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Abstract. We study a generalization of the vertex packing problem having both binary and bounded con-
tinuous variables, called the mixed vertex packing problem (MVPP). The well-known vertex packing model
arises as a subproblem or relaxation of many 0-1 integer problems, whereas the mixed vertex packing model
arises as a natural counterpart of vertex packing in the context of mixed 0-1 integer programming. We describe
strong valid inequalities for the convex hull of solutions to the MVPP and separation algorithms for these
inequalities. We give a summary of computational results with a branch-and-cut algorithm for solving the
MVPP and using it to solve general mixed-integer problems.

1. Introduction

The vertex packing problem arises as a subproblem or relaxation of many 0-1 integer
problems. In the context of mixed 0-1 integer problems, the mixed vertex packing
problem (MVPP) is a natural counterpart of the vertex packing problem. MVPP arises,
for example, as a column generation pricing subproblem, Lagrangian subproblem, or
as a mixed-integer combinatorial relaxation of mixed 0-1 integer problems. MVPP,
formulated as

max{cx + dy : (x, y) ∈ MVP}, where

MVP = {x ∈ IBn, y ∈ IRm : xi + x j ≤ 1, (i, j) ∈ E

aik xi + yk ≤ uk, (i, k) ∈ F

0 ≤ yk ≤ uk, k ∈ M}
is a generalization of the vertex packing problem having both binary and bounded
continuous variables.

We use N to denote the index set of binary variables with n = |N| and M
to denote the index set of continuous variables with m = |M|. Inequalities over
E ⊆ {(i, j) : i, j ∈ N} are called binary edge inequalities, whereas the inequali-
ties over F ⊆ {(i, k) : i ∈ N, k ∈ M} are called mixed edge inequalities. We assume
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that uk < ∞ for all k ∈ M. In order to eliminate uninteresting cases, we also assume
that uk > 0, otherwise yk = 0, and that 0 < aik ≤ uk, otherwise either aik xi + yk ≤ uk

is redundant or xi = 0 in every feasible solution. Without loss of generality, we as-
sume that ci > 0 for all i ∈ N and dk > 0 for all k ∈ M, since there is an opti-
mal solution with xi = 0 if ci ≤ 0 and yk = 0 if dk ≤ 0. An arbitrary inequality
axi + byk ≤ h with positive data can be put into the form aik xi + yk ≤ uk, by writ-
ing it as (uk − h−a

b )xi + yk ≤ uk after reducing uk to h/b, if uk > h/b. Similarly,
axi + bx j ≤ h can be put into the form xi + x j ≤ 1 if a+ b > h, otherwise it is redun-
dant. Of particular interest is that a variable upper bound yi ≤ ui xi becomes a mixed
edge inequality after complementing the binary variable xi , whereas a variable lower
bound li xi ≤ yi becomes a mixed edge inequality after complementing the continuous
variable yi .

Since there are two variables in each constraint, MVP can be represented by a graph
G = (N ∪M, E∪ F) where weights on F denote the conflicts and weights on M denote
the upper bounds. G is called a mixed conflict graph because it has two types of vertices:
binary vertices for binary variables and continuous vertices for continuous variables.
The following notation is used in the remainder of the paper. For i ∈ N ∪ M

N(i) = { j ∈ N : (i, j) ∈ E ∪ F} and M(i) = {k ∈ M : (i, k) ∈ F}.
Thus for vertex i, N(i) denotes the index set of binary vertices adjacent to i, whereas
M(i) denotes the index set of continuous vertices adjacent to i.

Although theNP-hard vertex packing problem is one of the most studied problems
in combinatorial optimization ([6,8,15–17,19] to mention a few), the mixed vertex
packing problem has apparently not been defined and studied in its own right before.

Applications

Minoux [11] describes a column generation method for optimal decomposition of a satel-
lite traffic matrix into switching mode submatrices, where the objective is to minimize
the sum of the maximum entry in each submatrix. The associated pricing subproblem is

min
P

{
max
i∈P

ai −
∑
i∈P

ci

}
, (1)

where packing P denotes a feasible switching mode submatrix, ai the entries of the
submatrix, and ci the dual variables corresponding to the constraints of the master
problem. Since MVPP can alternatively be written as

max
P

∑
i∈P

ci +
∑
k∈M

dk
(
uk −max

i∈P
aik
)
, (2)

where P is a packing in G(N), the subgraph induced by N, and the term
∑

k∈M dkuk
in (2) is a constant, Minoux’s pricing subproblem is a mixed vertex packing problem
with a single continuous vertex. Minoux [12,13] presents many other problems ranging
from TV broadcasting to weighted edge coloring of graphs, where (1) is the column
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generation pricing subproblem. Minoux [13] shows that (1) can be solved in polynomial
time if the vertex packing problem on G(N) can be solved in polynomial time.

Another application of MVPP is noxious facility location. A mixed 0-1 integer model
described by Erkut and Neuman [7] for opening p noxious facilities in n candidate
locations (N) while maximizing the sum of minimum distances to m population areas
(M) is

max
∑
k∈M

yk

s.t.: yk ≤ dik +w(1− xi), i ∈ N, k ∈ M (3)∑
i∈N

xi = p (4)

x ∈ IBn, y ∈ IRm,

with w ≥ maxi∈N,k∈M dik . Letting uk = maxi∈N dik , (3) can be written as (uk−dik)xi+
yk ≤ uk. The Lagrangian function of this problem based on relaxing constraint (4) is
a mixed vertex packing problem with independent binary variables, i.e., E = ∅, which
is solvable in polynomial time as we show in Sect. 2.

Yet another application of the mixed vertex packing model is that it provides a com-
binatorial mixed-integer relaxation for general mixed-integer problems. In recent years
valid inequalities from vertex packing relaxations have been shown to be valuable in de-
riving cutting planes for 0-1 integer programming, see for example Atamtürk et al. [3],
Borndörfer and Weismantel [5], and Hoffman and M.W. Padberg [9]. In 0-1 integer
programming, a vertex packing relaxation is obtained by considering pairwise conflicts
between binary variables. We generalize this concept to mixed 0-1 integer programming
by considering pairwise conflicts between continuous variables and binary variables as
well. As far as we know the closest work in this context is by Johnson [10], where he
strengthens variable upper bound constraints in the presence of binary edges and gives
a special case of the mixed clique inequalities described here.

The following example illustrates the derivation of a mixed vertex packing relaxation
of a mixed 0-1 integer program.

Example 1. Consider the mixed 0-1 integer set

S = { x ∈ IB4, y ∈ IR3+ : 3x1 +6x4 +y1 ≤ 9

13x3 −2y1 +2y2 +3y3 ≤ 6
2x1 +5x2 +3x3 ≤ 6

y1 ≤ 9, y2 ≤ 10, y3 ≤ 8 }.

The following logical implications, which can be found by probing [18], are valid for S:

x1 = 1⇒ x2 = 0, y1 ≤ 6⇒ y2 ≤ 9, y3 ≤ 6,

x2 = 1⇒ x1 = 0, x3 = 0,

x3 = 1⇒ x2 = 0, y1 ≥ 7
2 ⇒ x4 = 0,

x4 = 1⇒ y1 ≤ 3⇒ x3 = 0, y2 ≤ 6, y3 ≤ 4.
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Writing these implications as linear inequalities gives us the packing relaxation

MVP = { x ∈ IB4, y ∈ IR3+ : 3x1 + y1 ≤ 9
6x4 + y1 ≤ 9

1x1 + y2 ≤ 10
4x4 + y2 ≤ 10

2x1 + y3 ≤ 8

4x4 + y3 ≤ 8
x1 + x2 ≤ 1

x2 + x3 ≤ 1
x3 + x4 ≤ 1 }.

Since MVP is a relaxation of S, valid inequalities for MVP are also valid for S. This
relation motivates the study of the polyhedral structure of MVP in Sect. 2. Figure 1
shows the mixed conflict graph for the packing relaxation of S. We use circles to denote
the binary vertices and squares for the continuous vertices. Note that there are no edges
between continuous vertices.

y3 ≤ 8

2 6

x1 x4

443 1

x2 x3

y1 ≤ 9 y2 ≤ 10

Fig. 1. Mixed conflict graph of S

The outline of this paper is as follows. In Sect. 2, we study the facial structure
of the mixed vertex packing polytope. We derive several classes of valid inequalities
for this polytope and give separation algorithms for these inequalities. In Sect. 3, we
present computational experiments that indicate the effectiveness of the inequalities
described in Sect. 2 in solving mixed vertex packing problems and general mixed-
integer programs.

2. Mixed vertex packing polytope

In this section we study the facial structure of the mixed vertex packing polytope,
conv(MVP), and derive strong valid inequalities for it. Let LMVP be the linear relaxation
of MVP. Thus,
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LMVP = {(x, y) ∈ IRn+m that satisfy (5)–(8)}, where

xi + x j ≤ 1, (i, j) ∈ E (5)

aik xi + yk ≤ uk, (i, k) ∈ F (6)

0 ≤ xi ≤ 1, i ∈ N (7)

0 ≤ yk ≤ uk, k ∈ M. (8)

Below we summarize basic results on the dimension of conv(MVP) and the strength
of inequalities (5)–(8) defining LMVP.

Proposition 1.
1. The dimension of conv(MVP) is n +m.
2. xi ≥ 0, i ∈ N and yk ≥ 0, k ∈ M are facet-defining for conv(MVP).
3. xi ≤ 1, i ∈ N defines a facet of conv(MVP) if and only if N(i) = ∅ and aik < uk

for all k ∈ M(i).
4. yk ≤ uk, k ∈ M defines a facet of conv(MVP) if and only if M(k) = ∅.
5. xi + x j ≤ 1 defines a facet of conv(MVP) if and only if N(i) ∩ N( j) = ∅ and

min{aik, a jk} < uk for all k ∈ M(i) ∪ M( j).
6. aik xi + yk ≤ uk defines a facet of conv(MVP) if and only if N(i) ∩ N(k) = ∅ and

aik = max j∈N(k) a jk.

The following theorem characterizes the graphs for which the linear relaxation
LMVP is sufficient to describe conv(MVP).

Theorem 1. Inequalities (5)–(8) of LMVP are sufficient to describe conv(MVP) if and
only if G is bipartite and aik = ak, for all i ∈ N(k), for all k ∈ M.

Proof. Suppose aik < a jk for some k ∈ M. In Proposition 3 we show that (a jk−aik)x j+
aik xi + yk ≤ uk is valid for conv(MVP). This inequality dominates aik xi + yk ≤ uk.
Now, suppose aik = ak, for all i ∈ N(k) for all k ∈ M but G is not bipartite. In that
case, consider the odd cycle given in Fig. 2. It is easily seen that ( 1

2 , 1
2 , 1

2 , 1
2 , u − a

2 ) is
a fractional basic feasible solution of LMVP if u is the upper bound of the continuous
variable.

a
1
2

1
2

1
2

1
2

u − a
2

a

Fig. 2. Fractional basic feasible solution

Conversely, define y′k = (uk − yk)/ak and rewrite inequality (6) as xi − y′k ≤ 0
and inequality (8) as 0 ≤ y′k ≤ uk/ak. Since G is bipartite, by multiplying the binary
variables associated with vertices that are not adjacent to a continuous vertex by−1, we
obtain a constraint matrix with exactly one +1 and one −1 coefficient in each row (5)
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and (6) and an identity for (7) and (8), which is totally unimodular. The right-hand side
of this formulation is integral, except for the upper bound constraints on y ′k ≤ uk/ak,
k ∈ M with uk > ak. However, if uk > ak, then in a feasible solution y′k ≤ uk/ak is tight
only if N(k) = ∅. Hence an extreme point of LMVP is integral for all x variables.

��

2.1. Valid inequalities

There is a natural vertex packing relaxation of MVP, defined on the subgraph induced
by the binary vertices. Valid inequalities for this vertex packing relaxation are valid for
MVP as well.

Proposition 2. Let MVP(N) denote the projection of MVP onto the space of binary
variables. If ∑

i∈S

bi xi ≤ r (9)

for S ⊆ N is a valid inequality for MVP(N), then it is valid for MVP as well. If (9) is
facet-defining for conv(MVP(N)), then it is also facet-defining for conv(MVP) if for all
k ∈ M, there exists a packing Pk ⊆ S satisfying (9) at equality with aik < uk for all
i ∈ Pk ∩ N(k).

Proof. The inequality is valid for MVP since aik > 0 for all (i, k) ∈ F. If (9) is facet-
defining for conv(MVP(N)), then there exists n affinely independent points in MVP(N)
satisfying (9) at equality. Let ei be the ith unit vector. These n points together with∑

i∈Pk
ei+ (uk−maxi∈Pk aik)ek, for k ∈ M, make up n+m affinely independent points

in {(x, y) ∈ MVP :∑i∈S bi xi = r}.
��

For a vertex k, a subgraph consisting of vertices k and T ⊆ N(k) and the edges
between k and T , is said to be a star of vertex k. Now we give the first class of new valid
inequalities for MVP.

Proposition 3. For k ∈ M, let T = {i1, i2, . . . , it} be a subset of N(k) such that
ai j−1k < ai j k for j = 2, 3, . . . , t. Then the star inequality

∑
i∈T

āik xi + yk ≤ uk (10)

where āi1k = ai1k, āi j k = ai j k − ai j−1k, j = 2, 3, . . . , t, is valid for MVP.

Proof. Let (x̄, ȳ) ∈MVP, S = {i ∈ T : x̄i = 1}, and j∗ = max1≤ j≤t{ j : i j ∈ S}.
Then

∑
i∈T

āik x̄i + ȳk ≤
∑
i∈S

āik + (uk − ai j∗ k) ≤ ai j∗k + (uk − ai j∗ k) = uk.

��
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Theorem 2. The star inequality (10) is facet-defining for conv(MVP) if ait k =
max j∈N(k) a jk and N(i) = ∅ for all i ∈ T.

Proof. Suppose N(k) = {1, 2, . . . , l} is indexed so that a1k ≤ a2k ≤ . . . ≤ alk . Then it
is easy to show that the following n + m points

pk = ukek,

pi = ukek + uiei, i ∈ M \ {k},
qi = ukek + ei, i ∈ N \ N(k),

wi =
∑

j∈N(k): j≤i

e j + (uk − aik)ek, i ∈ T,

zi =
∑

j∈N(k): j≤ j(i), j �=i

e j + (uk − a j(i)k)ek, i ∈ N(k) \ T,

where for i ∈ N(k) \ T , j(i) = min1≤ j≤t{i j ∈ T : aik ≤ ai j k} are affinely independent
points of {(x, y) ∈ MVP : ∑i∈T āik xi + yk = uk}. Note that j(i) is well-defined since
ait k = max j∈N(k) a jk.

��
Observe that the mixed edge inequalities (6) are dominated by the star inequali-

ties (10). If the binary vertices are independent, then the star inequalities together with
the upper bound and lower bound inequalities give conv(MVP).

Theorem 3. If E = ∅, then inequalities (7), (8), and (10) are sufficient to describe
conv(MVP).

Proof. If a jk = ak for k ∈ M, then the result follows from Theorem 1 since the graph
is bipartite when E = ∅. So to simplify the discussion, we consider the case when
a jk are distinct for k ∈ M. Given an arbitrary objective function (c, d) �= (0, 0), let
(x̄l, ȳl ), l ∈ O be the optimal solutions to MVPP. We will prove the theorem by showing
that there exists an inequality among (7), (8), and (10) that is satisfied at equality for
all l ∈ O. If c j < 0 for some j ∈ N then x̄l

j = 0 for all l ∈ O; similarly, if dk < 0

for some k ∈ M then ȳl
k = 0 for all l ∈ O. Therefore, in the following we may assume

c j , dk ≥ 0.
We define Sl = { j ∈ N : x̄l

j = 1}, l ∈ O and Sl
r = Sl ∩ N(r), r ∈ M. There

exists t ∈ M with dt > 0, since otherwise x̄l
j = 1 for all l ∈ O for some j ∈ N with

c j > 0, which itself exists since (c, d) �= (0, 0). Then for an arbitrary t ∈ M with
dt > 0, if Sl

t = ∅ for all l ∈ O, we are done since ȳl
t = ut for all l ∈ O; otherwise,

let T = { j ∈ N(t) : j = argmaxk∈Sl
t
akt , for l ∈ O} and T̄ = T ∪ argmaxk∈N(t)akt . We

claim that the star inequality ∑
k∈T̄

ākt xk + yt ≤ ut (11)

is satisfied at equality for all l ∈ O. To see this consider some p ∈ O and let j =
argmaxk∈S p

t
akt . By definition of T , it holds that j ∈ T . Notice that since (11) is a star
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inequality,
∑

k∈T̄ :akt≤a jt
ākt = a jt and that since dt > 0, ȳ p

t = ut − a jt . Therefore,
inequality (11) has positive slack for (x̄ p, ȳ p) if and only if there exists i ∈ T such that
ait < a jt and i �∈ Sp

t . Suppose there is such an index i ∈ T . By definition of T there is
an optimal solution (x̄q, ȳq) such that i = argmaxk∈Sq

t
akt .

In order to arrive at a contradiction, we show that the objective value of (x̄, ȳ)
defined as x̄k = 1, k ∈ Sp ∪ Sq , x̄k = 0 otherwise, and ȳr = ur − maxk∈(S p

r ∪Sq
r ) ark

is larger than of (x̄ p, ȳ p), or equivalently, that z(Sp ∪ Sq) > z(Sp), where z(S) =∑
k∈S ck −∑r∈M dr maxk∈S∩N(r) akr for S ⊆ N. To see this, let K = Sp ∩ Sq , Mq =
{r ∈ M : maxk∈Sq

r
akr > maxk∈S p

r
akr}, and M p = M \ Mq . Then,

z(Sp ∪ Sq) =
∑
k∈S p

ck −
∑

r∈M p

dr max
k∈S p

r

akr +
∑

k∈Sq\K
ck −

∑
r∈Mq

dr max
k∈Sq

r \K
akr

= z(Sp)+
∑

k∈Sq\K
ck −

∑
r∈Mq

dr( max
k∈Sq

r \K
akr −max

k∈S p
r

akr)

≥ z(Sp)+
∑

k∈Sq\K
ck −

∑
r∈Mq

dr(max
k∈Sq

r

akr − max
k∈K∩N(r)

akr).

However,∑
k∈Sq\K

ck −
∑

r∈Mq

dr(max
k∈Sq

r

akr − max
k∈K∩N(r)

akr) >

∑
k∈Sq\K

ck −
∑
r∈M

dr(max
k∈Sq

r

akr − max
k∈K∩N(r)

akr) = z(Sq)− z(K ) ≥ 0.

The strict inequality holds because (i) dr(maxk∈Sq
r

akr − maxk∈K∩N(r) akr) ≥ 0 for all

r ∈ M p as dr ≥ 0 and K ∩ N(r) ⊆ Sq
r and (ii) t ∈ M p (since ait < a jt), dt > 0,

and ait = maxk∈Sq
r

akt > maxk∈K∩N(t) akt as i �∈ K . Also, since (x̄q, ȳq) is optimal,
z(Sq) ≥ z(K ) follows. Therefore it must be the case that z(Sp ∪ Sq) > z(Sp), which
contradicts the optimality of (x̄ p, ȳ p).

��
The next two classes of inequalities are generalizations of the clique and odd cycle

inequalities [16,17] for the vertex packing problem, respectively.

Theorem 4. If K ⊆ N(k) for k ∈ M induces a clique, then the mixed clique inequality∑
i∈K

aik xi + yk ≤ uk (12)

is valid for MVP. It is facet-defining for conv(MVP) if and only if for all j ∈ N(k) \ K,
there exists i ∈ K \ N( j) such that ajk ≤ aik.

Proof. The validity of (12) is obvious since at most one of the variables in K can have
value one. Suppose for some j ∈ N(k) \ K , a jk > aik holds for i ∈ K \ N( j).
Then

∑
i∈K aik xi + (a jk − maxi∈K\N( j) aik)x j + yk ≤ uk is valid and dominates

inequality (12). Conversely, let i( j) = argmaxi∈K\N( j)aik for j ∈ N(k) \ K . Then
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ei + (uk − aik)ek, i ∈ K , ei( j) + (u − ai( j)k)ek + e j , j ∈ N(k) \ K , e j + ukek, j ∈
N \ N(k) and ukek + uiei , i ∈ M \ {k}, ukek are n + m affinely independent points of
{(x, y) ∈ MVP :∑i∈K aik xi + yk = uk}.

��
Theorem 5. Let C ⊆ E ∪ F be the set of edges of an odd cycle in G, CB be the set
of binary vertices on the cycle, and CC the set of continuous vertices on the cycle. The
mixed odd cycle inequality

∑
j∈CB

(
1+

∑
k∈M j

ak2 − ak1

ak1

)
x j +

∑
k∈CC

yk

ak1

≤
⌊ |CB| − |CC|

2

⌋
+
∑

k∈CC

uk

ak1

, (13)

where ak1 and ak2 are the weights of the edges incident to k ∈ CC in C, with ak1 ≤ ak2

and M j = {k ∈ M( j) ∩ CC : ak2 = a jk}, is valid for MVP.

Proof. For k ∈ CC let (k, k1) and (k, k2) be the edges on the cycle with weights ak1

and ak2 , respectively. Consider (x̄, ȳ) ∈ MVP and let Co
C = {k ∈ CC : x̄k1 = x̄k2 = 0},

C1
C = {k ∈ CC : x̄k1 = 1, x̄k2 = 0}, and C2

C = {k ∈ CC : x̄k2 = 1}. Then for (x̄, ȳ) the
left hand side of inequality (13) equals∑
j∈CB

x̄ j +
∑

k∈CC

( ȳk

ak1

+
(ak2 − ak1

ak1

)
x̄k2

)
≤

≤ |C| − |C
o
C| − 1

2
+
∑

k∈Co
C

uk

ak1

+
∑

k∈C1
C

uk − ak1

ak1

+
∑

k∈C2
C

(uk − ak2

ak1

+ ak2 − ak1

ak1

)

= 1

2
(|CB| − |CC | − 1)+

∑
k∈CC

uk

ak1

,

which equals the rhs of inequality (13) as |CB| − |CC| is odd for an odd cycle.
��

The mixed odd cycle inequality for the odd cycle in Fig. 3 is x1 + 3
2 x2 + 2x3 +

1
2 y1 + y2 ≤ 9

2 .

y2 ≤ 3
1

x3 y1 ≤ 3

x1

2
2 3

x2

Fig. 3. Odd cycle of a mixed conflict graph

Proposition 4. [1] The mixed odd cycle inequality (13) is facet-defining for conv(MVP)
if G is a chordless odd cycle.
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Example 1 (cont.). The valid star inequalities for MVP (hence for S) are

3x1 +3x4 +y1 ≤ 9
6x4 +y1 ≤ 9

x1 +3x4 +y2 ≤ 10
4x4 +y2 ≤ 10

2x2 +2x4 +y2 ≤ 8
4x4 +y2 ≤ 8

and the valid mixed odd cycle inequalities are

x1 +x2 +x3 +2x4 + 1
3 y1 ≤ 4

x1 +x2 +x3 +4x4 +y2 ≤ 11
x1 +x2 +x3 +3x4 + 1

2 y3 ≤ 5.

Although MVP is a relaxation of S, some of the extreme points of the linear relaxation
of S, SL, may not be feasible for the linear relaxation of MVP, MVPL. For example
( 1

2 , 1, 0, 1
2 , 7, 10, 0) is a feasible point of SL but it is not feasible for MVPL. This point

is cutoff by edge inequalities x1 + x2 ≤ 1, x1 + y2 ≤ 10, and 4x4 + y2 ≤ 10. To see
that the valid inequalities above are potentially useful as cutting planes for S, consider
the extreme point ( 4

19 , 15
19 , 4

19 , 0, 159
19 , 10, 0) of SL ∩ MVPL. This point is cutoff by

the star inequality x1 + 3x4 + y2 ≤ 10 and also by the mixed odd cycle inequality
x1 + x2 + x3 + 4x4 + y2 ≤ 11, both of which are facet-defining for conv(MVP).

2.2. Separation

Here we discuss the separation problems for the inequalities derived in Sect. 2.1. Given
a point (x̄, ȳ) ∈ IRn+m \ conv(MVP), we want to find a valid inequality violated by this
point.

Theorem 6. The separation problem for star inequalities (10) can be solved in poly-
nomial time.

Proof. For k ∈ M suppose N(k) = {1, 2, . . . , l} is indexed so that a1k ≤ a2k ≤ . . .≤ alk .
We will reduce the separation problem for the star inequalities of k to a longest path
problem on an acyclic directed graph with l + 1 layers. The graph has one layer for
each variable x1, x2, . . . , xl and an auxiliary layer zero. A vertex in layer i, 1 ≤ i ≤ l,
represents the sum of coefficients of x1, x2, . . . , xi in a star inequality. Layer zero has
a single vertex, representing the zero coefficient. Since the sum of the coefficients in
a star inequality equals alk , layer l has a single vertex representing coefficient alk . Two
arcs leave a vertex representing sum s at layer i − 1, both to vertices in layer i for
0 ≤ i < l. The first one is to the vertex for the same value s at layer i, representing
coefficient zero for xi in the star inequality, and the second one is to the vertex for
value aik , representing coefficient aik − s for xi . There is a single arc from each vertex
in layer l − 1 to the unique vertex in layer l representing sum alk .

With this construction, if all aik are distinct, there are i + 1 vertices in layer i,
0 ≤ i < l and a single vertex in layer l, which gives a total of l(l + 1)/2 + 1 vertices
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and l2 arcs. Furthermore, there are exactly 2l−1 directed paths from layer zero to layer l,
each representing a particular star inequality of vertex k. If ai−1k = aik , then the number
of vertices in layers i − 1 and i are equal; hence the number of arcs from layer i − 1 to
layer i is one less than otherwise.

Given (x̄, ȳ) ∈ IRn+m , we assign a length of cx̄i to an arc representing coefficient
c for variable xi in the star inequality. Then a longest path from layer zero to layer l
corresponds to an inequality with the largest left hand side value.

��
Example 2. Consider

S = { (x, y) ∈ IB4 × R1+ : 1x1 + y ≤ 10, 2x2 + y ≤ 10,

5x3 + y ≤ 10, 7x4 + y ≤ 10 }.
The layered directed graph corresponding to S is shown in Fig. 4. In this graph each
path from layer 0 to layer 4 represents one of the star inequalities below:

x1 + x2 + 3x3 + 2x4 + y ≤ 10
2x2 + 3x3 + 2x4 + y ≤ 10

x1 + 4x3 + 2x4 + y ≤ 10
x1 + x2 + 5x4 + y ≤ 10
x1 + 6x4 + y ≤ 10

2x2 + 5x4 + y ≤ 10
5x3 + 2x4 + y ≤ 10

7x4 + y ≤ 10.

layers

0

0 1 2 3 4

000

1

2

1 1

2

5

7

Fig. 4. Layered directed graph of S

Using the fact that arcs representing coefficient zero have zero length, we have the
following simple 
(l2) algorithm for the separation problem of star inequalities.

Algorithm 1 Separation for star inequalities
1: π0 ← 0
2: for j = 1 to l do
3: πa jk ← maxi:aik <a jk πaik + (a jk − aik)x̄ j
4: end for
5: if πalk + ȳk > uk then
6: star inequality, defined by a longest path, is violated
7: else
8: no star inequality of vertex k is violated
9: end if

Due to the polynomial equivalence of optimization and separation [8], Theorem 3
and Theorem 6 imply polynomial solvability of the mixed vertex packing problem when
the binary vertices are independent.

Corollary 1. If E = ∅, then MVPP can be solved in polynomial time.
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The separation problem for mixed clique inequalities is equivalent to solving
a weighted maximum clique problem for each k ∈ M on the subgraph induced by
N(k) and therefore is NP-hard. Given (x̄, ȳ) ∈ IRn+m , a most violated mixed clique
inequality can be found by solving

max
k∈M


 max

K⊆N(k)

∑
j∈K

a jk x̄ j + ȳk




where G(K ) is a clique. Solving this separation problem may be computationally
feasible by enumeration for small graphs since the search for cliques is restricted to
adjacent vertices of a single continuous vertex.

Theorem 7. Suppose a jk = ak for all j ∈ N(k) and for all k ∈ M. Then the separation
problem for the mixed odd cycle inequalities (13) can be solved in polynomial time.

Proof. Consider inequality (13) when weights of all the edges incident to a continuous
vertex k are the same, say ak,

∑
j∈CB

x j +
∑

k∈CC

yk

ak
≤ 1

2
(|CB| − |CC| − 1)+

∑
k∈CC

uk

ak
. (14)

We can rewrite (14) as

∑
j∈CB

(1− 2x j)+
∑

k∈CC

(
2(uk − yk)

ak
− 1

)
≥ 1. (15)

Then, given (x̄, ȳ), finding a most violated mixed odd cycle inequality is equivalent to
finding a minimum weight odd cycle on a graph with edge weights

w(i, k) =
{

1− x̄i − x̄k, if i, k ∈ N,
uk−ȳk

ak
− x̄i, if i ∈ N, k ∈ M.

Observe that for a point (x̄, ȳ) ∈ LMVP, w(i, k) ≥ 0 for all (i, k) ∈ E ∪ F. Since there
is a polynomial time algorithm for finding a minimum weight odd cycle on a graph with
nonnegative edge weights [8], the separation problem is solvable in polynomial time.

��

2.3. Strengthening star inequalities

In this section we present a procedure for strengthening star inequalities when the binary
variables appearing in the inequality are not independent. A strengthened star inequality
has the form

∑
j∈T ã jkx j+yk ≤ uk with ã jk ≥ ā jk for j ∈ T . The procedure begins with

a star inequality (10), and then the coefficients are increased iteratively in increasing
order of aik, i ∈ T .
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Proposition 5. Let
∑

j∈T ã jkx j + yk ≤ uk be a strengthened star inequality such that
for some i ∈ T, ã jk = ā jk for j ∈ T with a jk > aik and ã jk ≥ ā jk for j ∈ T with
a jk ≤ aik. Then the coefficient of variable xi can be increased by

(aik −
∑
j∈S

ã jk)
+ (16)

where S = { j ∈ T \ N(i) : ajk ≤ aik} and a+ = max{a, 0}.
Proof. Let δi denote the increase in the coefficient of xi . For the inequality to remain
valid for MVP, we need

δi ≤ uk − max
(x,y)∈MVP,xi=1



∑
j∈T

ã jkx j + yk


 . (17)

Let U ⊆ T be the binary variables that have value one in an optimal solution to the right
hand side of (17). Then letting ā = max j∈U a jk, we see that

max
(x,y)∈MVP,xi=1



∑
j∈T

ã jkx j + yk


 ≤

∑
j∈S

ã jk +
∑

j∈U\S
ā jk + uk − ā.

Since
∑

j∈U\S ā jk ≤ ā − aik , the result follows.
��

Example 3. Consider the mixed conflict graph given in Fig. 5. One of the star inequalities
here is x1 + x2 + 3x3 + 2x4 + y ≤ 10. Increasing the coefficients of this inequality in
the order 1, 2, 3, 4, we obtain x1 + 2x2 + 3x3 + 4x4 + y ≤ 10.

y ≤ 10

x3x2

x1
2 5

1

x4

7

Fig. 5. Strengthening star inequalities

2.4. Sequential lifting

When the inequalities described previously are not facet-defining, we can make them
stronger through lifting. We start with lifting an inequality on binary variables with
a continuous variable. Let ∑

i∈S

αi xi ≤ r
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be a valid inequality for MVP(N) and consider lifting it with a continuous variable yk.
Let αk be the coefficient of yk in the lifted inequality. In order for the inequality to be
valid, we need

αk ≤ min

{
r −∑i∈S αi xi

yk
: (x, y) ∈ MVP, yk > 0

}
.

Proposition 6. Let
∑

i∈S αi xi ≤ r be a valid inequality for MVP(N) . If S is a subset of
N(k) such that aik = uk for all i ∈ S, then

∑
i∈S

αi xi + r

uk
yk ≤ r

is a valid inequality for MVP.

Next, given a valid inequality of the form
∑

i∈S αi xi + yk ≤ uk, S ⊆ N(k), we
consider lifting it with binary variables in N(k) \ S. For S ⊆ N(k) and j ∈ N(k) \ S, let
P be the collection of packings that contain vertex j in the graph induced by the vertex
set S ∪ { j}. Let

∑
i∈S

αi xi + yk ≤ uk

be a valid inequality for MVP and consider lifting it with binary variable x j ∈ N(k) \ S.
Let α j be the coefficient of x j in the lifted inequality. In order for the inequality to be
valid, we need

α j ≤ uk − max
(x,y)∈MVP,x j=1

{∑
i∈S

αi xi + yk

}
,

or equivalently,

α j ≤ uk −max
P∈P




∑
i∈P,i �= j

αi +min
i∈P
{uk − aik}


 = min

P∈P


max

i∈P
aik −

∑
i∈P,i �= j

αi


 .

The next proposition follows from this inequality.

Proposition 7.
1. If S ⊆ N( j), then the maximum lifting coefficient of x j equals a jk.
2. For j ∈ N(k) \ S, if aik ≤ a jk for all i ∈ S, then the maximum lifting coefficient of

x j equals a jk −maxP∈P
∑

i∈P,i �= j αi .

Now we give a class of mixed odd wheel inequalities that can be obtained by lifting
a mixed odd cycle inequality. The proof of the next proposition is a simple application
of the previous results on lifting.
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Proposition 8. Let C = (CB, CC) be a mixed odd cycle. Then the mixed odd wheel
inequality

∑
j∈CB

(
1+

∑
k∈M j

ak2 − ak1

ak1

)
x j +

∑
k∈CC

yk

ak1

+ αwzw ≤
⌊ |CB| − |CC|

2

⌋
+
∑

k∈CC

uk

ak1

is valid for conv(MVP), where ak1 and ak2 are the weights of the edges incident to
k ∈ CC in C, with ak1 ≤ ak2 , M j = {k ∈ M( j) ∩ CC : ak2 = a jk}, and

αw =
{⌊ |CB|−|CC |

2

⌋+∑k∈CC

awk
ak1

if w ∈ N, C ⊆ N(w) ∪ M(w),⌊ |CB|−|CC |
2

⌋
if w ∈ M, CB ⊆ N(w), a ji = uw∀ j ∈ CB.

The lifting coefficient in the mixed wheel inequality could be computed exactly due
to the special structure of an odd cycle. In general, computing lifting coefficients is hard.
Therefore, we consider approximating them.

Proposition 9. Let P be defined as before. Then
(
a jk − maxP∈P

∑
i∈P,i �= j αi

)+
is

a lower bound on the maximum lifting coefficient.

Proof. Decomposing the minimization problem of the lifting function we have

min
P∈P


max

i∈P
aik −

∑
i∈P,i �= j

αi


 ≥


min

P∈P
max
i∈P

aik −max
P∈P

∑
i∈P,i �= j

αi



+

=

a jk −max

P∈P
∑

i∈P,i �= j

αi



+

.

Equality follows since j ∈ P for all P ∈ P by definition of P .
��

Proposition 9 suggests an easy way for generating valid inequalities by sequentially
lifting yk ≤ uk with xi, i ∈ N(k). Let i1, i2, . . . , il be an arbitrary ordering of N(k).
Then

l∑
j=1

αi j xi j + yk ≤ uk

is a valid inequality for MVP, where the coefficients αi j are calculated as follows:

αi j =
(

ai j k −
∑
h∈S

αh

)+
(18)

with S = {i1, i2, . . . , i j−1} \ N(i j ). We call inequalities generated this way lifted bound
inequalities. Note that both star and mixed clique inequalities are special cases of the
lifted bound inequalities. We obtain a star inequality when N(i) = ∅ for all i ∈ N(k) and
a mixed clique inequality when S = ∅. Lifted bound inequalities may be stronger than
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star and mixed clique inequalities when the latter are not facet-defining. Also observe
that a strengthened star inequality is a lifted bound inequality as well.

By exploiting the structure of G(S), one can clearly derive stronger lifted bound
inequalities. For example, if G(S) is a clique, then αi j = ai j k − maxh∈S αh . A simple
modification to (18) allows us not only to derive stronger lifted bound inequalities, but
also to generate lifted mixed clique inequalities. Let G(K ) be a clique of G(S), then

αi j =

ai j k −

∑
h∈S\K

αh −max
h∈K

αh



+

. (19)

Note that if K is a singleton, the inequality is a regular lifted bound inequality.

3. Computational experiments

In order to test the effectiveness of the valid inequalities derived in Sect. 2 in solving (a)
mixed vertex packing problems and (b) general mixed-integer programming problems
with a branch-and-cut algorithm, we performed computational experiments on two data
sets. The first set consists of randomly generated mixed vertex packing problems. The
second set consists of mixed-integer problems from MIPLIB [4] for which violated star
inequalities are generated. Since the mixed vertex packing model forms a relaxation
of general mixed-integer problems, effectiveness of the valid inequalities for the first
data set is a prerequisite for successful results on general problems. The branch-and-cut
algorithm is implemented using MINTO [14] (version 3.0), which is a customizable
software system that solves mixed-integer linear programs by a branch-and-boundalgo-
rithm with linear programming relaxations. In the current implementation, a best bound
node selection strategy is used and new valid inequalities are added only at nodes with
depth less than or equal to five. All experiments are done on a SUN Ultra 10 workstation
with one hour CPU time limit.

Computational experiments on the mixed vertex packing problems are summarized
in Table 1. Clique inequalities on binary variables are valid for MVP, and MINTO
generates them automatically. To see the effect of the new inequalities, we compare the
performanceof a branch-and-cutalgorithm with clique, star and lifted bound inequalities
against one with only clique inequalities on randomly generated graphs with varying
edge density and fraction of continuous vertices. We use the algorithm given in Sect. 2.2
to find violated star inequalities. A star inequality with the largest left hand side value is
strengthened as explain in Sect. 2.3 and then checked for violation. Given a fractional
solution (x̄, ȳ), a lifted bound inequality is generated for each continuous variable yk
by lifting its adjacent binary variables xi in nonincreasing order of aik x̄i using equation
(19). If the resulting inequality is violated by the fractional solution, it is added to the
formulation. Note that even though a strengthened star inequality is a special case of
lifted bound inequalities, the existence of an efficient separation algorithm may allow
us to generate many violated star inequalities that may have been missed by the lifting
order used to generate a lifted bound inequality. Therefore, we generate these classes
of inequalities separately. We have not generated mixed odd cycle inequalities in the
branch-and-cut algorithm as they are less likely to be facet-defining. In Table 1, for each
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Table 1. Performance statistics for mixed vertex packing problems

vert dns cont LPgap endgap clqs nodes time LPgap endgap clqs stars lft bnds nodes time
0.1 0.2 9.60 0.00 72 147 5 5.32 0.00 59 117 8 19 3
0.1 0.4 9.59 0.00 47 255 7 2.28 0.00 28 155 15 7 2
0.2 0.2 27.44 0.00 814 1367 159 16.91 0.00 334 563 19 204 98100
0.2 0.4 11.67 0.00 82 74 9 0.23 0.00 37 179 40 2 2
0.4 0.2 41.80 0.00 857 604 249 21.38 0.00 569 613 20 179 182
0.4 0.4 5.10 0.00 56 29 7 0.00 0.00 23 41 42 1 1
0.1 0.2 22.22 0.00 2627 8913 1648 15.26 0.00 480 641 23 1269 938
0.1 0.4 11.22 0.00 195 849 110 2.63 0.00 60 402 38 23 16
0.2 0.2 46.45 5.46 7416 5764 3600 31.48 3.92 1952 1148 29 1216 3600150
0.2 0.4 9.87 0.00 95 65 27 0.00 0.00 47 206 62 1 3
0.4 0.2 58.19 6.13 3809 2221 3600 30.08 3.84 1896 1239 27 518 3600
0.4 0.4 5.11 0.00 97 51 44 0.00 0.00 24 56 62 1 4

case we give the average duality gap (LPgap = 100× zroot−zopt
zopt ) at the root node after all cuts

are added, the percentage gap between the best upper bound and the best lower bound
(endgap = 100 × zub−zlb

zlb ) at termination, the number of inequalities generated, the number
of nodes explored, and the total CPU time elapsed in seconds of five instances with 100
and 150 vertices. Observe that as the fraction of continuous variables increases, MVPPs
become easier to solve. Problems with 20% continuous vertices could not be solved to
optimality for densities 0.2 and 0.4 and 150 vertices by either algorithm. However, the
duality gap is reduced considerably with the addition of the new inequalities. For these
problems, since optimal solutions are unknown, we use the best feasible solution instead
of an optimal one to report the duality gap at the root node. We remark that in both cases
better feasible solutions are found when star and lifted bound inequalities are added.
In summary, the star inequalities and the lifted bound inequalities are very effective in
strengthening the LP relaxations and in reducing the number of nodes explored and the
overall solution times.

Table 2. Performance statistics for MIPLIB problems

problem LPgap endgap clqs nodes time LPgap endgap clqs stars nodes time
bell3a 1.40 0.00 0 54532 291 1.39 0.00 0 4 54157 213
blend2 8.99 0.00 318 2590 183 8.99 0.00 176 26 2035 94
dcmulti 1.46 0.00 21 817 25 1.46 0.00 19 15 802 24
egout 1.06 0.00 9 3 1 0.58 0.00 3 34 3 1
fixnet4 13.79 0.00 1 755 21 13.68 0.00 1 6 486 15
fixnet6 19.85 0.00 1 715 20 19.73 0.00 1 5 549 18
gen 0.05 0.00 14 253 10 0.05 0.00 19 22 217 10
gesa2 1.02 0.00 3 65783 1451 1.01 0.00 3 3 65003 1472
gesa2_o 1.01 0.00 2 92701 1933 1.01 0.00 2 2 93831 1865
gesa3 0.52 0.00 21 837 91 0.52 0.00 7 8 757 69
gesa3_o 0.52 0.00 17 1771 167 0.52 0.00 9 4 1675 154
khb05250 10.31 0.00 0 1935 53 0.18 0.00 0 98 13 3
mod011 17.71 6.55 0 8376 3600 8.45 1.61 0 1531 2004 3600
qnet1 10.95 0.00 0 153 26 10.95 0.00 0 4 149 24
qnet1_o 19.48 0.00 0 281 33 15.69 0.00 0 5 203 29
rgn 40.63 0.00 0 3701 24 38.81 0.00 0 20 3339 21
rout 12.83 6.12 0 111101 3600 9.74 2.63 0 3 119712 3600
set1ch 31.57 20.90 4 193135 3600 22.14 12.52 4 128 177648 3600
vpm2 19.72 5.07 1 173582 3600 16.58 0.87 1 8 161115 3600
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A similar comparison is made for the second data set in Table 2. Here we report
the LPgap, endgap, the number of cuts generated, the number of nodes explored in the
search tree, and the total CPU time elapsed in seconds. We remark that no violated lifted
bound inequality is found for any of the MIPLIB problems. The addition of the star
cuts reduces the number of nodes explored and the overall solution times for almost
all problems in this set, even if there is none or only a modest reduction in the duality
gap at the root node. Four problems could not be solved within an hour of CPU time;
however for all of these unsolved problems LPgap and endgap reduced significantly
with the addition of star cuts. We use the already known optimal value to report the
LPgap and the endgap of set1ch because no feasible solution was found by either of
the algorithms within one hour of CPU time for this problem. From these computational
results we conclude that inequalities derived from mixed vertex packing relaxations may
be valuable in supplementing the ones from vertex packing relaxations for mixed 0-1
integer problems.

MINTO can also generate other classes of system cuts, such as lifted knapsack
cover inequalities and lifted flow cover inequalities for mixed-integer problems. When
star cuts are generated in addition to all system cuts, their effect is less pronounced,
especially for the easily solved problems in Table 2. Nevertheless, addition of the star
cuts does improve the lower bounds for harder problems, where knapsack and flow
cover cuts are less effective. For example, the best lower bound at termination improves
from −55781349.08 to −55244373.09 for mod011 and from 47510.79 to 47651.13
for set1ch after 1313 and 122 star cuts are generated, respectively, in addition to all
system cuts available in MINTO. This translates to reductions in endgap from 2.24% to
1.26% for mod011 and from 12.88% to 12.63% for set1ch.

With the insights gained from studying MVP, we are investigating how to use the
mixed vertex packing relaxation together with a single mixed-integer knapsack inequal-
ity for obtaining stronger relaxations of general 0-1 MIP problems. Since a variable
lower/upper bound constraint is a special case of a mixed edge inequality, we can derive
generalizations of the flow cover and flow pack inequalities [2,20] in this manner.
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