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Abstract. The classes oP-, Py-, Rgp-, semimonotone, strictly semimonotone, column sufficient, and non-
degenerate matrices play important roles in studying solution properties of equations and complementarity
problems and convergence/complexity analysis of methods for solving these problems. It is known that the
problem of deciding whether a square matrix with integer/rational entrieRig@r nondegenerate) matrix is
coNP-complete. We show, through a unified analysis, that analogous decision problems for the other matrix
classes are also ddP-complete.
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1. Introduction

There is a number of matrix classes, in addition to the classes of positive definite and
positive semidefinite matrices, that play important roles in studying solution properties
of equations and complementarity problems (CP) and convergence/complexity analy-
sis of methods for solving these problems. For example, the two clasdes aid
Po-matrices, studied by Fiedler and Pték, play important roles in the stability analysis
of solutions to CP [6,8,17], derivation of error bounds [14, p. 320], and the conver-
gence/complexity analysis of algorithms, e.g., Lemke’s method, interior-point methods,
non-interior methods, for solving CP (see [4-6,9,11,12] and references therein). In par-
ticular, a CP has certain stability property and admits reformulation as a stationary-point
problem if the Jacobian of the mapping ifPgmatrix [8,9,17]. And, for a linear CP
(LCP), existence of central path can be shown if the matrix®g-anatrix, in addition
to some nonempty interior and boundedness assumptions [11, Lem. 4.3]. Moreover, an
LCP with a Pp-matrix isNP-complete [11, p. 33].

An interesting question concerns the computational complexity (in the Turing ma-
chine model of computation [10]) of deciding whether a given square mitrmith in-
teger entries belongs to a specific matrix cfag®r the classes of positive definite and
positive semidefinite matrices, this decision problem is solvable in polynomial time (via

P. Tseng: Department of Mathematics, University of Washington, Seattle, Washington 98195, USA,
e-mail: tseng@math.washington.edu

Mathematics Subject Classification (20005A21, 68Q25, 90C33, 90C60
* This research is supported by National Science Foundation Grant CCR-9731273

1 The case oM with rational entries is reducible to this case by multiplyidgwith the lowest common
denominator of its entries.



184 Paul Tseng

Cholesky factorization, say). The same can be shown for, say, the classe§of H-
matrices (via linear programming) [6, 12]. For the classeB-phondegenerate, and co-
positive matrices, this problem was shown to beNf&-complete by, respectively,
Coxson [7], Chandrasekaran et al. [3], [12, p. 462], and Murty and Kabadi [13] (also see
[1,15] for related complexity results on, respectively, submatrix and interval matrix clas-
sification). This still leaves a number of important matrix classes, described in the books
[6,11,12], for which complexity of the corresponding decision problems is unknown.

In this paper, we study the complexity of decision problems for the classég of
Ro-, semimonotone, strictly semimonotone, and column sufficient matrices (see [6,
83.13] for a history of these matrix classes). In particular, we show that these problems
are all coNP-complete. A key part of our proof is a reduction from tKB-complete
problem of 1-norm maximization over a parallelotope [2, Thm. 15] to the decision
problems forP-, strictly semimonotone, and column sufficient matrices (see Thm. 1).
This reveals an interesting relation among these problems and yields, as a byproduct,
Coxson’s result forP-matrices. This reduction is analogous to a reduction from the
NP-complete knapsack problem to the decision problemsfprand nondegenerate
matrices (see Thm. 3 and [12, p. 462]). Our arguments differ from those of Coxson and
Chandrasekaran et al. in that they do not involve principal minors and, as such, can more
readily be extended to other matrix classes.

In our notation )" denotes the space nfdimensional real column vectors ahd
denotes transpose. For anyg 9", we denote by; theith component ok and by||x||1,
IX]|co the 1-norm ando-norm ofx. Forx, y € )N, we denoteoy := [X1y1 - - - xnyn]T.
ForanyJ C {1, ..., n}, | J| denotes the cardinality & and, for anyn x n matrix N, Nj
denotes the principal submatrix obtained by removing fid@ll rows and columns not
indexed byJ.

2. P-, strictly semimonotone, column sufficient matrices

Itis known that anm x m matrix M is nota P-matrix if and only if there exists a nonzero

u € RN satisfyinguo Mu < 0[6,11,12]. Also, by definition is notcolumn sufficient

if and only if there exists a nonzetoe R™ satisfyingu o Mu < 0 andu o Mu # 0

[6, p. 157]. By definitionM is notin the classE of strictly semimonotone matrices if
and only if there exists a nonzeuocs W™ satisfyingu > 0 and, for each € {1, ..., m}
eitheru; = 0 or[Mu]; < 0 [6, p. 188], [12, p. 227]. This condition can be written as
u > 0 andu o Mu < 0. We formally state the corresponding decision problems below.

NOT-PMAT
Instance: Positive integen and anm x m matrix M with integer entries.
Question: Does there exist nonzere K™ satisfyingu o Mu < 0?

NOT-CSMAT
Instance: Positive integen and anm x m matrix M with integer entries.
Question: Does there exist nonzere R satisfyingu o Mu < 0 andu o Mu # 0?

NOT-EMAT
Instance: Positive integen and anm x m matrix M with integer entries.
Question: Does there exist nonzere R™ satisfyingu o Mu < 0 andu > 0?
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Our reduction is from the following decision version of the problem of 1-norm
maximization over a parallelotope, shown (via a reduction from NOT-ALL-EQUAL
3-SAT) by Bodlaender et al. [2, p. 213 and Thm. 15] ta\#& complete.

[0,1]PARMAX 1

Instance: Positive integersandy; n linearly independent integer vectaas, ..., an
in RN,

Question: Does there exigte 2;“21[0, ;] satisfying||y|l1 > y?

Theorem 1. Consider positive integens and y, and n linearly independent integer
vectorsay, ..., an in K", LetA:=[a; --- a,] and

| 0 0 —e | 0 0 -e
_ A 1 0 o , A 1 0 o
m:=3n+1, M:= A 0 | 0 , M= A 0 | ol
0 2" 2" 2y—-1 0 —ef —el y
(1)

wheree:=[1 --- 1]7. The following statements are equivalent:

(a) The answer t¢0,1]PARMAX; with instancen, y, ay, ..., a, iS yes.
(b) The answer ttNOT-PMAT with instancem, M is yes.

(c) The answer ttNOT-CSMAT with instancem, M is yes.

(d) The answer ttNOT-EMAT with instancem, M’ is yes.

Proof. By using the nonsingularity oA to make the substitution = Ax, we see that
there existsy € 2{‘:1[0, a] satisfying|ly|l1 > y if and only if there existx € %"
satisfying

xe[0,1]", [AX]1=y. (2)
(a)= (c). Since the answer to [0,1]PARMAYSs yes, there exists € " satisfying (2).
Letw, := —maxX0, Ax}, w— := —maxX0, —Ax}, z:= 1. Then, for
X
| W+
U= "1 3
z

we have from (1) that

X—e
AX+ W
—AX+ w_ ’ )
2w, +2e"w_+2y—1

Mu =

By (2), x o (x — ) < 0. Also, for anyv € % we havevi(v + vy) = 0, where
vy = —max0, v}. Thus,w+ o (AX+ wy) = 0 andw_ o (—Ax+ w_) = 0. Finally,

e'wy +e'w_ +y =—e" max0, Ax} — e max0, —Ax} +y = —||AX|1 + ¥ < O,
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implying 2e"w, +2e"w_ + 2y — 1 < 0. Hence, by (4)u o Mu < 0, and, byz = 1,

Uo Mu # 0. Thus the answer to NOT-CSMAT is yes.

(a)= (d). Since the answer to [0,1]PARMASs yes, there exists € R" satisfying (2).
Let wy := max{0, —Ax}, w— := max0, Ax}, z := 1. Then, foru given by (3), we
have from (1) that

X—e
AX+ W4
—AX+ w_ ’ ©)
—eTw, —elw_+y

M'u =

Similar to the proof of (a}= (c), we obtainx o (x —€) < 0, w4+ o (Ax+ wy) = 0and
w— o (—AX+ w_) = 0. Finally,

—e"w; —eTw_+y = —e" max0, —Ax} — e’ max0, Ax} +y = —||AXll1+y < 0.

Hence, by (5)u o M'u < 0. Also, (2) impliesx > 0 and, by constructiony, > 0,
w— >0,z > 0, sou > 0. Thus the answer to NOT-EMAT is yes.

(c) = (b). Obvious.

(b) = (a). Since the answer to NOT-PMAT is yes, there exist R", w, € K",

w_ € X" andz € N such thatu given by (3) is nonzero and satisfias Mu < 0.
Then, (1) yields

Xo(X—2z6 <0,

w4 o (AX+w4) <0, ©)
w_o(—AX+w_) <0,
z2e"w, +2e"w_+ 2y —1z) <O0.

If z=0, then (6) would implyx o x < 0sox =0 andw4 owy <0, w_ow_ <0, SO
w4 = w_ = 0, contradictings # 0. Thusz # 0. Then, dividing the inequalities in (6)
by z2 and denoting’ := X/z, w', = w./z, w__ := w_/z, we obtain

Xo(X —e) <0,

w), o (AX +w/,) <0, @)
w_o(=AX +w") <0,
2e"w/, +2e"w’ +2y —1<0.

Foreach € {1, ..., njwith [AX]; < 0,[w/ Ji ([AX]i+[w/ ]i) < OimpliesO< [w/ ]; <
—[AX]i and[w’_]i (—=[AX]i + [w_]i) < 0implies[AX]; < [w’]i < 0. Thus,

—I[AXTi| = [AX]i < [w/ )i + [w’_];. (8)

Similarly, for each e {1, ..., n} with —[AX]; < O, [w/, i [AX]i 4+ [w/, ]i) < 0implies

—[AX]; < [w,]i < 0and[w’ Ji(=[AX]i + [w’_]i) < 0 implies 0< [w’]i < [AX];.
Thus,

—I[AX]i| = —[AX]i < [w/.]i + [w_]i. 9)
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Then, (8), (9) and the last inequality of (7) yield

n n
—IAX 1 ==Y IIAXT| < ) [w)di + [w' )i = e"w), +eTw < —y +1/2.
i=1 i=1

Thus,||AX|l1 > y — 1/2, implying o := maxseo,1n [|AYll1 > y — 1/2. Sincey

| Ay|l1 is a convex function, its maximum value is attained at a vert¢f,df]", so« is
an integer. Then it must be that> y, so there existg € %" satisfying (2). Thus the
answer to [0,1]PARMAX is yes.

(d) = (a). Since the answer to NOT-EMAT is yes, there exist R", w;. € %",
w_ € R andz € N such thatu given by (3) is nonzero and satisfisss M'u < 0
andu > 0. Then, as in the proof of (b} (a), we obtain thaz > 0 andx’ := x/z,
w, == wy/z, w_ :=w_/z are nonnegative and satisfy

X o(X —e) <0,

w’, o (AX 4+ w',) <0,
w_o(—AX +w_) <0,
—eTw/+ —elw +y<o.

(10)

For eachi e {1,...,n} with [AX]; < O, [w/ Ji([AX]i + [w/.]i) < O implies 0 <
[w, ]i < —[AXTi and[w’_]i (=[AXTi + [w”]j) < O implies[AX]; < [w’"]i < 0. Since
[w’_]i > 0, the latter impliegw’_]i = 0. Thus,

—[[AX]i| = [AX]i < —[w/ )i = —[w/ )i — [w_]i. (11)
Similarly, for each e {1, ..., n} with —[AX]; < O, [w/, i [AX]i 4+ [w/, ]i) < 0implies
—[AX]i < [w)]i <0and[w”]i(—[AX]i + [w_]i) < 0implies 0< [w"]i < [AX].
Since[w’, ]i > 0, the former impliegw/, ] = 0. Thus,

—|[AX]i| = —[AX]i < —[w’]i = —[w/ ]i — [w_];. (12)

Then, (11), (12) and the last inequality of (10) imply

n n
—IAX 1 ==Y IIAXT| <Y (—[wl i — [w_ 1) = —eTw/, —eTw’ < —y.
i=1 i=1

Thus, |AX||1 > y. Also, the first inequality in (10) implies & x' < e. Thus,x
satisfies (2), so the answer to [0,1]PARMAIS yes.

Notice that the matri differs from the matrixM’ in the sign of two terms in their
last row. The positive sign of the terms M is needed to prove (b} (a), while the
negative sign of the terms M’ is needed to prove (a) (d). We do not know if it is
possible to use a single matrix to prove both.

Corollary 1. The problem&lOT-PMAT, NOT-CSMAT, NOT-EMAT areNP-complete.



188 Paul Tseng

Proof. Suppose the answer to NOT-EMAT with instamogM is yes. Then there exists
nonzerau € RM satisfyingu o Mu < 0 andu > 0. Thus, there exidte {1, ..., m} and
J C {1, ..., m} such that the linear system

uj >0, . ui =0, .
1 A4 A4
w=t {[Muliso,} hed {[Mu]izo,} e

has a solution. Any vertex solutiari' has size polynomially bounded by the size\df
(e.g., [16, p. 30]) and satisfie§ o Mu* < 0 and 0 u* > 0, sou* is a certificate for
the yes answer. Thus NOT-EMAT is MP. Similar arguments show that NOT-PMAT,
and NOT-CSMAT are also itNP. [For NOT-PMAT, we can alternatively check that
a given principal submatrix d¥1 has nonpositive determinant, which is computable in
polynomial time, e.g., [16, 83], [7].]

Since the size (number of bits in the binary representatiom) &, M’ given by (1)
is a polynomial in the size aof, y, A, it then follows from Thm. 1 andlP-completeness
of [0,1]PARMAX that NOT-PMAT, NOT-CSMAT, NOT-EMAT aréP-complete.

3. Py- and semimonotone matrices

We formally state below the decision problems fymatrices [6,11,12] and for the
classEg of semimonotone matrices [6, p. 184], [12, p. 227]. We show these two problems
areNP-complete by reduction from, respectively, NOT-PMAT and NOT-EMAT.

NOT-POMAT
Instance: Positive integen and anm x m matrix N with integer entries.
Question: Does there exist a principal submatriNoivhose determinant is negative?

NOT-EOMAT

Instance: Positive integen and anm x m matrix N with integer entries.

Question: Does there exist nonzere %™ satisfyingu > 0 and, foreache {1, ..., m},
eitheru; = 0 or[Nu]; < 0?

Theorem 2. Consider positive integan and anm x m matrix M with integer entries.
Let u be the maximum absolute value of the entriedlot et

N:=vM—1, v:=m2™1A, A = (mp)™, (13)
N :=vVM—1, V:=mu+1)m

(A is an upper bound on the absolute value of the principal minors1gf Then the
following statements (a) and (b) are equivalent, and the following statements (c) and
(d) are equivalent:

(@) The answer ttNOT-PMAT with instancem, M is no.
(b) The answer ttNOT-POMAT with instanceam, N is no.
(c) The answer ttNOT-EMAT with instancem, M is no.
(d) The answer ttNOT-EOMAT with instancem, N’ is no.
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Proof. (b) = (a). Since the answer to NOT-POMAT is no, thKns a Py-matrix and,
by (13) and its property (e.g., [6, Thm. 3.4.2}), is a P-matrix. Thus, the answer to
NOT-PMAT is no.

(a) = (b). Since the answer to NOT-PMAT is no, thihis a P-matrix, i.e., for each
nonemptyd C {1, ..., m}, we have dg¢M ;3] > 0. SinceMj; has integer entries, this
implies defMj3] > 1. Also, A is an upper bound on the absolute value of the principal
minors ofM [16, p. 195]. This together with (13) and (2.2.1) in [6] imply

defNyj] = defvMj5 — 133]
= Z de{vMk Jde{—13\ka\k]

KcJ
= Z U‘Kldel[MKK](—l)”‘_'K‘
KcJ
= ldetMya] + ) v*ldetMyk (=11
KcJ
ST LN
KcJ
[J|-1
J
k=0

-1

J-1
Wl — (3] §) (' 'k >va

W31+ »HPtA
w312 Y1A
=91 — 131271 1A).

v

\%

Since|J| < m, (13) implies the right-hand side is nonnegative. Thus, all principal
minors of N are nonnegative, so the answer to NOT-POMAT is no.

(d) = (c). Since the answer to NOT-EOMAT is no, thihis in Eg. So, for each nonzero
u e "M with u > 0, there existk € {1, ..., m} such thatuy > 0 and[N'u]x > O,
implying from (13) that

[Mulk = ([N'ulk + ug)/v" > 0.

HenceM is in E. Thus, the answer to NOT-EMAT is no.

(c) = (d). Since the answer to NOT-EMAT is no, th&his in E. So, for each nonzero
u e RM with u > 0, there existk e {1, ..., m} such thatuy > 0 and[Mu]x > O,
implying that the minimum valué of

f(u) := max min{uj, [Mul;},
1,....m

“““
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subjecttau > 0 and||u|l. = 1, is positive. For each € )%™, there exist$ € {1, ..., m}
andJ C {1, ..., m} such that either (i(u) = u; and

. . M . .
= {[lvlljtlmzijuj-}we‘]’ ”;i[[ml:]]z}\”“ G

or (ii) f(u) = [Mu]; and

[Mu]; > uj : [Mu]; > [Mu]; .
Mu]; < uy, \4 J, \4 J. 15
iy <, it vie (TSI s as)
Thus,
= i f
) uzom\?oozl W
= min min  f(u)
k=1,...,m0<u<eux=1
min u min [Mu],
=k|mlin minyst. O0O<u<e ,st O<u<e ;. (16)
Senm ug = 1, (14) ug = 1, (15)

For eacltk, I, J, each of the two minimizations inside the braces is a linear program with
constraint matrix entries of maximum absolute valu¢ 1. Letu* be an optimal basic
solution of either linear program. Then, by Cramer’s rule, each entry Ifof the form

p/d, wherep is an integer, and is the determinant of a nonsingular submatrix of the
constraint matrix of the linear program. Sinéés an upper bound on the determinant of
anyk x k (k < m) submatrix with integer entries of maximum absolute vailue 1 [16,

p. 195], therg < v/, implyingu; > 1/v" and[Mu*]; > 1/v". By (16),8 > 1/v". Thus,

for each nonzera € XM with u > 0, there existb € {1, ..., m} such thaty > ||ulo0/V
and[Mu]; > |lu]leo/V/, implying from (13) that

[N'ull = v'[Mu]] —uj > [lullec —uy > 0.
HenceN'’ is in Eg. Thus, the answer to NOT-EOMAT is no.
Corollary 2. The problem&NOT-POMAT andNOT-EOMAT are NP-complete.

Proof. By similar arguments as in the proof of Cor. 1, we have that NOT-POMAT and
NOT-EOMAT are inNP. Also, the size of\, N’ given by (13) is a polynomialin the size

of m, M. It then follows from Thm. 2 and Cor. 1 that NOT-POMAT and NOT-EOMAT
areNP-complete.

4. Ro- and nondegenerate matrices

By definition, anrm x m real matrixM is degenerate if and only if there exists nonempty
J C {1, ...,m}suchthatjjis singular [6,12]. Sincé;; is singular if and only if there
exists nonzera € K™ satisfyingMj3u; = O andu; = Oforalli ¢ J, thisis equivalent

to the existence of a nonzewoe K™ satisfyingu o Mu = 0. Also, by definition M is
notan Ry-matrix if and only if there exists a nonzewos R™ satisfyingu > 0, Mu > 0,
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andu o Mu =0 [6, p. 180], [12, p. 229]. We formally state the corresponding decision
problems below.

NOT-ROMAT
Instance: Positive integen and anm x m matrix M with integer entries.
Question: Does there exist nonzere ™M satisfyingu o Mu = 0,u > 0, Mu > 0?

DEGMAT
Instance: Positive integen and anm x m matrix M with integer entries.
Question: Does there exist nonzere %™ satisfyingu o Mu = 0?

The reduction, similar to one used by Chandrasekaran et al., is from the following
integer knapsack problem, known to H&-complete [10, p. 247].

KNAPSACK
Instance: Positive integersandb; an integer vectoa in R".
Question: Does there existe {0, 1}" satisfyinga” x = b?

Theorem 3. Consider positive integersandb, and integer vectoa in %". Let

-1 e
m=n+1 M=[r . a7

wheree:=[1 --- 1]7. The following statements are equivalent:

(a) The answer ttkNAPSACK with instancen, b, ais yes.
(b) The answer ttNOT-ROMAT with instancem, M is yes.
(c) The answer tOEGMAT with instancem, M is yes.

Proof. (a) = (b). Since the answer to KNAPSACK is yes, there exists {0, 1}"
satisfyinga™ = b. Then,x o (x —€) = 0, sou := [%] is nonzero and satisfies

uo Mu = 0. Also, by constructiony > 0 andMu = [*;*] > 0. Thus the answer to
NOT-ROMAT is yes.

(b) = (c). Obvious.

(c) = (a). Since the answer to DEGMAT is yes, there exist i" andz € % such that

u := [%] is nonzero and satisfieso Mu = 0. Using (17), this can be rewritten as
Xo(ze—X) =0, z(zb—a'x) =0. (18)

If z=0, then (18) would imply o x = 0, sox = 0, contradictingl # 0. Thusz # 0.

Then, dividing the inequalities in (18) kyf and lettingx’ := x/z, we obtain

Xo(—x)=0, b—a'x =0.
The first equation implieg’ € {0, 1}". Thus, the answer to KNAPSACK is yes.
Corollary 3. The problem&NOT-ROMAT, DEGMAT are NP-complete.

Proof. By a similar argument as in the proof of Cor. 1, we have that NOT-ROMAT and
DEGMAT are inNP.

Since the size ofn, M given by (17) is a polynomial in the size of b, a, it then
follows from Thm. 3 and thé&lP-completeness of KNAPSACK that NOT-ROMAT and
DEGMAT areNP-complete.
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5. Further questions

There remain a number of matrix classes, described in [6,11, 12], for which complexity
of the corresponding decision problem is unknown. Two good examples are the classes
of Q- andQg-matrices.
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