e-11 8.5e-6
100 -5.0 2081.3955 208.0 6 5.1e-6 1.5e-11 2.9e-6
200 -5.0 4181.3955 418.0 7 1.2e-6 2.3e-11 1.9e-5
50 5.0 89.3458 52.9 4 3.3e-5 3.4e-12 1.0e-7

100 5.0 178.6970 102.95 5 1.4e-5 1.3e-11 9.3e-7
5 200 5.0 357.3514 202.97 6 2.2e-6 3.4e-11 1.5e-5

100 -5.0 2096.7621 2095.0 5 1.9e-5 9.4e-11 4.7e-6
200 -5.0 4197.4337 4195.0 6 2.9e-6 3.7e-12 1.2e-6

1.0 11.8312 10.0 22 2.7e-4 9.7e-7∗ 3.2e-3
6 6 10.0 16.8723 16.0 24 1.8e-4 6.1e-7∗ 3.1e-3

-10.0 215.1278 215.0 11 9.4e-6 1.9e-8∗ 2.0e-3

1.0 11.9236 10.0 4 1.0e-5 1.7e-15 1.6e-10
7 6 10.0 15.9961 16.0 3 7.7e-8 0.0e0 0.0e0

-10.0 215.1278 215.0 6 5.1e-7 1.3e-15 2.6e-9
1.0 10.6568 9.0 12 4.4e-4 2.2e-6∗ 4.7e-3

8 6 10.0 18.1043 18.0 13 3.0e-4 1.7e-6∗ 5.6e-3
-10.0 223.6935 223.0 6 1.9e-5 8.2e-8∗ 4.2e-3
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The above table indicates that for Problems 1-5, our method finds the strictly com-
plementarity solution points of the problems after few iterations. It is easy to see that
all the pointsx = (1,1,0,1,0,1)T + t(1,1,1,1,1,1)T, t ≥ 0 are solution points of
Problem 7 and the solution points are strictly complementarity ift > 0. Our algorithm
detects the solution pointx∗ = (1,1,0,1,0,1)T once, and finds many others solution
point from different initial points.

However, for Problems 6 and 8, the algorithm not only takes more iterations but
also terminates at a point which does not satisfy the stop criterion of the method. The
possible reason of the relatively poor behavior of the algorithm for Problems 6 and 8 is
that the solution points are not strictly complementarity.

8. Conclusion remarks

The generalized complementarity problems are transformed into an equivalent system
of nonsmooth equations. It is shown that, the norm of the nonsmooth equations act as
a local error bound for GLCP. If some additional conditions are satisfied, then the norm
of the equations also provides a global error bound for GLCP.

The relations between Chen-Mangasarian’s neural network smooth function and
the functiong(x, t) is also explored. It is shown that, for some special choice, these
two different class of smoothing functions act precisely in the same way. By using the
smoothing function, we approximate the GLCP via a system of parameterized smooth
equations. The distance from the smoothing path of the equations to the solution set of
the GLCP is considered. Our results show that, when the parameter tends to zero, we
can approximate the solution set of the GLCP to any desired accuracy. A non-interior
continuation method is proposed to follow the smoothing path of the smooth equations.
Under certain assumptions, the method is globally convergent and locally quadratically
convergent. Preliminary numerical results show the method is promising.

To the authors’ knowledge, this work is the first one which cast GLCP as a system
of smooth equations in<n. There are several ways to extend our results. The first one is
to study the behavior ofH(x) for generalized complementarity problems(GCP). Under
what conditions,‖H(x)‖ provides a local or global error bound for GCP? Some results
about this problem have been reported in the first author’s recent work [34]. However,
this is still an interesting topic deserve further study. The second is to design new and
efficient method for solving GCP via the approach proposed in this paper. We note that,
in a recent work [35], Qi and Liao used the same approach proposed in our paper to
reformulate GCP as a system of parameterized equations. Different from our method,
they try to solve the equationsH(x, t) = 0 andt = 0. A Newton-type method was also
presented to solve their system.

We observe that if the solution points are not strictly complementarity, then our
algorithm may behave poorly. How to design efficient algorithms without the strictly
complementarity conditions is also an interesting topics.
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