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Abstract. We study a generalization of the vertex packing problem having both binary and bounded con-
tinuous variables, called the mixed vertex packing problem (MVPP). The well-known vertex packing model
arises as a subproblem or relaxation of many 0-1 integer problems, whereas the mixed vertex packing model
arisesasanatural counterpart of vertex packing in the context of mixed 0-1 integer programming. We describe
strong valid inequalities for the convex hull of solutions to the MV PP and separation algorithms for these
inequalities. We give a summary of computational results with a branch-and-cut algorithm for solving the
MVPP and using it to solve general mixed-integer problems.

1. Introduction

The vertex packing problem arises as a subproblem or relaxation of many 0-1 integer
problems. In the context of mixed O-1 integer problems, the mixed vertex packing
problem (MVPP) is a natural counterpart of the vertex packing problem. MV PP arises,
for example, as a column generation pricing subproblem, Lagrangian subproblem, or
as a mixed-integer combinatorial relaxation of mixed 0-1 integer problems. MV PP,
formulated as

max{cx + dy : (X, y) € MVP}, where

IA

MVP={xeB" ye R":x +xj <1, (i,))€eE
aikXi + Yk <ux, @,k eF
0 < ¥k < Uk, k e M}

is a generalization of the vertex packing problem having both binary and bounded
continuous variables.

We use N to denote the index set of binary variables with n = |N| and M
to denote the index set of continuous variables with m = |M|. Inequalities over
E C {(,])) :i,j € N} are cdled binary edge inequalities, whereas the inequali-
tiesover F C {(i,k) : i € N,k € M} are called mixed edge inequalities. We assume
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that ugx < oo for al k € M. In order to eliminate uninteresting cases, we also assume
that ux > O, otherwise yx = 0, and that O < ajx < Uy, otherwise either ajkx; + Yk < Uk
is redundant or x; = 0 in every feasible solution. Without loss of generaity, we as-
sumethat ¢ > Oforali € N and d¢ > O for al k € M, since there is an opti-
mal solution with x; = 0if ¢ < Oand yx = O if d¢ < 0. An arhitrary inequality
ax; + byk < h with positive data can be put into the form ajkx; + yk < uk, by writ-
ing it as (ux — h%a)xi + Yk < uk after reducing uk to h/b, if ux > h/b. Similarly,
axj + bxj < h canbeputintotheformxj 4+ xj < 1if a4 b > h, otherwiseit isredun-
dant. Of particular interest is that a variable upper bound y; < ujX; becomes a mixed
edge inequality after complementing the binary variable x;j, whereas a variable lower
bound I xj < y; becomesamixed edge inequality after complementing the continuous
variable y;.

Since there are two variablesin each constraint, MV P can be represented by agraph
G = (NUM, EUF) whereweightson F denotethe conflicts and weightson M denote
the upper bounds. G is called amixed conflict graph becauseit hastwo types of vertices:
binary vertices for binary variables and continuous vertices for continuous variables.
The following notation is used in the remainder of the paper. Fori e NU M

NGi)={jeN:G, j)ec EUF} and M(i)={ke M: (i,k) € F}.

Thus for vertex i, N(i) denotes the index set of binary vertices adjacent to i, whereas
M(i) denotesthe index set of continuous vertices adjacent toi .

Although the A"P-hard vertex packing problem is one of the most studied problems
in combinatorial optimization ([6,8,15-17,19] to mention a few), the mixed vertex
packing problem has apparently not been defined and studied in its own right before.

Applications

Minoux [11] describesacol umn generation method for optimal decomposition of asatel-
lite traffic matrix into switching mode submatrices, where the objective is to minimize
the sum of the maximum entry in each submatrix. The associated pricing subproblemis

Fl’n{l?réapxa . c.}, 1)
ieP

where packing P denotes a feasible switching mode submatrix, a; the entries of the

submatrix, and ¢; the dua variables corresponding to the constraints of the master

problem. Since MV PP can adternatively be written as

mFE’;\X Z G + Z d (ux — malg( ai). 2
ieP keM ‘e

where P isapacking in G(N), the subgraph induced by N, and the term ), \, dkuk
in (2) is a constant, Minoux’s pricing subproblem is a mixed vertex packing problem
with a single continuous vertex. Minoux [12, 13] presents many other problemsranging
from TV broadcasting to weighted edge coloring of graphs, where (1) is the column
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generation pricing subproblem. Minoux [ 13] showsthat (1) can be solved in polynomial
timeif the vertex packing problem on G(N) can be solved in polynomial time.

Another application of MV PPisnoxiousfacility location. A mixed O-1 integer model
described by Erkut and Neuman [7] for opening p noxious facilities in n candidate
locations (N) while maximizing the sum of minimum distances to m population areas
(M)is

maxz Yk

keM

stiy <dk+w(l—x%), ieN, keM 3
D oxi=p (4)
ieN
xeB", ye R",

withw > maXjen kem dik- Letting ux = maxjen dik, (3) can bewritten as (ux — dik) X +
Yk < Uk. The Lagrangian function of this problem based on relaxing constraint (4) is
amixed vertex packing problem with independent binary variables, i.e., E = ¢, which
is solvablein polynomial time as we show in Sect. 2.

Yet another application of the mixed vertex packing model is that it providesacom-
binatorial mixed-integer relaxation for general mixed-integer problems. In recent years
valid inequalities from vertex packing relaxations have been shown to be valuablein de-
riving cutting planes for 0-1 integer programming, see for example Atamtirk et al. [3],
Borndorfer and Weismantel [5], and Hoffman and M.W. Padberg [9]. In 0-1 integer
programming, a vertex packing relaxation is obtained by considering pairwise conflicts
between binary variables. We generalize this concept to mixed 0-1 integer programming
by considering pairwise conflicts between continuous variables and binary variables as
well. As far as we know the closest work in this context is by Johnson [10], where he
strengthens variable upper bound constraintsin the presence of binary edges and gives
aspecia case of the mixed clique inequalities described here.

Thefollowing exampleillustratesthe derivation of amixed vertex packing relaxation
of amixed 0-1 integer program.

Example 1. Consider the mixed 0-1 integer set

S={xeB*yelR?:3x +6xs4 +y1 <9
13x3 —2y1 +2y> +3y3 < 6
2X1 +5x2 +3x3 <6

y1 <9, y2 <10, y3 < 8}.
Thefollowing logical implications, which can be found by probing [18], arevalid for S:

X1=1=X=0y1<6= y2<9, y3<6,
Xo=1= X1 =0, x3=0,
X3=1$X2=0,y12%=>X4=O,
X4a=1=y1<3=Xx3=0, y2<6, y3<4
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Writing these implications as linear inequalities gives us the packing relaxation

MVP={xe B yelR}:3x +y1
6X4 + Y1
1x1 + VY2
4x4 +y2
2X1 +Y3
4Xq +VY3
X1 + X2
X2 + X3
X3 + X4

INIA TN TN TN TA TA TATA
[e¢]

Since MVP is arelaxation of S, valid inequalities for MV P are also valid for S. This
relation motivates the study of the polyhedral structure of MVP in Sect. 2. Figure 1
shows the mixed conflict graph for the packing relaxation of S. We use circlesto denote
the binary vertices and squares for the continuous vertices. Note that there are no edges
between continuous vertices.

Fig. 1. Mixed conflict graph of S

The outline of this paper is as follows. In Sect. 2, we study the facial structure
of the mixed vertex packing polytope. We derive severa classes of valid inequalities
for this polytope and give separation algorithms for these inequalities. In Sect. 3, we
present computational experiments that indicate the effectiveness of the inequalities
described in Sect. 2 in solving mixed vertex packing problems and genera mixed-
integer programs.

2. Mixed vertex packing polytope

In this section we study the facial structure of the mixed vertex packing polytope,
conv(MVP), and derivestrong validinequalitiesfor it. Let LMV Pbethelinear relaxation
of MVP. Thus,
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LMVP = {(x, y) € R"™™ that satisfy (5)—8)}, where

X +Xj <1, (i,)eE 5)
akXi + Yk < Uk, (i,k)e F (6)
0<x <1, ieN (7
0 < yk < Uk, ke M. 8

Below we summarize basic results on the dimension of conv(MV P) and the strength
of inequalities (5)—8) defining LMVP,

Proposition 1.

1. Thedimension of conv(MVP) isn + m.

2. x>0, i e Nandyk > 0, k € M arefacet-defining for conu(MVP).

3. Xi < 1, i € N defines a facet of conv(MVP) if and only if N(i) = ¢ and ajx < uk
for all k € M(i).

4. yk < Uk, k e M defines a facet of conv(MVP) if and only if M(k) = @.

5. Xj + Xxj < 1 defines a facet of conv(MVP) if and only if N(i) N N(j) = ¢ and
min{ajk, ajk} < Uk for all k e M(i) U M(j).

6. aikXi + Yk < Uk defines a facet of conv(MVP) if and only if N(i) N N(k) = @ and
Aik = MaXjeNk) Ajk-

The following theorem characterizes the graphs for which the linear relaxation
LMV P is sufficient to describe conv(MVP).

Theorem 1. Inequalities (5)—(8) of LMVP are sufficient to describe conv(MVP) if and
only if Gisbipartite and ajx = a, for all i € N(k), for all k € M.

Proof. Supposeajk < ajk for somek € M. InProposition 3 weshow that (ajk—aik) Xj +
aikXi + Yk < ug isvalid for conu(MVP). Thisinequality dominates ajxXi + Yk < Uk.
Now, suppose ajx = ak, for al i € N(k) for al k € M but G is not bipartite. In that
case, consider the odd cycle given in Fig. 2. It iseasily seenthat (3, 3,3, 3, u— ) is
afractional basic feasible solution of LMV P if u is the upper bound of the continuous
variable.

NI

Fig. 2. Fractional basic feasible solution

Conversely, define y, = (uk — Yk)/ak and rewrite inequality (6) as xj —y, < 0
and inequality (8) as 0 < y, < uk/ak. Since G is bipartite, by multiplying the binary
variables associated with vertices that are not adjacent to a continuousvertex by —1, we
obtain a constraint matrix with exactly one +1 and one —1 coefficient in each row (5)
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and (6) and an identity for (7) and (8), which istotally unimodular. The right-hand side
of this formulation is integral, except for the upper bound constraints on y, < uk/a,
k € M withuk > ax. However, if ux > ak, thenin afeasible solution y(( < ug/akistight
only if N(k) = #. Hence an extreme point of LMV P isintegral for all x variables.

O

2.1. Validinequalities

Thereis a natural vertex packing relaxation of MV P, defined on the subgraph induced
by the binary vertices. Valid inequalities for this vertex packing relaxation are valid for
MVP aswell.

Proposition 2. Let MVP(N) denote the projection of MVP onto the space of binary
variables. If

Zbi Xi <r 9)

ieS

for S C N isavalid inequality for MVP(N), then it is valid for MVP aswell. If (9) is
facet-defining for conv(MVP(N)), then it is al so facet-defining for conv(MVP) if for all
k € M, there exists a packing Px € Ssatisfying (9) at equality with ajx < uk for all
i € BcnN N(K).

Proof. The inequality isvalid for MVP since ajx > O for dl (i, k) € F. If (9) isfacet-
defining for conv(MVP(N)), then there exists n affinely independent pointsin MVP(N)
satisfying (9) at equality. Let g be the ith unit vector. These n points together with
Ziepk & + (Ux — Maxiep, aik)€ex, for k € M, make up n+ m affinely independent points
in{(x,y) € MVP : Y. _shixi =r}.

]

For a vertex k, a subgraph consisting of vertices k and T € N(k) and the edges
betweenk and T, issaid to be a star of vertex k. Now we give thefirst class of new valid
inequalities for MVP.

Proposition3. For k € M, let T = {i1,i2,...,it} be a subset of N(k) such that
a; .k < ajkfor j =2,3,... 1. Thenthestar inequality
> ax + yk < Uk (10)
ieT

where &,k = aj;k, &k = &k — a;_1k, ] =2,3,...,t isvalidfor MVP.
Proof. Let (X,y) e MVP, S={i e T: X =1}, and j* = maxi<j<t{j : ij € S}.

Thenzéik)_(i + W= Zaik+ (Uk — @jxk) =< @jjuk + (Uk — @jjuk) = Uk.
ieT ieS
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Theorem 2. The star inequality (10) is facet-defining for conv(MVP) if ajk =
maXjenk ajk and N(i) =@ foralli e T.

Proof. Suppose N(k) = {1, 2, ... ,l}isindexed sothat ajx < ax < ... < ak. Thenit
is easy to show that the following n 4+ m points

Pk = Ukex,
Pi = Uke + uig, i € M\ {k},
g =ukex+ 6, i € N\ N(K),

wi= Y e+Uk—ane.icT
jeN®:j<i

z = Z e + (Uk — ajikek, i € N(K)\ T,
jeN®:j=<j), j#

wherefori e N\ T, j(i) = mini<j<t{ij € T : @ik < aijk} are affinely independent
points of {(x, y) € MVP : ) i 1 a@ikXi + Yk = uk}. Notethat j(i) is well-defined since
dijk = MaXjeNk) Ajk-

O

Observe that the mixed edge inequalities (6) are dominated by the star inequali-
ties (10). If the binary vertices are independent, then the star inequalities together with
the upper bound and lower bound inequalities give conv(MVP).

Theorem 3. If E = ¢, then inequalities (7), (8), and (10) are sufficient to describe
conv(MVP).

Proof. If ajx = ax for k e M, then the result follows from Theorem 1 since the graph
is bipartite when E = ¢. So to simplify the discussion, we consider the case when
ajk are distinct for k € M. Given an arbitrary objective function (c, d) # (0, 0), let
X, ¥, | € O betheoptimal solutionsto MV PP. Wewill provethe theorem by showing
that there exists an inequality among (7), (8), and (10) that is satisfied at equality for
al 1 € O.1fcj < Oforsome j € N then>‘<'j =O0forall € O; similarly, if dc < 0
for somek € M then yL = Ofordl |l € O. Therefore, in the following we may assume
Cj, dk > 0.

We defineS = {j € N : >'<'J =1, leO0andg = SNN(r), r € M. There
existst € M with di > 0, since otherwise X, = 1forall € O for some j € N with
cj > O, which itself exists since (c, d) # (0, 0). Then for an arbitrary t € M with
& > 0,if § = ¢forall e O, wearedonesince y; = u; for al | € O; otherwise,
leeT={jeNb:j= argmax, . o akt» forl e O}and T = T U argmaXyc nr) - We
claim that the star inequality

D ak+ % < Uy (11)
keT

is satisfied at equality for al | € O. To see this consider some p € O and let | =
argmaxy . cpakt - By definition of T, it holdsthat j € T. Notice that since (11) is a star
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inequality, 347 .a<a, 8 = ajt and that since di > 0, ¥ = ug — aj;. Therefore,
inequality (11) has positive slack for (xP, yP) if and only if thereexistsi € T such that
ait < ajrandi ¢ SP. Suppose thereissuch anindex i € T. By definition of T thereis
an optimal solution (X9, y9) such that i = argmax; 1@

In order to arrive at a contradiction, we show that the objective value of (X, y)
defined as X« = 1,k € SPU &1, ¢ = O otherwise, and Y = Ur — MaXy g ark
is larger than of (XP, ¥P), or equivalently, that z(SP U ) > z(SP), where z(S
Y kesCk — D rem Or MaXikesnng a for SC N. To seethis, let K = PN ST, MY
{r e M:max, qoag > MaXygp ai}, and MP = M \ MY. Then,

zZ(SPU S = ch— Zdrmaxaerr Z ck—Zdr max ay

keSP  remp ke ST\K rema  keS\K
=2+ Y, o= ) G M ac —maxa)
ke ST\K rema keSN\K ke§
>2(P)+ Y - Y di(maxay — max
keShK  rema  keS keKNN()

However,

doow- Y, dr(maxakr - aw) >
ke ST\K remd keRIN)

Z Ck — Zdr(maxakr — max ag) =2z —zK) > 0.
ke ST\K rem keKNN(®

The strict inequality holds because (i) dr(maxkesg A — MaXkek NN &) > 0 for all
re MPasd, > 0and KN N(r) € § and (i) t € MP (sincea; < aji), o > O,
and &y = maX, . ak > MaXkeknN at asi ¢ K. Also, since (X4, ¥9) is optimal,
z(S) > z(K) follows. Therefore it must be the case that z(SP U 1) > z(SP), which
contradicts the optimality of (XP, yP).

]

The next two classes of inequalities are generalizations of the clique and odd cycle
inequalities[16, 17] for the vertex packing problem, respectively.

Theorem 4. If K € N(k) for k € M induces a clique, then the mixed clique inequality

> i + Yk < U (12)
ieK
isvalid for MVP. It is facet-defining for conv(MVP) if and only if for all j € N(k) \ K,
thereexistsi € K \ N(j) such that ajk < ajk.

Proof. The validity of (12) is obvious since at most one of the variablesin K can have
value one. Suppose for some j € N(k) \ K, ajx > ai holds fori € K \ N(j).
Then ) ok a@ikXi + (@jx — MaXiek\N(j) &k)Xj + Yk < Uk is valid and dominates
inequality (12). Conversely, let i(j) = argmaX;ck\ncjaik for j € N(k) \ K. Then
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& + (Uk — aike, 1 € K, ¢ + (U —aigjre+ej, j € NK\K, e +Ue, | €
N\ N(k) and uxex + uig, i € M\ {k}, uxex are n + m affinely independent points of
{(Xy) € MVP: 3k a@ikXi + Yk = Uk}

i

Theorem 5. Let C C E U F be the set of edges of an odd cycle in G, Cg be the set
of binary vertices on the cycle, and C¢ the set of continuous vertices on the cycle. The
mixed odd cycle inequality

— Cgl —|C u
Z<1+ZL2 ak1>xj+2£§{7| B|2| C|J+Z—k, (13)
jeCp keM; A keCc & keCc "L

where ay, and ax, are the weights of the edgesincident tok € Cc in C, with a,, < a,
and Mj = {k e M(j) N Cc : ak, = ajk}, isvalid for MVP.

Proof. For k € Cc let (k, k1) and (k, ko) be the edges on the cycle with weights ay,
and ay,, respectively. Consider (X, ¥) € MVP and let C2 = {k € Cc : X, = Xk, = O},
CL ={keCc:Xq=1%,=0},andC2 = {ke Cc : X, = 1}. Thenfor (%, y) the
left hand side of inequality (13) equals

Swr X (o (R =

jGCB kECc
< |C|_|C8|_1 B Z Uk — aiy Z (uk_akz A, akl)
2 o akl ak]_ akl akl
keCg keCt keC2
1 Uk
= 5(Cs = [Ccl =D+ ), a
kECC

which equalsthe rhs of inequality (13) as |Cg| — |Cc| is odd for an odd cycle.
i

The mixed odd cycle inequality for the odd cycle in Fig. 3 is x1 + %xz + 2X3 +
1 9
Y1+ Y2 = 5.

X1
yo <3 X2

2 3

X3 y1 <3
Fig. 3. Odd cycle of amixed conflict graph

Proposition 4. [1] Themixed odd cycleinequality (13) isfacet-definingfor conv(MVP)
if G isachordless odd cycle.
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Example 1 (cont.). Thevalid star inequalitiesfor MVP (hencefor S are

33X +3xa +y1 < 9
6xsa +y1 < 9

X1 +3xa +y2 < 10
4x4 +y2 < 10

2X9 +2Xq +Y2 < 8
4Xs +y2 < 8

and the valid mixed odd cycle inequalities are

X1 +X2 +X3 +2Xa +3y1 < 4
X1 +X2 +X3 +4%X4 +y2 <11
X1 +X2 +X3 +3%Xa +3¥3 < 5.

Although MVPisarelaxation of S some of the extreme points of the linear relaxation
of S, SL, may not be feasible for the linear relaxation of MVP, MVPL. For example
(3.1,0, 3, 7,10, 0) isafeasible point of SL but it is not feasible for MVPL. This point
is cutoff by edge inequalities x1 + X2 < 1, X1 + y2 < 10, and 4x4 + y2 < 10. To see
that the valid inequalities above are potentially useful as cutting planes for S, consider
the extreme point (15, 13, 15 0, =, 10, 0) of SL N MVPL. This point is cutoff by
the star inequality X1 + 3x4 + Y2 < 10 and also by the mixed odd cycle inequality
X1 + X2 + X3 + 4X4 + Y2 < 11, both of which are facet-defining for conv(MVP).

2.2. Separation

Here we discuss the separation problemsfor the inequalities derived in Sect. 2.1. Given
apoint (X, ) € R™M\ conv(MVP), wewant to find avalid inequality violated by this
point.

Theorem 6. The separation problem for star inequalities (10) can be solved in poly-
nomial time.

Proof. Fork € M suppose N(k) = {1, 2, ... ,l}isindexedsothataix < ax <...=< a.
We will reduce the separation problem for the star inequalities of k to a longest path
problem on an acyclic directed graph with | + 1 layers. The graph has one layer for
each variable x1, X2, ... , X; and an auxiliary layer zero. A vertexinlayeri, 1 <i <|,
represents the sum of coefficients of x1, Xo, ... , X; in astar inequality. Layer zero has
a single vertex, representing the zero coefficient. Since the sum of the coefficients in
astar inequality equals ajk, layer | has a single vertex representing coefficient ajx. Two
arcs leave a vertex representing sum s at layer i — 1, both to vertices in layer i for
0 <i < |. Thefirst one is to the vertex for the same value s at layer i, representing
coefficient zero for x; in the star inequality, and the second one is to the vertex for
value ajk, representing coefficient ajx — s for ;. Thereis a single arc from each vertex
inlayer | — 1 to the unique vertex in layer | representing sum ay.

With this construction, if al ay are distinct, there are i + 1 vertices in layer i,
0 <i < | and asingle vertex in layer |, which givesatotal of I(l + 1)/2 + 1 vertices
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and |2 arcs. Furthermore, there are exactly 2!~ directed paths from layer zeroto layer |,
each representing aparticular star inequality of vertex k. If aj_1x = ajk, then the number
of verticesin layersi — 1 andi are equal; hence the number of arcsfromlayeri — 1to
layer i isoneless than otherwise.
Given (X, y) € IR™M, we assign a length of cX; to an arc representing coefficient
c for variable x; in the star inequality. Then a longest path from layer zero to layer |
corresponds to an inequality with the largest left hand side value.
|

Example 2. Consider

S={(xy) eB*xRl:1x;+y <10, 2x; +y < 10,
S5x3+y <10, 7x4+y < 10}.

The layered directed graph corresponding to S is shown in Fig. 4. In this graph each
path from layer 0 to layer 4 represents one of the star inequalities below:

layers
X1+X2+3x3+2x4+y=<10 O 1 2 3 4
2X2 +3X3 +2X4 +y <10 0 0 0
X1 +4x3 +2X4 +y < 10 C\
X1 + X2 +5x4 +y <10 1\1 1
X1 +6x4 +y < 10 2

2
2X2 +5Xa +Yy <10
Ns

SX3 +2x4 +y < 10
x4 +y < 10. 7

Fig. 4. Layered directed graph of S

Using the fact that arcs representing coefficient zero have zero length, we have the
following simple ©(12) algorithm for the separation problem of star inequalities.

Algorithm 1 Separation for star inequalities

w9 <0
for j =1tol do
Tajk < maxi:qk<ajk Tay + (@jk — &k)X]
end for
if a4+ Yk > Uk then
star inequality, defined by alongest path, is violated
else
no star inequality of vertex k is violated
end if

CHONITA WNE

Due to the polynomial equivalence of optimization and separation [8], Theorem 3
and Theorem 6 imply polynomial solvability of the mixed vertex packing problemwhen
the binary vertices are independent.

Corallary 1. If E = @, then MVPP can be solved in polynomial time.
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The separation problem for mixed clique inequalities is equivalent to solving
a weighted maximum clique problem for each k € M on the subgraph induced by
N(k) and therefore is N'P-hard. Given (X, y) € IR™™, amost violated mixed clique
inequality can be found by solving

max { max apXi +
keM [KCN(k)Z k7] yk}

where G(K) is a clique. Solving this separation problem may be computationally
feasible by enumeration for small graphs since the search for cliques is restricted to
adjacent vertices of a single continuous vertex.

Theorem 7. Supposeaijk = ax for all j € N(k) andfor all k e M. Then the separation
problem for the mixed odd cycle inequalities (13) can be solved in polynomial time.

Proof. Consider inequality (13) when weights of all the edgesincident to a continuous
vertex k are the same, say ay,

Z Xj + Z %(|CB| ICcl—1) + Z a (14)

j ECB kECC kECC

We can rewrite (14) as

Sa-2p+ Y ( (U = %o 1) > 1 (15)

jeCgp keCc

Then, given (X, y), finding a most violated mixed odd cycle inequality is equivalent to
finding a minimum weight odd cycle on a graph with edge weights

K= 1—7)_(i—)_(k,ifi,k€N,
w(i, k) = YeY_5 i e Nk e M.

Observe that for apoint (X, y) € LMVP, w(i, k) > 0forall (i, k) € EU F. Sincethere
isapolynomial time algorithm for finding aminimum weight odd cycle on agraph with
nonnegative edge weights 8], the separation problem is solvable in polynomial time.

|

2.3. Strengthening star inequalities

Inthis section we present aprocedurefor strengthening star inequalitieswhen the binary
variables appearing in theinequality are not independent. A strengthened star inequality
hastheform ;1 @jkXj + Yk < Uk withajx > ajkfor j € T. Theprocedurebeginswith
a star inequality (10), and then the coefficients are increased iteratively in increasing
order of aj,i € T.
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Proposition 5. Let } ;1 &jkXj + Yk < Uk be a strengthened star inequality such that
for somei € T, ajk = aj for j € T with ajx > ak and ajx > aj for j € T with
ajk < ajk. Then the coefficient of variable xj can be increased by

@k — Y &K’ (16)
jesS
where S= {j € T\ N(i) : ajk < aix} anda™ = max{a, 0}.

Proof. Let §; denote the increase in the coefficient of x;. For the inequality to remain
valid for MVP, we need

§i < Uk — max AiXi + ' 17
= (X, Y)EMVP,xi=1 ; jkXj + Yk (17)

LetU C T bethebinary variablesthat have value onein an optimal solution to theright
hand side of (17). Then letting & = max <y ajk, we see that

Zajkx,erk <Zajk+ Z ajk + Uk — a.
(X, y)eMVPx. £ ics jcU\S

Since 3 jcu\sdjk < @ — aik, theresult follows.
O

Example 3. Consider themixed conflict graph giveninFig. 5. Oneof thestar inequaities
hereis x1 + X2 + 3x3 + 2x4 + y < 10. Increasing the coefficients of thisinequality in
theorder 1, 2, 3, 4, we obtain X1 + 2X2 4+ 3x3 + 4%x4 + y < 10.

y=<10

X2 X3
Fig. 5. Strengthening star inequalities

2.4. Sequential lifting

When the inequalities described previously are not facet-defining, we can make them
stronger through lifting. We start with lifting an inequality on binary variables with
acontinuous variable. Let

Zai Xi <Tr

ieS
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be avalid inequality for MVP(N) and consider lifting it with a continuous variable y.
Let ax be the coefficient of yy in the lifted inequality. In order for the inequality to be
valid, we need

ak < min{

I o e
%:(x,y)eMVP,yk>0}.
k

Proposition 6. Let ) ;_gaix <r beavalidinequality for MVP(N) . If Sis a subset of
N(K) suchthat ajx = uk for all i € S then

Za.x. —yk <r

ieS

isavalid inequality for MVP.

Next, given a valid inequality of the form > gaiXi + Yk < Uk, S € N(k), we
consider lifting it with binary variablesin N(k) \ S. For SC N(k) and j € N(k) \ S let
‘P bethe collection of packings that contain vertex j in the graph induced by the vertex
set SU{j}. Let

Zai Xi + Yk = Uk
ieS
be avalid inequality for MV P and consider lifting it with binary variablexj € N(k) \ S

Let ) be the coefficient of x; in the lifted inequality. In order for the inequality to be
valid, we need

aj < Uk — {ZmeI-Yk}
(X, y)eMVPxJ

or equivalently,

iePi#]j iePi#]

i < Uk — max m|nu— = min { max ajx — it
aj < Uk Pep[ Z aj + minfuk &k}} Pe’P{IePak Z a|]

The next proposition follows from this inequality.

Proposition 7.

1. If SC N(j), then the maximum lifting coefficient of x; equals aj.

2. For j e N(k) \ S ifak < ajk for all i e S then the maximum lifting coefficient of
Xj equalsajk — MaXpep Y icpixj -

Now we give a class of mixed odd wheel inequalitiesthat can be obtained by lifting
amixed odd cycleinequality. The proof of the next proposition is a simple application
of the previousresults on lifting.
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Proposition 8. Let C = (Cp, Cc) be a mixed odd cycle. Then the mixed odd wheel
inequality

ax, — ak Yl ICs| — |Cc] u
Z(1+Z#>xj+2—k+awzw§[%J+Zi

jeCs keM; 1 keCc "1 keCc

is valid for conv(MVP), where ax, and ax, are the weights of the edges incident to
ke CcinC,withay < ax,, Mj = {ke M(j) N Cc : a, = ajk}, and

eCc akl

| CeliCel | 4 S . 2 ifw e N, CC N(w) UM(w),
Oy = .
| [CaloiCel | ifwe M, Cg C Nw), aji =u,Y j € Cg.

Thelifting coefficient in the mixed wheel inequality could be computed exactly due
to the special structure of an odd cycle. In general, computing lifting coefficientsis hard.
Therefore, we consider approximating them.

Proposition 9. Let 7 be defined as before. Then (ajx — Maxpep Yicpisj i)' is
a lower bound on the maximum lifting coefficient.

Proof. Decomposing the minimization problem of the lifting function we have

+
min { max ajx — E aj ¢ > | minmaxajx — max aj
PeP | ieP L= PeP ieP PepP. — .

iePi#] iePi#]

+
( ) PeP Z I)

iePi]

Equality followssince j € P for al P € P by definition of P.
i

Proposition 9 suggests an easy way for generating valid inequalities by sequentially
lifting yk < ukx with xj, i € N(k). Letiq,ip, ..., i bean arbitrary ordering of N(Kk).
Then

|
Zaijxij + Yk = Uk
=1

isavalidinequality for MVP, where the coefficients «j; are calculated as follows:

+

ai =<aijk_zah> (18)
heS

withS={i1,i2,...,ij—1}\ N(ij). Wecall inequalities generated this way lifted bound

inequalities. Note that both star and mixed clique inequalities are specia cases of the

lifted bound inequalities. We obtain astar inequality when N(i) = @ foralli € N(k) and

amixed clique inequality when S = ¢. Lifted bound inequalities may be stronger than
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star and mixed clique inequalities when the latter are not facet-defining. Also observe
that a strengthened star inequality is alifted bound inequality as well.

By exploiting the structure of G(S), one can clearly derive stronger lifted bound
inequalities. For example, if G(S isaclique, then o = &k — MaXpesah. A simple
modification to (18) allows us not only to derive stronger lifted bound inequalities, but
also to generate lifted mixed clique inequalities. Let G(K) be aclique of G(S), then

+
aj; = (aijk— > ah—ﬂlaé(ah) . (19)

heS\K

Note that if K isasingleton, the inequality isaregular lifted bound inequality.

3. Computational experiments

In order to test the effectiveness of the valid inequalities derivedin Sect. 2 in solving (@)
mixed vertex packing problems and (b) general mixed-integer programming problems
with a branch-and-cut algorithm, we performed computational experimentson two data
sets. Thefirst set consists of randomly generated mixed vertex packing problems. The
second set consists of mixed-integer problemsfrom MIPLIB [4] for which violated star
inequalities are generated. Since the mixed vertex packing model forms a relaxation
of general mixed-integer problems, effectiveness of the valid inequalities for the first
dataset isaprerequisitefor successful results on general problems. The branch-and-cut
algorithm is implemented using MINTO [14] (version 3.0), which is a customizable
software system that solves mixed-integer linear programs by a branch-and-boundalgo-
rithm with linear programming relaxations. In the current implementation, a best bound
node selection strategy is used and new valid inequalities are added only at nodes with
depth lessthan or equal to five. All experimentsare doneon a SUN Ultra10 workstation
with one hour CPU time limit.

Computational experiments on the mixed vertex packing problems are summarized
in Table 1. Clique inequalities on binary variables are valid for MVP, and MINTO
generates them automatically. To see the effect of the new inequalities, we comparethe
performanceof abranch-and-cut algorithmwith clique, star andlifted boundinequalities
against one with only cligue inequalities on randomly generated graphs with varying
edge density and fraction of continuousvertices. We use the algorithm givenin Sect. 2.2
to find violated star inequalities. A star inequality with the largest left hand side valueis
strengthened as explain in Sect. 2.3 and then checked for violation. Given a fractional
solution (X, y), a lifted bound inequality is generated for each continuous variable yk
by lifting its adjacent binary variables x; in nonincreasing order of ajxX; using equation
(19). If the resulting inequality is violated by the fractional solution, it is added to the
formulation. Note that even though a strengthened star inequality is a specia case of
lifted bound inequalities, the existence of an efficient separation algorithm may allow
us to generate many violated star inequalities that may have been missed by the lifting
order used to generate a lifted bound inequality. Therefore, we generate these classes
of inequalities separately. We have not generated mixed odd cycle inequalities in the
branch-and-cut algorithm asthey arelesslikely to be facet-defining. In Table 1, for each



Mixed vertex packing problem 51

Table 1. Performance statistics for mixed vertex packing problems

vert| dns cont| LPgap endgap clgsnodes time | LPgap endgap clgs starsift bndsnodes time
01 02 960 0.00 72 147 5 532 000 59 117 8 19 3

01 04 959 0.00 47 255 7 228 000 28 155 15 7 2
100/ 0.2 02| 2744 0.00 814 1367 159 1691 0.00 334 563 19 204 98
02 04| 1167 000 82 74 9 023 0.00 37 179 40 2 2
04 02| 4180 000 857 604 249 21.38 0.00 569 613 20 179 182
04 04 510 0.00 56 29 7 000 0.00 23 41 42 1 1

01 02| 2222 0.00 2627 8913 1648 1526 000 480 641 23 1269 938
01 04| 1122 0.00 195 849 110 263 0.00 60 402 38 23 16
150 0.2 0.2 | 4645 5.46 7416 5764 3600 | 31.48 392 1952 1148 29 1216 3600

0.2 04 987 000 95 65 27 0.00 0.00 47 206 62 1 3
04 02| 5819 6.13 3809 2221 3600 30.08 3.84 1896 1239 27 518 3600
04 04 511 000 97 51 44 000 000 24 56 62 1 4

casewe givethe averageduality gap (LPgap = 100 x 29290 ot the root node after all cuts
are added, the percentage gap between the best upper bound and the best lower bound
(endgap = 100 x 248-2D) ot termination, the number of inequalities generated, the number
of nodes explored, and the total CPU time elapsed in seconds of five instances with 100
and 150 vertices. Observethat asthefraction of continuousvariablesincreases, MV PPs
become easier to solve. Problems with 20% continuous vertices could not be solved to
optimality for densities 0.2 and 0.4 and 150 vertices by either algorithm. However, the
duality gap is reduced considerably with the addition of the new inequalities. For these
problems, since optimal solutionsare unknown, we use the best feasible solution instead
of an optimal oneto report the duality gap at the root node. We remark that in both cases
better feasible solutions are found when star and lifted bound inequalities are added.
In summary, the star inequalities and the lifted bound inequalities are very effectivein
strengthening the L P relaxations and in reducing the number of nodes explored and the
overall solution times.

Table 2. Performance statistics for MIPLIB problems

problem LPgap endgap clgs nodes time | LPgap endgap clgs stars nodes time
bel | 3a 140 000 O 54532 291 1.39 0.00 0 4 54157 213
bl end2 899 0.00 318 2590 183 899 0.00 176 26 2035 94
denul ti 146 000 21 817 25 146 000 19 15 802 24
egout 1.06 0.00 9 3 1 0.58 0.00 3 3# 3 1
fixnet4 13.79 0.00 1 75 21 13.68 0.00 1 6 486 15
fixnet6 19.85 0.00 1 715 20 19.73 0.00 1 5 549 18
gen 005 0.00 14 253 10 005 000 19 22 217 10
gesa2 1.02 0.00 3 65783 1451 101 000 3 3 65003 1472
gesa2_o 1.01 0.00 2 92701 1933 101 000 2 2 93831 1865
gesa3 052 0.00 21 837 91 0.52 0.00 7 8 757 69
gesa3_o 052 000 17 1771 167 0.52 0.00 9 4 1675 154
khb05250| 10.31 0.00 0 1935 53 018 000 O 98 13 3
nmod011 17.71  6.55 0 8376 3600 845 161 0 1531 2004 3600
gnet 1 10.95 0.00 0 153 26 1095 000 O 4 149 24
gnetl_o 19.48 0.00 0 281 33 1569 000 O 5 203 29
rgn 40.63 0.00 0 3701 24| 3881 0.00 0 20 3339 21
rout 1283 6.12 0 111101 3600 974 263 0 3 119712 3600
set 1ch 3157 2090 4 193135 3600 2214 1252 4 128 177648 3600
vpnP 19.72 5.07 1 173582 3600 1658 0.87 1 8 161115 3600
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A similar comparison is made for the second data set in Table 2. Here we report
the L Pgap, endgap, the number of cuts generated, the number of nodes explored in the
search tree, and the total CPU time elapsed in seconds. We remark that no violated lifted
bound inequality is found for any of the MIPLIB problems. The addition of the star
cuts reduces the number of nodes explored and the overall solution times for almost
all problemsin this set, even if there is none or only a modest reduction in the duality
gap at the root node. Four problems could not be solved within an hour of CPU time;
however for all of these unsolved problems LPgap and endgap reduced significantly
with the addition of star cuts. We use the already known optimal value to report the
L Pgap and the endgap of set 1ch because no feasible solution was found by either of
the algorithmswithin one hour of CPU timefor this problem. From these computational
resultswe concludethat inequalities derived from mixed vertex packing rel axations may
be valuable in supplementing the ones from vertex packing relaxations for mixed 0-1
integer problems.

MINTO can also generate other classes of system cuts, such as lifted knapsack
cover inequalities and lifted flow cover inequalities for mixed-integer problems. When
star cuts are generated in addition to all system cuts, their effect is less pronounced,
especially for the easily solved problems in Table 2. Nevertheless, addition of the star
cuts does improve the lower bounds for harder problems, where knapsack and flow
cover cuts are less effective. For example, the best lower bound at termination improves
from —55781349.08 to —55244373.09 for nrod011 and from 47510.79 to 47651.13
for set 1ch after 1313 and 122 star cuts are generated, respectively, in addition to all
system cuts availablein MINTO. Thistranslatesto reductionsin endgap from 2.24%to
1.26% for nbd011 and from 12.88% to 12.63% for set 1ch.

With the insights gained from studying MV P, we are investigating how to use the
mixed vertex packing relaxation together with a single mixed-integer knapsack inequal -
ity for obtaining stronger relaxations of general 0-1 MIP problems. Since a variable
lower/upper bound constraint is a special case of amixed edgeinequality, we can derive
generalizations of the flow cover and flow pack inequalities [2,20] in this manner.
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