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Abstract. In this paper we study a class of quadratic maximization problems and their semidefinite pro-
gramming (SDP) relaxation. For a special subclass of the problems we show that the SDP relaxation provides
an exact optimal solution. Another subclass, whiciVi®-hard, guarantees that the SDP relaxation yields

an approximate solution with a worst-case performance ratia8f8%6... This is a generalization of the
well-known result of Goemans and Williamson for the maximum-cut problem. Finally, we discuss extensions
of these results in the presence of a certain type of sign restrictions.
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1. Introduction

Semidefinite programming (SDP) has been an active research area following the seminal
work of Nesterov and Nemirovski [9]; see also Alizadeh [1]. We refer to Vandenberghe
and Boyd [10] for an overview on SDP. SDP has wide applications in many directions
including engineering, economics and combinatorial optimization. In the latter category
of applications the recent result of Goemans and Williamson [4] on maximum-cut and
satisfiability problems using semidefinite programming relaxation and randomization
techniques has generated much research interest. It turns out the method of Goeman
and Williamson is a powerful tool to approximately solve certain hard problemsin (non-
convex) quadratic optimization; see Nesterov [7,8] and Ye [11]. Recently, Nemirovski,
Roos and Terlaky [6] improved some of the results in [8] to allow homogeneous convex
quadratic constraints. Ye [12] further extended similar results to certain type of non-
homogeneous quadratically constrained problems.

Most of the above mentioned results deal with approximations of non-convex
guadratic programming problems which &fé>-hard. The goal of this paper is twofold.
First, we show that semidefinite programming can also be used azaatsolution
method for a certain class of non-convex quadratic programs, yielding polynomial-time
algorithms. Second, we show that the result of Goemans and Williamson [4] can be
generalized to a wider class of quadratic maximization problems, retaining the worst-

S. Zhang: Department of Systems Engineering & Engineering Management, The Chinese University of Hong
Kong, Shatin, N.T., Hong Kong, e-maihang@se.cuhk.cuhk.edu.hk

On leave from Econometric Institute, Erasmus University Rotterdam, The Netherlands

Mathematics Subject Classification (1993C20, 90C26



454 Shuzhong Zhang

case performance ratio 0.87856..., which is the case for their original method for the
maximum-cut problem.

In this paper the following notation will be used. We represent matrices by capital
letters, e.gX. The notationX > 0 means thaK is positive semidefinite. IX is an
n by n matrix, then diag X) denotes am-dimensional vector formed by the diagonal
elements oX. The inner-product of two matricesandY is (X, Y) = Zi’j Xij Yij. For
a given one-dimensional functioiy we denotef(X) to be[ f(Xij)Inxn. Fora, b e i",
we writeab € " as the component-wise product (or the Hadamard product). Along
the same line, we writa® to denote tha-dimensional vector which is component-wise
square ofa. If no confusion is possible then for a given veatiowe use the capitalized
letter D to denote the diagonal matrix which takias its diagonal elements.

2. Quadratic maximization

Consider the following form of quadratic maximization problem:

(QP) maximizex' Qx
subject tox? € F

whereF is a closed convex subset@f', andQ is an arbitrary symmetric matrix.

In this paper we always assume that the optimization problem under consideration
has an optimal solution.

As we shall discuss later, this problem is an extension of the optimization model
for the maximum-cut problem studied by Goemans and Williamson [4]. This kind of
extension was first proposed by Ye [11], and in its general form as formulated in (QP)
was considered in Nesterov [8]. We remark that it is not a loss of generality to exclude
a linear term in the objective function; see Ye [11]. If, for instance, the objective is
x"Qx + cTx, then one may transform it inte" Qx + xn4+1¢"x with an additional
variablexy1 and an additional restrictiomﬁ+1 = 1. It is easy to see tha¢, 11X is
a solution to the original problem.

A related semidefinite programming formulation is given as follows:

(SP maximize 2(Q, D arcsirn(X)D)
subjecttod > 0, d? € F
X >0, diag(X) =e

where arcsifX) := [arcsin(Xij)Inxn ande denotes the all-one vector.

Let v(QP) denote the optimal value of (QP) antSP denote the optimal value of
(SP). The following result is essentially due to Goemans and Williamson [4]; see also
Nesterov [7,8] and Ye [11]. A proof is provided below for completeness.

Theorem 1. It holds that

v(QP) = v(SP.
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Proof. We can rewrite (QP) as

maximize(Q, xx')
subjecttod > 0, d? € F
X=do, o € {1, +1}".

Clearly, the optimal value of the above problem can never exe€8B) since any
feasible solution of it corresponds to a feasible solution of (SP) ith oo ' . Notice
thatif o € {—1, +1}" then2 arcsinoo ") = oo . Hence,

v(QP) < v(SP. (1)

To prove the reversed direction of the inequality, we take an arbitrary feasible
solution of (SP). Let it bed, X). Since X is positive semidefinite, leX = VTV
whereV = [vy, ..., vn]. Now, leté be a uniformly generated random unit vector whose
dimension is equal to the number of rows Vh Having generated such a random
directiong, let

oi =sign(vy &), fori =1,....n

where sign(-) is the sign function, i.e. it is-1 for non-negative numbers, andl for
negative numbers.
For anyi andj, it follows that

Eloioj]l = 1— 2Pr{oi # oj}
=1- EZ(vi, vj)
T

2
=1— = arccogy vj
T

2
= 1 - —arccosXjj
T

= E arcsinXjj,
b

where the second equation is based on the fact that B£ oj} = %Z(vi, vj). This'is

a nontrivial observation; cf. Lemma 3.2 of [4].

By using the linearity of the mathematical expectation, we conclude that the expected
objective value in (QP) of such solutidaris E[(Q, (do)(do)T)] = %(Q, D(arcsinX)D),
which implies that the optimum value of (QP) must be at least as large as the op-
timum value of (SP). That isy(QP) > v(SP, and combining with (1) we have
v(QP) = v(SP.

|
Now we consider a relaxed semidefinite maximization problem:

(R) maximize(Q, Z)
subjectto diagZ) € F
Z>0.
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Nesterov [7] has shown that > 0 and diag X) = eimply arcsinX) = X = 0. As
a consequence of this fact we conclude that (R) is a relaxation of (SP). This is because
any feasible solutioid, X) for (SP) also yields a feasible solution for (R) given as

2
Z := —DarcsinX)D.

T

To see this we first note tha > 0 as arcsioX) = X > 0, and secondly, diaZ) =
d? € F. Since (R) is a relaxation it follows immediately that

v(SP) < v(R). &)
We remark here that it is a closed convex set then (R) is a well-formulated convex
optimization problem.

Furthermore, ifQ is a positive semidefinite matrix, then by noting ar¢xin = X
again, one has

2
v(QP) > —u(R).
T
The above result was established in Nesterov [7]. This means that the solution of
(R) provides a good approximation for (QP) which itself cand®@-hard, with the

worst-case performance ratio beingm2~ 0.63661. In Sect. 4 we shall see that this
performance ratio can be improved for a more restrictive subclass of problems.

3. A polynomially solvable case

In this section we shall concentrate on the conditions under which a solution for (R)
also solves (QP) exactly. The main result in this direction is stated as follows.

Theorem 2. If Q = [qjjInxn satisfiesgij > O for all i # j, thenv(R) = v(SP) =
v(QP). Moreover, suppose that* is an optimal solution for (R). Ther/diag (Z*) is
an optimal solution for (QP).

In order to prove this result we first note a lemma.

Lemma 1. For anyM > 1there isep > O such that
2 .
—arcsit — Mt >1—M —epm
T

forall t € [—1, +1]. Moreover,

lim ey =0.
M—+o0
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Proof. For anyM > 1 andt € [—1, O] it holds that
2 . 2 .
—arcsint — Mt > —arcsit—t>0>1-— M.
T T

Moreover, the functio(t) := 7%arcsirlt — Mt is convex o0, +1], and

2
hWit) = —— — M.
© vl —1t2

The function attains its minimum valuetat = /1 — 4/(xM)2. Therefore,

h(t) > h(ty) = ;arcsin\/l —4/(mM)2 — M\/l —4/(mM)2
2
z in/1— 2 _ _
> ﬂ(aI’CSI 1-4/aM)2 —n/2) +1— M

2
= ——arccos/1—4/(aM)2+1—-M
b

forallt € [0, +1]. Let

2
em = — arccos/1 —4/(xM)2.
T

Clearly,

lim em = 0.
M—+o00

Proof of Theorem 2.
Let Z* be an optimal solution of (R). Let

d* = ,/diag(Z*) andX* = (D*)*Z*(D*)* + D
where(D*)" stands for the pseudo-inversedf, i.e. it is also diagonal and

ot @1 ifd* > 0;
(D3 = {o,' if d* 0,

andD denotes a binary diagonal matrix whég = 1if Z} = 0 andDj; = 0 otherwise.
It can be easily verified thatj; = d*d;X{; foralli and]j.
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Since(d*)? e F, diag(X*) = eandX* > 0, itfollows that(d*, X*) forms afeasible
solution to (SP). Therefore,

v(SP > §<Q, D* arcsin X*)D*)

2 .
> qjdids (; arcsinX; ) + ) i (d)?
i=1

i#]
n
> > giidrdi(L— M+ MXij —em) + ) gii (d)?
i#] i=1

n
=(1—M—em) ) djdidf + Mu(R) +em Y i (d)?
ij i=1

n
> (1= M~ em)v(R) + Mu(R) +em Y_ G (62
i=1

n
=L —emv(R) +em Y Gi (@) 3)
i=1
where we letM > 1. The second inequality of the above derivation follows from
Lemma 1, and the third inequality follows from the fact tdatd*)T is also a feasible
solution for (R).
By takingM — +o00 we have

v(SP > v(R).
Combining the above inequality with (2) yields
v(SP) = v(R).

Moreover, from (3) it follows that

Y gijdidf = v(R)
i
and this implies thatl* is in fact an optimal solution for (QP).
]

Corollary 1. Suppose thaf is a closed convex set and that the off-diagonal elements
of Q are nonnegative. Then (QP) can be polynomially approximated in terms of the
problem size and the logarithm of the accuracy required.

Proof. By Theorem 2, if the off-diagonal elements @ are nonnegative then any
optimal solution of (R) also solves (QP). Moreover/ffis a closed convex set, then
(R) is a convex program for which polynomial-time approximation algorithms exist in
terms of the size of the problem and the logarithm of the accuracy required; see e.g.
Grotschel, Lovasz and Schrijver [5].

]
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We remark that linear programming

maximizec' x
subjecttoAx=Db
x>0

can be cast as

maximizec' x?
subject toAx? = b

to which, of course, Corollary 1 applies.

4. OD nonpositive quadratic maximization

The well-known algorithm for the maximum-cut problem proposed by Goemans and
Williamson [4] is based on the following quadratic maximization formulation:

maximizeY {L; >0 wij 1_;”(]
subjecttox? =1, i =1,..,n
wherewj; > Oforalli, j = 1,..., n. It turns out that this problem can be equivalently
rewritten as
maximizex' Qx
subject tox? € F
whereF = eis a single point, an@®@ = [¢}ij Inxn satisfiessjj = —wjj fori # j and

gi = er‘zl wij fori = 1,...,n. (See also [3] for a discussion on the formulation of
this problem). Specifically, in this quadratic form we hayge < 0 for anyi # j, and
Q > 0. Goemans and Williamson showed that under this formulation it holds that

v(QP) = v(SP = av(R)

with @ = 0.87856... For the maximum-cut problem this is the best known worst-case
ratio for a polynomial approximation algorithm.

We shall see below that this result can be generalized to any (QPYwi#h0 and
gij < Oforalli # j. First we note the following inequality, which was also used in
Goemans and Williamson [4], i.e.

2 .
—arcsint <1— o + ot 4)
b4

forallt e [-1, +1].

Theorem 3. If Q = [qjj Inxn Satisfiesjj < Oforalli # j andQ > 0, then
v(QP) = v(SP = av(R)

with « = 0.87856...
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Proof. As in the proof of Theorem 2, we consider an optimal soluférfor (R). Let
d* = ,/diag(Z*) andX* = (D*)*Z*(D*)* + D.

Then, due to the fact that*, X*) is a feasible solution to (SP), one has

2
v(SP) > Zqi,-di*df (; arcsw(xij))
i

2 .
= qjdid (; arcsinX;; )) + )i (d)?
i£] i—1

n
>3 dididi (1 —a+aXi) + > gi(dH)?
i£] i=1

= A—w) ) adidf +a ) ajdidX;
i i

=(1—a) ) _gijdd} +av(R)
ij
> av(R)

where in the second inequality we usg¢ < 0 and also (4), and the last inequality
follows from Q > 0.

O

Observe that the proofs of Theorem 2 and Theorem 3 depend critically on the fact
that the termgy;j di*dj‘, i # ], are of the same sign. This however, does not necessarily
require tha;j, i # j, are of the same sign per se. In fact, different signs are allowed
as long as they will have the same sign under a similar diagonal sign transformation. To
make this clearer we introduce the following two definitions.

Definition 1. We call a symmetric matriQ = [¢}j Inxn almost OD-nonnegativiethere
exists a sign vectar € {—1, +1}" such that

Gijoioj = 0
foralli,j=1,..,nandi # j.

Definition 2. We call a symmetric matri®) = [0}jj Inxn almost OD-nonpositivi there
exists a sign vectar € {—1, +1}" such that

gijoioj <0

foralli,j=1,..,nandi # j.
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For example,
2 -3 5
Q=|-3 1-1
5 -1 -4

is almost OD-nonnegative sinee= [+1, —1, +1] satisfies the required condition.
We remark that a matrix can be both almost OD-nonnegative and almost OD-
nonpositive, e.g.

Checking whether or not a given matGxis OD-nonnegative (OD-nonpositive) is easy.
In fact, if Q does not contain zeros then the sign pattera afin be determined by
a single column or row o). The rest is a simply matter of checking if this pattern is
consistent for all columns/rows.

Theorem 4. If Q is almost OD-nonnegative, then
v(QP) = v(SP) = v(R).
If Q = 0is almost OD-nonpositive, then
v(QP) = v(SP = av(R)
with « = 0.87856...

Proof. We follow exactly the same arguments as in the proofs of Theorem 2 and
Theorem 3, except that now we let

d* = o/diag(Z*).

It can be easily checked that the rest of the proofs simply go through.

5. Quadratic maximization with sign restrictions

In this section we shall discuss quadratic maximization (QP) with extra restrictions
on the signs of the cross-produeix's. We shall see that some of the results in the
previous sections carry over to this case. Note that in their original paper Goemans
and Williamson [4] discussed this type of extensions for the maximum-cut problem.
Extensive discussions on this issue can also be found in [2].

Let S andS_ be subsets of double indices. Consider

(QP)Y maximizex' Qx
subject tox? e F,
Xixj = 0for(, j) e S;,
xkx) < 0for(k, 1) e S_.
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Correspondingly,

(SP’ maximize 2(Q, D arcsirn(X)D)
subjecttod > 0, d? € F,
X >0, diag(X) = e,
Xij =1for(, ) € Sy,
Xy =—-1for(k,I) e S_.

Rewriting (QP)’ as

maximize(Q, xx')

subjecttod > 0, d? € F
X =do, o € {—1, +1}",
oioj =+1for(, j) € Sy,
okol = —1for(k, 1) e S_

one has
v(QP) < v(SP.

Now we prove that the equality must hold.
Let (d, X) be a feasible solution aSP'. Let X = VTV andV = [v1, ..., vn]. Let
& be a uniformly generated random vector and let

oi =sign(v &), fori =1,....n.
As in the proof of Theorem 1 we have
2 .
El[oioj] = — arcsinXjj
b
for any pair(, j). In particular, if(i, j) € S; thensioj = 1 and if(i, j) € S_ then
oioj = —1. This means that = do is always a feasible solution f¢QP)’. Moreover,

E[(Q, (do)(do)T)] = %(Q, D arcsin X)D).

Hencew(QP)’ > v(SP and consequently
v(QP) = v(SP/,

a relation similar to the one established in Theorem 1.
The corresponding relaxation 8P’ is given as follows:

(R) maximize(Q, DXD)
subjecttod > 0, d? € F,
X =0, diag(X) = e,
Xij =1for (i, j) € Sy,
Xk =—-1forkl)e S_.
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For any feasible solution afSP’, say(d, X), it follows that (d, %arcsir(X)) is also
a feasible solution ofR)’. Hence,

v(QP) = v(SP’ < v(R).

Unlike (R), problem(R)’ may not be a convex optimization problem. However, in
some special cases it can still be easy to solve, e.g. in the application of the maximum-
cut problem, as we shall discuss later. In any case, if weal fithen(R)’ reduces to
a semidefinite program.

Since (SP’ and (R)’ have identical feasible sets, we claim that the proofs for
Theorem 2 and Theorem 3 can be copied to yield the following two analogous results.

Theorem 5. Suppose thaQ = [gjjInxn satisfiesgij > Ofor alli # j and(, j) &
S; US_. Moreover, suppose that the matix= [Yjj Inxn is positive semidefinite, where
Yij = —1for (i, j) € S_ andYj; = 1forall (i, j) ¢ S-. Then

v(R) = v(SP' = v(QP)".

Proof. Let (d*, X*) be an optimal solution afR)’". Certainly itis also a feasible solution
for (SP'. Therefore,

v(SP/ > é(Q, D* arcsin X*)D*)

- > qij o d (E arcsinxi*j)
2] andi Des, - d
+an(d ) + Z qud*d - Z qu* df
(,))eSy (,j)eS-
> > Gijdfdi(1— M + MX}; —em)
{i#] and(i DESLUS-}
+Zq.. @)+ Y gjdidi— > qjdidy
(,)eSy (.)esS-
=(1—M—em) ) GjdidiYij + Mu(R)/
i
+6M[Zq" @)%+ D ajdidi— > Qijdi*d}‘]
(,))eS+ (.)es
>(1-M —GM)v(R) + Mu(R
+€M[Zq" (d*) + Z qu* df Z qu*d*]
(,))eS+ (.)es
=1 —emv(R/

n
+6M[ZQii(di*)2+ Z gij o dj — Z qui*dT]

i=1 (i.))eSy (i,pes-
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whereM > 1, and last inequality is due to the fact thidt, Y) forms a feasible solution
for (R)'. LettingM — oo we obtain

v(SP/ > v(R)'.
Thereforep(SP’ = v(R)’, and the theorem is proven.

O
Theorem 6. Suppose tha® = [jj Inxn > O satisfiesy;; < Oforalli # j. Then,
v(QP) = v(SP' = av(R)
with « = 0.87856...
Proof. Let (d*, X*) be an optimal solution ofR)’.
Then,
v(SP > Zq,,d*d*( arcsin( X ))
n
- Zq.,d di ( arcsir(Xs; ) ) + Zqii (02
i#] i=1
> Y gididi(l—a +aX) + Z i ()
i#£] i=1
= (l—oz)Zqijdi*dT —i—anijdi*dTXi*j
i i
=(1l-a Z Gij d'd? + av(R)
i
> av(R).
O

For the maximum-cut problend* = e, and so the corresponding probleiR)’
reads as follows:
maximize(Q, X)
subjecttoX > 0, diag(X) = e,
Xij =1for (i, j) € S,
Xy =—1for(k 1) e S_.

This is an SDP problem. An application of Theorem 6 is that, even if one requires in
advance that a given set of arcs must be in the cut and another given set of arcs mus
be out of the cut, as long as the problem remains feasible one can still find a solution in
polynomial time with worst-case performance ratio no less th8ng&5b6... We remark

that such a restricted version of the maximum-cut problem is denotédA¥ RES

CUT in Goemans and Williamson [4]. The above statement is exactly .Bi&886..-
approximation result of Goemans and Williamson for the MAX RES CUT problem.
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