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Abstract. We present two new error bounds for optimization problems over a convex set whose objective
function f is either semianalytic or γ -strictly convex, with γ ≥ 1. We then apply these error bounds to analyze
the rate of convergence of a wide class of iterative descent algorithms for the aforementioned optimization
problem. Our analysis shows that the function sequence { f(xk)} converges at least at the sublinear rate of k−ε
for some positive constant ε, where k is the iteration index. Moreover, the distances from the iterate sequence
{xk} to the set of stationary points of the optimization problem converge to zero at least sublinearly.

1. Introduction

Error bounds for a given subset S of an Euclidean space is an inequality that bounds
the distance from an arbitrary vector to S in terms of a residual function. The latter is
usually an easily computable function satisfying the property that r(x) ≥ 0, ∀x ∈ �n and
r(x) = 0 iff x ∈ S. In recent years, there has been considerable interest in the study of
error bounds in mathematical programming. This is partly motivated by the applications
of error bounds which are rich and diverse. The application areas of error bounds
include, among other things, the rate of convergence analysis of iterative algorithms
for degenerate problems, the regularity and stability of inequality systems, weak sharp
minima, accurate identification of active constraints, the study of stationary/minimizing
sequences of convex programs, exact penalty functions, and more recently the analysis
of interior point methods for linear conic programs. For an excellent summary of the
theory and applications of error bounds, we refer the readers to the recent survey of
Pang [38] and the references cited therein.

In this paper, we consider error bounds and iterative algorithms for a general con-
strained differentiable minimization problem of the form:

minimize f(x)

subject to x ∈ X,

where X is a closed convex set. Let S denote the set of stationary points of the above
optimization problem which by definition satisfy x = [x − ∇ f(x)]+X , where [·]+X is the
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projection operator to X. We present some new projection-type error bounds of the form

dist(x, S) ≤ σ‖x − [x −∇ f(x)]+X‖1/γ ,

for some positive constants σ and γ , where dist(x, S) denotes the distance function from
x to the set S. These error bound results are based on either the semianalyticity or γ -strict
convexity of the objective function f (see Sect. 2 for definitions), and certain analytic
structure of X. Furthermore, we apply these new error bounds in the rate of convergence
analysis of iterative descent algorithms for the minimization of f over X. It is shown that
in general the convergence rate of { f(xk)} and {dist(xk, S)} is sublinear (i.e., like k−ε for
some ε > 0). These results extend the early work of [25]–[31] and [39,40] where certain
form of strong convexity is assumed. Our analysis is fairly general as it is applicable to
a wide class of iterative descent algorithms, including a gradient projection algorithm
of Goldstein [11] and Levitin and Polyak [2]; a certain matrix splitting algorithm ([33,
36]), coordinate descent methods (see [1,5,7,22,35,42]); the extragradient method of
Korpelevich [16]; the proximal minimization algorithm of Martinet [34].

The rest of the paper is organized as follows. Section 2 presents the notions of
semianalyticity and derives the new error bound results. Section 3 introduces a general
algorithmic framework of [28] and establishes the rate of convergence for the iterate
sequence {xk} and the function sequence { f(xk)}. The conclusions are given in Sect. 4.

2. New error bounds for optimization problems

Let us first introduce some definitions. We recall that a real-valued function f defined
on open subset U of�n is analytic if it can be represented by a convergent power series
in the neighborhood of any point of U ; a vector-valued function F from the open set
U into �m is analytic if each of its component functions is analytic. A subset X of �n

is semianalytic if for each vector a ∈ �n there are a neighborhood U of a and a finite
family of sets Xi j ⊆ �n, i = 1, . . . , p, and j = 1, . . . , q, each of the form

Xi j ≡ {x ∈ U : fi j (x) = 0} or {x ∈ �n : fi j (x) < 0}
for some real analytic function fi j on U , such that

X ∩U =
p⋃

i=1

q⋂
j=1

Xi j .

A subset X of �n is subanalytic if for each vector a ∈ �n there exists a neighborhood
U of a such that X ∩ U is the projection of a bounded semianalytic set A ⊂ �n+p for
some nonnegative integer p; i.e.,

X ∩U = �(A),
where � : �n+p → �n is given by �(x, y) = x for all (x, y) ∈ �n+p. A vector-
valued function is semianalytic (subanalytic) if its graph is semianalytic (subanalytic).
The reference [6] provides an extensive study of semianalytic and subanalytic sets,
and [8, Sect. 2] summarizes several important examples of these sets and functions. The
following is a list of known subanalytic functions:
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(a) piecewise analytic functions defined over a semianalytic partition are semianalytic
(thus subanalytic);

(b) the pointwise supremum of a finite family of continuous subanalytic functions is
subanalytic;

(c) the class of continuous subanalytic functions defined on a compact subanalytic set
is closed under algebraic operations;

(d) the image of a bounded subanalytic set by a subanalytic function is subanalytic but
this property is not valid if “subanalytic” is replaced by “semianalytic”.

In particular, semianalytic and subanalytic functions need not be smooth.
Below we state a local error bound result of Lojasiewicz [21] for a semianalytic

inequality systems (see also [23,24]):

Theorem 1. For i = 1, . . . ,m, let gi(x) be a semianalytic function defined in �n.
Suppose that the set S defined by

S ≡ { x ∈ �n : g(x) ≤ 0 }. (1)

is nonempty. Then for every scalar ρ > 0, there exist positive scalars c and γ such that

dist(x, S) ≤ c ‖ g(x)+ ‖1/γ , ∀ x ∈ �n satisfying ‖x‖ ≤ ρ.

Now let us consider the following constrained minimization problem:

minimize f(x)

subject to x ∈ X
(2)

where f is a differentiable semianalytic function and X is a convex set defined by

X ≡ {x : g1(x) ≤ 0, g2(x) ≤ 0, . . . , gm(x) ≤ 0}
with each gi convex, differentiable and semianalytic. Notice that x∗ is a stationary point
of (2) if and only if

x∗ = [x∗ − ∇ f(x∗)]+X ,
where [·]+X denotes the projection operator to the convex set X. Let S denote the set of
stationary points of (2). We will use Theorem 1 to show a new error bound for the set S.
In particular, for any x ∈ �n , we show that it is possible to use the residual function

‖x − [x −∇ f(x)]+X‖
to bound the distance dist(x, S).

Theorem 2. Suppose f and g1, . . . , gm are differentiable semianalytic functions, and
g1, . . . , gm are convex. Moreover, suppose the feasible set

X ≡ {x : g1(x) ≤ 0, . . . , gm(x) ≤ 0}
satisfies a constraint qualification (say, Slater condition) so that the Lagrangian multi-
pliers exist for (2). Let S be the set of stationary points of (2) satisfying x = [x−∇ f(x)]+X.
Then for each ρ > 0, there exists some constants γ > 0 and σ > 0 such that

dist(x, S) ≤ σ‖x − [x −∇ f(x)]+X‖1/γ , ∀ x ∈ �n satisfying ‖x‖ ≤ ρ. (3)
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Proof. Let g(x) = (g1(x), g2(x), . . . , gm(x))T . Fix any x ∈ �n with ‖x‖ ≤ ρ. Let
z = [x − ∇ f(x)]+X . By assumption, a constraint qualification (say, Slater condition)
is satisfied for X, the Karush-Kuhn-Tucker condition for the projection operation [·]+X
gives

z − x +∇ f(x)−∇g(z)Tµ = 0, µ ≥ 0, µT (Az − b) = 0.

Since x∗ ∈ S is equivalent to x∗ = [x∗ − ∇ f(x∗)]X , it follows that x∗ ∈ S if and only
if there exist some z∗ and λ∗ such that

z∗ − x∗ + ∇ f(x∗)−∇g(z∗)Tλ∗ = 0, λ∗ ≥ 0, (λ∗)T (g(z∗)− b) = 0, z∗ = x∗.
(4)

Let S̄ denote the solution set of (4), that is,

S̄ = {(x∗, z∗, λ∗) : = {(x∗, z∗, λ∗) satisfies (4)}.
Since all the functions involved in the above system are semianalytic, we can apply
Theorem 1 to the system (4) and obtain

dist((x, z, µ), S̄) ≤ σ‖x − z‖1/γ = σ‖x − [x −∇ f(x)]+X‖1/γ ,

where σ and γ are some positive constants depending of f , g1, . . . , gm and ρ only.
Since dist(x, S) ≤ dist((x, z, µ), S̄), the above inequality easily implies the desired error
bound (3).

��
One drawback of above theorem is that the exponent γ is in general difficult to

determine and that the error bound holds only over a compact set. Our next result gives
an global error bound with the exponent explicitly determined. To achieve this, we need
to make additional assumptions on the objective function f and the constraint set X. In
particular, we consider the following restricted version of problem (2):

minimize f(x)

subject to x ∈ X ≡ {x ∈ �n : Ax ≥ b} (5)

where A is a matrix and a is vector of matching dimension, f : �n →� is a γ -strictly
convex differentiable function in the sense,

〈∇ f(x)−∇ f(y), x − y〉 ≥ σ‖x − y‖1+γ , for all x, y ∈ �n. (6)

Here γ ≥ 1 is a constant. Clearly, the case γ = 1 corresponds to the standard notion of
strong convexity. Since f is γ -strictly convex, the minimization problem (5) has exactly
one solution, say x∗, which must satisfy the following optimality condition

x∗ = [x∗ − ∇ f(x∗)]+X .
The next theorem states that, for any x ∈ �n , we can use the residual function

‖x − [x −∇ f(x)]+X‖
to bound the distance ‖x − x∗‖.
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Theorem 3. Suppose f is a γ -strictly convex function satisfying (6) for some γ ≥ 1.
Let x∗ be the unique optimal solution for (5). Then there holds

‖x − x∗‖ ≤ σ− 1
γ

∥∥x − [x −∇ f(x)]+X
∥∥ 1
γ , ∀x ∈ �n. (7)

Proof. Fix any x ∈ �n . Since the constraints are linear, the Karush-Kuhn-Tucker
condition holds:

∇ f(x∗)− ATλ = 0, λ ≥ 0, λT (Ax∗ − b) = 0. (8)

Let z = [x − ∇ f(x)]+X . Then the Karush-Kuhn-Tucker condition for the projection
operation [·]+X gives

z − x + ∇ f(x)− ATµ = 0, µ ≥ 0, µT (Ax − b) = 0. (9)

Subtracting (8) from the above equation, we obtain

z − x +∇ f(x)−∇ f(x∗)− AT (µ− λ) = 0.

Multiplying both sides by (x − x∗) and rearranging the terms yields

〈x − z, x − x∗〉 = 〈∇ f(x)−∇ f(x∗), x − x∗〉 + 〈x − x∗, AT (µ− λ)〉
≥ σ‖x − x∗‖1+γ − 〈x − x∗, AT (µ− λ)〉

where σ > 0 is a constant due to the γ -strict convexity of f (cf. (6)). By further using
(8)–(9), we see

〈x − x∗, AT (µ− λ)〉 = 〈A(x − x∗), µ− λ〉
= 〈A(x − x∗), µ〉 + 〈A(x∗ − x), λ〉
= 〈b− Ax∗, µ〉 + 〈b− Ax, λ〉
≤ 0.

Combining this with the previous inequality, we obtain

〈x − z, x − x∗〉 ≥ σ‖x − x∗‖1+γ .

Using Cauchy-Schwartz inequality and simplifying yields

‖x − x∗‖ ≤ σ− 1
γ ‖x − z‖ 1

γ = σ− 1
γ

∥∥x − [x − ∇ f(x)]+X
∥∥ 1
γ .

The proof is complete.
��

In the case of strong convexity (i.e., γ = 1), Theorem 3 is well known and was
derived in the more general setting of strongly monotone variational inequalities [37,
Theorem 3.1]. Simple (unconstrained) examples show that the error bound (7) in general
does not hold without γ -strict convexity of f . One of the main difficulties to establish (7)
is the non-uniqueness of optimal solutions in the absence of strict convexity. However,
if f has a certain composite structure and convex, the above error bound still holds. This
was shown in the work of Luo and Tseng [25].
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3. Rate of convergence of iterative algorithms

In the convergence analysis of iterative descent algorithms for minimizing a convex
function over a convex set, a key role played by error bounds is to establish the rate of
convergence of the sequence of functions and iterates. Previously, such convergence an-
alysis invariably assumes strong convexity in which case the optimal solution is unique
and the proof of convergence becomes relatively easy. In particular, we only need to ar-
gue that the first order optimality condition will hold in the limit. Since there is a unique
solution satisfying the first order optimality condition, the convergence of the algorithm
follows. This line of argument is not applicable to problems without strong convexity
or when the objective function is nonconvex. It turns out that error bounds can help to
establish iterate convergence in this case. So far there are many such results obtained for
a wide variety of algorithms; these include the Goldstein-Levitin-Polyak gradient projec-
tion algorithm for convex minimization problems [9,28] and an extension to monotone
variational inequalities [3,16]; the Martinet-Rockafellar proximal algorithms for con-
vex minimization and set-valued inclusion [12,17,20,28,32] and its extensions [15,4];
coordinate descent methods and the related dual relaxation methods [14,26,30]; matrix
splitting methods for symmetric, monotone linear complementarity problems and vari-
ational inequalities [27,19]; and asynchronous versions of some of these methods [31,
39]. Several papers have presented a unified treatment of these convergence results; see
e.g. [25,28,40].

3.1. A preliminary result

In the forthcoming analysis, we will need the following useful rate of convergence result.

Theorem 4. Let r : �n → �+ be a residual function for a subset S of �n. Let there
be a set X ⊃ S and let {xk} ⊂ X be arbitrary sequence. Suppose there exist positive
constants δ, c and γ such that all xk ∈ X with r(xk) ≤ δ there hold

(A1) r(xk) > 0 for all k;
(A2)

r(xk+1)− r(xk) ≤ −c r(xk)γ . (10)

Then the following statement holds.

1. The sequence {r(xk)} converges to zero and γ ≥ 1.
2. If γ = 1, then the sequence {r(xk)} converges to zero at least Q-linearly; that is, for

all k sufficiently large there holds

r(xk+1) ≤ (1− c)r(xk). (11)

3. If γ > 1, then there exist positive scalar σ such that for all k sufficiently large:

r(xk) ≤ σk−
1

γ−1 . (12)
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Proof. Notice that the assumptions (A1) and (A2) imply that the sequence {r(xk)} is
monotonically decreasing. Therefore, the sequence {r2(xk)} has a limit, say r∞. Clearly,
r∞ ≥ 0. Taking limit in (10) yields

r∞ ≤ r∞ − c(r∞)γ ,
which further implies r∞ = 0. Next we rewrite (10) to obtain

r(xk+1) ≤ r(xk)
(
1− cr(xk)γ−1), ∀k. (13)

Since r(xk)→ 0 and r(xk) > 0, it follows that γ ≥ 1.
We now estimate the rate of convergence for the sequence {r(xk)} when γ = 1. In

this case, the inequality (13) implies

r(xk+1) ≤ r(xk) (1− c) , ∀k,

so the sequence {r(xk)} converges to zero Q-linearly.
It remains to estimate the rate of convergence for the sequence r(xk) for the case

γ > 1. In this case, we show inductively that (12) holds, or in other words, the sequence

{r(xk)} converges to zero at least like σ/k
1

1−γ , for some σ and ε. Suppose (12) holds
for some k. Let us consider the case k + 1. First we notice the following elementary
inequality from calculus:

y
(
1− cyγ−1) ≤ ȳ

(
1− cȳγ−1), ∀y ∈ [0, ȳ], when ȳ is sufficiently small. (14)

1

kγ−1

(
1− c̄

k

)
≤ 1

(k + 1)γ−1 , for all large k, where c̄ > (γ − 1). (15)

The inequality (14) is due to the fact that the derivative of the function y
(
1− cyγ−1

)
at y = 0 is equal to 1, which is positive. The second inequality (15) can be inferred as
follows. Let ε = c̄− (γ − 1), which is positive under the assumption c̄ > γ − 1. Since
γ > 1, it follows from Taylor expansion that

kγ−1

(k + 1)γ−1 =
(

1− 1

k + 1

)γ−1

≥ 1− γ − 1+ 0.5ε

k + 1
(for all large k)

≥ 1− c̄− 0.5ε

k + 1
(use γ − 1+ 0.5ε = c̄− 0.5ε)

≤ 1− c̄

k
,

where the last step follows from ε > 0. This shows the validity of (15).
Using the inequality (14) and the inductive hypothesis r(xk) ≤ σ/kγ−1, we obtain

from (13) that

r(xk+1) ≤ r(xk)
(
1− cr(xk)γ−1)

≤ σ

kε

(
1− c σγ−1

k(γ−1)ε

)
, for all sufficiently large k.
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Therefore, to complete the induction, we only need to argue that there exists some σ
such that

σ

kγ−1

(
1− c σγ−1

k

)
≤ σ

(k + 1)γ−1
. (16)

Let us select a σ > 0 such that

c σγ−1 > γ − 1.

Then the previous inequality (16) follows directly from (15) by identifying c̄ = c σ γ−1.
This completes the proof of (12).

��
Theorem 4 shows that the exponent γ in (10) characterizes the rate of convergence

completely. It is seen that in general the sequence {r(xk)} converges to zero sublinearly,
with the rate becoming faster as γ gets closer to 1. When γ = 1, the fastest rate
is achieved: the sequence {r(xk)} converges to zero Q-linearly. In Sect. 3.3, we shall
specialize Theorem 4 to some specific iterative algorithms and perform the rate of
convergence analysis.

3.2. A general algorithmic framework

The algorithmic framework illustrated below follows from the work of Luo and
Tseng [28]. Suppose f : �n → � is a continuously differentiable function whose
gradient is Lipschitz continuous on some nonempty closed convex set X in �n , i.e.,

‖∇ f(x)−∇ f(y)‖ ≤ L‖x − y‖ ∀x ∈ X, y ∈ X, (17)

where L is a positive scalar and ‖ · ‖ denotes the usual Euclidean norm. The set X may
be specified by linear equalities and/or convex inequalities. We are interested in finding
a stationary point of f over X, i.e., a point x ∈ �n satisfying

x = [x −∇ f(x)]+X , (18)

where [·]+X denotes the orthogonal projection on to X. We assume that inf x∈X f(x) >
−∞ and that the set of stationary points, denoted by S, is nonempty. Well known
examples of this problem include linear programs and quadratic programs, among
others. We consider the class of feasible descent methods and, in particular, methods
that update the iterates according to the formula

xk+1 := [xk − αk∇ f(xk)+ ek]+X , k = 0, 1, . . . (19)

where αk is a positive scalar and ek is a sufficiently small “error” vector depending on
xk (see (19)). Here we assume the following error estimates holds for all k > 0:

‖ek‖ ≤ κ1‖xk − xk+1‖, for some κ1 > 0. (20)

and

f(xk+1)− f(xk) ≤ −κ2‖xk − xk+1‖2 for some κ2 > 0, (21)

The condition (21) ensures sufficient descent at each iteration.



New error bounds and their applications to convergence analysis of iterative algorithms 349

The above scheme (19) is a broad class that includes

(a) a gradient projection algorithm of Goldstein [11] and Levitin and Polyak [2];
(b) a certain matrix splitting algorithm ([33,36]), coordinate descent methods (see [1,

5,7,22,35,42]);
(c) the extragradient method of Korpelevich [16];
(d) the proximal minimization algorithm of Martinet [34].

The reference [28] provides a detailed justification of why the above listed algorithms
can be cast in the framework (19) and satisfy the conditions (20)–(21).

3.3. Convergence analysis

We proceed to establish the linear convergence of iterative descent algorithms described
by (19)–(21). We need to make two assumptions on the function f .

Assumption 1 (Local error bound). For every υ ≥ infx∈X f(x) there exist scalars
γ > 0, γ and τ > 0 such that

dist(x, S) ≤ τ‖x − [x −∇ f(x)]+X‖1/γ , (22)

for all x ∈ X with f(x) ≤ υ and ‖x − [x −∇ f(x)]+X‖ ≤ δ.
Assumption 2 (Proper separation of isocost surfaces). There exists a scalar ε > 0
such that

x ∈ S, y ∈ S, f(x) �= f(y), ⇒ ‖x − y‖ ≥ ε.
Notice that Assumption 2 holds automatically if f is convex in which case S consists

of only one connected convex piece. There are many problems that satisfy the above
two assumptions. For example, it is known from the early error bound researches that
Assumptions 1 and 2 hold if any of the following conditions hold:

(a) (Semianalytic case; see Theorem 2) f is differentiable and semianalytic with com-
pact level sets. X = {x : g1(x) ≤ 0, . . . , gm(x) ≤ 0} satisfies a constraint
qualification such as Slater condition. Each gi is convex differentiable and semian-
alytic. In this case Assumption 1 holds with some γ > 0.

(b) (γ -Strictly convex case; see Theorem 3). f is γ -strictly convex satisfying (6) and
X is polyhedral.

(c) (Quadratic case; see Lemma 3.1 of [27]). f is quadratic (possibly nonconvex). X is
a polyhedral set. In this case Assumption 1 holds with γ = 1.

(d) (Composite case; see [25]).

f(x) = 〈q, x〉 + g(Ex), ∀x,

where E is an m × n matrix with no zero column, q is a vector in �n , and g
is a strongly convex differentiable function in �m with ∇g Lipschitz continuous
in �m . X is a polyhedral set. In this case Assumption 1 holds with γ = 1.
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(e) (Dual functional case; see Theorem 4.1 in [30]).

f(x) = 〈q, x〉 +max
y∈Y
{〈Ex, y〉 − g(y)} ∀x,

where Y is a polyhedral set in �m , E is an m × n matrix with no zero column, q is
a vector in �n , and g is a strongly convex differentiable function in �m with ∇g
Lipschitz continuous in �m . X is a polyhedral set. In this case Assumption 1 holds
with γ = 1.

Based on Assumptions 1 and 2 and using Theorem 4, we can establish the following
rate of convergence results.

Theorem 5. Let Assumptions 1 and 2 hold. Let x0, x1, x2, . . . be any sequence which,
together with some sequence of scalars {αk} satisfying lim infr α

k > 0 and some se-
quence {ek} in �n, satisfies (19)–(21). Then

(a) If error bound exponent γ in (22) is equal to 1, then { f(xk)} converges at least
Q-linearly and {xk} converges at least R-linearly to an element of S.

(b) If γ > 1, then { f(xk)} converges at least sublinearly at the rate k1−γ .

Proof. If r(xk) = 0 for some k = k̄, then r(xk) = 0 for all k ≥ k̄ and the conclusions of
the theorem hold trivially. So, in what follows, we assume r(xk) > 0.

By (19), we have

xk+1 = [xk − αk∇ f(xk)+ ek]+X
This together with the nonexpansive property of the projection operator [·]+X implies∥∥xk − [xk − αk∇ f(xk)]+X

∥∥ ≤ ‖xk − xk+1‖ + ∥∥xk+1 − [xk − αk∇ f(xk)]+X
∥∥

≤ ‖xk − xk+1‖ + ‖ek‖.
It is known that, for any x ∈ X and d in �n , ‖x − [x − αd]+X‖/α is monotonically
decreasing with α > 0 (see [10, Lemma 1]), so the left-hand side of the above relation
is bounded below by min{1, αk}‖xk − [xk − ∇ f(xk)]+X‖. Also using (20) to bound the
right-hand side of the above relation, we obtain

α
∥∥xk − [xk −∇ f(xk)]+X

∥∥ ≤ (1+ κ1)‖xk − xk+1‖,
where α = min{1, lim infk α

k} > 0. By (21), we have f(xk) ≤ f(x0) for all k and xk −
xk+1 → 0. The above relation implies xk − [xk −∇ f(xk)]+X → 0 so, by Assumption 1,
there is an index k̄ and a scalar τ > 0 such that, for all k ≥ k̄, (22) holds with x = xk.
This implies

‖xk − x̄k‖ ≤ τ∥∥xk − [xk −∇ f(xk)]+X
∥∥1/γ ≤ τ

(
1+ κ1

α

)1/γ

‖xk − xk+1‖1/γ ∀k ≥ k̄,

(23)

where x̄k denotes an element of S for which ‖xk − x̄k‖ = dist(xk, S). Combining (23)
with xk − xk+1 → 0 gives

xk − x̄k → 0, (24)
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so x̄k − x̄k+1 → 0. Then, Assumption 2 implies that x̄k eventually settles down at some
isocost surface of f , i.e., there exist an index k̂ ≥ k̄ and a scalar ῡ such that

f(x̄k) = ῡ ∀k ≥ k̂. (25)

Fix any index k ≥ k̂. Since xk ∈ X and x̄k is a stationary point of f over X, we
have 〈∇ f(x̄k), xk − x̄k〉 ≥ 0 and from the Mean Value Theorem that f(x̄ k) − f(xk) =
〈∇ f(ψk), x̄k − xk〉, for some ψk ∈ �n lying on the line segment joining x̄ k with xk.
Upon summing these two relations and using (25), we obtain

ῡ − f(xk) ≤ 〈∇ f(ψk)−∇ f(x̄k), x̄k − xk〉
≤ ‖∇ f(ψk)− ∇ f(x̄k)‖‖x̄k − xk‖
≤ L‖x̄k − xk‖2,

where the last inequality follows from the Lipschitz condition (17) and ‖ψ k − x̄k‖ ≤
‖xk − x̄k‖. This together with (24) yields

lim inf
r→∞ f(xk) ≥ ῡ. (26)

Fix any index r ≥ r̂ . Since xk+1 is obtained by projecting xk − αk∇ f(xk)+ ek onto
X (cf. (19)) and x̄ k ∈ X, we have

〈xk − αk∇ f(xk)+ ek − xk+1, xk+1 − x̄k〉 ≥ 0.

We also have from the Mean Value Theorem that

f(xk+1)− f(x̄k) = 〈∇ f(ξk), xk+1 − x̄k〉,
for some vector ξk ∈ �n lying on the line segment joining x̄ k with xk+1. Combining
these two relations and using (25), we obtain

f(xk+1)− ῡ = 〈∇ f(ξk)−∇ f(xk), xk+1 − x̄k〉 + 〈∇ f(xk), xk+1 − x̄k〉
≤ ‖∇ f(ξk)−∇ f(xk)‖‖xk+1 − x̄k‖ + 1

αk
〈xk − xk+1 + ek, xk+1 − x̄k〉

≤
(

L‖ξk − xk‖ + 1

α
(‖xk − xk+1‖ + ‖ek‖)

)
‖xk+1 − x̄k‖.

Using the inequalities ‖ξk − xk‖ ≤ ‖xk+1 − xk‖ + ‖x̄k − xk‖ and ‖xk+1 − x̄k‖ ≤
‖xk+1 − xk‖ + ‖xk − x̄k‖ and (20), we deduce that there exists some constant κ3
(depending on L, α, κ1, τ) such that

f(xk+1)− ῡ ≤ κ3
(‖x̄k − xk‖ + ‖xk − xk+1‖)2

.

By using the estimate (23) to bound the term ‖x̄ k − xk‖, we can further simplify the
above relation to obtain

f(xk+1)− ῡ ≤ κ4‖xk − xk+1‖2/γ̄ ∀k ≥ k̂,



352 Zhi-Quan Luo

where γ̄ = max{1, γ } and κ4 > 0 is a constant (depending on α, κ1, κ3). Combining
this with (21) yields

f(xk+1)− ῡ ≤ κ4

(κ2)1/γ̄
( f(xk)− f(xk+1))1/γ̄ ∀k ≥ k̂.

Let us cast this inequality into the form (10) by defining r(xk) := f(xk) − ῡ so that
Theorem 4 becomes applicable. By (26) and the fact { f(x k)} is a monotonically de-
creasing sequence, it follows that r(xk) ≥ 0 for all k, Rewriting the above inequality
yields

r(xk+1) ≤ κ4

(κ2)1/γ̄
(r(xk)− r(xk+1))1/γ̄ , ∀k ≥ k̂,

which further implies

r(xk) ≤ κ4

(κ2)1/γ̄
(r(xk)− r(xk+1))1/γ̄ + r(xk)− r(xk+1), ∀k ≥ k̂.

Since γ̄ ≥ 1 and r(xk)− r(xk+1) ↓ 0 (recall xk − xk+1 → 0), it follows

(r(xk)− r(xk+1))1/γ̄ ≥ r(xk)− r(xk+1).

Thus, we obtain from the above inequality that

r(xk) ≤
(

1+ κ4

(κ2)1/γ̄

)
(r(xk)− r(xk+1))1/γ̄ , ∀k ≥ k̂.

Then, upon simplifying and rearranging terms, the above inequality becomes

r(xk+1)− r(xk) ≤ −
(

(κ2)
1/γ̄

(κ2)1/γ̄ + κ4

)γ̄
r(xk)γ̄ , ∀k ≥ k̂.

This shows that Assumption (A2) of Theorem 4 holds. Since r(xk) > 0 for all k,
Assumption (A1) of Theorem 4 also holds and we can conclude:

(a) If γ = 1, then γ̄ = 1 and { f(xk)} converges at least Q-linearly to ῡ. Since
‖xk − xk+1‖2 is of the order f(xk) − f(xk+1) (cf. (21)), this implies that {xk}
converges at least R-linearly in this case. Since dist(xk, S)→ 0 (cf. (24)), then the
point to which {xk} converges is an element of S.

(b) If γ > 1, then γ̄ = γ > 1. In this case, there exists some σ > 0 such that
r(xk) ≤ σ k1−γ , for all large k. Since r(xk) = f(xk)− ῡ, this further implies that the
function sequence { f(xk)} converges to ῡ sublinearly at the rate k1−γ . By combining
(21) with (23), we have

dist(xk, S) = O(‖xk − xk+1‖1/γ ) = O
(
( f(xk)− f(xk+1))1/2γ

)
, for large k.

This shows that the sequence {dist(xk, S)} converges to zero at the sublinear rate of
k(1−γ)/2γ .

This completes the proof of the theorem.
��
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Theorem 5 extends the rate of convergence results reported in [25–27] for the case
where X is a polyhedral set and for the case γ = 1. By the early discussions, the gradient
projection method, the extra-gradient method, the proximal point minimization method
and the matrix splitting method all satisfy the conditions (19)–(21). Therefore these
methods all generate a sequence which converge to a stationary point, as long as the
problem to be solved satisfies Assumptions 1 and 2. Of course, the rate of convergence
depends on the error bound exponent γ . The aforementioned methods have been studied
extensively. Unfortunately, the existing analysis typically requires some nondegeneracy
assumption on the problem (such as uniqueness of the solution) which does not hold
for many “real-world” problems or problems transformed in a way (e.g., by introducing
artificial variables) so to bring about structures suitable for decomposition.

Notice that in the case γ > 1, Theorem 5 does not make any claim on the convergence
of the iterate sequence {xk}; it only states the (sublinear rate of) convergence of the
function sequence { f(xk)} and the distance sequence {dist(xk, S)}. It remains to be seen
if the iterate sequence converges or not in this case.

4. Concluding remarks

In this paper we have derived two new projection type error bounds and applied them
the (rate of) convergence analysis of iterative descent algorithms. It has been shown that
the error exponents of the associated projection type error bounds are closely related
to the rate of convergence of functional and iterate sequences. In particular, we have
shown that in general the functional sequence converges sublinearly at a rate k−ε, where
k is the iteration index and ε is a positive constant related to the error bound exponent.
Our convergence analysis is applicable to a wide class of well known iterative descent
algorithms and to a fairly general class of constrained minimization problems (convex
or non-convex).

In closing, we point out a possible direction to further extend the current work.
Specifically, the error bound provided by Theorem 3 assumes that the objective function
f is a γ -strictly convex function. It remains to be seen if this error bound result can be
extended to the case where f has a composite structure

f(x) = 〈q, x〉 + g(Ex), ∀x,

where E is a matrix with no zero column, q is a vector, and g is a γ -strictly convex
differentiable function with ∇g Lipschitz continuous. The above composite structure
was considered by Luo and Tseng [25] where they established a local error bound with
exponent γ = 1 under the assumption that g is strongly convex.
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