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Abstract. Well known extensions of the classical transportation problem are obtained by including fixed
costs for the production of goods at the supply points (facility location) and/or by introducing stochastic
demand, modeled by convex nonlinear costs, at the demand points (the stochastic transportation problem,
[STP]). However, the simultaneous use of concave and convex costs is not very well treated in the literature.
Economies of scale often yield concave cost functions other than fixed charges, so in this paper we consider
a problem with general concave costs at the supply points, as well as convex costs at the demand points. The
objective function can then be represented as the difference of two convex functions, and is therefore called
a d.c. function. We propose a solution method which reduces the problem to a d.c. optimization problem in
a much smaller space, then solves the latter by a branch and bound procedure in which bounding is based on
solving subproblems of the form of [STP]. We prove convergence of the method and report computational
tests that indicate that quite large problems can be solved efficiently. Problems up to the size of 100 supply
points and 500 demand points are solved.
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1. Introduction

The problem of transporting goods from a set of supply points (factories) to a set of
demand points (customers) so as to minimize linear transportation costs is well known
and very efficient solution methods exist. In facility location problems one also includes
the decisions of whether or not one should open the supply points (build the factories)
for certain fixed costs. Such problems are also well known and several solution methods
exist. However, location problems with general concave costs are quite difficult to solve,
[6], and heuristic solution methods have been proposed, see for example [14].

On the other hand, in ordinary transportation problems, stochastic demand has been
introduced, and methods developed [1,12]. The resulting problem, called the stochastic
transportation problem, [STP], is a transportation problem with the demand constraints
replaced by nonlinear convex costs as functions of the total inflow into each demand
point.

However, the simultaneous use of these generalizations has received little attention
until now. A few suggestions for solution methods can be found [18,3], but more research
remains to be done.

K. Holmberg: Linköping Institute of Technology, Department of Mathematics, S-581 83 Linköping, Sweden

H. Tuy: Institute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam. The paper was completed during
the stay of this author at Linköping Institute of Technology, S-581 83 Linköping, Sweden

Mathematics Subject Classification (1991):90C26, 90B06



158 Kaj Holmberg, Hoang Tuy

In this paper we consider a further generalization with general concave costs at the
supply points, as well as convex costs at the demand points. Economies of scale very
often yield different concave cost functions, not only fixed charges, when producing
goods at a factory.

Certainly the introduction of concave costs makes the problem difficult. In fact,
the objective function is a sum of three terms: a linear transportation cost, a convex
shortage penalty and a concave production cost. It is neither convex nor concave, but
a d.c. function, i.e. a function that can be represented as a difference of two convex
functions, [15].

The problem of minimizing a d.c. function under linear constraints is a nonconvex
global optimization problem, which may have multiple local minima with substantially
different values. Such multiextremal problems cannot be solved by standard methods of
nonlinear programming which can at best locate a local minimum. Outer approximation
methods and branch and bound methods for finding a global minimum have been sug-
gested in [22–26]. However, most of these methods consider the problem in its general
form (general d.c. objective function and general linear constraints) and therefore, are
able to solve only problem instances of limited size. This should not be surprising, since
the problem is known to be NP-hard, see e.g. [19].

In the production-transportation problem with d.c. cost we are considering here,
the constraints are of transportation type and the objective function is separable. Fur-
thermore, if the concave term in the objective function is linearized, then the problem
becomes a [STP]. We show that by exploiting all these additional structures it is possible
to devise a solution method capable of solving fairly large problems. Specifically, using
the fact that the nonconvex component of the objective function involves only some
of the variables, we can reduce the problem to a d.c. optimization problem of much
smaller dimension than the original one [24]. Next, this reduced problem can be solved
by a branch and bound procedure in which branching is performed by partitioning
the space into rectangles (to take account of the separability of the variables) while
bounding is based on solving subproblems of the form [STP] (to take advantage of the
availability of efficient algorithms for [STP]). Computational experiments indicate that
the algorithm obtained that way can solve problems with up to 100 supply points and
500 demand points in reasonable time. It should be noted that at present, for most global
optimization algorithms, problems of this size are considered difficult.

The general idea of solving nonlinear nonconvex problems with a branch-and-bound
method dividing the feasible region into rectangles is of course not new, see section 5.
However, without exploiting some particular structure to reduce the dimension of the
space on which branching is performed, such a method cannot be expected to be
practical for large-scale problems. It is also imperative to have an efficient way of
solving the resulting subproblems for bounding. To our knowledge there has been to
date no successful implementations of methods for the type of problem we consider.
This will be further discussed in section 5, where also (piecewise) linear cases are
considered. It should also be noted that our method is directly applicable even if the
production cost is discontinuous at the origin, as for example a fixed charge. However,
we will not elaborate on this for problems with (piecewise) linear costs, since solving
such problems is not our main goal.
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The paper consists of 7 sections. After the Introduction, we state the problem in
section 2 and also discuss two special cases: the Stochastic Transportation-Location
Problem and the Stochastic Transportation Problem. Section 3 is devoted to the descrip-
tion of the solution method, and Section 4 to the convergence proof. In section 5 we
discuss the relations of our method to previously known ones. In section 6 we present an
illustrative example and the computational results. Finally, we close the paper by some
concluding remarks.

2. The problem

We consider a transportation problem withm supply points (factories) andn demand
points (customers). Letzi be the amount that is shipped out of supply pointi , yj the
amount that is shipped into demand pointj andxi j the amount that is shipped from
supply pointi to demand pointj .

At supply pointi there is a cost of producingzi units, denoted bygi (zi ). We assume
that gi (0) = 0, and thatgi (zi ) is lower semicontinuous, non-decreasing and concave
due to economies of scale. The maximal capacity is denoted bySi .

At demand pointj the demand,dj , is assumed to be stochastic. Ifyj units are actually
received by the demand pointj then a penalty costζ j (yj ,dj ) is incurred. In most cases
of interest, each expected penaltyf j (yj ) = E[ζ j (yj ,dj )] is a convex function, see [1].

One often assumes that there is a probability density function,φ j (dj ), which gives
an expected demand asE[dj ] =

∫∞
0 vφ j (v) dv, and a continuous distribution function

as Fj (dj ) =
∫ dj

0 φ j (v) dv. Costs occur ifyj is strictly less or strictly greater thandj .
There are unit holding costs,α j > 0, and unit shortage costs,ξ j > 0, which gives a total
holding/shortage cost as

f j (yj ) = ξ j

∫ ∞
yj

(v− yj )φ j (v) dv+ α j

∫ yj

0
(yj − v)φ j (v) dv

This can also be expressed as

f j (yj ) = ξ j (E[dj ] − yj )+ (ξ j + α j )

∫ yj

0
Fj (v) dv

The derivative off j (to be used later) is

d f j (yj )

dyj
= −ξ j + (ξ j + α j )Fj (yj )

f j (yj ) can be shown to be a convex function. The results and methods in this paper,
however, are not restricted to this form of expected penalty cost function, but are
applicable to many kinds of differentiable convex penalty cost functions.

Furthermore we assume linear transportation costs, with unit costci j from supply
point i to demand pointj . (If there are concave transportation costs on some arcs, these
concave costs can be incorporated in the production costs. The practical efficiency of
our method is partly based on the fact that the number of variables with concave costs is
relatively small compared to the total number of variables. For a problem with concave
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costs on all variables, as the problem discussed by [2], we do not expect this approach to
be very efficient in practice. On the other hand we believe that in many practical cases
linear approximations of the transportation costs as compared to linear approximations
of the production costs give much smaller errors and are thus much more acceptable.)

The problem is now to minimize the total costs, consisting of production costs,
shortage/holding costs and transportation costs.

v∗ = min
∑m

i=1
∑n

j=1 ci j xi j +∑m
i=1 gi (zi )+∑n

j=1 f j (yj )

s.t.
∑m

i=1 xi j = yj j = 1, . . . ,n (1)∑n
j=1 xi j = zi i = 1, . . . ,m (2)

0 ≤ zi ≤ Si i = 1, . . . ,m (3)

xi j ≥ 0 ∀ i , j (4)

[P]

The objective function is a sum of three terms: a linear transportation cost,cx =∑m
i=1

∑n
j=1 ci j xi j , a convex shortage penalty,f(y) = ∑n

j=1 f j (yj ), and a concave
production cost,g(z) =∑m

i=1 gi (zi ), such that eachgi (zi ) is monotone nondecreasing.
It is thus a d.c. function.

The constraints are linear with a simple structure. By adding the following redundant
constraints,

n∑
j=1

yj ≤ STOT, yj ≥ 0 ∀ j, xi j ≤ Si ∀i

whereSTOT =∑m
i=1 Si , the feasible set can be considered to be bounded.

Let us now discuss two special cases of [P]. The first one is obtained by letting
gi consist of a fixed charge (and possibly a linear cost). We then get the Stochastic
Transportation-Location Problem, [STLP], treated in [18,3]. The [STLP] can be formu-
lated as

v∗ = min
∑m

i=1
∑n

j=1 ci j xi j +∑m
i=1 ri δi +∑n

j=1 f j (yj )

s.t.
∑m

i=1 xi j = yj j = 1, . . . ,n (1)∑n
j=1 xi j ≤ Si δi i = 1, . . . ,m (2)

δi ∈ {0,1} i = 1, . . . ,m (3)

yj ≥ 0 ∀ j (4)

xi j ≥ 0 ∀ i , j (5)

[STLP]

Hereri is the fixed cost for starting production at supply pointi , andδi is a bi-
nary variable equal to 1 if something is produced at supply pointi and 0 if not. This
problem has been solved by a heuristic approach in [18] and by generalized Benders
decomposition [5] in [3].
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The other special case of [P] occurs ifgi (zi ) is linear: g(z) = ∑m
i=1 gi zi =∑m

i=1
∑n

j=1 gi xi j . Then the production costs can be incorporated in the transportation
costs, and we get the better known Stochastic Transportation Problem, [STP] [16].

v∗ = min
∑m

i=1
∑n

j=1 c̄i j xi j +∑n
j=1 f j (yj )

s.t.
∑m

i=1 xi j = yj j = 1, . . . ,n (1)∑n
j=1 xi j ≤ Si i = 1, . . . ,m (2)

xi j ≥ 0 ∀ i , j (3)

yj ≥ 0 ∀ j (4)

[STP]

The objective function of [STP] is convex. The [STP] has been treated in many
papers and can be solved quite efficiently, for example with the Frank-Wolfe method [4]
in [1,17], by cross decomposition [27] in [12], by the classical approach of separable
programming [7], by the forest iteration method [20] and by mean value cross decom-
position [10], and combinations of separable programming, Lagrangean relaxation with
subgradient optimization and mean value cross decomposition [11]. The last method is
shown to be quite efficient compared to the others in [11].

3. Solution method

Problem [P] is a difficult global optimization problem withmn+ m + n variables.
However, there are onlym variables appearing in nonconvex functions:z1, . . . , zm and
very oftenm� n, thoughn may be fairly large. Furthermore, the objective function is
separable and wheng(z) is linear, the problem reduces to the [STP] as discussed above.

To take advantage of this specific structure, we propose a solution method which
reduces [P] to a d.c. optimization problem inRm, then solves the latter by a branch and
bound procedure in which bounding is based on solving subproblems of the form of
[STP].

Specifically, for a givenz in the rectangle� = {z : 0 ≤ z ≤ S := (S1, ..., Sm)},
consider the problem

ϕ(z) = min
∑m

i=1
∑n

j=1 ci j xi j +∑n
j=1 f j (yj )

s.t.
∑m

i=1 xi j = yj j = 1, . . . ,n (1)∑n
j=1 xi j = zi i = 1, . . . ,m (2)

yj ≥ 0 j = 1, . . . ,n (3)

xi j ≥ 0 ∀ i , j (4)

[Q(z)]

It is not hard to see that

Proposition 1. ϕ(z) is a convex function and[P] is equivalent to
min{ϕ(z)+ g(z) : z ∈ �} [P∗]
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in the sense that the two problems have equal optimal values and if(x∗, y∗, z∗) solves
[P] thenz∗ solves[P∗] and conversely ifz∗ solves[P∗] then(x∗, y∗, z∗) solves[P], where
(x∗, y∗) is an optimal solution of[Q(z∗)].

Proof. If (x∗, y∗, z∗) solves [P] thenz∗ is feasible to [P∗] and(x∗, y∗) is feasible to
[Q(z∗)], hencecx∗+ f(y∗) ≥ ϕ(z∗), and sov∗ ≥ ϕ(z∗)+g(z∗), i.e. the optimal value of
[P] is no less than that of [P∗]. Conversely, ifz∗ solves [P∗], with ϕ(z∗) = cx∗ + f(y∗)
then(x∗, y∗, z∗) is feasible to [P], henceϕ(z∗) + g(z∗) = cz∗ + f(y∗) + g(z∗) ≥ v∗,
i.e. the optimal value of [P∗] is no less than that of [P].

ut
[P∗] is still a d.c. optimization problem, but of much smaller dimension than [P].

Below we present a branch and bound solution method for [P∗] which tries to take
advantage of two basic structures of the problem:

1. Separable objective function.This suggests that an efficient branching method is by
rectangular subdivision of the feasible domain� (see Lemma 1 and Proposition 3
below).

2. Transportation constraints.As mentioned above, for fixedz the problem reduces
to [Q(z)] which is essentially the same as [STP] and can be solved by efficient
algorithms [11]. To preserve this nice structure while decomposing the problem,
bounding will be based on solving subproblems essentially of the form [STP].

Specifically, the rectangular subdivision is defined as follows.

Definition 1. Let M = [p,q] be a rectangle contained in�. Any pointw ∈ M, together
with an indexi ∈ {1, . . . ,m}, determines a subdivision ofM into two subrectangles

{z: pi ≤ zi ≤ wi , pt ≤ zt ≤ qt (∀t 6= i)} and{z:wi ≤ zi ≤ qi , pt ≤ zt ≤ qt (∀t 6= i)}.
This subdivision is called asubdivision via(w, i).

At each iteration, a rectangular partition of the feasible domain is available as
a result of previous subdivisions. This partition is then refined by choosing a “promising"
rectangle in the partition and subdividing it via some(w, i). Both the choices of the
candidateM for further subdivision and the parameters(w, i) of subdision are guided
by the lower bounds assigned to every member of the partition. The next proposition
gives the method for computing these lower bounds.

For any rectangleM = [p,q] contained in the feasible domain�, let LM,i (.) be the
affine function which agrees withgi (.) at the endpoints of the segment[pi ,qi ] and

LM(x) =
m∑

i=1

LM,i (zi )

i.e.

LM,i (zi ) = gi (pi )−
(

pi

qi − pi

)
(gi (qi )− gi (pi ))+ zi

(
gi (qi )− gi (pi )

qi − pi

)
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Define the convex program

β(M) = min
∑m

i=1
∑n

j=1 ci j xi j +∑n
j=1 f j (yj )+ LM(z)

s.t.
∑m

i=1 xi j = yj j = 1, . . . ,n (1)∑n
j=1 xi j = zi i = 1, . . . ,m (2)

yj ≥ 0 ∀ j, xi j ≥ 0 ∀ i , j, z ∈ M (3)

[CP(M)]

Proposition 2.

β(M) ≤ min{ϕ(z)+ g(z) : z ∈ M} (1)

If an optimal solution(x̄(M); ȳ(M), z̄(M)) of [CP(M)] satisfiesLM(z̄(M)) = g(z̄(M)),
then equality holds in 1.

Proof. Using the concavity ofg(z) it is easy to check thatLM(z) is an underestimator
of g(z) over M. Therefore,β(M) ≤ min{∑m

i=1
∑n

j=1 ci j xi j + f(y) + g(z) : (x, y, z)
feasible to [P],z ∈ M}, and hence (1), by Proposition 1. The second assertion is obvious.

ut
Clearly each [CP(M)] is a convex problem which differs from the [STP] only by the

additional constraintz ∈ M, i.e. p≤ z≤ q. Therefore, the lower bounding subproblem
for each partition rectangle can be solved by adapted versions of the algorithms in [11].

To obtain a complete description of the branch and bound procedure for solving
[P∗], it remains to specify the subdivision rule, i.e. the choice of:

– the candidateMk for further subdivision at iterationk;
– the parameters(wk, i k) determining the subdivision ofMk.

As usual in a branch-and-bound procedure,Mk (the subrectangle in which the
approximation is to be improved), is chosen to be the subrectangle with smallest lower
bound.

Mk ∈ arg min
M∈M′k

β(M)

whereM′k denotes the current partition. Note that this implies

β(Mk) ≤ min{ϕ(z)+ g(z)|z ∈ �} (2)

From this and Proposition 2 it immediately follows that ifz̄k = z̄(Mk) satisfies
LMk(z̄

k) = g(z̄k), then the equality holds in 2, i.e.z̄k solves [P∗]. Otherwise,gi (z̄k
i ) −

LMki (z̄k
i ) > 0 for at least onei and we subdivideM via (z̄k, i k), wherei k is the indexi

that achieves the maximal discrepancygi (z̄k
i )− LMk,i (z̄

k
i ) between the actual cost and

the linear approximation. It turns out that this subdivision rule ensures that eventually
this maximal discrepancy will tend to zero. Then the lower boundβ(Mk) will tend to
the exact minimum of the objective function onMk and hence, to its minimum over the
whole feasible domain, thereby ensuring convergence of the procedure.

We can thus state:
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Algorithm 1. Initialization

Let ε be a small positive constant. Take a subrectangleM1 of � which is known to
contain a global optimal solution of [P∗]. Let z1 be the best feasible point available,
INV (incumbent value) =ϕ(z1)+ g(z1). SetM1 = P1 = {M1}, k = 1.

Iteration k = 1,2, . . .

(i) For eachM ∈ Pk solve the convex program [CP(M)] obtaining its optimal value
β(M) and optimal solution(x̄(M); ȳ(M), z̄(M)). Update INV andzk.

(ii) Delete all M ∈ Mk such thatβ(M) ≥ INV − ε. LetM′k be the collection of
remaining members ofMk. If M′k = ∅ then terminate:zk is a globalε-optimal
solution of [P∗]. Otherwise chooseMk ∈ argmin{β(M) : M ∈M′k}.

(iii) Let z̄k = z̄(Mk). Select

i k ∈ arg max
i
{gi (z̄

k
i )− LMk,i (z̄

k)}. (3)

If gik(z̄
k
ik
) − LMk,ik(z̄

k) = 0 then terminate:̄zk is a global optimal solution. Other-

wise, divide Mk via (z̄k, i k). Let Pk+1 be the partition ofMk andMk+1 =
(M′k \ {Mk}) ∪ Pk+1. Setk→ k+ 1 and go back to (i).

4. Convergence

In this section we give a formal proof of the convergence of the above algorithm.
Recall that̄zk = z̄(Mk) and denotēxk = x̄(Mk), ȳk = ȳ(Mk) (so (x̄k, ȳk, z̄k) is an

optimal solution of [CP(M)]).
Suppose the algorithm is infinite and letz̄ be any cluster point of{z̄k}, e.g. z̄ =

limq→∞ z̄kq . Without loss of generality we may assumex̄kq → x̄, ȳkq → ȳ (q→∞),
and alsoi kq = 1 ∀q, so that

1 ∈ arg max
i

{
gi (z̄

kq
i )− LMkq ,i (z̄

kq
i )
}

(4)

Note that if for someq we havez̄
kq
1 = 0 thengi (z̄

kq
1 ) = 0 = LMkq ,1(z̄

kq
1 ), and the

algorithm terminates at step (iii). Therefore, since the algorithm is infinite, we must

havez̄
kq
1 > 0 ∀q.

Lemma 1. If r1 = g1(0+) > 0 then

z̄1 = lim
q→∞ z̄

kq
1 > 0 (5)

In other words,̄z1 is always a continuitypoint ofg1(t).
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Proof. Let Mkq,1 = [aq
1,b

q
1], so that z̄

kq
1 ∈ [aq

1,b
q
1] and [aq

1,b
q
1],q = 1,2, . . . is

a sequence of nested intervals. If 06∈ [aq0
1 ,b

q0
1 ] for someq0 then 06∈ [aq

1,b
q
1] ∀q ≥ q0,

and z̄
kq
1 ≥ aq0

1 > 0 ∀q ≥ q0, hencez̄1 ≥ aq0
1 > 0, i.e. (5) holds. Thus, it suffices to

consider the case

aq
1 = 0 ∀q, z̄

kq
1 > 0 ∀q. (6)

Denote

π = max
j
ξ j −min

j
c1 j . (7)

Since
∑n

j=1 x̄
kq
1 j = z̄

kq
1 > 0 there existsj0 such thatx̄

kq
1 j0

> 0. Define(x̃kq, ỹkq , z̃kq)

such that̃x
kq
1 j0
= 0, x̃

kq
i j = x̄

kq
i j for all (i , j) 6= (1, j0), ỹ

kq
j0
= ȳ

kq
j0
− x̄

kq
1 j0
, ỹ

kq
j = ȳ

kq
j for

all j 6= j0, z̃
kq

1 = z̄
kq

1 − x̄
kq

1 j0
, z̃

kq
i = z̄

kq
i for all i 6= 1.

Clearly(x̃kq, ỹkq , z̃kq) is still feasible to [CP(M)], but when we replace(x̄kq, ȳkq , z̄kq)

by (x̃kq, ỹkq , z̃kq) the production cost at supply point 1 decreases by

LMkq ,1(z̄
kq
1 )− LMkq ,1(z̃

kq
1 ) =

g1(b
kq
1 )

b
kq

1

x̄
kq
1 j0
> 0,

the transportation cost in the arc(1, j0) decreases by

c1 j0x̄
kq
1 j0
,

while the penalty incurred at demand pointj0 increases by

f j0(ȳ
kq
j0
− x̄

kq
1 j0
)− f j0(ȳ

kq
j0
) ≤ ξ j0 x̄

kq
1 j0
.

Thus the total cost decreases by at least

δ = g1(b
kq

1 )

b
kq
1

x̄
kq
1 j0
+ (c1 j0 − ξ j0)x̄

kq
1 j0
. (8)

If π ≤ 0 thenc1 j0 − ξ j0 ≥ 0, henceδ > 0 and(x̃kq, ỹkq , z̃kq) would be a better feasible
solution than(x̄kq, ȳkq , z̄kq), contradicting the optimality of the latter for [CP(M)].
Thereforeπ > 0.

Now supposer1 = g1(0+) > 0. Sinceg1(t)/t → +∞ as t → 0+, there exists
τ1 > 0 satisfying (see figure 1)

g1(τ1)

τ1
> π.

Observe that sinceMkq,1 = [0,bkq
1 ] is subdivided viāz

kq
1 , we must have[0,bkq′

1 ] ⊂
[0, z̄kq

1 ] for all q′ > q, while [0, z̄kq
1 ] ⊂ [0,bkq

1 ] for all q. With this in mind, we shall
prove that

b
kq
1 ≥ τ1 ∀q. (9)
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τ1

g1(0+)

g1(τ1)

t

πt

Fig. 1. A point τ1 where g1(τ1)
τ1

> π

This will then imply, by the above observation, that

z̄
kq
1 ≥ τ1 ∀q,

and hence will complete the proof.

Suppose (9) does not hold, so that for someqwe haveb
kq
1 < τ1. Thenz̄

kq
1 ≤ b

kq
1 < τ1,

and sinceg1(t) is concave it is easily seen (see figure 2) thatg1(b
kq

1 ) ≥ b
kq

1 g1(τ1)/τ1,
i.e.

g1(b
kq

1 )

b
kq
1

≥ g1(τ1)

τ1
.

This, together with (8) implies that

δ ≥
(

g1(τ1)

τ1
− π

)
x̄

kq
1 j0
> 0

hence(x̃kq , ỹkq, z̃kq) is a better feasible solution than(x̄kq , ȳkq , z̄kq). This contradiction
shows that (9) must hold, thereby completing the proof of the lemma.

ut
Theorem 1. For ε > 0 Algorithm 1 is always finite. Forε = 0, either Algorithm 1 is
finite or it generates an infinite sequencez̄k = z̄(Mk), k = 1,2, . . . . In the latter case,
every cluster point of the sequence{z̄k}, or the sequence{zk}, gives an optimal solution
of [P∗].
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b1
kq τ1

g1(τ1)
g1(b1

kq)

t

Fig. 2. The inequality following the concavity ofg1(τ1)

Proof. For ε = 0 let z̄ = limq→∞ z̄kq be a cluster point of{z̄k}, with, as previously,
i kq = 1 ∀q, andMkq,1 = [aq

1,b
q
1]. Since{aq

1} is nondecreasing,{bq
1} is nonincreasing,

we haveaq
1→ a∗1, bq

1→ b∗1. For eachq, either of the following situations occurs.

c

aq
1 aq+1

1 bq+1
1 z̄

kq
1 bq

1 (A)

c

aq
1 aq+1

1 bq+1
1z̄

kq
1 bq

1 (B)

If (A) occurs for infinitely manyq, then

lim
q→∞ z̄

kq

1 = lim
q→∞bq

1 = b∗1

If (B) occurs for infinitely manyq, then

lim
q→∞ z̄

kq
1 = lim

q→∞aq
1 = a∗1

Thus z̄1 ∈ {a∗1,b∗1}. By lemma 1, the concave functiong1(t) is continuous at̄z1.

Suppose for instance thatz̄1 = a∗1 (the other case is similar). Sincez̄
kq
1 → a∗1 and

aq
1→ a∗1, it follows from the continuity ofg1(t) ata∗1 that

g1(z̄
kq
1 )− LMkq ,1(z̄

kq
1 )→ 0
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and hence, by (4),

gi (z̄
kq
i )− LMkq ,i (z̄

kq
i )→ 0 i = 1, . . . ,m

asq→∞. This implies that

g(z̄kq)− LMkq
(z̄kq)→ 0 q→∞

But from (2)

ϕ(z̄kq)+ LMkq
(z̄kq) = β(Mkq) ≤ min{ϕ(z)+ g(z) : z ∈ �}

Therefore

ϕ(z̄+ g(z̄) = min{ϕ(z)+ g(z) : z ∈ �}
i.e. z̄ is an optimal solution of [P∗], and hence(x̄, ȳ, z̄) is an optimal solution of [P].

ut
Remark 1.Since the concave cost functionsgi (t) may be discontinuous att = 0, the
above algorithm is directly applicable (without any preliminary modification of these
functions) to problems with fixed charge costs. Furthermore, it is easily seen from the
above proof that ifgi (t) is discontinuous att = 0 (so thatgi (0+) > 0= gi (0)) then the
problem does not change whengi (t) is replaced by a continuous functiong̃i (t) linear for
0 ≤ t ≤ τi and equal togi (t) for t ≥ τi , whereτi denotes a positive number satisfying
gi (τi ) > πi τi , andπi = maxj ξ j −min j ci j .

Remark 2.If the functionsgi (t) are continuous then in Step (iii), instead of dividing
Mk,ik via z̄k

ik
, one can divide it viauk,ik , whereuk,ik is any point in the segment[0, z̄k

ik
]

such thatgik(uk,ik)−LMk,ik(uk,ik) ≥ gik(z̄
k
ik
)−LMk,ik(z̄

k
ik
). This does not affect adversely

the convergence and may even speed it up in certain cases. Indeed, given any sequence
z̄kq → z̄, one can assume thati kq = 1 andukq,1 → ū. Using then the same argument
as in the above proof one can see thatū ∈ {a∗1,b∗1}, g1(ukq,1) − LMkq ,1(ukq,1) →
0, henceg1(z̄

kq

1 ) − LMkq ,1(z̄
kq

1 ) → 0, and, consequently, from (3) (wherei kq = 1),

g(z̄kq)− LMkq
(z̄kq)→ 0, implying, just as previously, the global optimality ofz̄.

5. Relations to previously known methods

Since our algorithm shares several common features with some previously published
algorithms, it is useful to discuss the relations of our algorithm to these.

I. Falk and Soland’s algorithm for separable nonconvex programming [2], was
perhaps one of the earliest branch and bound algorithms to use rectangular partitions for
branching and convex envelopes of the objective function for bounding over the partition
sets. Nowadays these techniques have become quite common in global optimization (see
e.g. [15]). Methods using these techniques differ mainly by the partitioning and bounding
rules to take advantage of the particular structure of the problem under consideration.

Because the problem in [2] is too general, Falk and Soland’s method cannot be
expected to be efficient for large-scale instances, especially for problems with special
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structure of the type we are considering here. In fact, to cope with the difficulty arising
from the discontinuity of the objective function at certain points (as in the case of
fixed charges), Falk and Soland’s algorithm (Theorem 1 or 1’ in [2]) uses the strong
refining rule which could generate at each iteration up to 2m new partition sets, and,
furthermore, requires completerefinement, which implies generating an even larger
number of partition sets. While clearly inefficient for large-scale problems, the strong
refining rule is essential for the convergence of Falk-Soland’s algorithm, as shown by
the example given in [2]. To alleviate the computational burden of complete refinement,
a procedure is suggested in [2] which in fact is itself a branch and bound procedure for
determining the subproblem that corresponds to a member of the complete refinement;
alternatively, a relaxed algorithm can be used which, however, guarantees convergence
only in a weaker sense (Theorem 1’).

By contrast, our algorithm uses a weakrefining rule and does not require, even
indirectly, complete refinement, which allows it to solve large-scale problems beyond
the range of applicability of Falk and Soland’s algorithm, while still guaranteeing
convergence in just the same strongsense as in Theorem 1 of [2]. This is achieved
by exploiting the specific structure of problem (P), namely: the variables are of 3
groups :x, y, z and the objective function is the sum of a separable convexfunction
in y, and a separable nondecreasing concavefunction in (x, z). However, this requires
a convergence proof totally different from Falk and Soland’s. The basic idea underlying
this proof can, besides, be used for a larger class of problems in which the objective
function has the mentioned structure, but the constraint set may be an arbitrary polytope.

It should also be noted that although several algorithms for minimizing separable
concave functions under linear constraints exist in the literature (see e.g. [15]), none, to
our knowledge, is directly applicable to the case when these functions are discontinuous
at the origin. The algorithm given in this paper is the first one able to compute directly
a global optimal solution, without having to replace the objective function by a sequence
of approximate continuous ones.

II. Other previously known algorithms which are in a sense or other related to
ours are those by [18,3], for the case when the concave costs are simply fixed charges
and linear costs, [STLP]. Also for a transportation problem with piecewise linear cost
functions, possibly discontinuous, [21] present a solution method with the same kind of
branching as in our method.

Since the problem [P] considered in this paper has general nonlinear concave costs
for production and nonlinear convex costs for the demand, it cannot be solved with the
methods of [18,3,21].

On the other hand, as mentioned in Remark 1 at the end of the previous section,
our method can as well solve the [STLP] and other problems with fixed charges and
concave production costs, although it is notspecifically designed for these problems.
Rather, our goal is to develop an efficient method for problem [P], which is more general
than [STLP].

Let us now discuss some practical considerations when using our method for the
[STLP] and other problems with piecewise linearcost functions.

If the gi (t), i = 1, . . . ,m are concave piecewise linear nondecreasing functions,
then, as mentioned in Remark 1, we can always assume that they are continuous att = 0,
hence continuous at every point (by replacing, if necessary, eachgi (t) by a continuous
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function linear in some interval[0, τ] and equal togi (t) for all t ≥ τ). Furthermore,
in Step (iii) of the Algorithm, instead of dividingMk,ik via z̄k

ik
we can divide it via

the breakpointuk,ik of gik(t) nearest tōzk
ik

that satisfiesgik(uk,ik ) − LMk,ik(uk,ik ) ≥
gik(z̄

k
ik
) − LMk,ik(z̄

k
ik
). Since the number of breakpoints of each functiongi (t) is finite,

the Algorithm must terminate after finitely many steps.
So for piecewise linear cost functions, under the additional assumption of concavity,

the method of [21] can be obtained as a special case of our method, if we restrict the
branching to breakpoints of the cost function.

When a functiongi (t) is of fixed charge type, e.g.gi (0) = 0, gi (t) = ri + ρi t > 0
for t > 0 (ri > 0, ρi > 0), it can be replaced by a continuous concave piecewise linear
nondecreasing function with just one breakpointui very near to 0. Computationally,
there is no need to specify this breakpoint. It just suffices to assume thatui = τi , where
τi > 0 is arbitrarily small, so that replacinggi (t)with g̃i (t) as specified in Remark 1 does
not change the problem. Theng̃i (t) is linear fort ∈ [0,ui ] andg̃i (t) = gi (t) = ri+ρi t for
t ∈ [ui , Si ]. The subdivision of the interval[0, Si ] via ui then amounts to branching over
the boolean variableδi , with [0,ui ] corresponding toδi = 0, and[ui , Si ] corresponding
to δi = 1 (each of the intervals[0,ui ], [ui , Si ] will never be further divided because
the functiongi (t) is linear in these intervals).

A different method for the [STLP] is generalized Benders decomposition [5], as
shown in [3]. In [8] we discuss the application of generalized cross decomposition,
[9], but no computational results are given. A quick heuristic for the [STLP], using the
Kuhn-Tucker conditions of the [STP] as a heuristic guide for changes inz, is presented
in [18].

6. Illustrative example and computational results

Let us first discuss some implementation issues. In the branch-and-bound tree the
following data are saved for each node: the lower bound,β(Mk), the branching index,
i k, the value of the corresponding coordinate,wk(i k) and the father index of the node.
When a node has been investigated, either cut off or branched at, the sign of the father
index is reversed. The correct rectangle for a certain node in the tree is found by tracing
up through the tree the new bounds, while bearing in mind that the branching is made
so that the upper rectangles have even node numbers, while the lower rectangles have
odd numbers. We have not used information from solutions at previous nodes in the
branch-and-boundtree, but has started from scratch at each node. The branch-and-bound
procedure is thus quite straightforward.

All computationally efficient methods for solving the subproblem, [CP(M)], have
asymptotic convergence. We get upper and lower bounds on the optimal objective
function value, both converging to the optimal value. However, in practice, since we
stop after a finite number of iterations, only upper and lower bounds are available when
the decision about branching or cutting is made. Obviously the decision to cut a branch
must be based on the lower bound. On the other hand, the branching must be based on
the feasible solution, corresponding to the upper bound.

The usage of the lower bound when cutting branches might lead to unnecessary
branching, when a branch could have been cut off. However, if the subproblem is solved
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sufficiently well after the branching (or further down the tree), the final accuracy of the
method is not affected.

The usage of anε-optimal solution of the subproblem when deciding how to branch
has in most cases no effect on the overall performance of the algorithm. However, if the
approximation error is zero at the obtained solution point, it is not possible to branch
at that point. This can happen even if the lower bound is not high enough to motivate
cutting off the branch. In this case, one could either cut the branch, or search for another
ε-optimal solution with a non-zero approximation error, where branching is possible.
We have chosen the first option, even if it means that the overall accuracy is the sum ofε

(used when cutting branches) andε (used in the stopping criterion for the subproblem).

There are several choices of how to solve the subproblem, [CP(M)], and we have
made some tests in order to find the one that makes the whole branch-and-bound
method as efficient as possible. In [11] we find that separable programming combined
with mean value cross decomposition, here denoted by SM, yields the most efficient
solution method, while a modified version of the Frank-Wolfe method (used in [1] and
modified as suggested in [17]), here denoted by FW, is not quite as efficient, when
usingε = 1%. However, the solutions obtained by the two different methods might be of
slightly different nature. While the line searches of the Frank-Wolfe method are likely
to yield interior points, the separable programming approach yields solutions that are
extreme in the obtained linear minimal cost network flow problem. This difference may
affect the performance of our branch-and-bound method, since the branching is based
on the actual values obtained in the subproblem solutions.

In the standard code used for solving the linear minimal cost network flow problems
arising as the primal subproblem in mean value cross decomposition, both the costs and
the capacities have to be integers. When solving an ordinary [STP], the non-integral
capacities are scaled (typically multiplied by 10000) and truncated, which produces
acceptable results. However, the linearization,LM(z), of the concave costs produces non-
integral cost coefficients, so both the non-integral costs and the non-integral capacities
have to be scaled and truncated. Furthermore, sometimes the linearization of the concave
costs produce very steep slopes, i.e. very large cost coefficients. These circumstances
together often result in overflow, i.e. integer values used in intermediate calculations in
the network code become too large. Decreasing the scaling factor reduces the danger of
overflow, but also the accuracy of the solution.

On the other hand, if after branching, the interval[pi ,qi ] is small, the rounding of
the coefficients mentioned above may have large effects. While the errors in cost and
capacity coefficients probably do not change the optimal objective function value much,
the dual solution may be quite different from what is should be. This is unfortunate if the
dual solution is used as input to subsequent subproblems, as it is in a mean value cross
decomposition method. A network code accepting real numbers for cost and capacity
coefficients would eliminate this obstacle.

We have tested two branch-and-bound methods, BB-SM where the subproblem
is solved by the SM method, and BB-FW, where the subproblem is solved by the
FW method. BB-FW is found to be rather stable, while BB-SM fluctuates; it often
outperforms BB-FW but is sometimes much worse. BB-SM is mostly faster than BB-
FW when solving one single subproblem. However, sometimes the branch-and-bound
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tree becomes much larger for BB-SM than for BB-FW. This is mainly an effect of the
practical difficulties with rounding coefficients discussed above.

We have solved a number of randomly generated problems in various sizes, from 10
origins and 50 destinations to 100 origins and 500 destinations. The largest problem has
50.000x-variables, 500y-variables and 100z-variables. However, the difficulty of the
problems is found to depend not only on the size of the problem, but also on the relation
between the concave costs and the linear and convex costs. This is also affected by the
relation betweenm andn.

The supplies are drawn from a uniform distribution between 125 and 175. For each
destination the shortage costs are drawn from a uniform distribution between 20 and
60 and the holding costs between 3 and 6. The probability density functions used are
exponential distribution functions, which yields

φ j (dj ) = λ j exp(−λ j dj ), Fj (dj ) = 1− exp(−λ j dj ), Ej [dj ] = 1

λ j

and

f j (yj ) = α j

(
yj − 1

λ j

)
+
(
ξ j + α j

λ j

)
exp(−λ j yj )

The parametersλ j are drawn from a uniform distribution between 0.005 and 0.025,
which yields expected demands in the interval between 40 and 200.

The coordinates for each point are generated randomly uniformly between 0 and
100, and the transportation cost coefficients are calculated as the Euclidean distance
between the points multiplied by a constant. This constant is set to 0.5, which for the
[STP] in average makes the nonlinear costs to be about 0.96 of the total costs at the
optimum (following [1]).

The concave cost functions are chosen to be of the form

gi (zi ) =
{

bi z
ai
i if zi > 0

0 if zi = 0

wherebi is obtained by multiplying a random number, uniformly distributed between
1000 and 5000, with a chosen weight,cg, (in the order of magnitude of 1.0). The
exponentsai are randomly generated in an interval [a

¯
, ā], wherea

¯
≥ 0 andā < 1. The

parameterscg,a
¯

andāaffect the difficulty of the problem significantly, so different values
have been tested. For applications in chemical industry, we have encountered values of
the exponentsai in the interval [0.6, 0.7]. One can note thatgi (zi ) is continuous ifai > 0
and a step function, i.e. a fixed charge, ifai = 0. We have not made any computational
tests with concave functions of other forms, such as piecewise linear functions, although
this would be perfectly feasible.

Whenai is positive and small, we note that after branching at some not very small
value, the approximation in the upper part is much better than the approximation in the
lower part. This depends on the form of concave function chosen in our tests (see figure
3). The effect is that in a majority of the cases, the upper branch is immediately cut
off, while the error in the lower branch is not improved much. A heuristic improvement
is to branch at a somewhat lower point thanwk

i . Some improvement was obtained by
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Fig. 3. Plot of functiong1(z1) (solid line). The dotted line is the first linearization, while the dashed line is
the linearization after the branching

branching at 0.25wk
i whenai < 0.1, at 0.5wk

i when 0.1≤ ai < 0.2 and at 0.75wk
i when

0.2≤ ai < 0.3. If ai = 0 ∀i , the special case [STLP] is obtained. In that case we do not
branch atwk

i but close to zero.

Now we give a small illustrative example, withm= 2 andn = 3. The problem data
are the following:

c =
(

10 9 46
14 27 44

)
, S=

(
135
147

)
, h =

3.288
4.708
4.303

, p =
52.46

47.17
20.74

, λ =
0.00637

0.0153
0.00629

,

b=
(

1000
200

)
anda =

(
0.2
0.3

)
.

First the whole intervals 0≤ z1 ≤ 135 and 0≤ z2 ≤ 147 are linearized. The solution
of the subproblem yields the lower bound 12455.9 and the upper bound 13972.0, which
is used as the incumbent value. The largest error occurs fori = 1 and the solution value
of this coordinate isw1

1 = 22.83. However, sincea1 = 0.2 the branching point is moved
to 17.12. In the lower branch the linearization is made for the interval 0≤ z1 ≤ 17.12
and in the upper branch for the interval 17.12≤ z1 ≤ 135, see figure 3. When solving
the subproblem of the lower branch, we get a lower bound equal to 12577.5 and an
upper bound equal to 12645.0 (which is an improved incumbent value) and the branch
is cut off, since the relative error is approximately 0.5%. In the upper branch, the lower
bound is increased to 12689.9, and the branch is cut off. Since all the branches are now

cut off, the method is terminated. Theε-optimal solution isz =
(

0.0
137.93

)
. Only 3

nodes had to be investigated, and a total of 21 Frank-Wolfe iterations were made.
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Characteristics of the test problems are given in the tables 1 and 2. We give the
number of supply points,m, and the number of demand points,n. (In table 1 we also
give the number of supply points with zero cost (already open),mo, and the number
of supply points withai = 0 (i.e. fixed charges),mz.) Furthermore we give the scaling
factor for the concave cost function,cg, the maximal and the minimal of the coefficients
bi and the maximal and the minimal of the coefficientsai .

In table 1 a couple of smaller test problems are given: first two instances,pa*, of
[STLP] of the same size as in [18],m = 15 andn = 100 (9 of the 15 sources have zero
cost, so there are only 6z-variables), then two instances,pb* , of [STLP] of the same
size as in [3],m = 10 andn = 50, and finally 12 instances,pc*, of the general problem
[P] of various sizes with 0≤ ai ≤ 0.4.

In table 2 we give the main test problems: first 15 problems,pd* andpe*, of various
sizes and with various values of the parameters, then 13 problems,pg*, of the size
m= 50 andn = 300 withai ∈ [0.1, 0.6] for increasing values ofcg, 5 problems,ph* ,
of the same size withai ∈ [0.6, 0.7] and 5 problems,pi* , of the largest size,m = 100
andn = 500 withai ∈ [0.6, 0.7].

The results of the tests are presented in tables 3 and 4. We give the number of nodes
in the branch-and-bound tree, the total number of iterations in the subproblem and the
CPU-time in seconds on a Sun Ultra workstation. The subproblems have been solved to
the accuracy of 0.5% and the accuracy used to cut branches is 1%.

In the tables 3 and 4 we give computational results for both the two methods, BB-
FW and BB-SM. In table 3 we find thatpa* andpb* are difficult to solve for BB-FW,
but easier for BB-SM. The same is true forpc4 andpc9. On the other hand, for the
problemspc1, pc10 andpc11, BB-SM exhibits an extremely bad performance, while
BB-FW does much better. It is obvious that there can be a big difference in difficulty
for problems of similar or identical sizes. The problemspc5, pc6, pc7, pc8andpc12

Table 1.Problem characteristics for the first sets of test problems

Problem m (mo,mz) n cg bMAX/bMIN aMAX/aMIN

pa1 15 (9,6) 100 1.0 0/5770 0/0
pa2 15 (9,6) 100 0.8 0/5072 0/0

pb1 10 (0,10) 50 1.0 3428/6836 0/0
pb2 10 (0,10) 50 0.8 1882/5114 0/0

pc1 10 (0,0) 50 1.0 2900/6906 0.004/0.29
pc2 10 (0,0) 50 0.8 1863/4877 0.044/0.39

pc3 15 (9,0) 100 1.0 0/6686 0/0.37
pc4 15 (5,0) 100 0.8 0/5467 0/0.39

pc5 10 (0,0) 100 1.0 2514/6910 0.027/0.39
pc6 10 (0,0) 100 1.0 2954/6311 0.085/0.35
pc7 10 (0,0) 100 0.9 2002/6290 0.040/0.38
pc8 10 (0,0) 100 0.8 2088/4992 0.166/0.39

pc9 25 (0,0) 100 1.0 2067/6951 0.026/0.39
pc10 25 (0,0) 200 1.0 2230/6862 0.028/0.39
pc11 25 (0,0) 200 0.8 1765/5378 0.008/0.38
pc12 20 (0,0) 100 1.0 2076/6839 0.040/0.38
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Table 2.Problem characteristics for the main test problems. (mo = 0,mz = 0)

Problem m n cg bMAX/bMIN aMAX/aMIN

pd1 25 200 1.0 1026/4813 0.20/0.69
pd2 20 100 1.0 1281/4927 0.20/0.69
pd3 25 100 1.0 1368/4688 0.21/0.69
pd4 25 200 1.0 1104/4908 0.21/0.64
pd5 25 200 0.5 688/2812 0.21/0.69
pd6 25 200 0.3 450/1452 0.22/0.69

pe1 25 200 0.4 466/1911 0.30/0.49
pe2 25 200 0.5 509/2406 0.30/0.48
pe3 25 200 0.6 711/2952 0.30/0.50

pe4 25 200 0.3 337/1469 0.42/0.58
pe5 25 200 0.4 500/1975 0.41/0.59
pe6 25 200 0.5 513/2407 0.40/0.60

pe7 25 200 0.05 59/244 0.51/0.70
pe8 25 200 0.1 110/491 0.50/0.68
pe9 25 200 0.2 229/037 0.50/0.69

pg1 50 300 0.0 0/0 0.11/0.60
pg2 50 300 0.2 209/958 0.11/0.59
pg3 50 300 0.4 428/1862 0.11/0.60
pg4 50 300 0.6 665/2874 0.10/0.58
pg5 50 300 0.8 832/3993 0.10/0.60
pg6 50 300 1.0 1080/4938 0.11/0.60
pg7 50 300 1.2 1297/5923 0.12/0.60
pg8 50 300 1.4 1434/6762 0.12/0.60
pg9 50 300 1.6 1677/7923 0.11/0.59
pg10 50 300 1.8 1811/8761 0.12/0.59
pg11 50 300 2.0 2075/9968 0.10/0.59
pg12 50 300 3.0 3075/14491 0.14/0.60
pg13 50 300 5.0 5287/24471 0.11/0.59

ph1 50 300 0.0 0/0 0.60/0.70
ph2 50 300 0.1 110/497 0.60/0.70
ph3 50 300 0.2 226/999 0.60/0.70
ph4 50 300 0.3 313/1496 0.60/0.70
ph5 50 300 0.4 459/1988 0.60/0.70

pi1 100 500 0.0 0/0 0.60/0.70
pi2 100 500 0.1 102/500 0.60/0.70
pi3 100 500 0.2 200/992 0.60/0.70
pi4 100 500 0.3 307/1486 0.60/0.70
pi5 100 500 0.4 431/1987 0.60/0.70

are all solved in a very short time, while other problems that are not larger, for example
pc1 andpc2 for BB-SM, orpb1 andpb2 for BB-FW, take much longer.

Comparing BB-SM and BB-FW, we find that in many cases BB-SM is quickest,
but in some cases it produces a much larger branch-and-bound tree than BB-FW. If one
wish to keep the method as stable as possible, it might be best to sacrifice a little of the
speed and use BB-FW. (It is possible that further modifications and the use of a better
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Table 3.Computational results for the first sets of problems

Problem BB-SM BB-FW

Nodes Iterations CPU-time Nodes Iterations CPU-time

pa1 4 15 0.628 28 940 1.838
pa2 6 30 0.279 10 414 0.794

pb1 31 136 0.335 115 5171 3.892
pb2 35 142 0.397 62 2151 1.665

pc1 167 618 1.991 12 121 0.097
pc2 139 299 1.044 36 1089 0.772

pc3 4 28 0.342 2 87 0.159
pc4 1 1 0.019 6 195 0.351

pc5 4 6 0.035 2 13 0.018
pc6 1 31 0.012 1 1 0.002
pc7 2 4 0.022 2 14 0.020
pc8 2 2 0.012 4 8 0.014

pc9 7 25 0.386 13 358 0.941
pc10 126 1681 160.872 14 132 0.694
pc11 48 278 20.261 34 578 3.096
pc12 1 1 0.008 2 10 0.022

accuracy in the network flow code may eliminate the “failures” of BB-SM, in which
case it may be the best choice.)

In table 4 we give the results for our main test examples. It is further demonstrated
that problems of the same size can behave very differently. Considering the values of
a
¯

andā, we find thatph* are easier thanpg*, which is natural, since the error in the
linearization is larger the smallerai is. There is, however, also a very strong effect of the
value ofcg on the difficulty of solving the problems. For small values ofcg the concave
part of the cost is dominated by the convex part, and the problems are easy. (Forcg = 0,
we get the [STP].) For large values ofcg, the concave part dominates, and these problems
are also easy (solvable in fractions of a second). For some of these problems,pg13, ph5
andpi5, the optimal solution is actuallyz = 0. However, somewhere between these
extremes, we find a sharp increase in difficulty, especially for BB-FW. These effects are
illustrated forpg* andph* in figure 4. (Note thatpg* haveai ∈ [0.1,0.6] andph* have
ai ∈ [0.6,0.7], but they have the same size.) The difficulty of the harder problems in
each group naturally increases with problem size; the hardest ofpi* are much harder
than the hardest ofph* .

Except for the “failures” (notablypg5, pg7 andpg9), BB-SM seems to have the
same basic behaviour. One can however note that the most difficult problem for BB-FW,
pi2, is not that difficult for BB-SM.

In [13] we also present the result for two sets of instances of [STLP]. One of the
size m = 20 andn = 100 and one of the sizem = 25 andn = 200. Our method
is not specifically developed for the [STLP], so the performance on those problems is
not as impressive as for the others. We have solved larger problems than in [18,3], but
we do not claim that our method is superior. Again we note that the solution time is
extremely dependent ofcg (up to 100 times longer for the same problem size), an effect
not mentioned in [18,3].



A production-transportation problem with stochastic demand and concave production costs 177

Table 4.Computational results for the main test problems

Problem cg BB-SM BB-FW

Nodes Iterations CPU-time Nodes Iterations CPU-time

pd1 1.0 1 2 0.072 2 15 0.077
pd2 1.0 10 10 0.121 4 26 0.058
pd3 1.0 1 1 0.010 1 4 0.011
pd4 1.0 1 31 0.038 1 1 0.006
pd5 0.5 4 10 0.350 9 105 0.554
pd6 0.3 1 1 0.033 2 16 0.067

pe1 0.4 20 37 1.288 28 512 2.727
pe2 0.5 28 42 1.761 42 354 1.911
pe3 0.6 2 2 0.036 7 34 0.179

pe4 0.3 1 2 0.051 2 16 0.081
pe5 0.4 5 8 0.285 2 5 0.026
pe6 0.5 1 2 0.050 2 16 0.082

pe7 0.05 1 5 0.349 3 76 0.401
pe8 0.1 1 1 0.025 4 30 0.154
pe9 0.2 12 24 1.298 25 584 3.092

pg1 0.0 1 31 3.696 1 73 0.954
pg2 0.2 7 48 15.501 14 545 7.399
pg3 0.4 4 46 14.853 22 595 8.274
pg4 0.6 1 3 0.544 19 273 3.857
pg5 0.8 129 946 209.293 56 720 10.189
pg6 1.0 4 8 0.565 6 44 0.618
pg7 1.2 4 37 26.438 6 38 0.532
pg8 1.4 1 2 0.129 2 9 0.126
pg9 1.6 1 1 0.041 2 2 0.033
pg10 1.8 201 1377 851.432 4 12 0.175
pg11 2.0 1 1 0.083 2 9 0.126
pg12 3.0 1 1 0.037 1 1 0.016
pg13 5.0 1 31 0.116 1 1 0.017

ph1 0.0 1 31 2.981 1 72 0.942
ph2 0.1 3 45 4.728 8 129 1.813
ph3 0.2 1 1 0.049 2 8 0.110
ph4 0.3 1 1 0.037 1 1 0.016
ph5 0.4 1 31 0.104 1 1 0.015

pi1 0.0 1 31 13.067 1 105 4.210
pi2 0.1 1 3 2.494 115 2536 114.001
pi3 0.2 1 1 0.421 9 57 2.598
pi4 0.3 1 1 0.122 1 1 0.049
pi5 0.4 1 31 0.292 1 1 0.049

Summing up the computational tests, we find that the branch-and-bound trees are
fairly limited in size, the average number of nodes in the branch-and-bound tree being
less than 14 for BB-FW. This is encouraging, and indicates that the bounding subprob-
lems are quite strong.
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Fig. 4. Solution time as a function ofcg, for pg* (solid line) andph* (dashed line), for the method BB-FW

7. Conclusions

In this paper we have introduced a new method for a production-transportation problem
with stochastic demand (yielding convex costs at the destination points) and concave
production costs. We prove convergence and report computational tests that indicate
that large problems can be solved quite efficiently. We solve problems up to the size
of 100 production units and 500 destinations (i.e. 100 variables appearing in concave
functions).

We also study problems with different relations between concave and convex costs
and find that this relation has a large impact on the solution time. If either the convex
or the concave costs dominate, the problems (even larger instances) are easy to solve,
while for a certain balance between the convex and concave costs, the problems are
significantly harder. Increasing the problem size increases the solution time for the
harder problems in each group much more than for the easier ones.
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