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Abstract. In this paper we study a class of quadratic maximization problems and their semidefinite pro-
gramming (SDP) relaxation. For a special subclass of the problems we show that the SDP relaxation provides
an exact optimal solution. Another subclass, which isNP-hard, guarantees that the SDP relaxation yields
an approximate solution with a worst-case performance ratio of 0.87856.... This is a generalization of the
well-known result of Goemans and Williamson for the maximum-cut problem. Finally, we discuss extensions
of these results in the presence of a certain type of sign restrictions.
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1. Introduction

Semidefinite programming (SDP) has been an active research area following the seminal
work of Nesterov and Nemirovski [9]; see also Alizadeh [1]. We refer to Vandenberghe
and Boyd [10] for an overview on SDP. SDP has wide applications in many directions
including engineering, economics and combinatorial optimization. In the latter category
of applications the recent result of Goemans and Williamson [4] on maximum-cut and
satisfiability problems using semidefinite programming relaxation and randomization
techniques has generated much research interest. It turns out the method of Goemans
and Williamson is a powerful tool to approximately solve certain hard problems in (non-
convex) quadratic optimization; see Nesterov [7,8] and Ye [11]. Recently, Nemirovski,
Roos and Terlaky [6] improved some of the results in [8] to allow homogeneous convex
quadratic constraints. Ye [12] further extended similar results to certain type of non-
homogeneous quadratically constrained problems.

Most of the above mentioned results deal with approximations of non-convex
quadratic programming problems which areNP-hard. The goal of this paper is twofold.
First, we show that semidefinite programming can also be used as anexactsolution
method for a certain class of non-convex quadratic programs, yielding polynomial-time
algorithms. Second, we show that the result of Goemans and Williamson [4] can be
generalized to a wider class of quadratic maximization problems, retaining the worst-
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case performance ratio 0.87856..., which is the case for their original method for the
maximum-cut problem.

In this paper the following notation will be used. We represent matrices by capital
letters, e.g.X. The notationX � 0 means thatX is positive semidefinite. IfX is an
n by n matrix, then diag(X) denotes ann-dimensional vector formed by the diagonal
elements ofX. The inner-product of two matricesX andY is 〈X,Y〉 =∑i, j Xi j Yi j . For
a given one-dimensional functionf , we denotef(X) to be[ f(Xi j )]n×n. Fora, b ∈ <n,
we write ab ∈ <n as the component-wise product (or the Hadamard product). Along
the same line, we writea2 to denote then-dimensional vector which is component-wise
square ofa. If no confusion is possible then for a given vectord we use the capitalized
letter D to denote the diagonal matrix which takesd as its diagonal elements.

2. Quadratic maximization

Consider the following form of quadratic maximization problem:

(QP) maximizexT Qx
subject tox2 ∈ F

whereF is a closed convex subset of<n, andQ is an arbitrary symmetric matrix.
In this paper we always assume that the optimization problem under consideration

has an optimal solution.
As we shall discuss later, this problem is an extension of the optimization model

for the maximum-cut problem studied by Goemans and Williamson [4]. This kind of
extension was first proposed by Ye [11], and in its general form as formulated in (QP)
was considered in Nesterov [8]. We remark that it is not a loss of generality to exclude
a linear term in the objective function; see Ye [11]. If, for instance, the objective is
xT Qx + cT x, then one may transform it intoxT Qx + xn+1cT x with an additional
variablexn+1 and an additional restrictionx2

n+1 = 1. It is easy to see thatxn+1x is
a solution to the original problem.

A related semidefinite programming formulation is given as follows:

(SP) maximize 2
π
〈Q, D arcsin(X)D〉

subject tod ≥ 0, d2 ∈ F
X � 0, diag(X) = e

where arcsin(X) := [arcsin(Xi j )]n×n andedenotes the all-one vector.
Let v(QP) denote the optimal value of (QP) andv(SP) denote the optimal value of

(SP). The following result is essentially due to Goemans and Williamson [4]; see also
Nesterov [7,8] and Ye [11]. A proof is provided below for completeness.

Theorem 1. It holds that

v(QP) = v(SP).
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Proof. We can rewrite (QP) as

maximize〈Q, xxT 〉
subject tod ≥ 0, d2 ∈ F

x = dσ, σ ∈ {−1,+1}n.
Clearly, the optimal value of the above problem can never exceedv(SP) since any
feasible solution of it corresponds to a feasible solution of (SP) withX = σσT . Notice
that if σ ∈ {−1,+1}n then 2

π
arcsin(σσT ) = σσT . Hence,

v(QP) ≤ v(SP). (1)

To prove the reversed direction of the inequality, we take an arbitrary feasible
solution of (SP). Let it be(d, X). Since X is positive semidefinite, letX = VT V
whereV = [v1, ..., vn]. Now, letξ be a uniformly generated random unit vector whose
dimension is equal to the number of rows inV. Having generated such a random
directionξ, let

σi = sign(vT
i ξ), for i = 1, ...,n

where sign(·) is the sign function, i.e. it is+1 for non-negative numbers, and−1 for
negative numbers.

For anyi and j , it follows that

E[σiσ j ] = 1− 2Pr{σi 6= σ j }
= 1− 2

π
6 (vi , v j )

= 1− 2

π
arccosvT

i v j

= 1− 2

π
arccosXi j

= 2

π
arcsinXi j ,

where the second equation is based on the fact that Pr{σi 6= σ j } = 1
π
6 (vi , v j ). This is

a nontrivial observation; cf. Lemma 3.2 of [4].
By using the linearity of the mathematical expectation, we conclude that the expected

objective value in (QP) of such solutiondσ is E[〈Q, (dσ)(dσ)T 〉] = 2
π
〈Q, D(arcsinX)D〉,

which implies that the optimum value of (QP) must be at least as large as the op-
timum value of (SP). That is,v(QP) ≥ v(SP), and combining with (1) we have
v(QP) = v(SP).

ut
Now we consider a relaxed semidefinite maximization problem:

(R) maximize〈Q, Z〉
subject to diag(Z) ∈ F

Z � 0.
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Nesterov [7] has shown thatX � 0 and diag(X) = e imply arcsin(X) � X � 0. As
a consequence of this fact we conclude that (R) is a relaxation of (SP). This is because
any feasible solution(d, X) for (SP) also yields a feasible solution for (R) given as

Z := 2

π
D arcsin(X)D.

To see this we first note thatZ � 0 as arcsin(X) � X � 0, and secondly, diag(Z) =
d2 ∈ F . Since (R) is a relaxation it follows immediately that

v(SP) ≤ v(R). (2)

We remark here that ifF is a closed convex set then (R) is a well-formulated convex
optimization problem.

Furthermore, ifQ is a positive semidefinite matrix, then by noting arcsin(X) � X
again, one has

v(QP) ≥ 2

π
v(R).

The above result was established in Nesterov [7]. This means that the solution of
(R) provides a good approximation for (QP) which itself can beNP-hard, with the
worst-case performance ratio being 2/π ≈ 0.63661. In Sect. 4 we shall see that this
performance ratio can be improved for a more restrictive subclass of problems.

3. A polynomially solvable case

In this section we shall concentrate on the conditions under which a solution for (R)
also solves (QP) exactly. The main result in this direction is stated as follows.

Theorem 2. If Q = [qi j ]n×n satisfiesqi j ≥ 0 for all i 6= j , thenv(R) = v(SP) =
v(QP). Moreover, suppose thatZ∗ is an optimal solution for (R). Then,

√
diag (Z∗) is

an optimal solution for (QP).

In order to prove this result we first note a lemma.

Lemma 1. For anyM ≥ 1 there isεM ≥ 0 such that

2

π
arcsint − Mt ≥ 1− M − εM

for all t ∈ [−1,+1]. Moreover,

lim
M→+∞ εM = 0.
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Proof. For anyM ≥ 1 andt ∈ [−1,0] it holds that

2

π
arcsint − Mt ≥ 2

π
arcsint − t ≥ 0≥ 1− M.

Moreover, the functionh(t) := 2
π

arcsint − Mt is convex on[0,+1], and

h′(t) = 2

π
√

1− t2
− M.

The function attains its minimum value attM =
√

1− 4/(πM)2. Therefore,

h(t) ≥ h(tM) = 2

π
arcsin

√
1− 4/(πM)2− M

√
1− 4/(πM)2

≥ 2

π
(arcsin

√
1− 4/(πM)2 − π/2)+ 1− M

= − 2

π
arccos

√
1− 4/(πM)2+ 1− M

for all t ∈ [0,+1]. Let

εM = 2

π
arccos

√
1− 4/(πM)2.

Clearly,

lim
M→+∞ εM = 0.

ut

Proof of Theorem 2.
Let Z∗ be an optimal solution of (R). Let

d∗ = √diag(Z∗) andX∗ = (D∗)+Z∗(D∗)+ + D̄

where(D∗)+ stands for the pseudo-inverse ofD∗, i.e. it is also diagonal and

(D∗)+ii =
{
(d∗i )−1, if d∗i > 0;
0, if d∗i = 0,

andD̄ denotes a binary diagonal matrix whereD̄ii = 1 if Z∗ii = 0 andD̄ii = 0 otherwise.
It can be easily verified thatZ∗i j = d∗i d∗j X∗i j for all i and j .
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Since(d∗)2 ∈ F , diag(X∗) = eandX∗ � 0, it follows that(d∗, X∗) forms a feasible
solution to (SP). Therefore,

v(SP) ≥ 2

π
〈Q, D∗ arcsin(X∗)D∗〉

=
∑
i 6= j

qi j d
∗
i d∗j

(
2

π
arcsinX∗i j

)
+

n∑
i=1

qii (d
∗
i )

2

≥
∑
i 6= j

qi j d
∗
i d∗j (1− M + MX∗i j − εM)+

n∑
i=1

qii (d
∗
i )

2

= (1− M − εM)
∑
i, j

qi j d
∗
i d∗j + Mv(R) + εM

n∑
i=1

qii (d
∗
i )

2

≥ (1− M − εM)v(R)+ Mv(R) + εM

n∑
i=1

qii (d
∗
i )

2

= (1− εM)v(R)+ εM

n∑
i=1

qii (d
∗
i )

2, (3)

where we letM ≥ 1. The second inequality of the above derivation follows from
Lemma 1, and the third inequality follows from the fact thatd∗(d∗)T is also a feasible
solution for (R).

By takingM →+∞ we have

v(SP) ≥ v(R).
Combining the above inequality with (2) yields

v(SP) = v(R).
Moreover, from (3) it follows that∑

i, j

qi j d
∗
i d∗j = v(R)

and this implies thatd∗ is in fact an optimal solution for (QP).
ut

Corollary 1. Suppose thatF is a closed convex set and that the off-diagonal elements
of Q are nonnegative. Then (QP) can be polynomially approximated in terms of the
problem size and the logarithm of the accuracy required.

Proof. By Theorem 2, if the off-diagonal elements ofQ are nonnegative then any
optimal solution of (R) also solves (QP). Moreover, ifF is a closed convex set, then
(R) is a convex program for which polynomial-time approximation algorithms exist in
terms of the size of the problem and the logarithm of the accuracy required; see e.g.
Grötschel, Lovász and Schrijver [5].

ut
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We remark that linear programming

maximizecT x
subject toAx= b

x ≥ 0

can be cast as

maximizecT x2

subject toAx2 = b

to which, of course, Corollary 1 applies.

4. OD nonpositive quadratic maximization

The well-known algorithm for the maximum-cut problem proposed by Goemans and
Williamson [4] is based on the following quadratic maximization formulation:

maximize
∑n

i=1
∑n

j=1wi j
1−xi x j

2

subject tox2
i = 1, i = 1, ...,n

wherewi j ≥ 0 for all i , j = 1, ...,n. It turns out that this problem can be equivalently
rewritten as

maximizexT Qx

subject tox2 ∈ F
whereF = e is a single point, andQ = [qi j ]n×n satisfiesqi j = −wi j for i 6= j and
qii = ∑n

j=1wi j for i = 1, ...,n. (See also [3] for a discussion on the formulation of
this problem). Specifically, in this quadratic form we haveqi j ≤ 0 for anyi 6= j , and
Q � 0. Goemans and Williamson showed that under this formulation it holds that

v(QP) = v(SP) ≥ αv(R)
with α = 0.87856.... For the maximum-cut problem this is the best known worst-case
ratio for a polynomial approximation algorithm.

We shall see below that this result can be generalized to any (QP) withQ � 0 and
qi j ≤ 0 for all i 6= j . First we note the following inequality, which was also used in
Goemans and Williamson [4], i.e.

2

π
arcsint ≤ 1− α+ αt (4)

for all t ∈ [−1,+1].
Theorem 3. If Q = [qi j ]n×n satisfiesqi j ≤ 0 for all i 6= j and Q � 0, then

v(QP) = v(SP) ≥ αv(R)
with α = 0.87856....
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Proof. As in the proof of Theorem 2, we consider an optimal solutionZ∗ for (R). Let

d∗ = √diag(Z∗) andX∗ = (D∗)+Z∗(D∗)+ + D̄.

Then, due to the fact that(d∗, X∗) is a feasible solution to (SP), one has

v(SP) ≥
∑
i, j

qi j d
∗
i d∗j

(
2

π
arcsin(X∗i j )

)

=
∑
i 6= j

qi j d
∗
i d∗j

(
2

π
arcsin(X∗i j )

)
+

n∑
i=1

qii (d
∗
i )

2

≥
∑
i 6= j

qi j d
∗
i d∗j (1− α+ αX∗i j )+

n∑
i=1

qii (d
∗
i )

2

= (1− α)
∑
i, j

qi j d
∗
i d∗j + α

∑
i, j

qi j d
∗
i d∗j X∗i j

= (1− α)
∑
i, j

qi j d
∗
i d∗j + αv(R)

≥ αv(R)

where in the second inequality we usedqi j ≤ 0 and also (4), and the last inequality
follows from Q � 0.

ut

Observe that the proofs of Theorem 2 and Theorem 3 depend critically on the fact
that the termsqi j d∗i d∗j , i 6= j , are of the same sign. This however, does not necessarily
require thatqi j , i 6= j , are of the same sign per se. In fact, different signs are allowed
as long as they will have the same sign under a similar diagonal sign transformation. To
make this clearer we introduce the following two definitions.

Definition 1. We call a symmetric matrixQ = [qi j ]n×n almost OD-nonnegativeif there
exists a sign vectorσ ∈ {−1,+1}n such that

qi j σiσ j ≥ 0

for all i , j = 1, ...,n andi 6= j .

Definition 2. We call a symmetric matrixQ = [qi j ]n×n almost OD-nonpositiveif there
exists a sign vectorσ ∈ {−1,+1}n such that

qi j σiσ j ≤ 0

for all i , j = 1, ...,n andi 6= j .
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For example,

Q1 =
 2 −3 5
−3 1 −1

5 −1 −4


is almost OD-nonnegative sinceσ = [+1,−1,+1] satisfies the required condition.

We remark that a matrix can be both almost OD-nonnegative and almost OD-
nonpositive, e.g.

Q2 =
[

1 −1
−1 1

]
.

Checking whether or not a given matrixQ is OD-nonnegative (OD-nonpositive) is easy.
In fact, if Q does not contain zeros then the sign pattern ofσ can be determined by
a single column or row ofQ. The rest is a simply matter of checking if this pattern is
consistent for all columns/rows.

Theorem 4. If Q is almost OD-nonnegative, then

v(QP) = v(SP) = v(R).
If Q � 0 is almost OD-nonpositive, then

v(QP) = v(SP) ≥ αv(R)
with α = 0.87856....

Proof. We follow exactly the same arguments as in the proofs of Theorem 2 and
Theorem 3, except that now we let

d∗ = σ√diag(Z∗).

It can be easily checked that the rest of the proofs simply go through.
ut

5. Quadratic maximization with sign restrictions

In this section we shall discuss quadratic maximization (QP) with extra restrictions
on the signs of the cross-productsxi x j ’s. We shall see that some of the results in the
previous sections carry over to this case. Note that in their original paper Goemans
and Williamson [4] discussed this type of extensions for the maximum-cut problem.
Extensive discussions on this issue can also be found in [2].

Let S+ andS− be subsets of double indices. Consider

(QP)′ maximizexT Qx
subject tox2 ∈ F,

xi x j ≥ 0 for (i , j) ∈ S+,
xkxl ≤ 0 for (k, l) ∈ S−.
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Correspondingly,

(SP)′ maximize 2
π
〈Q, D arcsin(X)D〉

subject tod ≥ 0, d2 ∈ F,
X � 0, diag(X) = e,
Xi j = 1 for (i , j) ∈ S+,
Xkl = −1 for (k, l) ∈ S−.

Rewriting(QP)′ as

maximize〈Q, xxT 〉
subject tod ≥ 0, d2 ∈ F

x = dσ, σ ∈ {−1,+1}n,
σiσ j = +1 for (i , j) ∈ S+,
σkσl = −1 for (k, l) ∈ S−

one has

v(QP)′ ≤ v(SP)′.

Now we prove that the equality must hold.
Let (d, X) be a feasible solution of(SP)′. Let X = VT V andV = [v1, ..., vn]. Let

ξ be a uniformly generated random vector and let

σi = sign(vT
i ξ), for i = 1, ...,n.

As in the proof of Theorem 1 we have

E[σiσ j ] = 2

π
arcsinXi j

for any pair(i , j). In particular, if(i , j) ∈ S+ thenσiσ j = 1 and if (i , j) ∈ S− then
σiσ j = −1. This means thatx = dσ is always a feasible solution for(QP)′. Moreover,

E[〈Q, (dσ)(dσ)T〉] = 2

π
〈Q, D arcsin(X)D〉.

Hence,v(QP)′ ≥ v(SP)′ and consequently

v(QP)′ = v(SP)′,

a relation similar to the one established in Theorem 1.
The corresponding relaxation of(SP)′ is given as follows:

(R)′ maximize〈Q, DX D〉
subject tod ≥ 0, d2 ∈ F,

X � 0, diag(X) = e,
Xi j = 1 for (i , j) ∈ S+,
Xkl = −1 for (k, l) ∈ S−.
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For any feasible solution of(SP)′, say(d, X), it follows that (d, 2
π

arcsin(X)) is also
a feasible solution of(R)′. Hence,

v(QP)′ = v(SP)′ ≤ v(R)′.
Unlike (R), problem(R)′ may not be a convex optimization problem. However, in

some special cases it can still be easy to solve, e.g. in the application of the maximum-
cut problem, as we shall discuss later. In any case, if we fixd, then(R)′ reduces to
a semidefinite program.

Since (SP)′ and (R)′ have identical feasible sets, we claim that the proofs for
Theorem 2 and Theorem 3 can be copied to yield the following two analogous results.

Theorem 5. Suppose thatQ = [qi j ]n×n satisfiesqi j ≥ 0 for all i 6= j and (i , j) 6∈
S+∪S−. Moreover, suppose that the matrixY = [Yi j ]n×n is positive semidefinite, where
Yi j = −1 for (i , j) ∈ S− andYi j = 1 for all (i , j) 6∈ S−. Then

v(R)′ = v(SP)′ = v(QP)′.

Proof. Let (d∗, X∗) be an optimal solution of(R)′. Certainly it is also a feasible solution
for (SP)′. Therefore,

v(SP)′ ≥ 2

π
〈Q, D∗ arcsin(X∗)D∗〉

=
∑

{i 6= j and(i, j) 6∈S+∪S−}
qi j d

∗
i d∗j

(
2

π
arcsinX∗i j

)

+
n∑

i=1

qii (d
∗
i )

2+
∑

(i, j)∈S+
qi j d

∗
i d∗j −

∑
(i, j)∈S−

qi j d
∗
i d∗j

≥
∑

{i 6= j and(i, j) 6∈S+∪S−}
qi j d

∗
i d∗j (1− M + MX∗i j − εM)

+
n∑

i=1

qii (d
∗
i )

2+
∑

(i, j)∈S+
qi j d

∗
i d∗j −

∑
(i, j)∈S−

qi j d
∗
i d∗j

= (1− M − εM)
∑
i, j

qi j d
∗
i d∗j Yi j + Mv(R)′

+εM

[ n∑
i=1

qii (d
∗
i )

2+
∑

(i, j)∈S+
qi j d

∗
i d∗j −

∑
(i, j)∈S−

qi j d
∗
i d∗j

]
≥ (1− M − εM)v(R)

′ + Mv(R)′

+ εM

[ n∑
i=1

qii (d
∗
i )

2+
∑

(i, j)∈S+
qi j d

∗
i d∗j −

∑
(i, j)∈S−

qi j d
∗
i d∗j

]
= (1− εM)v(R)

′

+ εM

[ n∑
i=1

qii (d
∗
i )

2+
∑

(i, j)∈S+
qi j d

∗
i d∗j −

∑
(i, j)∈S−

qi j d
∗
i d∗j

]
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whereM ≥ 1, and last inequality is due to the fact that(d∗,Y) forms a feasible solution
for (R)′. Letting M →∞ we obtain

v(SP)′ ≥ v(R)′.
Therefore,v(SP)′ = v(R)′, and the theorem is proven.

ut
Theorem 6. Suppose thatQ = [qi j ]n×n � 0 satisfiesqi j ≤ 0 for all i 6= j . Then,

v(QP)′ = v(SP)′ ≥ αv(R)′
with α = 0.87856....

Proof. Let (d∗, X∗) be an optimal solution of(R)′.
Then,

v(SP)′ ≥
∑
i, j

qi j d
∗
i d∗j

(
2

π
arcsin(X∗i j )

)

=
∑
i 6= j

qi j d
∗
i d∗j

(
2

π
arcsin(X∗i j )

)
+

n∑
i=1

qii (d
∗
i )

2

≥
∑
i 6= j

qi j d
∗
i d∗j (1− α+ αX∗i j )+

n∑
i=1

qii (d
∗
i )

2

= (1− α)
∑
i, j

qi j d
∗
i d∗j + α

∑
i, j

qi j d
∗
i d∗j X∗i j

= (1− α)
∑
i, j

qi j d
∗
i d∗j + αv(R)′

≥ αv(R)′.
ut

For the maximum-cut problem,d∗ = e, and so the corresponding problem(R)′
reads as follows:

maximize〈Q, X〉
subject toX � 0, diag(X) = e,

Xi j = 1 for (i , j) ∈ S+,
Xkl = −1 for (k, l) ∈ S−.

This is an SDP problem. An application of Theorem 6 is that, even if one requires in
advance that a given set of arcs must be in the cut and another given set of arcs must
be out of the cut, as long as the problem remains feasible one can still find a solution in
polynomial time with worst-case performance ratio no less than 0.87856.... We remark
that such a restricted version of the maximum-cut problem is denoted byMAX RES
CUT in Goemans and Williamson [4]. The above statement is exactly the 0.87856...-
approximation result of Goemans and Williamson for the MAX RES CUT problem.
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