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Abstract. This paper establishes a linear convergence rate for a class of epsilon-subgradient descent methods
for minimizing certain convex functions onRn. Currently prominent methods belonging to this class include
the resolvent (proximal point) method and the bundle method in proximal form (considered as a sequence of
serious steps). Other methods, such as a variant of the proximal point method given by Correa and Lemaréchal,
can also fit within this framework, depending on how they are implemented. The convex functions covered by
the analysis are those whose conjugates have subdifferentials that are locally upper Lipschitzian at the origin,
a property generalizing classical regularity conditions.
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1. Introduction

This paper deals withε-subgradient descent methods for minimizing a convex function
f on Rn. The class of methods we consider consists of those treated by Correa and
Lemaréchal in [3], with the additional restrictions that the minimizing set be nonempty,
the stepsize parameters be bounded, and a condition for sufficient descent be enforced
at each step. We give a precise description of this class in Sect. 2.

Currently prominent methods belonging to this class include the resolvent (proximal
point) method and the bundle method in proximal form (considered as a sequence of
serious steps). The resolvent method was treated by Rockafellar [14,15] and by Brézis
and Lions [1], and has since been the subject of much attention. Implementations of
the proximal bundle method have been given recently by Zowe [19], Kiwiel [7], and
Schramm and Zowe [16], building on a considerable amount of earlier work; see [6]
for references. Certain other methods, such as the variant of the proximal point method
given by Correa and Lemaréchal in Algorithm 3.3 of [3], can also fit into the class we
consider, depending on how they are implemented.

We show that the methods we consider will converge with (at least) an R-linear rate
in in the sense of Ortega and Rheinboldt [10], in the case when they are used to minimize
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closed proper convex functionsf onRn that are of a special type: namely, those whose
conjugatesf ∗ have subdifferentials that arelocally upper Lipschitzian,in the sense
defined in [11], at the origin. The following definition gives the specific property we
require. With one exception, throughout the paper we use an inner product〈·, ·〉 onRn

that induces a norm‖ · ‖ by the relation‖x‖2 = 〈x, x〉. The notationB stands for the
unit ball of this norm. The exception is in Theorem 2, where we use similar conventions
but in a real Hilbert space.

Definition 1. A convex functionf on Rn satisfies theinverse growth conditionwith
modulusµ if there exist a neighborhoodU of the origin inRn and a constantµ such
that for eachx∗ ∈ U,

∂ f ∗(x∗) ⊂ ∂ f ∗(0)+ µ‖x∗‖B.
This inverse growth condition has been employed by Luque [9] (who attributed it to
Bertsekas), Zhang and Treiman [17], and Zhu [18].

For the problem of unconstrained minimization of aC2 function, the standard
second-order sufficient condition (that is, positive definiteness of the Hessian at a mini-
mizer) implies that the function is strongly convex if restricted to a suitable neighborhood
of the minimizer, that the conjugate of this restricted function is finite near the origin,
and that the inverse growth condition holds. However, in the more general situation that
we consider here the inverse growth condition may hold even if the minimizing set is
not a singleton.

Rates of convergence for classes of methods overlapping those considered here have
previously been given by Luque [9] for the inexact resolvent method, and by Zhu [18]
for several classes of methods. The analysis of Luque requires that the subproblems in
the resolvent method be solved to increasing accuracy as the iteration proceeds. This
accuracy is measured in terms of the distance between the accepted point and the true
solution of the subproblem, a quantity that is not observable. The analysis of Zhu does
not require the measurement of unobservable quantities, but it does require boundedness
of the minimizing set. It also provides convergence rates defined only in terms of the
speed at which the function values approach the minimum off . Convergence rates as
usually defined (in terms of the successive iteratesxn) are not provided; in fact Zhu does
not even prove that the sequence{xn} converges.

By contrast, for the class of methods considered here we do not require boundedness
of the minimizing set. Further, we are able to show that the sequence of iterates converges
to a minimizer, and to prove conventional R-linear convergence in terms of that sequence.

The rest of this paper is organized in two sections. Section 2 describes precisely the
class of minimization methods we consider, and provides some useful information about
their behavior, including convergence. Section 3 then shows that their rate of convergence
is at least R-linear if the function being minimized has a nonempty minimizing set and
satisfies the inverse growth condition.

2. Epsilon-subgradient descent methods

In this section we describe the class of minimization methods with which we are
concerned, and we review some results about their behavior.
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Let f be a closed proper convex function onRn, which we wish to minimize.
The authors of [3] investigated a class ofε-subgradient descent methods for such
minimization. These methods proceed by fixing a starting pointx0 ∈ Rn and then
generating succeeding points by the formula

xn+1 = xn − tnd∗n, d∗n ∈ ∂εn f(xn), (1)

wheretn is a positive stepsize parameter,εn ≥ 0, and∂εn f(xn) is theεn-subdifferential
of f at xn, defined forεn ≥ 0 by

∂εn f(xn) = {x∗ | for eachz ∈ Rn, f(z) ≥ f(xn)+ 〈x∗, z− xn〉 − εn }.
Thus, forεn = 0 we have the ordinary subdifferential, whereas for positiveεn we have
a larger set. For more information about theε-subdifferential, see §25 of [12].

We point out that in this method the stepsize parameterstn are generally fixed in
advance, but the tolerancesεn are determined adaptively as each step is taken. This is
somewhat different from the situation in smooth optimization, where one generally uses
an adaptive method to determine the stepsizes.

In addition to requiring the functionf to satisfy certain properties, we shall impose
two requirements on the implementation of (1). They are stricter than those imposed
in [3], but they will permit us to obtain the convergence rate results that we seek. One of
these is that the sequence of stepsize parameters be bounded away from 0 and from∞:
namely, there aret∗ andt∗ such that for eachn,

0< t∗ ≤ tn ≤ t∗ <∞. (2)

The other requirement is that at each step a sufficient descent be obtained: specific-
ally, there is a constantm ∈ (0,1] such that for eachn,

f(xn+1) ≤ f(xn)+m
(〈d∗n, xn+1 − xn〉 − εn

)
. (3)

Note that becaused∗n = −t−1
n (xn+1 − xn), the quantity in parentheses in (3) is non-

positive, and in fact negative ifxn+1 6= xn or if εn > 0, so that we are working with
a descent method: that is, one that forces the function value at each successive step to
be “sufficiently” smaller than its predecessor. Indeed, ifεn = 0 and if the subgradient
is actually a gradient, this is a descent condition very familiar from the literature (for
example, see ([4], p. 101). However, theε-descent condition in the general form given
here may seem somewhat strange. For that reason, we show next that some well known
methods satisfy this condition.

The first of these methods is the resolvent, or proximal point, method in the form
appropriate for minimization off . This algorithm is specified by

xn+1 = (I + tn∂ f)−1(xn);
that is, we obtainxn+1 by applying toxn the resolventJtn of the maximal monotone
operator∂ f . To see that this is in the form (1), note that the algorithm specification
implies that there isd∗n ∈ ∂ f(xn+1) such that

xn = xn+1+ tnd∗n,
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which is a rearrangement of (1). Further, for eachz we have

f(z) ≥ f(xn+1)+ 〈d∗n, z− xn+1〉 = f(xn)+ 〈d∗n, z− xn〉 − εn,
where

εn = f(xn)− f(xn+1)− 〈d∗n, xn − xn+1〉,
which is nonnegative becaused∗n ∈ ∂ f(xn+1). Therefored∗n ∈ ∂εn f(xn). Moreover, we
have

f(xn+1) = f(xn)+ 〈d∗n, xn+1− xn〉 − εn,
so that (3) holds withm= 1.

The resolvent method is unfortunately not implementable except in special cases.
Noting this, Correa and Lemaréchal gave a variant in Algorithm 3.3 of [3]. We are
concerned here only with the outer loop of that variant, in which we fix two parameters,
κ > 1 andm ∈ (0,1), and for some sequence of positive stepsizes{tn} we then require
successive points of the sequence{xn} to satisfy the two conditions

η = κ
[

f(xn)− f(xn+1)−mt−1
n ‖xn+1 − xn‖2

]
(4)

and

t−1
n (xn − xn+1) ∈ ∂η f(xn). (5)

If the parametersm andκ are required to satisfyκm ≤ 1 and the stepsizestn are
bounded away from zero and∞, then this algorithm satisfies our conditions (1), (2),
and (3). The second of these holds by choice of thetn, and for the first part of (1) we
simply defined∗n to be the left-hand side of (5). Now we defineεn to be(κm)−1η and
rewrite (4) as

f(xn+1) = f(xn)−mt−1
n ‖xn+1− xn‖2− κ−1η

= f(xn)+m
[〈d∗n, xn+1 − xn〉 − εn

]
.

This shows that (3) holds. Further, as we requiredκm≤ 1 we haveεn ≥ η and therefore
∂η f(xn) ⊂ ∂εn f(xn), so that (5) implies the second part of (1). Therefore (1), (2), and
(3) all hold, so this algorithm fits within our class.

For practical minimization of nonsmooth convex functions a very effective tool
is the well known bundle method, which as is pointed out in [3] can be regarded as
a systematic way of approximating the iterations of the resolvent method. The method
uses two kinds of steps, “serious steps,” which as we shall see correspond to (1), and
“null steps,” which are used to prepare for the serious steps. Specifically, by means of
a sequence of null steps the method builds up a piecewise affine minorantf̂ of f . Then
a resolvent step is taken, usinĝf instead off :

xn+1 =
(

I + tn∂ f̂
)−1

(xn), (6)
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and it is accepted if

f(xn)− f(xn+1) ≥ m
[

f(xn)− f̂ (xn+1)
]
. (7)

Now from (6) we see that

xn+1 = xn − tnd∗n,

with d∗n ∈ ∂ f̂ (xn+1). Then for eachz ∈ Rn we have

f(z) ≥ f̂ (z) ≥ f̂ (xn+1)+ 〈d∗n, z− xn+1〉 = f(xn)+ 〈d∗n, z− xn〉 − εn,
where we can writeεn as

εn =
[

f(xn)− f̂ (xn)
]
+
[

f̂ (xn)− f̂ (xn+1)− 〈d∗n, xn − xn+1〉
]
, (8)

which must be nonnegative sincêf minorizes f and d∗n ∈ ∂ f̂ (xn+1). In fact, f̂ is
typically constructed in such a way thatf̂ (xn) = f(xn), so the first term in square
brackets is actually zero (this will be the case as long as a subgradient off atxn belongs
to the bundle). In that case we have from the minorization property and (8)

f(xn)− f̂ (xn+1) ≥ f̂ (xn)− f̂ (xn+1) = 〈d∗n, xn − xn+1〉 + εn,
so that (7) yields

f(xn)− f(xn+1) ≥ m
[〈d∗n, xn − xn+1〉 + εn

] ;
that is, (3) holds. Therefore the bundle method, if implemented with boundedtn, fits
within our class of methods.

Although our proof of R-linear convergence in Sect. 3 therefore applies to the bundle
method, it must be noted that this analysis takes into account only the serious steps,
whereas for each serious step a possibly large number of null steps may be required to
build up an adequate approximationf̂ . Therefore our analysis does not provide a bound
on the total work required to implement the bundle method. Such bounds have been
investigated, for example, in a recent paper of Kiwiel [8], using a completely different
approach from that employed here.

We have now seen that some well known methods fit into the class we analyze. In the
analysis we use the following theorem, which summarizes the convergence properties
of this class.

Theorem 1. Let f be a lower semicontinuous proper convex function onRn, having
a nonempty minimizing setX∗. Let x0 be given and suppose the algorithm (1) is
implemented in such a way that (2) and (3) hold. Then the sequence{xn} generated
by (1) converges to a pointx∗ ∈ X∗, { f(xn)} converges tomin f , and

∞∑
n=0

(
‖d∗n‖2+ εn

)
<∞. (9)

In particular, the sequences{εn} and{‖d∗n‖} converge to zero.
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Proof. Note that for eachn we have〈d∗n, xn+1− xn〉 = −tn‖d∗n‖2. From (2) and (3) we
obtain

m
(
t∗‖d∗n‖2+ εn

)
≤ m

(
tn‖d∗n‖2 + εn

)
≤ f(xn)− f(xn+1),

so for eachk ≥ 1 we have

m
k−1∑
n=0

(
t∗‖d∗n‖2+ εn

)
≤ f(x0)− f(xk) ≤ f(x0)−min f,

and consequently

m
∞∑

n=0

(
t∗‖d∗n‖2 + εn

)
≤ f(x0)−min f,

which establishes (9). The condition (2) shows that the sum of thetn is infinite, so that
Conditions (1.4) and (1.5) of [3] hold. Moreover, (3) shows that for eachn

f(xn+1) ≤ f(xn)+m
(〈d∗n, xn+1 − xn〉 − εn

) ≤ f(xn)−mtn‖d∗n‖2,
so that Condition (2.7) of [3] also holds. Then Proposition 2.2 of [3] shows that{ f(xn)}
converges to minf and that{xn} converges to some elementx∗ of X∗.

ut
In this section we have specified the class of methods we are considering, and we

have given two examples of concrete methods that belong to this class. Moreover, we
have adapted from [3] a general convergence result applicable to this class. In the next
section we present the main result of the paper, a proof that the convergence guaranteed
by Theorem 1 will under additional conditions actually be at least R-linear.

3. Convergence-rate analysis

In order to prove the main result we need to use a tailored form of the well known
Brøndsted-Rockafellar Theorem [2]. We give this next, along with a very simple proof.
The technique of this proof is very similar to that given in Theorem 4.2.1 of [5], but
this version gives slightly more information and it holds in any real Hilbert space. For
a multifunctionT we use the notation(x, y) ∈ T to meany ∈ T(x).

Theorem 2. Let H be a real Hilbert space and letf be a lower semicontinuous proper
convex function onH . Suppose thatε ≥ 0 and that(xε, x∗ε ) ∈ ∂ε f . For each positiveβ
there is a uniqueyβ with (

xε + βyβ, x
∗
ε − β−1yβ

)
∈ ∂ f. (10)

Further,‖yβ‖ ≤ ε1/2.
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Proof. Define a functiong on H by

g(y) = (1/2)‖y− βx∗ε‖2 + f(xε + βy).

Theng is lower semicontinuous, proper, and strongly convex; its unique minimizeryβ
then satisfies 0∈ ∂g(yβ), which upon rearrangement becomes (10); justification for the
subdifferential computation can be found in,e.g.,Theorem 20, p. 56, of [13]. In turn,
(10) implies

f(xε) ≥ f(xε + βyβ)+ 〈x∗ε − β−1yβ, xε − (xε + βyβ)〉.
But theε-subgradient inequality yields

f(xε + βyβ) ≥ f(xε)+ 〈x∗ε , (xε + βyβ)− xε〉 − ε,
and by combining these we obtain

0≥ 〈x∗ε − β−1yβ,−βyβ〉 + 〈x∗ε , βyβ〉 − ε = ‖yβ‖2− ε,
which proves the assertion about‖yβ‖.

ut
Here is the main theorem, which says that under the inverse growth condition the

ε-subgradient descent method is at least R-linearly convergent.

Theorem 3. Let f be a lower semicontinuous, proper convex function onRn that
satisfies the inverse growth condition with modulusµ> 0. Assume thatf has a nonempty
minimizing setX∗, and that starting from somex0 theε-subgradient descent method (1)
is implemented with (2) and (3) satisfied at each step.

Then the sequence{xn} produced by (1) converges at least R-linearly to a limit
x∗ ∈ X∗.

Proof. Consider the step fromxn to xn+1. From (1) we find thatd∗n ∈ ∂εn f(xn), and by

applying Theorem 2 we conclude that there is a uniquey with ‖y‖ ≤ ε1/2
n and with(

xn + µ1/2y,d∗n − µ−1/2y
)
∈ ∂ f.

For anyk let uk be the projection ofxk on the optimal setX∗. We have shown in
Theorem 1 that‖d∗n‖ andεn converge to zero. Therefore there is someN such that for
n ≥ N the pointd∗n−µ−1/2y will lie in the neighborhoodU associated with the inverse
growth condition. For suchn the condition yields∥∥∥(xn + µ1/2y)− un

∥∥∥ ≤ µ ∥∥∥d∗n − µ−1/2y
∥∥∥ .

Therefore

‖xn − un‖ ≤
∥∥(xn + µ1/2y

)− un
∥∥+ µ1/2‖y‖

≤ µ ∥∥d∗n − µ−1/2y
∥∥+ µ1/2ε

1/2
n

≤ µ‖d∗n‖ + 2µ1/2ε
1/2
n .

(11)
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Next, let f∗ = min f ; writeφn for f(xn)− f∗ = f(xn)− f(un), andσn for µt−1
n . Using

the fact thatd∗n ∈ ∂εn f(xn), together with (11), we obtain

φn ≤ −〈d∗n,un − xn〉 + εn
≤ µ‖d∗n‖2+ 2µ1/2‖d∗n‖ε1/2

n + εn
=
(
µ1/2‖d∗n‖ + ε1/2

n

)2

=
(
σ

1/2
n t1/2

n ‖d∗n‖ + ε1/2
n

)2
.

(12)

For any real numbersα, β, andγ , the Schwarz inequality applied to(1, β) and(α, γ)
yields

|α+ βγ | ≤
(

1+ β2
)1/2(

α2+ γ 2
)1/2

.

Using this in (12) we obtain

φn ≤
[
(1+ σn)

1/2
(
tn‖d∗n‖2 + εn

)1/2
]2

= (1+ σn)
(
tn‖d∗n‖2 + εn

)
.

(13)

But from (1) and (3) we have

tn‖d∗n‖2+ εn ≤ m−1[ f(xn)− f(xn+1)],
and we also havef(xn)− f(xn+1) = φn − φn+1. Therefore (13) yields

φn ≤ (1+ σn)m
−1(φn − φn+1),

which, sincetn ≥ t∗ > 0, implies

φn+1 ≤ θ2φn,

with

θ =
[
1−m

/(
1+ µt−1∗

)]1/2
.

Therefore for fixedN and anyn ≥ N we have

φn ≤ κθ2n, (14)

with

κ = θ−2NφN.

Now from Theorem 4.3 of [17] we find that for someγ ≥ 0 and allz with d(z, X∗)
sufficiently small the inequality

f(z) ≥ f∗ + γd(z, X∗)2 (15)
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holds. We know thatd(xn, X∗) converges to zero, so for alln at least as large as some
N′ ≥ N we have from (14) and (15)

ξn := d(xn, X∗) ≤ γ−1/2φ
1/2
n ≤ λθn, (16)

with

λ = γ−1/2θ−Nφ
1/2
N .

Now let x∗ be the unique limit of the sequence{xn}, as established in Theorem 1.
We have established a suitable bound ond(xn, X∗), but we need to find such a bound
for the error‖xn − x∗‖. The remainder of the proof does this.

From Equation (1.3) of [3] we have, for anyy ∈ Rn,

‖xn+1− y‖2 ≤ ‖xn − y‖2 + t2
n‖d∗n‖2+ 2tn[ f(y)− f(xn)+ εn].

If we restrict our attention to pointsy ∈ X∗ we may simplify this to

‖xn+1− y‖2 ≤ ‖xn − y‖2 + 2tn
[
tn‖d∗n‖2 + εn − φn

]
.

For j > n ≥ N′ we then use the fact thattk ≤ t∗ for all k to obtain the upper bound

‖xj − y‖2 ≤ ‖xn − y‖2 + 2t∗
j−1∑
k=n

[
tk‖d∗k‖2+ εk − φk

]
≤ ‖xn − y‖2 + 2t∗

( j−1∑
k=n

[
tk‖d∗k‖2+ εk

]
− φn

)
.

The condition (3) gives

f(xk+1) ≤ f(xk)+m(〈d∗k , xk+1 − xk〉 − εk) = f(xk)−m
[
tk‖d∗k‖2 + εk

]
,

from which we conclude that

j−1∑
k=n

[
tk‖dk‖2+ εk

]
≤ m−1[ f(xn)− f(xj )] ≤ m−1φn.

Therefore

‖xj − y‖2 ≤ ‖xn − y‖2 + 2t∗(m−1− 1)φn,

and by taking the limit asj →∞ we find that

‖x∗ − y‖2 ≤ ‖xn − y‖2+ 2t∗(m−1− 1)φn.

Now sety = un to obtain

‖x∗ − un‖2 ≤ ξ2
n + 2t∗(m−1− 1)φn.
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The bounds (14) and (16) now yield, forn ≥ N′,

‖x∗ − un‖ ≤ τθn,

with

τ =
(
λ2 + 2t∗(m−1− 1)κ

)1/2
.

Then we have, using (16) again,

‖xn − x∗‖ ≤ ξn + ‖x∗ − un‖ ≤ (λ+ τ)θn,

so that{xn} converges at least R-linearly to the limitx∗, as claimed.
ut
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