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Abstract
Optimization algorithms can see their local convergence rates deteriorate when
the Hessian at the optimum is singular. These singularities are inescapable when
the optima are non-isolated. Yet, under the right circumstances, several algorithms
preserve their favorable rates even when optima form a continuum (e.g., due to
over-parameterization). This has been explained under various structural assumptions,
including the Polyak–Łojasiewicz condition, Quadratic Growth and the Error Bound.
We show that, for cost functionswhich are twice continuously differentiable (C2), those
three (local) properties are equivalent. Moreover, we show they are equivalent to the
Morse–Bott property, that is, local minima form differentiable submanifolds, and the
Hessian of the cost function is positive definite along its normal directions.We leverage
this insight to improve local convergence guarantees for safe-guarded Newton-type
methods under any (hence all) of the above assumptions. First, for adaptive cubic reg-
ularization, we secure quadratic convergence even with inexact subproblem solvers.
Second, for trust-region methods, we argue capture can fail with an exact subproblem
solver, then proceed to show linear convergence with an inexact one (Cauchy steps).

Mathematics Subject Classification 90C26 · 90C30

1 Introduction

We consider local convergence of algorithms for unconstrained optimization problems

min
x∈M

f (x),
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where M is a Riemannian manifold1 and f : M → R is at least C1 (continuously
differentiable).

When f is C2 (twice continuously differentiable), the most classical local conver-
gence results ensure favorable rates for standard algorithms provided they converge to
a non-singular local minimum x̄ , that is, one such that the Hessian ∇2 f (x̄) is positive
definite. And indeed, those rates can degrade if the Hessian is merely positive semidef-
inite. For example, with f (x) = x4, gradient descent (with an appropriate step-size)
converges only sublinearly to the minimum, and Newton’s method converges only
linearly.

This is problematic if the minimizers of f are not isolated, because in that case the
Hessian cannot be positive definite there. This situation arises commonly in applica-
tions for structural reasons such as over-parameterization, redundant parameterizations
and symmetry—see Sect. 1.2.

Notwithstanding, algorithms often exhibit good local behavior near non-isolated
minimizers. As early as the 1960s, this has prompted investigations into properties
that such cost functions may satisfy and which lead to fast local rates despite singular
Hessians. We study four such properties.

In all that follows, we are concerned with the behavior of algorithms in the vicinity
of its local minima. Since we do not assume that they are isolated, rather than selecting
one local minimum x̄ , we select all local minima of the same value. Formally, given
a local minimum x̄ , let

S = {x ∈ M : x is a local minimum of f and f (x) = fS} (1)

denote the set of all local minima with a given value fS = f (x̄).
For f of class C2, it is particularly favorable if S is a differentiable submanifold

of M around x̄ . In that case the set S has a tangent space Tx̄S at x̄ . It is easy to see
that each vector v ∈ Tx̄S must be in the kernel of the Hessian ∇2 f at x̄ because the
gradient ∇ f is constant (zero) on S. Thus, Tx̄S ⊆ ker∇2 f (x̄). Since x̄ is a local
minimum, we also know that ∇2 f (x̄) is positive semidefinite. Then, in the spirit of
asking the Hessian to be “as positive definite as possible”, the best we can hope for is
that the kernel of ∇2 f (x̄) is exactly Tx̄S, in which case the restriction of ∇2 f (x̄) to
the normal space Nx̄S, that is, the orthogonal complement of Tx̄S in Tx̄M, is positive
definite.

We call this the Morse–Bott property (MB), and we write μ-MB to indicate that
the positive eigenvalues are at least μ > 0. The definition requires f to be twice
differentiable.

Definition 1.1 Let x̄ be a local minimum of f with associated set S (1). We say f
satisfies the Morse–Bott property at x̄ if

S is a C1 submanifold around x̄ and ker∇2 f (x̄) = Tx̄S. (MB)

1 The contributions are relevant for M = R
n too. We treat the more general manifold case as it involves

only mild overhead in notation, summarized in Table 2.
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If also 〈v,∇2 f (x̄)[v]〉 ≥ μ‖v‖2 for some μ > 0 and all v ∈ Nx̄S then we say f
satisfies μ-MB at x̄ .

At first, a reasonable objection to the above is that one may not want to assume that
S is a submanifold. Perhaps for that reason, it is far more common to encounter other
assumptions in the optimization literature. We focus on three: Polyak–Łojasiewicz
(PŁ), error bound (EB) and quadratic growth (QG). The first goes back to the
1960s [81]. The latter two go back at least to the 1990s [22, 70].

Below, thefirst twodefinitions (as stated) require f to be differentiable. The distance
to a set is defined as usual: dist(x,S) = inf y∈S dist(x, y) where dist(x, y) is the
Riemannian distance onM.

Definition 1.2 Let x̄ be a local minimum of f with associated set S (1). We say f
satisfies

• the Polyak–Łojasiewicz condition with constant μ > 0 (μ-PŁ) around x̄ if

f (x) − fS ≤ 1

2μ
‖∇ f (x)‖2; (PŁ)

• the error bound with constant μ > 0 (μ-EB) around x̄ if

μ dist(x,S) ≤ ‖∇ f (x)‖; (EB)

• quadratic growth with constant μ > 0 (μ-QG) around x̄ if

f (x) − fS ≥ μ

2
dist(x,S)2; (QG)

all understood to hold for all x in some neighborhood of x̄ .

Note that all the definitions are local around a point x̄ . Two observations are imme-
diate: (i) QG implies that x̄ is a strict minimum relatively to S (1), meaning that
f (x) > fS for all x /∈ S close enough to x̄ , and (ii) both EB and PŁ imply that critical
points and S coincide around x̄ . Thus, both EB and PŁ rule out existence of saddle
points near x̄ . By extension, we say that f satisfies any of these four properties around
a set of local minima if it holds around each point of that set.

1.1 Contributions

A number of relationships between PŁ, EB and QG are well known already for f of
class C1: see Table 1 and Sect. 1.3. Our first main contribution in this paper is to show
that:

If f is of class C2, then PŁ, EB, QG and MB are essentially equivalent.

Here, “essentially” means that the constant μ may degrade (arbitrarily little) and the
neighborhoodswhere properties holdmay shrink.Notably,we show that if f is Cp with
p ≥ 2, then PŁ, EB and QG all imply that the set of local minima S is locally smooth
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(at least Cp−1).We also give counter-examples when f is only C1. Explicitly, in Sect. 2
we summarize known results for f of class C1 and we contribute the following:

• Theorem 2.16 shows PŁ around x̄ implies S is a Cp−1 submanifold around x̄ if f
is Cp with p ≥ 2. Remark 2.19 provides counter-examples if f is only C1. If f is
analytic, so is S, as already shown by Feehan [44].

• Lemma 2.14 is instrumental to prove Theorem 2.16 and to analyze algorithms. It
states that under PŁ the gradient locally aligns with the dominant eigenvectors of
the Hessian.

• Corollary 2.17 deduces that μ-PŁ implies μ-MB if f is C2.
• Proposition 2.8 shows μ-QG implies μ′-EB with μ′ < μ arbitrarily close if f is
C2. Remark 2.9 provides a counter-example if f is only C1.

• Proposition 2.4 shows μ-EB implies μ′-PŁ with μ′ < μ arbitrarily close if f is
C2. If f is only C1 with L-Lipschitz continuous ∇ f , Karimi et al. [52] showed
the same with μ′ = μ2/L .

In Sect. 4, we study the classical globalized versions of Newton’s method. We
strengthen their local convergence guarantees when minimizers are not isolated but
the C2 cost function satisfies any (hence all) of the above. The key observation that
enables those improvements is the fact that we may use all four conditions in the
analysis without loss of generality. Specifically:

• Cubic regularization enjoys superlinear convergence under PŁ, as shown by Nes-
terov and Polyak [76]. Yue et al. [97] further showed quadratic convergence under
EB. Both references assume an exact subproblem solver. Leveraging our results
above, we show that quadratic convergence still holds with inexact subproblem
solvers (Theorem 4.1).

• For the trust-region method with exact subproblem solver, we were surprised to
find that even basic capture-type convergence properties can fail in the presence of
non-isolated local minima (Sect. 4.2). Notwithstanding, common implementations
of the trust-region method use a truncated conjugate gradient (tCG) subproblem
solver, and those do, empirically, exhibit superlinear convergence under the favor-
able conditions discussed above. We discuss this further in Remark 4.14, and we
show a partial result in Theorem 4.9, namely, that using the Cauchy step (i.e., the
first iterate of tCG) yields linear convergence.

As is classical, to prove the latter results, we rely on capture theorems and Lyapunov
stability. Those hold under assumptions of vanishing step-sizes and bounded path
length. In Sect. 3, we state those building blocks succinctly, adapted to accommodate
non-isolated local minima.

1.2 Non-isolatedminima in applications

We now illustrate how optimization problems with continuous sets of minima occur
in applications.
In all three scenarios below,we can cast the cost function f : M → R as a composition
of some other function g : N → R through a map ϕ : M → N , whereN is a smooth
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M

N R

ϕ

g

f = g ◦ ϕ

Fig. 1 Optimization through the map ϕ

Fig. 2 (Left) Submanifold of minima where MB holds. (Middle) A C1 function that satisfies QG but not
PŁ nor EB. (Right) A C1 function that satisfies PŁ, yet whose set of minima is a cross

manifold (see Fig. 1 and [60]). If g and ϕ are twice differentiable, then theMorse–Bott
property (MB) for f = g ◦ ϕ can come about as follows. Consider a local minimum
ȳ for g. The set X = ϕ−1(ȳ) consists of local minima for f . Pick a point x̄ ∈ X.
Assume x �→ rank Dϕ(x) is constant in a neighborhood of x̄ . Then, the set X is an
embedded submanifold ofM around x̄ with tangent space ker Dϕ(x̄). Moreover, the
Hessians of f and g at x̄ are related by

∇2 f (x̄) = Dϕ(x̄)∗ ◦ ∇2g(ϕ(x̄)) ◦ Dϕ(x̄). (2)

Therefore, if ∇2g(ϕ(x̄)) is positive definite, then ker∇2 f (x̄) = Tx̄X and ∇2 f (x̄)

is positive definite along the orthogonal complement. In other words: f satisfies the
Morse–Bott property (MB) at x̄ . We present below a few concrete examples of opti-
mization problems where this can happen.
Over-parameterization and nonlinear regression. Consider minimizing f (x) =
1
2‖F(x) − b‖2 with F : Rm → R

n a C2 function. We cast this as above with g(y) =
1
2‖y − b‖2 and ϕ = F . Suppose X = ϕ−1(b) = {x : F(x) = b} is non-empty
(interpolation regime), which is typical in deep learning. This is the set of global
minimizers of f . If rank DF(x) is equal to a constant r in a neighborhood of X, then
X is a smooth submanifold of Rm of dimension m − r . If additionally the problem is
over-parameterized, that is, m > n ≥ r , then X has positive dimension (see Fig. 2 for
an illustration). The discussion above immediately implies that f satisfies MB on X.
See also Nesterov and Polyak [76, §4.2] who argue that PŁ holds in this setting.
Redundantparameterizations and submersions.Saywewant tominimize g : N →
R constrained to C ⊆ N . If C is complicated, and if we have access to a parameteriza-
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tion ϕ for that set (so that ϕ(M) = C), it may be advantageous to minimize f = g ◦ϕ

instead. If the parameterization is redundant, this can cause f to have non-isolated
minima, even if the minima of g are isolated.

As an example, consider minimizing g : Rm×n → R over the bounded-rank
matrices C = {Y ∈ R

m×n : rank Y ≤ r}. A popular approach consists in lift-
ing the search space to M = R

m×r × R
n×r and minimizing f = g ◦ ϕ, where

ϕ : M → N is defined as ϕ(L, R) = L R�. The parameterization is redundant
because ϕ(L J−1, R J�) = ϕ(L, R) for all invertible J . In particular, given a local
minimum Y ∈ C of g, the fiber ϕ−1(Y ) is unbounded, which hinders convergence
analyses (see [59]). However, if Y is of maximal rank r then Dϕ has constant rank
in a neighborhood of ϕ−1(Y ). From the discussion above, it follows that f satisfies
MB on ϕ−1(Y ) if the (Riemannian) Hessian of g (restricted to the manifold of rank-r
matrices) is positive definite.

Similarly, Burer and Monteiro [25, 26] introduced a popular approach to minimize
a function g over the set of positive semidefinite matrices of bounded rank through
the map ϕ : Y �→ Y Y �. The resulting function f = g ◦ ϕ can have non-isolated
minima. However, the same arguments as above ensure that MB holds at minimizers
of maximal rank when g is strongly convex (this setting is for example considered
in [103]). This further extends to tensors [63].
Symmetries and quotients. Some optimization problems have intrinsic symmetries.
For example, in estimation problems, if the measurements are invariant under partic-
ular transformations of the signal, then the signal can only be retrieved up to those
transformations. The likelihood function then has symmetries, and possibly a contin-
uous set of optima as a result. Sometimes, factoring these symmetries out (that is,
passing to the quotient) yields a quotient manifold, and we can investigate optimiza-
tion on that manifold [4]. In the notation of our general framework above, ϕ is then
the quotient map. In particular, ϕ is a submersion, so that if ȳ ∈ N is a non-singular
minimum of g then f satisfies MB on ϕ−1(ȳ) (which is a submanifold of dimension
dimM− dimN ). See also [24, §9.9] for the case whereN is a Riemannian quotient
of M.

1.3 Related work

Historical note. Discussions about convergence to singular minima appear in the
literature at least as early as [82, §6.1]. Luo and Tseng [70] introduced the EB condi-
tion explicitly to study gradient methods around singular minima. The QG property
is arguably as old as optimization, though the earliest work we could locate is by
Bonnans and Ioffe [22]. They employed QG to understand complicated landscapes
with non-isolated minima. Łojasiewicz [68, 69] introduced his inequalities and used
them subsequently to analyze gradient flow trajectories. Specifically, he proved that
for analytic functions the trajectories either converge to a point or diverge. Concur-
rently, Polyak [81] introduced what became known as the Polyak–Łojasiewicz (PŁ)
variant (also “gradient dominance”) to study both gradient flows and discrete gradient
methods. Later, Kurdyka [55] developed generalizations now known as Kurdyka–
Łojasiewicz (KŁ) inequalities. They are satisfied by most functions encountered in
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practice, as discussed in [9, §4]. In contrast, the Morse–Bott property has received
little attention in the optimization literature. Early work by Shapiro [87] analyzes per-
turbations of optimization problems assuming a property similar to MB. There is also
a mention of gradient flow under MB in [49, Prop. 12.3].
Relationships between properties. Several articles have explored the interplay
betweenMB, PŁ, EB and QG in the last decades. The implication PŁ⇒QG has a rich
history. It can be obtained as a corollary from [50, Basic lemma] (based on Ekeland’s
variational principle; see also [41, Lem. 2.5]). It also follows from Łojasiewicz-type
arguments that consist in bounding the length of gradient flow trajectories [79, Prop. 1].
Likewise, Bolte et al. [19] study growth underKŁ inequalities, with PŁ⇒QGas a spe-
cial case. For lower-semicontinuous functions, Corvellec andMotreanu [35, Thm. 4.2]
show that μ-EB ⇒ μ-QG. They also find that μ-QG ⇒ μ

2 -EB for convex functions
[35, Prop. 5.3]. In a somewhat different setting, Drusvyatskiy et al. [40, Cor. 3.2]
prove that μ-EB ⇒ μ′-QG with arbitrary μ′ < μ. With extra assumptions, they also
show μ-QG ⇒ μ′-EB but without control of μ′. Later, Bolte et al. [21] proved an
equivalence between KŁ inequalities and function growth for convex and potentially
non-smooth functions. Their results seem to generalize to semi-convex functions. See
also [100] and [39] for equivalences betweenEB andQG.Karimi et al. [52] established
implications between several properties encountered in the optimization literature. In
particular, they also show that PŁ and EB are equivalent, and that they both imply
QG. Liao et al. [65] extended this to a non-smooth and weakly convex setting. Li and
Pong [62] showed that EB implies PŁ for non-smooth functions under a level set sep-
aration assumption, though with no control on the PŁ constant. Implications between
PŁ and EB are also reported in [42, Thm. 3.7, Prop. 3.8] for non-smooth functions
under broad conditions. In the context of functional analysis, Feehan [44] proved that
MB and PŁ are equivalent for analytic functions defined on Banach spaces. The work
of [94, Ex. 2.9] also mentions that MB implies PŁ for C2 functions. A more general
implication is given by Arbel and Mairal [8, Prop. 1] for parameterized optimization
problems. Previously, Bonnans and Ioffe [22] had exhibited sufficient conditions (sim-
ilar to MB) for QG to hold. As a side note, Marteau-Ferey et al. [71] proved that MB is
a sufficient condition to ensure that a non-negative function is globally decomposable
as a sum of squares of smooth functions.
Convergence guarantees. The error bound approach of Luo and Tseng [70] has
proven to be fruitful as multiple analyses based on this condition followed. Notably,
Tseng [91] proved local superlinear convergence rates for some Newton-type methods
applied to systems of nonlinear equations. They relied specifically on EB and did not
assume isolated minima. Later, Yamashita and Fukushima [96] employed EB to estab-
lish capture theorems and quadratic convergence rates for the Levenberg–Marquardt
method. Fan and Yuan [43], Behling et al. [12] and Boos et al. [23] generalized their
results (in particular to solutions with a non-zero residual). More recently, Bellavia
and Morini [14] found that two adaptive regularized methods converge quadratically
for nonlinear least-squares problems (assuming that EB holds).

An early work of Anitescu [6] combines the QG property with other conditions
to ensure isolated minima in constrained optimization, then deducing convergence
results. Later, QG has found applicationsmainly in the context of convex optimization:
see [67] for coordinate descent, [75] for various gradient methods, and [39] for the
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proximal gradient method. It is also worth mentioning that the definition of QG does
not require differentiability of the function. For this reason, QG is valuable to study
algorithms in non-smooth optimization too [36, 61].

The literature about convergence results based on Łojasiewicz inequalities is vast,
and we touch here on some particularly relevant references. Absil et al. [2] discretized
the arguments from [69] and obtained capture results for a broad class of optimization
algorithms. Lageman [56, 57] provided generalizations to broader classes of functions.
Later, such arguments have been used in many contexts to prove algorithmic conver-
gence guarantees, among which [9, 20] are particularly influential works. Moreover,
Attouch et al. [10] proposed a general abstract framework based on KŁ to derive cap-
ture results and convergence rates, and Frankel et al. [46] extended their statements.
See also [74] for a framework that encompasses higher-order methods. Li and Pong
[62] studied the preservation of Łojasiewicz inequalities under function transforma-
tions (such as sums and compositions). See also [11, 90] for the preservation of PŁ
through function compositions. Interestingly, the PŁ condition is known to be a neces-
sary condition for gradient descent to converge linearly [1, Thm. 5]. Recently, Yue et
al. [98] proved that acceleration is impossible to minimize globally PŁ functions: gra-
dient descent is optimal absent further structure. Assuming PŁ, Stonyakin et al. [88]
formulated stopping criteria for gradient methods when the gradient is corrupted with
noise. UsingKŁ inequalities, Noll andRondepierre [78] andKhanh et al. [53] analyzed
the convergence of line-search gradient descent and trust-regionmethods. Łojasiewicz
inequalities have also proved relevant for the study of second-order algorithms and
superlinear convergence rates. A prominent example is the regularized Newton algo-
rithm that converges superlinearly when PŁ holds, as shown in [76]. More recently,
Zhou et al. [105], Yue et al. [97] provided finer analyses of this algorithm, respectively
assuming Łojasiewicz inequalities and EB. Qian and Pan [84] extended the abstract
framework of Attouch et al. [10] to establish superlinear convergence rates.

Stochastic algorithms have also been extensively studied through Łojasiewicz
inequalities, and we briefly mention a few references here. Dereich and Kassing [37,
38] analyzed stochastic gradient descent (SGD) in the presence of non-isolated min-
ima, using Łojasiewicz inequalities among other things. Local analyses of SGD using
PŁ inequalities are given by Li et al. [64] andWojtowytsch [94]. Ko and Li [54] studied
the local stability and convergence of SGD in the presence of a compact set of minima
with a condition that is weaker than PŁ. As for second-order algorithms, Masiha et
al. [72] proved that a stochastic version of regularized Newton has fast convergence
under PŁ.

Łojasiewicz inequalities are also particularly suited to analyze the convergence of
flows. Notably, Łojasiewicz [69] bounded the path length of gradient flow trajectories
and Polyak [81] derived linear convergence of flows assuming PŁ. Related results
for flows but under MB are claimed in [49, Prop. 12.3]. More recently, Apidopoulos
et al. [7] considered the Heavy-Ball differential equation and deduced convergence
guarantees from PŁ. Wojtowytsch [95] studied a continuous model for SGD and the
impact of the noise on the trajectory.

Finally, we found only few convergence results based on MB in the optimization
literature. Fehrman et al. [45] derive capture theorems and asymptotic sublinear con-
vergence rates for gradient descent assuming thatMB holds on the set of minima. They
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Table 2 Simplifications in the case where M is a Euclidean space

Expx (s) Logx (y) �
y
x , �v dist(x, y) inj(x)

M = R
n x + s y − x identity ‖x − y‖ +∞

Here, �y
x denotes parallel transport along the minimizing geodesic between x and y (assuming the points

are close enough)

also provide probabilistic bounds for stochastic variants. Usevich et al. [92] consider
optimization problems over unitary matrices. They propose sufficient conditions for
MB to hold at a local optimum and then exploit the induced PŁ condition to obtain con-
vergence rates. In order to solve systems of nonlinear equations, Zeng [99] proposes a
Newton-type method that is robust to non-isolated solutions. It enjoys local quadratic
convergence assuming a MB-type property. The algorithm requires the knowledge of
the dimension of the set of solutions.
Applications. Non-isolated minima arise in all sorts of optimization problems. It is
common for non-convex inverse problems to have continuous symmetries, hence non-
isolatedminima (see [104]). In the context of deep learning,Cooper [34] proved that the
set of global minima of a sufficiently over-parameterized neural network is a smooth
manifold. In the last decade, there has been a renewed interest in Łojasiewicz inequal-
ities because they are compatible with these complicated non-convex landscapes. In
particular, a whole line of research exploits them to understand deep learning problems
specifically. As an example, Oymak and Soltanolkotabi [80] employed PŁ to analyze
the path taken by (stochastic) gradient descent in the vicinity of minimizers. Several
otherworks suggested that non-convexmachine learning loss landscapes can be under-
stood in over-parameterized regimes through the lens of Łojasiewicz inequalities [11,
13, 66, 90]. Specifically, they argue that PŁ holds on a significant part of the search
space and analyze (stochastic) gradient methods. Chatterjee [30] also establishes local
convergence results for a large class of neural networks with PŁ inequalities.

1.4 Notation and geometric preliminaries

This section anchors notation and some basic geometric facts. In the important case
where M = R

n , several objects reduce as summarized in Table 2.
We let 〈·, ·〉 denote the inner product on TxM—it may depend on x ∈ M, but the

base point is always clear from context. The associated norm is ‖v‖ = √〈v, v〉. The
map dist : M × M → R+ is the Riemannian distance on M. We let B(x, δ) denote
the open ball of radius δ around x ∈ M. The tangent bundle is TM = {(x, v) : x ∈
M and v ∈ TxM}.

Moving away from x ∈ M along the geodesic with (sufficiently small) initial
velocity v ∈ TxM for unit time produces the point Expx (v) ∈ M (Riemannian
exponential). The injectivity radius at x is inj(x) > 0. It is defined such that, given y ∈
B(x, inj(x)), there exists a unique smallest vector v ∈ TxM for which Expx (v) = y.
We denote this v by Logx (y) (Riemannian logarithm). Additionally, given x ∈ M
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and y ∈ B(x, inj(x)), we let �
y
x : TxM → TyM denote parallel transport along the

unique minimizing geodesic between x and y. If v = Logx (y), we also let �v = �
y
x .

Let X be a subset of M. We need the notions of tangent and normal cones to X,
defined below.

Definition 1.3 The tangent cone to a set X at x ∈ X is the closed set

TxX =
{

lim
k→+∞

1

tk
Logx (xk)

∣∣∣ xk ∈ X, tk > 0 for all k, xk → x, tk → 0

}
.

We also let NxX = {
w ∈ TxM : 〈w, v〉 ≤ 0 for all v ∈ TxX

}
denote the normal

cone to X at x .

When X is a submanifold of M around x , the cones TxX and NxX reduce to the
tangent and normal spaces of X at x . (By “submanifold”, we always mean embedded
submanifold.)

Given x ∈ M, we let dist(x,X) = inf y∈X dist(x, y) denote the distance of x
to X. We further let projX(x) denote the set of minima of the optimization problem
miny∈X dist(x, y). If this set is non-empty (which is the case in particular if X is
closed), then we have:

∀x̄ ∈ X, y ∈ projX(x), dist(y, x̄) ≤ 2 dist(x, x̄). (3)

Indeed, the triangle inequality yields dist(y, x̄) ≤ dist(x, y) + dist(x, x̄), and
dist(x, y) = dist(x,X) ≤ dist(x, x̄). Moreover, if y ∈ projX(x) with dist(x, y) <

inj(y) then Logy(x) ∈ NyX.
The set of local minima S defined in (1) may not be closed: consider for example

the function f (x) = sgn(x) exp(− 1
x2

)(1 + sin( 1
x2

)) with fS = 0. It follows that the
projection onto S may be empty. Notwithstanding, the following holds:

Lemma 1.4 Around each x̄ ∈ S there exists a neighborhood in which projS is non-
empty.

Proof Let U be an open neighborhood of x̄ such that f (x) ≥ fS for all x ∈ U . Let
V1,V2 ⊂ U be two closed balls around x̄ of radii δ > 0 and 1

4δ respectively. Then
S ∩ V1 = f −1( fS) ∩ V1, showing that S ∩ V1 is closed and the projection onto this
set is non-empty. Let x ∈ V2 and y ∈ projS∩V1

(x). Then dist(x, y) ≤ 1
4δ. Moreover,

for all y′ ∈ S\V1 we have dist(x, y′) ≥ 3
4δ. It follows that projS(x) = projS∩V1

(x),
and this is non-empty. ��

From these considerations we deduce that the projection onto S is always locally
well behaved.

Lemma 1.5 Let x̄ ∈ S. There exists a neighborhood U of x̄ such that for all x ∈ U
the set projS(x) is non-empty, and for all y ∈ projS(x) we have dist(x, y) < inj(y).
In particular, v = Logy(x) is well defined and v ∈ NyS.
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Fig. 3 Implication graph when
f is C2. The main missing
pieces were PŁ ⇒ MB and QG
⇒ EB, both secured with the
right constants and under the
right regularity assumptions

MB L�P

QG EB

Prop. 2.3

Prop. 2.8

Prop. 2.4
Prop. 2.2

Cor. 2.17

Proof Let U be a neighborhood of x̄ where projS is non-empty (given by Lemma 1.4).
Given δ̄ < inj(x̄), the ball B̄(x̄, δ) is compact for all δ < δ̄. Define h(δ) =
infx∈B̄(x̄,2δ) inj(x) on the interval [0, δ̄

2 ]. The function h is continuous with h(0) =
inj(x̄) > 0 so we can pick δ > 0 such that δ ≤ h(δ). Let x ∈ B(x̄, δ) ∩ U and
y ∈ projS(x). By definition of the projection we have dist(x, y) ≤ dist(x, x̄) < δ.
Moreover, inequality (3) yields dist(y, x̄) ≤ 2 dist(x, x̄) ≤ 2δ so h(δ) ≤ inj(y). It
follows that dist(x, y) < δ ≤ h(δ) ≤ inj(y) and v = Logy(x) is well defined. The
fact that v is in the normal cone follows from optimality conditions of projections. ��

Given a self-adjoint linear map H , we let λi (H) denote the i th largest eigenvalue
of H , and λmin(H) and λmax(H) denote the minimum and maximum eigenvalues
respectively.

2 Four equivalent properties

In this section, we establish that MB, PŁ, EB and QG (see Definitions 1.1 and 1.2)
are equivalent around a local minimum x̄ when f is C2. Specifically, we show the
implication graph in Fig. 3.

It is well known that PŁ implies QG around minima: see references in Sect. 1.3.
Perhaps the most popular argument relies on the bounded length of gradient flow
trajectories under the more general Łojasiewicz inequality [2, 19, 68, 69, 79].

Definition 2.1 Let x̄ be a local minimum of f with associated set S (1). We say f
satisfies the Łojasiewicz inequality with constants θ ∈ [0, 1[ and μ > 0 around x̄ if

| f (x) − fS |2θ ≤ 1

2μ
‖∇ f (x)‖2 (Ł)

for all x in some neighborhood of x̄ .

Notice that if f is Łojasiewicz with exponent θ then it is Łojasiewicz with exponent
θ ′ for all θ ≤ θ ′ < 1 (though possibly in a different neighborhood). The case θ = 1

2
is exactly the (PŁ) condition.

Proposition 2.2 (PŁ ⇒ QG) Suppose that f satisfies (Ł) around x̄ ∈ S. Then f
satisfies

f (x) − fS ≥ ((1 − θ)
√
2μ
) 1
1−θ dist(x,S)

1
1−θ
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for all x sufficiently close to x̄ . In particular, if θ = 1
2 , this shows μ-(PŁ) ⇒ μ-(QG).

We include a classical proof in Appendix A for completeness, with care regarding
neighborhoods.

2.1 Two straightforward implications

In this section we show that MB ⇒ QG and EB ⇒ PŁ. These implications are
known and direct. We give succinct proofs for completeness. The first one follows
immediately from a Taylor expansion.

Proposition 2.3 (MB ⇒ QG) Suppose that f is C2 and satisfies μ-(MB) at x̄ ∈ S.
Then f satisfies μ′-(QG) around x̄ for all μ′ < μ.

Proof Let U be a neighborhood of x̄ as in Lemma 1.5. Let d be the codimension of S
(around x̄). Given μ′ < μ, pick ε ∈ ]0, μ − μ′[ and shrink U so that for all x ∈ U
and y ∈ projS(x) we have λd(∇2 f (y)) ≥ μ′ + ε. Given x ∈ U and y ∈ projS(x), a
Taylor expansion around y gives

f (x) − fS = 1

2
〈v,∇2 f (y)[v]〉 + o(‖v‖2) ≥ μ′ + ε

2
dist(x,S)2 + o(dist(x,S)2),

where v = Logy(x) is normal to S. We get the inequalityμ′-(QG) for all x sufficiently
close to x̄ . ��
Proposition 2.4 (EB ⇒ PŁ) Suppose that f is C2 and satisfies μ-(EB) around x̄ ∈ S.
Then f satisfies μ′-(PŁ) around x̄ for all μ′ < μ.

Proof Let U be the intersection of two neighborhoods of x̄ : one where μ-(EB) holds,
and the other provided by Lemma 1.5. Given x ∈ U and y ∈ projS(x), a Taylor
expansion around y yields

f (x) − fS = 1

2
〈v, ∇2 f (y)[v]〉 + o(‖v‖2) and ∇ f (x) = �v∇2 f (y)[v] + o(‖v‖),

where v = Logy(x). Using theCauchy–Schwarz inequality and the triangle inequality,
it follows that

f (x) − fS ≤ 1

2
‖v‖‖∇2 f (y)[v]‖ + o(‖v‖2) ≤ 1

2
‖v‖‖∇ f (x)‖ + o(‖v‖2).

Finally, EB gives that ‖v‖ ≤ 1
μ
‖∇ f (x)‖ so f (x) − fS ≤ 1

2μ‖∇ f (x)‖2 +
o(‖∇ f (x)‖2). We get the inequality μ′-(PŁ) for all x sufficiently close to x̄ . ��
Remark 2.5 Suppose that f is only C1 and ∇ f is locally L-Lipschitz continuous

around x̄ . If μ-EB holds around x̄ then f satisfies PŁ with constant μ2

L around x̄ [52,
Thm. 2]. (This still holds locally on manifolds with the same proof.) The constant
worsens but that is inevitable: see the example in Remark 2.19.
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2.2 Quadratic growth implies error bound

In this section, we show that QG implies EB for C2 functions. Other works proving
this implication either assume that f is convex (see [35, Prop. 5.3], [52], and [39,
Cor. 3.6]) or do not provide control on the constants (see [40, Cor. 3.2]). For this, we
first characterize a distance growth rate when we move from S in a normal direction
(see Definition 1.3). Recall that for now S is not necessarily smooth, and therefore
Nx̄S is a priori only a cone.

Lemma 2.6 Let x̄ ∈ S and v ∈ Nx̄S unitary. Then dist(Expx̄ (tv),S) = t + o(t) as
t → 0, t ≥ 0.

Proof Let U be a neighborhood of x̄ as in Lemma 1.5. Shrink U so that for all x ∈ U
and y ∈ projS(x) we have dist(y, x̄) < inj(x̄). Given a small parameter t > 0, define
x(t) = Expx̄ (tv) and let y(t) ∈ projS(x(t)). From (3) we have dist(y(t), x̄) ≤ 2t ,
and it follows that y(t) → x̄ as t → 0. Define u(t) = Logy(t)(x(t)) and w(t) =
Logx̄ (y(t)). Then

dist(x(t),S)2 = ‖u(t)‖2 = ‖tv − w(t) + � x̄
y(t)u(t) − tv + w(t)‖2 = ‖tv − w(t)‖2 + o(t2)

as t → 0 because ‖� x̄
y(t)u(t)− tv+w(t)‖ = o(t) as t → 0 [89, Eq. (6)]. In particular,

for all t sufficiently small we have

dist(x(t),S)2 = t2 − 2t〈w(t), v〉 + ‖w(t)‖2 + o(t2) ≥ t2 − 2t〈w(t), v〉 + o(t2).

Let I ⊆ R>0 be the times when y(t) �= x̄ . If inf I > 0 then the final claim holds
because y(t) = x̄ for small enough t . Suppose now that inf I = 0.Define r(t) = w(t)

‖w(t)‖
on I , and let A be the set of accumulation points of r(t) as t → 0, t ∈ I . Then A is
included in the unit sphere and A ⊆ Tx̄S by definition. Given a ∈ A and t ∈ I , we
can use 〈a, v〉 ≤ 0 to find that

dist(x(t),S)2 ≥ t2 − 2t‖w(t)‖〈r(t) − a + a, v〉 + o(t2) ≥ t2 − 4t2‖r(t) − a‖ + o(t2).

It follows that dist(x(t),S)2 ≥ t2 − 4t2 dist(r(t),A) + o(t2) = t2 + o(t2) because
dist(r(t),A) → 0 as t → 0. ��

Using this rate, we now find that QG implies the following bounds for ∇2 f in the
normal cones of S. Note that the following proposition does not yet show QG ⇒ MB,
because to establish MB we still need to argue that S is a smooth set.

Proposition 2.7 Suppose f is C2 and satisfies (QG) with constant μ around x̄ ∈ S.
Then for all y ∈ S sufficiently close to x̄ and all v ∈ NyS we have

〈v,∇2 f (y)[v]〉 ≥ μ‖v‖2 and ‖∇2 f (y)[v]‖ ≥ μ‖v‖.
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Proof Let U be an open neighborhood of x̄ where μ-QG holds. Let y ∈ S ∩ U and
v ∈ NyS. For all small enough t > 0, we obtain from a Taylor expansion that

f (Expy(tv)) − fS = t2

2
〈v,∇2 f (y)[v]〉 + o(t2) ≥ μ

2
dist(Expy(tv),S)2

= μ

2
t2‖v‖2 + o(t2),

where the inequality comes from QG and the following equality comes from
Lemma 2.6. Take t → 0 to get the first inequality. The other inequality follows
by Cauchy–Schwarz. ��

We deduce from this that, under QG, the gradient norm is locally bounded from
below and from above by the distance to S, up to some constant factors. This notably
secures EB.

Proposition 2.8 (QG ⇒ EB) Suppose f is C2 and satisfies μ-(QG) around x̄ ∈ S.
For all μ� < μ and λ	 > λmax(∇2 f (x̄)) there exists a neighborhood U of x̄ such that
for all x ∈ U we have

μ� dist(x,S) ≤ ‖∇ f (x)‖ ≤ λ	 dist(x,S).

Proof LetU be a neighborhood of x̄ as in Lemma1.5. ShrinkU so that for all x ∈ U and
y ∈ projS(x) the inequalities of Proposition 2.7 hold.Now let x ∈ U and y ∈ projS(x).
Define v = Logy(x) and γ (t) = Expy(tv), so that y = γ (0) and x = γ (1). Then a
Taylor expansion of ∇ f around y yields

�−1
v ∇ f (x) = ∇2 f (y)[v] + r(x)where

r(x) =
∫ 1

0

(
�−1

τv ◦ ∇2 f (γ (τ )) ◦ �τv − ∇2 f (y)
)
[v]dτ.

The Hessian is continuous so r(x) = o(‖v‖) as x → x̄ . Moreover, Proposition 2.7
provides that ‖∇2 f (y)[v]‖ ≥ μ‖v‖ so using the triangle inequality and the reverse
triangle inequality we get

‖v‖(μ − o(1)
) ≤ ‖∇ f (x)‖ ≤ ‖v‖(λmax(∇2 f (y)) + o(1)

)

as x → x̄ . We get the result if we choose x close enough to x̄ . ��
The first inequality in the previous proposition is exactly EB. In Proposition 2.4 we

showed that EB implies PŁ when f is C2. Thus, it also holds that QG implies PŁ.

Remark 2.9 When f is only C1 it is not true that QG implies EB or PŁ. To see this,
consider the function f (x) = 2x2 + x2 sin(1/

√|x |) (see Fig. 2). It is C1 and satisfies
QG around the minimum x̄ = 0 because f (x) ≥ x2. However, there are other local
minima arbitrarily close to x̄ . Those are critical points with function value strictly
larger than f (x̄), which disqualifies EB and PŁ around x̄ .
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Remark 2.10 Combining Propositions 2.2 and 2.8 (μ-PŁ ⇒ μ-QG and μ-QG ⇒ μ′-
EB), one finds that μ-PŁ implies μ′-EB for C2 functions. In fact, Karimi et al. [52]
show that μ-PŁ implies μ-EB for C1 functions, globally so if PŁ holds globally.
Indeed, for x sufficiently close to x̄ , we have

μ

2
dist(x,S)2 ≤ f (x) − fS ≤ 1

2μ
‖∇ f (x)‖2,

where the second inequality comes from PŁ, and the first inequality is QG (implied
by PŁ).

Combining all previous implications, we obtain that MB implies PŁ. This is also
straightforward from Taylor expansion arguments.

Corollary 2.11 (MB ⇒ PŁ) Suppose that f is C2 and satisfies μ-(MB) at x̄ ∈ S. Let
0 < μ′ < μ. Then f satisfies μ′-(PŁ) around x̄.

As a consequence, if f is μ-MB on any subset of S then for all μ′ < μ there
exists a neighborhood of that subset where f is μ′-PŁ. When f is C3 the size of
the neighborhood where PŁ holds can be controlled (to some extent) with the third
derivative. A version of this corollary appears in [94, Ex. 2.9] with a different trade-off
between control of the neighborhood and the constant μ′. Feehan [44, Thm. 6] shows
a similar result in Banach spaces assuming that the function is C3.

2.3 PL implies a smooth set of minima andMB

The MB property is explicitly strong because it presupposes a smooth set of minima,
and it clearly implies PŁ, EB, and QG. It raises a natural question: do the latter also
enforce some structure on the set of minima? In this section we show that the answer
is yes for C2 functions: if PŁ (or EB or QG) holds around x̄ ∈ S then S must be a
submanifold around x̄ .

To get a sense of why S cannot have singularities, suppose that M = R
2 and that

around x̄ the set of minima is the union of two orthogonal lines (a cross) that intersect
at x̄ . Then it must be that ∇2 f (x̄) = 0 because the gradient is zero along both lines.
However, if we assume PŁ then the spectrum of ∇2 f (x) must contain at least one
positive eigenvalue bigger than μ for all points x ∈ S\{x̄} close to x̄ , owing to the QG
property. We obtain a contradiction because the eigenvalues of ∇2 f are continuous.

To generalize this intuition, we first show that PŁ induces a lower-bound on the
positive eigenvalues of ∇2 f .

Proposition 2.12 Suppose f is C2 and μ-(PŁ) around x̄ ∈ S. If λ is a non-zero
eigenvalue of ∇2 f (x̄) then λ ≥ μ.

Proof Let λ > 0 be an eigenvalue of∇2 f (x̄)with associated unit eigenvector v. Then

f (Expx̄ (tv)) − fS = λ

2
t2 + o(t2) and ∇ f (Expx̄ (tv)) = λt�tvv + o(t).
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The PŁ condition implies λ
2 t2 + o(t2) ≤ 1

2μλ2t2 + o(t2), which gives the result as
t → 0. ��

The latter argument is inconclusive when λ = 0. Still, we do get control of the
Hessian’s rank.

Corollary 2.13 Suppose f is C2 and μ-(PŁ) around x̄ ∈ S. Then rank(∇2 f (x)) =
rank(∇2 f (x̄)) for all x ∈ S close enough to x̄ .

Proof Since f is C2 the eigenvalues of ∇2 f are continuous and the map x �→
rank(∇2 f (x)) is lower semi-continuous, that is, if x ∈ M is close enough to x̄
then rank∇2 f (x) ≥ d, where d = rank∇2 f (x̄). Furthermore, if y ∈ S is sufficiently
close to x̄ then λd+1(∇2 f (y)) < μ by continuity of eigenvalues, and Proposition 2.12
then implies λd+1(∇2 f (y)) = 0. ��
This allows us to show that ∇ f aligns locally in a special way with the eigenspaces of
∇2 f . This alignment will be particularly valuable to analyze second-order algorithms
in Sect. 4.

Lemma 2.14 Suppose f isC2 and satisfies (PŁ)around x̄ ∈ S. Let d = rank(∇2 f (x̄)).
Then the orthogonal projector P(x) onto the top d eigenspace of ∇2 f (x) is well
defined when x is sufficiently close to x̄ , and (with I denoting identity)

‖(I − P(x))∇ f (x)‖ = o(dist(x,S)) = o(‖∇ f (x)‖)

as x → x̄ . Additionally, if ∇2 f is locally Lipschitz continuous around x̄ then ‖(I −
P(x))∇ f (x)‖ = O(dist(x,S)2) = O(‖∇ f (x)‖2) as x → x̄ .

Proof Given apoint x ∈ M, let P(x) : TxM → TxMdenote the orthogonal projector
onto the top d eigenspace of ∇2 f (x). This is well defined provided λd(∇2 f (x)) >

λd+1(∇2 f (x)). Let U be a neighborhood of x̄ as in Lemma 1.5. By continuity of
the eigenvalues of ∇2 f , we can shrink U so that for all x ∈ U and y ∈ projS(x)

the projectors P(x) and P(y) are well defined. Given x ∈ U , we let y ∈ projS(x)

and v = Logy(x). Now define γ (t) = Expy(tv). A Taylor expansion of the gradient
around y gives that

∇ f (x) = �v

(∇2 f (y)[v] + r(x)
)
wherer(x)

=
∫ 1

0

(
�−1

τv ◦ ∇2 f (γ (τ )) ◦ �τv − ∇2 f (y)
)[v]dτ.

By Corollary 2.13, the rank of ∇2 f is locally constant on S (equal to d) so ∇2 f (y) =
P(y)∇2 f (y) whenever x is sufficiently close to x̄ (using the bound dist(y, x̄) ≤
2 dist(x, x̄) from (3)). It follows that

(I − P(x))∇ f (x) = (I − P(x))�v

(
P(y)∇2 f (y)[v] + r(x)

)
.

Notice that�v → I as x → x̄ and P(y) → P(x̄) as x → x̄ so (I −P(x))�v P(y) → 0
as x → x̄ . It follows that (I − P(x))∇ f (x) = o(‖v‖) as x → x̄ . The claim follows
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by noting that ‖v‖ = dist(x,S) and the fact that dist(x,S) is commensurate ‖∇ f (x)‖
(as shown in Proposition 2.8).

Suppose now that ∇2 f is locally Lipschitz continuous around x̄ . Then P is also
locally Lipschitz continuous around x̄ [93, Thm. 1] and (I − P(x))�v P(y) = (I −
P(x))�v(P(y) − �−1

v P(x)) = O(‖v‖). Moreover, we have r(x) = O(‖v‖2) so
it follows that (I − P(x))∇ f (x) = O(‖v‖2) as x → x̄ . We conclude again with
Proposition 2.8. ��

The lemma below exhibits a submanifold Z that contains x̄ . It need not coincide
with the set of minima S. However, they do coincide if we assume that PŁ holds. This
is the main argument to show that S is locally a submanifold whenever f is PŁ and
sufficiently regular.

Lemma 2.15 Suppose f is Cp with p ≥ 2. Let x̄ ∈ S and define U = {x ∈ M :
dist(x, x̄) < inj(x̄)}. Let P(x̄) denote the orthogonal projector onto the image of
∇2 f (x̄). Then the set

Z = {x ∈ U : P(x̄)� x̄
x ∇ f (x) = 0}

is a Cp−1 embedded submanifold locally around x̄. If f is analytic then Z is also
analytic.

Proof We build a local defining function for Z . Let d be the rank of ∇2 f (x̄) and
u1, . . . , ud be a set of orthonormal eigenvectors of∇2 f (x̄)with associated eigenvalues
λ1, . . . , λd > 0.We define h : U → R

d as hi (x) = 〈ui , �
x̄
x ∇ f (x)〉. Clearly, h(x) = 0

if and only if x ∈ Z . The function h is Cp−1 if f is Cp, and analytic if f is analytic.
For all ẋ ∈ Tx̄M we have

Dhi (x̄)[ẋ] = 〈ui ,∇2 f (x̄)[ẋ]〉 = 〈∇2 f (x̄)[ui ], ẋ〉 = λi 〈ui , ẋ〉.

It follows that Dh(x̄) has full rank. Thus, Z is a submanifold around x̄ with the stated
regularity. ��

A result similar to Lemma 2.15 is presented in [31, Lem. 1] for Banach spaces. We
are now ready for one of our main theorems, regarding the regularity of the set of local
minimizers S (1).

Theorem 2.16 Suppose f is Cp with p ≥ 2 and satisfies (PŁ) around x̄ ∈ S. Then S
is a Cp−1 submanifold of M locally around x̄. If f is analytic then S is also analytic.

Proof We let d denote the rank of ∇2 f (x̄). By Corollary 2.13, rank∇2 f (y) = d for
all y ∈ S sufficiently close to x̄ . We let U ⊆ B(x̄, inj(x̄)) be a neighborhood of x̄
such that for all x ∈ U the orthogonal projector P(x) : TxM → TxM onto the top
d eigenspace of ∇2 f (x) is well defined (it exists because eigenvalues of ∇2 f are
continuous). Lemma 2.15 ensures that

Z = {x ∈ U : P(x̄)� x̄
x ∇ f (x) = 0}
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is a submanifold around x̄ . Clearly,S∩U ⊆ Z holds.We now show the other inclusion
to obtain that S and Z coincide around x̄ . From Lemma 2.14 we have ‖∇ f (x)‖ ≤
‖P(x)∇ f (x)‖ + o(‖∇ f (x)‖) as x → x̄ . Moreover, the triangle inequality gives
‖P(x)∇ f (x)‖ ≤ ‖(P(x) − �x

x̄ P(x̄)� x̄
x )∇ f (x)‖ + ‖P(x̄)� x̄

x ∇ f (x)‖. By continuity
of P we have P(x) − �x

x̄ P(x̄)� x̄
x = o(1) as x → x̄ so it follows that

‖∇ f (x)‖ ≤ ‖P(x̄)� x̄
x ∇ f (x)‖ + o(‖∇ f (x)‖)

as x → x̄ . We conclude that P(x̄)� x̄
x ∇ f (x) = 0 implies ∇ f (x) = 0 for all x

sufficiently close to x̄ . This confirms that Z ⊆ S ∩ U around x̄ because all critical
points near x̄ are in S by PŁ. ��

The codimension ofS is equal to the rank of∇2 f onS, as expected. A similar result
holds for Banach spaces when the function is assumed analytic [44, Thm. 1]. Around
x̄ , the set of all minima of f and S coincide when PŁ holds. Hence, Theorem 2.16
implies that the set of minima of f is a submanifold around x̄ . Using the QG property
we now deduce that PŁ implies MB.

Corollary 2.17 If f is C2 and μ-(PŁ) around x̄ ∈ S then it satisfies μ-(MB) at x̄ . The
same holds if f is μ-(EB) or μ-(QG) rather than μ-(PŁ).

Proof Apply Theorem 2.16 to get that S is locally a C1 submanifold around x̄ . Propo-
sition 2.2 gives (QG) around x̄ . Finally apply Proposition 2.7 to normal eigenvectors
of ∇2 f (x̄). This yields that the normal eigenvalues are at least μ. We obtain the same
result if we suppose μ-EB or μ-QG instead of μ-PŁ. This is because they both imply
μ′-PŁ for μ′ < μ arbitrarily close to μ. Taking the limit μ′ → μ gives μ-MB. ��
Remark 2.18 (Connections to the distance function) Given a closed set X ⊆ M, the
function f (x) = 1

2 distX(x)2 clearly satisfies QG. If f is Cp with p ≥ 2 in a neigh-
borhood ofX then Theorem 2.16 applies, revealing thatX is a Cp−1 submanifold. This
question is of independent interest, see for example [15] for a proof when assuming
p ≥ 3.

Remark 2.19 (Structure when f is only C1) Theorem 2.16 requires f to be C2. And
indeed, if f is only C1 the set of minima may not be a submanifold. We provide two
examples.

The function f (x, y) = x2 y2

x2+y2
is C1 and PŁ around the origin, yet its minimizers

form a cross (see Fig. 2).2 Incidentally, f is 1√
2
-EB but only 1

2 -PŁ around the origin,
confirming that the constant worsens for the implication EB ⇒ PŁ when f is only
C1.

Additionally, letX ⊆ M be a closed set and suppose that the distance function distX
is C1 aroundX (such a set is called proximally smooth [32]). For f (x) = 1

2 distX(x)2,
we find that ∇ f (x) = x − projX(x), meaning that f is PŁ around X with constant
μ = 1. This holds in particular for all closed convex sets, yet many such sets fail to be
C0 submanifolds (e.g., consider a closed square in M = R

2). This provides further
examples of C1 functions satisfying PŁ yet for which the set of minima is not C0.

2 We thank Christopher Criscitiello who found this function.

123



Q. Rebjock, N. Boumal

Remark 2.20 (Restricted secant inequality) It is possible to show equivalences with
even more properties. For example, as in [101], we say f satisfies the restricted secant
inequality (RSI) with constant μ around x̄ ∈ S if 〈∇ f (x), v〉 ≥ μ dist(x,S)2 for
all x in a neighborhood of x̄ , where v = −Logx (y) and y ∈ projS(x). From simple
Taylor expansion arguments, we find that μ-MB implies μ′-RSI for all μ′ < μ. By
Cauchy–Schwarz, we also find that μ-RSI implies μ-EB for C1 functions (see [52]).
It follows that for C2 functions RSI is also equivalent to the four properties that we
consider.

Remark 2.21 (Other Łojasiewicz exponents) The PŁ condition is exactly (Ł) with
exponent θ = 1

2 . We comment here about other values of θ . First, suppose f is C1 and
∇ f locally Lipschitz continuous. If f is non-constant around x̄ ∈ S then it cannot
satisfy (Ł) with an exponent θ < 1

2 around x̄ . This is because these assumptions are
incompatible with the growth property from Proposition 2.2. See also [1, Thm. 4]
for an algorithmic perspective on this. Now suppose f is C2 and satisfies (Ł) with
exponent θ around x̄ ∈ S. If θ ∈ [ 12 , 2

3 [ and ∇2 f is Lipschitz continuous around x̄
then PŁ holds around x̄ . Furthermore, if θ = 2

3 and f is additionally C3 then PŁ also
holds around x̄ . We include a proof of these observations in Appendix B.

3 Stability of minima and linear rates

In this section, we consider two types of algorithmic questions: the stability of minima
and standard local convergence rates. We review some necessary classical arguments,
taking this opportunity to generalize some of them to accommodate non-isolated min-
ima. This will serve us well to analyze algorithms in Sect. 4.

3.1 Capture for sets of non-isolatedminima

Typically, global convergence analyses of optimization algorithms merely guarantee
that iterates accumulate only at critical points. The set of accumulation points may be
empty (when the iterates diverge). Worse, it may even be infinite when minima are not
isolated. See [2, §3.2.1] and [18, §5.3] for examples of pathological functions forwhich
reasonable algorithms (such as gradient descent) produce iterates with continuous sets
of accumulation points. The latter issue cannot occur when minima are isolated.

What kind of stability results still hold when minima are not isolated? Consider
an algorithm generating iterates as xk+1 = Fk(xk, . . . , x0), where Fk is a descent
mapping: it satisfies f (Fk(xk, . . . , x0)) ≤ f (xk) for all xk, . . . , x0 ∈ M. Many deter-
ministic algorithms fall in this category, including gradient descent and trust-region
methods under suitable hypotheses. The standard capture theorem asserts that if the
iterates generated by such descent mappings get sufficiently close to an isolated local
minimum then the sequence eventually converges to it (under a few weak assump-
tions) [16, Prop. 1.2.5], [4, Thm. 4.4.2]. The result can be easily extended to a compact
set of non-isolated local minima that satisfies several properties that we define now.
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Definition 3.1 We say X ⊆ M is isolated from critical points if there exists a neigh-
borhood U of X such that x ∈ U and ∇ f (x) = 0 imply x ∈ X.

Note that the points in X do not need to be isolated: the set X may be a continuum
of critical points. It is clear that if X ⊆ S (1) is isolated from critical points then there
exists a neighborhood U of X such that f (x) > fS for all x ∈ U\X, where fS is the
value of f on X. The capture result below, based on [4, Thm. 4.4.2], states that if the
set of minima X ⊆ S is both compact and isolated from critical points then it traps
the iterates generated by all reasonable descent algorithms. A key hypothesis is that
the steps have to be small around local minima: that is typically the case.

Definition 3.2 An algorithmwhich generates sequences onM has the vanishing steps
property on a set X ⊆ M if there exists a neighborhood U of X and a continuous
function η : M → R+ with η(X) = 0 such that, if xk is an iterate in U , then the next
iterate xk+1 satisfies

dist(xk, xk+1) ≤ η(xk). (VS)

We say that the algorithm has the (VS) property at a point x̄ ∈ S if it holds on the set
{x̄}.
Proposition 3.3 (Capture of iterates) LetX be a compact subset ofS isolated from crit-
ical points. Consider an algorithm that produces iterates as xk+1 = Fk(xk, . . . , x0),
where Fk is a descent mapping. Assume that it satisfies the (VS) property on X. Also
suppose that the sequences generated by this algorithm accumulate only at critical
points of f . Then there exists a neighborhood U of X such that if a sequence enters U
then all subsequent iterates are in U and dist(xk,X) → 0.

Proof There exists a compact neighborhood V of X such that V \ X does not contain
any critical point and f (x) > fS for all x ∈ V\X. The (VS) property implies that
there exists an open neighborhood W of X included in V such that for all k ∈ N,
xk ∈ W and xk−1, . . . , x0 ∈ M we have Fk(xk, . . . , x0) ∈ V . The set V\W is
compact, and we let α > fS denote the minimum of f on this set. We define
U = {x ∈ V : f (x) < α}, which is included in W by minimality of α. Now let
K ∈ N, xK ∈ U and xK−1, . . . , x0 ∈ M. Then we have FK (xK , . . . , x0) ∈ V by
definition of W . Moreover, FK is a descent mapping so f (FK (xK , . . . , x0)) < α,
and it implies that FK (xK , . . . , x0) ∈ U . It follows that xK+1 is in U and all subse-
quent iterates are also in U . Now we show that {xk} converges to X. The sequence
{xk} eventually stays in a compact set (because xk ∈ U ⊆ V for all k ≥ K ) so it
has a non-empty and compact set of accumulation points that we denote by A. Then
A ⊆ X because A ⊆ V and the only critical points in V are in X. The set of accu-
mulation points of {dist(xk,A)} is {0} (because {xk} is bounded). So we deduce that
limk→+∞ dist(xk,X) ≤ limk→+∞ dist(xk,A) = 0. ��

This statement does not guarantee that the iterates converge to a specific point, but
merely that dist(xk,X) → 0. Notice that we do not require any particular structure
for X nor any form of function growth. The assumptions on the mappings Fk are also
mild.
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However, we need X to be compact and this cannot be relaxed. Indeed, consider
the function f : R2 → R defined as f (x, y) = exp(x)y2. The set of global minima
is X = {(x, y) ∈ R

2 : y = 0}, and it contains all the critical points of f . Con-
sider the update rule (xk+1, yk+1) = (xk − y2k , yk). It satisfies the descent condition
because f (xk+1, yk+1) = exp(−y2k ) f (xk, yk) for all k. The distance assumption (VS)
also holds because dist((xk+1, yk+1), (xk, yk)) = dist((xk − y2k , yk), (xk, yk)) = y2k .
However, the sequence {dist((xk, yk),X)} is constant (and not converging to zero)
even if we initialize the algorithm arbitrarily close to X (but not exactly on X).

The vanishing steps property is a reasonable assumption. When M = R
n , many

optimization algorithms have an update rule of the form xk+1 = xk +sk and the vector
sk is small if xk is close to a local minimum (e.g., sk = −αk∇ f (xk) with bounded
αk). For a general manifoldM, algorithms produce iterates as xk+1 = Rxk (sk), where
R : TM → M : (x, s) �→ Rx (s) is a retraction [24, Def. 3.47]. Specifically, for all
(x, s) ∈ TM the curve c(t) = Rx (ts) satisfies c(0) = x and c′(0) = s.

To ensure vanishing steps, we must control the distance traveled by retractions. We
let cr ≥ 1 be such that

dist(Rx (s), x) ≤ cr‖s‖ (RD)

for all (x, s) ∈ TMwhere ‖s‖ is smaller than some fixed positive radius. For R = Exp
(including the Euclidean case) the choice cr = 1 is valid for all s. More generally, cr
can be set arbitrarily close to 1 for all retractions as long as the radius is sufficiently
small [86, Lem. 6].

3.2 Lyapunov stability and convergence to a single point

Pathological behavior such as a continuous set of accumulation points can be ruled out
assuming Łojasiewicz inequalities. In this case, local minima are stable for a variety
of algorithms, even without compactness hypothesis (in contrast to Proposition 3.3).
This in turn ensures that the iterates converge to a single point. In this section, we
review arguments from [2], [10, Lem. 2.6], [21, Thm. 14] and [81, Thm. 4].

A central property to obtain convergence to a single point is a bound on the path
length of the iterates. We make this precise in the following definition.

Definition 3.4 An algorithm which generates sequences on M has the bounded path
length property on a set X ⊆ M if the following is true. There exist a neighbor-
hood U of X and a continuous function γ : M → R+ with γ (X) = 0 such that, if
xL , . . . , xK ∈ M are consecutive points generated by the algorithm and which are all
in U , then

K−1∑
k=L

dist(xk, xk+1) ≤ γ (xL). (BPL)

We say that the algorithm has the (BPL) property at a point x̄ ∈ M if it does so on
the set {x̄}.
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Here we think of the algorithm as an optimization method with some fixed hyper-
parameters. The definition is given for a generic set X but the bounded path length
property is usually only satisfied around local minima. Combined with the vanishing
steps property, bounded path length ensures stability of local minima. For comparison,
Absil et al. [2] andAttouch et al. [10] deduce (BPL) froma function decrease condition.
Here, we factor out (BPL) to enable analysis of algorithms that do not satisfy that
decrease condition.

Proposition 3.5 (Lyapunov stability) Suppose that an algorithm satisfies the (VS)
and (BPL) properties at x̄ ∈ M. Given a neighborhood U of x̄ , there exists a neigh-
borhood V of x̄ such that if a sequence generated by this algorithm enters V then all
subsequent iterates stay in U .

Proof The set U contains an open ball of radius δu > 0 around x̄ in which the (BPL)
and (VS) properties are satisfied with some functions γ and η. By continuity of η

there exists an open ball W centered on x̄ of radius δw that satisfies δw + η(x) < δu

for all x ∈ W . Likewise, by continuity of γ , there exists an open ball V ⊂ W of
radius δv > 0 around x̄ such that for all x ∈ V we have δv + γ (x) < δw. Suppose
that an iterate xL is in V . For contradiction, let K ≥ L be the first index such that
xK+1 /∈ B(x̄, δu). We deduce from the triangle inequality and the (BPL) property that

dist(xK , x̄) ≤ dist(xL , x̄) +
K−1∑
k=L

dist(xk, xk+1) ≤ δv + γ (xL) < δw.

It follows that xK ∈ W . Using again the triangle inequality we find dist(xK+1, x̄) ≤
dist(xK , x̄) + dist(xK , xK+1) ≤ δw + η(xK ) < δu . This implies that xK+1 is in
B(x̄, δu): a contradiction. ��

In particular, this excludes that the iterates diverge. We can also guarantee that
accumulation points are actually limit points.

Corollary 3.6 Suppose that an algorithm satisfies the (VS) and (BPL) properties at
x̄ ∈ M. If it generates a sequence that accumulates at x̄ then the sequence converges
to x̄ .

Proof Let U be a neighborhood of x̄ . From Proposition 3.5 there is a neighborhood
V such that if an iterate is in V then all subsequent iterates are in U . Since x̄ is an
accumulation point we know that such an iterate exists. Repeat with a sequence of
smaller and smaller neighborhoods of x̄ . ��

Many optimization algorithms generate sequences that accumulate only at critical
points. In that scenario, we can deduce that the sequence converges to a point, provided
that it gets close enough to a set where (VS) and (BPL) hold.

Corollary 3.7 Consider an algorithm that satisfies the (VS) and (BPL) properties on
a set X ⊆ M and let x̄ ∈ X. Let U be a neighborhood of x̄ such that if a sequence
generated by this algorithm accumulates at a point x∞ ∈ U then x∞ is in X. There
exists a neighborhood V of x̄ such that if a sequence enters V then all subsequent
iterates stay in U and converge to some x∞ ∈ U ∩ X.
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Proof The setU contains a compact neighborhoodB of x̄ such that the (VS) and (BPL)
properties hold on B ∩ X. From Proposition 3.5 there exists a neighborhood V of x̄
such that if {xk} enters V then it stays in B. The set B is compact so {xk} has at least
one accumulation point x∞ ∈ B. Our hypotheses ensure that x∞ must be in X since
B ⊆ U . We conclude with Corollary 3.6. ��

The conclusions of Corollary 3.7 are similar to the ones in [2, Prop. 3.3] and [10,
Thm. 2.10].3

We describe below the argument that Absil et al. [2] used to show thatmany gradient
descent algorithms satisfy (BPL) around points where f is Łojasiewicz. We say that
the sequence {xk} satisfies the strong decrease property around x̄ ∈ M if there exists
σ > 0 such that

f (xk)− f (xk+1)≥σ‖∇ f (xk)‖ dist(xk, xk+1) and xk ∈S ⇒ xk+1= xk (4)

whenever xk is sufficiently close to x̄ , as introduced by Absil et al. [2].

Lemma 3.8 Suppose that f satisfies (Ł) around x̄ ∈ S with constants θ and μ. If an
algorithm generates sequences {xk} that satisfy (4) around x̄ then it satisfies the (BPL)
property at x̄ with

γ (x) = 1

σ(1 − θ)
√
2μ

| f (x) − fS |1−θ .

We include a proof of this statement in Appendix C for completeness. In fact, the
algorithm would still satisfy the (BPL) property under the more general Kurdyka–
Łojasiewicz assumption (see [2, §3.2.3]). In practice, many first-order algorithms
(including gradient descent with constant step-sizes or with line-search) generate
sequences with the strong decrease condition (4), as shown in [2, §4].

3.3 Asymptotic convergence rate

To conclude this section, we briefly review classical linear convergence results for gra-
dientmethods under thePŁ assumption, as needed for Sect. 4. Proofs are inAppendixD
for completeness. It is well known that gradient descent with appropriate step-sizes
converges linearly to a minimum when f satisfies PŁ globally and has a Lipschitz
continuous gradient [81]. The same arguments lead to an asymptotic linear conver-
gence rate when PŁ holds only locally. We say that the sequence {xk} satisfies the
sufficient decrease property with constant ω > 0 if

f (xk) − f (xk+1) ≥ ω‖∇ f (xk)‖2. (5)

whenever xk is sufficiently close to a point x̄ . The classical result below follows from
that inequality [81].

3 Notice that Absil et al. [2] do not assume vanishing steps, but in that case the property can fail when x̄ is
not a global minimum. The statement of Corollary 3.7 accounts for this technical point.
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Proposition 3.9 Let {xk} be a sequence of iterates converging to some x̄ ∈ S and
satisfying (5). Suppose f satisfies (PŁ) around x̄ with constant μ > 0. Then the
sequence { f (xk)} converges linearly to fS with rate 1−2ωμ. Moreover, {‖∇ f (xk)‖}
and {dist(xk,S)} converge linearly to zero with rate

√
1 − 2ωμ ≤ 1 − ωμ.

In the case where M is a Euclidean space and Rx (s) = x + s, it is well known
that the sufficient decrease condition (5) holds for many first-order algorithms when
∇ f is Lipschitz continuous. This is also true for a general manifoldM and retraction
R as we briefly describe now. We say that f and the retraction R locally satisfy a
Lipschitz-type property around x̄ ∈ S if there exists L > 0 such that

f (Rx (s)) ≤ f (x) + 〈∇ f (x), s〉 + L

2
‖s‖2 (6)

for all x close enough to x̄ and s small enough. Note that if f ◦ R is C2 then the
inequality (6) is always (locally) satisfied. It is a classical result that (6) implies suffi-
cient decrease for gradient descent with constant step-sizes. This yields the following
statement.

Proposition 3.10 Suppose f satisfies μ-(PŁ) around x̄ ∈ S. Also assume that (6)
holds around x̄. Let {xk} be a sequence of iterates generated by gradient descent with
constant step-size γ ∈ ]0, 2

L [, that is, xk+1 = Rxk (−γ∇ f (xk)). Given a neighborhood
U of x̄ , there exists a neighborhood V of x̄ such that if an iterate enters V then the

sequence converges linearly to some x∞ ∈ U ∩ S with rate
√
1 − 2μ(γ − L

2 γ 2).

4 Aiming for superlinear convergence

Under fairly general assumptions, the PŁ condition (which is compatible with non-
isolated minima) ensures stability of minima and linear convergence for first-order
methods, as recalled in the previous section. We now assume f is C2 and investigate
superlinear convergence to non-isolated minima.

A natural starting point is Newton’s method which, in spite of terrible global behav-
ior [51], enjoys quadratic convergence to a non-singular minimum, provided the
method is initialized sufficiently close. Unfortunately, this does not extend to non-
isolated minima.

We exhibit here an example showing that the MB property is in general not suf-
ficient to ensure such a strong convergence behavior. The update rule is xk+1 =
xk −∇2 f (xk)

−1[∇ f (xk)] (we may use the pseudo-inverse instead). Consider the cost
function f (x, y) = 1

2 (x2 + 1)y2, whose set of minima is the line S = {(x, y) ∈ R
2 :

y = 0}. The gradient and Hessian of f are

∇ f (x, y) =
[

xy2

(x2 + 1)y

]
and ∇2 f (x, y) =

[
y2 2xy
2xy x2 + 1

]
.
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One can check that f satisfies (MB). To see how Newton’s method behaves on f ,
notice that

∇2 f (x, y)−1∇ f (x, y) = 1

3x2 − 1

[
x3 + x

(x2 − 1)y

]

whenever 3x2 �= 1. Let x(t) =
√

1−t
3 and y(t) = √

t . We can choose t ∈ ]0, 1[ as
small as desired to make the point (x(t), y(t)) arbitrarily close to S. Yet computing
the Newton step at (x(t), y(t)) results in a new point at a distance 2

3
1−t√

t
from the

optimal set S: that is arbitrarily far away. The failure of Newton’s method stems from
a misalignment between the gradient and some eigenspaces of the Hessian.

The usual fix for Newton’s method is to regularize it. This yields two classes of
algorithms in particular: regularized Newton with cubics and trust-region methods.
We will show that cubic regularization enjoys satisfying local convergence properties,
even in the presence of non-isolated minima. In contrast, the picture is less clear for
trust-region methods.

Throughout, we make several local assumptions around a point x̄ ∈ S as stated
below. The first two are Lipschitz-type properties.

A1 The Hessian∇2 f is locally L H -Lipschitz continuous around x̄ for some L H ≥ 0.

A2 There exists a constant L ′
H ≥ 0 such that the Lipschitz-type inequality

f (Rx (s)) − f (x) − 〈s,∇ f (x)〉 − 1

2
〈s,∇2 f (x)[s]〉 ≤ L ′

H

6
‖s‖3

holds for all x close enough to x̄ and all s small enough.

These assumptions typically hold (locally). For the retraction R = Exp, the first
implies the other (with the same constant). This is true in particular when M is a
Euclidean space and Rx (s) = x + s. The third assumption concerns the two classes
of algorithms we consider. At every iterate xk , they build a local model of the cost
function around xk based on a linear map Hk . We require it to be close to the Hessian
∇2 f (xk). That holds in particular if Hk = ∇2 f (xk).

A3 For all k the map Hk is linear, symmetric, and there is a constant βH ≥ 0 such that

‖Hk − ∇2 f (xk)‖ ≤ βH ‖∇ f (xk)‖

whenever the iterate xk is close enough to x̄ .

Finally, we let cr ≥ 1 be such that the retraction satisfies (RD) for sufficiently small
tangent vectors (which is enough for the local analyses below).

4.1 Adaptive regularized Newton

The regularized Newton method using cubics was introduced by Griewank [48] and
later revisited by Nesterov and Polyak [76]. An adaptive version of this algorithm was
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proposed by Cartis et al. [27, 28], with extensions to manifolds by Qi [83], Zhang and
Zhang [102] and Agarwal et al. [5]. The adaptive variants update the penalty weight
automatically: they are called ARC.We consider those variants, and more specifically
an algorithm that generates sequences {(xk, ςk)}, where xk is the current iterate and
ςk is the cubic penalty weight. The update rule is xk+1 = Rxk (sk) for some step sk .
At each iteration k, we define a linear operator Hk : TxkM → TxkM and the step sk

is chosen to approximately minimize the regularized second-order model

mk(s) = f (xk) + 〈s,∇ f (xk)〉 + 1

2
〈s, Hk[s]〉 + ςk

3
‖s‖3 (7)

in a way that we make precise below. We require Hk to be close to ∇2 f (xk) as
prescribed in A3.

In the literature, there are a number of superlinear (but non-quadratic) convergence
results for such algorithms. Assuming the PŁ condition, Nesterov and Polyak [76]
showed that regularized Newton generates sequences that converge superlinearly, with
exponent 4/3.Later, assuming aŁojasiewicz inequalitywith exponent θ ∈ [0, 1[, Zhou
et al. [105] characterized the convergence speed of regularized Newton depending on
θ . In particular, they also show that the PŁ condition implies superlinear convergence.4

More recently, Qian and Pan [84] developed an abstract framework that encompasses
these superlinear convergence results, and Cartis et al. [29, §5.3] reviewed superlinear
convergence rates of ARC under Łojasiewicz inequalities.

There is also a quadratic convergence result: Yue et al. [97] employed a local error
bound assumption to show quadratic convergence for the regularized Newton method.
As discussed in Sect. 2, this assumption is equivalent to local PŁ, making their result
an improvement over the superlinear rates from the aforementioned references. This
underlines one of the benefits of recognizing the equivalence of the four conditions
MB, PŁ, EB and QG, as some may more readily lead to a sharp analysis than others.

Note that the results in [97] assume that the subproblem is solved exactly, meaning
that sk ∈ argmins mk(s). Several authors proposed weaker conditions on sk (only
requiring an approximate solution to the subproblem) to ensure convergence guaran-
tees: this is important because we cannot find an exact solution in practice. Agarwal et
al. [5] for example, following Birgin et al. [17], establish global convergence guaran-
tees assuming only that mk(sk) ≤ mk(0) and ‖∇mk(sk)‖ ≤ κ‖sk‖2 for some κ ≥ 0.
For their results to hold, they require Hk = ∇2 f̂k(0), where f̂k = f ◦ Rx is the pull-
back of f at x . This choice of Hk is compatible with A3 for retractions with bounded
initial acceleration (which is typical).

We revisit the results of Yue et al. [97] to obtain an asymptotic quadratic conver-
gence rate for ARC under the PŁ assumption, even with approximate solutions to the
subproblem. Specifically, throughout this section we suppose that the steps sk satisfy

mk(sk) ≤ mk(0) and ‖∇mk(sk)‖ ≤ κ‖sk‖‖∇ f (xk)‖ (8)

4 In fact, Zhou et al. [105] show a superlinear convergence rate only assuming that θ ∈ ]0, 2
3 [ and that

∇2 f is Lipschitz continuous. However, these assumptions imply PŁ as noted in Remark 2.21.
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for some κ ≥ 0. At each iteration k, we define the ratio

�k = f (xk) − f (Rxk (sk))

mk(0) − mk(sk) + ςk
3 ‖sk‖3 (9)

(as do Birgin et al. [17]), which measures the adequacy of the local model. Iteration
k is said to be successful when �k is larger than some fixed parameter �c ∈ ]0, 1[. In
this case, we set xk+1 = Rxk (sk) and decrease the penalty weight so that ςk+1 ≤ ςk .
The update mechanism ensures that ςk ≥ ςmin for all k, where ςmin > 0 is a fixed
parameter. Conversely, the step is unsuccessful when �k < �c: we set xk+1 = xk and
increase the penalty so that ςk+1 > ςk . The explicit updates for ςk+1 are stated in [5].
We prove the following result for this algorithm.

Theorem 4.1 Suppose A1, A2, A3 and (PŁ) hold around x̄ ∈ S. We run ARC with
inexact subproblem solver satisfying (8). Given any neighborhood U of x̄ , there exists
a neighborhood V of x̄ such that if an iterate enters V then the sequence converges
quadratically to some x∞ ∈ U ∩ S.

Wefirst adapt an argument from [5, Lem. 6] to show thatARC satisfies the vanishing
steps property (VS) defined in Sect. 3.1.

Lemma 4.2 Suppose A3 holds around a point x̄ . There exists a neighborhood U of
x̄ such that if an iterate xk is in U then the step-size has norm bounded as ‖sk‖ ≤
η̃(xk, ςk) ≤ η̃(xk, ςmin), where

η̃(x, ς) =
√
3‖∇ f (x)‖

ς
+ 3

2ς
�(x)

and �(x) = max
(
0, βH ‖∇ f (x)‖ − λmin(∇2 f (x))

)
.

In particular, ARC has the (VS) property around second-order critical points with
η(x) = crη̃(x, ςmin), where cr controls possible retraction distortion as in (RD).

Proof The model decrease in (8) and the model accuracy A3 ensure

ςk‖sk‖3 ≤ −3
〈
sk,∇ f (xk) + 1

2
∇2 f (xk)[sk] + 1

2
(Hk − ∇2 f (xk))[sk]

〉

≤ 3‖sk‖
(
‖∇ f (xk)‖ + 1

2
�(xk)‖sk‖

)
.

Divide by ‖sk‖ and solve the quadratic inequality for ‖sk‖ to get the result, recalling
ςk ≥ ςmin. ��
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The function η is indeed continuous with value zero on S, as required in (VS).
To obtain the vanishing steps property we only relied on the decrease requirement
mk(sk) ≤ mk(0). Assuming aPŁcondition and a locallyLipschitz continuousHessian,
we now derive sharper bounds for the steps. We rely on the fact that the gradient of
the model mk (7)

∇mk(sk) = ∇ f (xk) + Hk[sk] + ςk‖sk‖sk (10)

is small. We will exploit the particular alignment of ∇ f given in Lemma 2.14. In
the following statements, given a point x̄ ∈ S and d = rank(∇2 f (x̄)), we let
P(x) : TxM → TxM denote the orthogonal projector onto the top d eigenspace
of ∇2 f (x). This is always well defined in a neighborhood of x̄ by continuity of eigen-
values. Additionally, we let Q(x) = I − P(x) be the projector onto the orthogonal
complement.

Lemma 4.3 Suppose that A1, A3 and μ-(PŁ) hold around x̄ ∈ S. Given ε > 0,
μ� < μ and λ	 > λmax(∇2 f (x̄)), there exists a neighborhood U of x̄ and a constant
Lq ≥ 0 such that if xk is an iterate in U and sk is a step satisfying (8) then

(1 − ε)
‖∇ f (xk)‖

λ	 + ςk‖sk‖ ≤ ‖P(xk)sk‖ ≤ (1 + ε)
‖∇ f (xk)‖

μ� + ςk‖sk‖ and (11)

‖Q(xk)sk‖ ≤ 1

ςk

(
(κ + βH )‖∇ f (xk)‖ + (L H + Lq

√
ςk) dist(xk,S)

)
. (12)

Proof Let U be a neighborhood of x̄ where the orthogonal projector P(x) is well
defined for all x ∈ U . Let xk ∈ U and sk be a step that satisfies (8). We first bound the
term P(xk)sk . Multiply (10) by P(xk) and use commutativity of P(xk) and ∇2 f (xk)

to get

(∇2 f (xk) + ςk‖sk‖I )P(xk)sk = P(xk)
(

− ∇ f (xk) + ∇mk(sk) − (Hk − ∇2 f (xk))[sk ]
)
.

If we apply A3 and (8), we find that ‖∇mk(sk) − (Hk − ∇2 f (xk))[sk]‖ ≤ (κ +
βH )‖∇ f (xk)‖‖sk‖ when xk is close enough to x̄ (shrink U as needed). Consequently,
the previous equality yields

‖P(xk)∇ f (xk)‖ − (κ + βH )‖∇ f (xk)‖‖sk‖
λ1(∇2 f (xk)) + ςk‖sk‖ ≤ ‖P(xk)sk‖

≤ ‖P(xk)∇ f (xk)‖ + (κ + βH )‖∇ f (xk)‖‖sk‖
λd(∇2 f (xk)) + ςk‖sk‖ .

Lemma 2.14 gives that ‖P(x)∇ f (x)‖ = ‖∇ f (x)‖ + o(‖∇ f (x)‖) as x → x̄ . More-
over, the steps sk vanish (as shown in Lemma 4.2), so we obtain the bound (11) when
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xk is sufficiently close to x̄ . We now let Q(x) = I − P(x) and consider the term
Q(xk)sk . Multiply (10) by Q(xk) to obtain

Q(xk)∇mk(sk) = Q(xk)∇ f (xk) + ∇2 f (xk)Q(xk)sk + Q(xk)(Hk − ∇2 f (xk))[sk]
+ ςk‖sk‖Q(xk)sk .

Taking the inner product of this expression with Q(xk)sk , applying the Cauchy–
Schwarz inequality, dividing by ‖sk‖, and using A3 yields

ςk‖Q(xk)sk‖2 ≤ ‖Q(xk)∇ f (xk)‖ +
(
κ‖∇ f (xk)‖ + �(xk)

)
‖Q(xk)sk‖,

where � is as in Lemma 4.2. Solving the quadratic inequality gives

‖Q(xk)sk‖ ≤ 1

ςk

(√
ςk‖Q(xk)∇ f (xk)‖ + κ‖∇ f (xk)‖ + �(xk)

)
.

Local Lipschitz continuity of ∇2 f provides �(xk) ≤ βH ‖∇ f (xk)‖ + L H dist(xk,S)

when xk is close to x̄ . Via Lemma 2.14, it also provides a constant Lq ≥ 0 such that√‖Q(xk)∇ f (xk)‖ ≤ Lq dist(xk,S) when xk is sufficiently close to x̄ . This is enough
to secure (12). ��

Using these bounds, we now show that ‖P(xk)sk‖ cannot be too small compared
to ‖sk‖ when xk is close to a minimum where PŁ holds.

Lemma 4.4 Suppose that A1, A3 and μ-(PŁ) hold around x̄ ∈ S. Given ε > 0 and
λ	 > λmax(∇2 f (x̄)), there exists a neighborhood U of x̄ and a constant Lq ≥ 0 such
that if xk is an iterate in U and sk is a step satisfying (8) then ‖P(xk)sk‖ ≥ r‖sk‖
where r > 0 is the constant

r =
√
1 − 1

1 + r̃2
with r̃ = (1 − ε)ςmin(

λ	 + ε(1 + √
ςmin)

)(
κ + βH + L H +Lq

√
ςmin

μ

) .

Proof Assume xk is sufficiently close to x̄ for the projectors P(xk) and Q(xk) to be
well defined. Define νp = ‖P(xk)sk‖, νq = ‖Q(xk)sk‖ and ξ = νp

νq
(consider νq �= 0

as otherwise the claim is clear). We compute that ν2p = (
1 − 1

1+ξ2

)‖sk‖2 and find

a lower-bound for ξ . Remark 2.10 gives that dist(xk,S) ≤ 1
μ
‖∇ f (xk)‖ when xk is

sufficiently close to x̄ . Together with the bound on νq in Lemma 4.3, this gives

νq ≤ ‖∇ f (xk)‖
ςk

(
κ + βH + L H + Lq

√
ςk

μ

)

Combining this with the lower-bound on νp in Lemma 4.3, we find

ξ ≥ (1 − ε)ςk

(λ	 + ςk‖sk‖)
(
κ + βH + L H +Lq

√
ςk

μ

) .
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With Lemma 4.2 we can upper-bound ςk‖sk‖ ≤ √
3ςk‖∇ f (xk)‖ + 3

2�(xk), and
consequently, ςk‖sk‖ ≤ ε(1+ √

ςk) whenever xk is sufficiently close to x̄ . We finally
notice that the resulting lower-bound on ξ is an increasing function of ςk . Therefore,
we get the desired inequality by using ςk ≥ ςmin. ��

From this we deduce a lower-bound on the quadratic term of the model.

Lemma 4.5 Suppose that A1, A3 and μ-(PŁ) hold around x̄ ∈ S. Given μ� < μ,
there exists a constant r > 0 (provided by Lemma 4.4) and a neighborhood U of x̄
such that if xk ∈ U then the step satisfies

〈sk,∇2 f (xk)[sk]〉 ≥ μ�r2‖sk‖2.

Proof Let r > 0 be a constant and U a neighborhood of x̄ as in Lemma 4.4. Shrink U
for the projectors P and Q to be well defined in U . If xk is in U we compute

〈sk,∇2 f (xk)[sk]〉 = 〈P(xk)sk,∇2 f (xk)[P(xk)sk]〉 + 〈Q(xk)sk,∇2 f (xk)[Q(xk)sk]〉
≥ λd(∇2 f (xk))r

2‖sk‖2 + λmin(∇2 f (xk))‖Q(xk)sk‖2,

where we used ‖P(xk)sk‖ ≥ r‖sk‖. We obtain the result by noticing that the second
term is lower-bounded by max

(
0,−λmin(∇2 f (xk))

)‖sk‖2. ��
We now show that the ratio �k is large when xk is close to a local minimum where

PŁ holds. The upshot is that iterations near S are successful.

Lemma 4.6 Suppose that A1, A2, A3 and μ-(PŁ) hold around x̄ ∈ S. For all ε > 0
there exists a neighborhood U of x̄ such that if xk ∈ U then �k ≥ 1 − ε.

Proof Let τk(s) = f (xk)+〈s,∇ f (x)〉+ 1
2 〈s, Hk[s]〉 be the second-order component

of the model mk . Then,

1 − �k = f (Rxk (sk)) − τk(sk)

τk(0) − τk(sk)
≤ 1

6

L ′
H ‖sk‖3 + 3βH ‖sk‖2‖∇ f (xk)‖

τk(0) − τk(sk)
,

where the bound on the numerator comes from A2 and A3. The denominator is given
by

τk(0) − τk(sk) = −〈sk , ∇ f (xk)〉 − 1

2
〈sk , Hk [sk ]〉

= −〈sk , ∇mk(sk)〉 + 1

2
〈sk , (Hk − ∇2 f (xk))[sk ]〉 + 1

2
〈sk , ∇2 f (xk)[sk ]〉

+ ςk‖sk‖3,

whereweused identity (10) for the secondequality.With theCauchy–Schwarz inequal-
ity, A3 and (8), we bound the two first terms as

|〈sk,∇mk(sk)〉| ≤ κ‖∇ f (xk)‖‖sk‖2 and
|〈sk, (Hk − ∇2 f (xk))[sk]〉| ≤ βH ‖∇ f (xk)‖‖sk‖2.
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If we combine these bounds with Lemma 4.5, we find that given μ� < μ, there exists
r > 0 and a neighborhood U of the local minimum x̄ such that

xk ∈ U ⇒ τk(0) − τk(sk) ≥ μ�r2‖sk‖2,

and therefore 1− �k ≤ L ′
H ‖sk‖+3βH ‖∇ f (xk )‖

6μ�r2
. Owing to Lemma 4.2 the steps sk vanish

around second-order critical points so we can guarantee 1 − �k becomes as small as
desired. ��

We can now show that the iterates produced by ARC satisfy the strong decrease
property (4) around minima where PŁ holds.

Proposition 4.7 Suppose that A1, A2, A3 and μ-(PŁ) hold around x̄ ∈ S. Given
μ� < μ and λ	 > λmax(∇2 f (x̄)), there exists a neighborhood of x̄ where ARC

satisfies the strong decrease property (4) with constant σ = rμ�

2crλ	 , where cr is defined
in (RD) and r > 0 is provided by Lemma 4.4.

Proof From Lemma 4.6, there exists a neighborhood U of x̄ in which all the steps are
successful. Given an iterate xk in U , success implies xk+1 = Rxk (sk) and therefore,
by definition of �k (9),

f (xk) − f (xk+1)

= �k

(
mk(0) − mk(sk) + ςk

3
‖sk‖3

)
= −�k

(
〈sk,∇ f (xk)〉 + 1

2

〈
sk, Hk[sk]

〉)
.

Also, taking the inner product of (10) with sk and using (8) yields

〈sk, Hk[sk]〉 ≤ −〈sk,∇ f (xk)〉 + κ‖∇ f (xk)‖‖sk‖2.

Multiply the latter by −�k
2 and plug into the former to deduce

f (xk) − f (xk+1) ≥ −�k

2

(
〈sk,∇ f (xk)〉 + κ‖∇ f (xk)‖‖sk‖2

)
. (13)

We now bound the inner product 〈sk,∇ f (xk)〉. Let d = rank∇2 f (x̄) and restrict
the neighborhood U if need be to ensure λd(∇2 f (xk)) > 0 and λd(∇2 f (xk)) >

λd+1(∇2 f (xk)). In particular, the orthogonal projector P(xk) onto the top d
eigenspace of ∇2 f (xk) is well defined. Let Q(xk) = I − P(xk). Decompose
sk = P(xk)sk + Q(xk)sk and apply the Cauchy–Schwarz inequality to obtain

〈sk,∇ f (xk)〉 ≤ 〈P(xk)sk,∇ f (xk)〉 + ‖Q(xk)∇ f (xk)‖‖sk‖. (14)

The second term is small owing to Lemma 2.14. Let us focus on the first term. To this
end, multiply (10) by P(xk) to verify the following (recall that ∇2 f (xk) and P(xk)
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commute):

P(xk)∇ f (xk) = −∇2 f (xk)P(xk)sk + P(xk)∇mk(sk) − P(xk)(Hk − ∇2 f (xk))sk

− ςk‖sk‖P(xk)sk .

On the one hand, we can use it with A3 and (8) to lower-bound the norm of P(xk)sk ,
through:

‖P(xk)∇ f (xk)‖ ≤
(
λ1(∇2 f (xk)) + ςk‖sk‖

)
‖P(xk)sk‖ + (κ + βH )‖∇ f (xk)‖‖sk‖.

On the other hand, we can use it to upper-bound 〈sk, P(xk)∇ f (xk)〉, also with A3
and (8) and using the fact that P(xk)sk lives in the top-d eigenspace of ∇2 f (xk), like
so:

〈sk, P(xk)∇ f (xk)〉
≤ −

(
λd(∇2 f (xk)) + ςk‖sk‖

)
‖P(xk)sk‖2 + (κ + βH )‖∇ f (xk)‖‖sk‖‖P(xk)sk‖.

Combine the two inequalities above as follows: use the former to upper-bound one of

the first factors ‖P(xk)sk‖ in the latter. Also using λd (∇2 f (xk))

λ1(∇2 f (xk))
≤ λd (∇2 f (xk))+ςk‖sk‖

λ1(∇2 f (xk))+ςk‖sk‖ ≤
1, this yields:

〈sk, P(xk)∇ f (xk)〉 ≤ −λd(∇2 f (xk))

λ1(∇2 f (xk))
‖P(xk)∇ f (xk)‖‖P(xk)sk‖

+ 2(κ + βH )‖∇ f (xk)‖‖sk‖‖P(xk)sk‖. (15)

We now plug this back into (14). Using Lemma 2.14 for its second term and also
Lemma 4.2 which asserts ‖sk‖ is arbitrarily small for xk near x̄ , we find that for all
ε > 0 we can restrict the neighborhood U in order to secure

〈sk,∇ f (xk)〉 ≤ −λd(∇2 f (xk))

λ1(∇2 f (xk))
‖P(xk)∇ f (xk)‖‖P(xk)sk‖ + ε‖∇ f (xk)‖‖sk‖.

(16)

Lemma 4.4 provides a (possibly smaller) neighborhood and a positive r such that
‖P(xk)sk‖ ≥ r‖sk‖. Also, for any δ > 0, Lemma 2.14 ensures ‖P(xk)∇ f (xk)‖ ≥
(1 − δ)‖∇ f (xk)‖ upon appropriate neighborhood restriction. Thus,

〈sk,∇ f (xk)〉 ≤ −
(

λd(∇2 f (xk))

λ1(∇2 f (xk))
(1 − δ)r − ε

)
‖∇ f (xk)‖‖sk‖. (17)
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Now plugging back into (13) and possibly restricting the neighborhood again,

f (xk) − f (xk+1) ≥ �k

2

(
λd(∇2 f (xk))

λ1(∇2 f (xk))
(1 − δ)r − ε − κ‖sk‖

)
‖∇ f (xk)‖‖sk‖.

(18)

The result now follows since we can arrange to make ε, δ and ‖sk‖ arbitrarily small;
to make λd(∇2 f (xk)) and λ1(∇2 f (xk)) arbitrarily close to μ and λmax(∇2 f (x̄))

(respectively); and to make �k larger than a number arbitrarily close to 1 (Lemma 4.6).
The final step is to account for potential distortion due to a retraction (RD): this adds
the factor cr. ��

If we combine this result with Lemma 3.8 we obtain that ARC satisfies the bounded
path length property (BPL). In Lemma 4.2 we found that it also satisfies the vanishing
steps property (VS). Moreover, if the iterates of ARC stay in a compact region then
they accumulate only at critical points [27, Cor. 2.6]. As a result, Corollary 3.7 applies
to ARC: if an iterate gets close enough to a point where PŁ holds then the sequence
has a limit. We conclude this section with the quadratic convergence rate of ARC.

Proposition 4.8 Suppose that {xk} converges to some x̄ ∈ S and that f is (PŁ) around
x̄. Also assume that A1, A2 and A3 hold around x̄. Then {dist(xk,S)} converges
quadratically to zero.

Proof FromLemma4.6 all the steps are eventually successful. In particular, the penalty
weights eventually stop increasing: there exists ςmax > 0 such that ςk ≤ ςmax for all
k. Let μ� < μ (where μ is the PŁ constant) and λ	 > λmax(∇2 f (x̄)). We first apply
the Pythagorean theorem with the upper-bounds from Lemma 4.3. Together with the
upper-bound in Proposition 2.8, it implies for all large enough k that

‖sk‖2 ≤ c21 dist(xk ,S)2 where c21 =
(

λ	

μ�

)2
+ 1

ς2
min

(
(κ + βH )λ	 + L H + Lq

√
ςmin

)2
.

(19)

We now let vk = sk − Logxk
(xk+1), which is always well defined for large enough k.

Using EB (given by Remark 2.10), we obtain that for all large enough k we have

dist(xk+1,S) ≤ 1

μ
‖∇ f (xk+1)‖

= 1

μ

∥∥�xk
xk+1∇ f (xk+1) − ∇ f (xk) − ∇2 f (xk)[Logxk

(xk+1)]
− ∇2 f (xk)[vk ] − (Hk − ∇2 f (xk)

)[sk ] − ςk‖sk‖sk + ∇mk(sk)
∥∥,

where we used identity (10) for ∇mk . Now the triangle inequality, A3 and (8) give

dist(xk+1,S) ≤ 1

μ

( L H

2
dist(xk , xk+1)

2 + λ	‖vk‖ + ςk‖sk‖2 + (κ + βH )‖∇ f (xk)‖‖sk‖
)
.

(20)
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Notice that dist(xk, xk+1) ≤ cr‖sk‖ using (RD). We now bound the quantity ‖vk‖.
For all x ∈ M, since DRx (0) = I , the inverse function theorem implies that Rx

is locally invertible and DR−1
x (x) = I . It follows that there exists a neighborhood

U ⊆ B(x̄, inj(x̄)) of x̄ such that for all x, y ∈ U the quantity R−1
x (y) is well defined

and satisfies

R−1
x (y) = R−1

x (x) + DR−1
x (x)[Logx (y)] + O(dist(x, y)2) = Logx (y) + O(dist(x, y)2).

In particular, using the identity sk = R−1
xk

(xk+1), we find that there exists a constant
c2 such that ‖vk‖ ≤ c2 dist(xk, xk+1)

2 holds for large enough k. Combining this
with (20), we obtain

dist(xk+1,S) ≤ 1

μ

(( L H

2
c2r + λ	c2c2r + ςk

)
‖sk‖2 + (κ + βH )‖∇ f (xk)‖‖sk‖

)
.

Finally, using (19) and the upper-bound from Proposition 2.8, we conclude that

dist(xk+1,S) ≤ cq dist(xk,S)2 where cq = c21
μ

( L H

2
c2r + λ	c2c2r + ςmax

)

+ λ	

μ
(κ + βH )c1. ��

The quadratic convergence rates of the sequences { f (xk)} and {‖∇ f (xk)‖} follow
immediately by QG and EB. Theorem 4.1 is a direct consequence of Corollary 3.7
and Proposition 4.8.

4.2 Trust-region algorithms

In this section we analyze Riemannian trust-region algorithms (TR), which embed
Newton iterations in safeguards to ensure global convergence guarantees [3]. They
produce sequences {(xk,�k)}, where xk is the current iterate and �k is the trust-
region radius. At iteration k, we define the trust-region model as

mk(s) = f (xk) + 〈s,∇ f (xk)〉 + 1

2
〈s, Hk[s]〉, (21)

where Hk : TxkM → TxkM is a linear map close to∇2 f (xk), satisfying A3. The step
sk is chosen by (usually approximately) solving the trust-region subproblem

min
sk∈TxkM

mk(sk) subject to ‖sk‖ ≤ �k . (TRS)
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The point xk and radius �k are then updated depending on how good the model is, as
measured by the ratio

ρk = f (xk) − f (Rxk (sk))

mk(0) − mk(sk)
.

(If the denominator is zero, we let ρk = 1.) Specifically, given parameters ρ′ ∈ ]0, 1
4 [

and �̄ > 0, the update rules for the state are

xk+1 =
{
Rxk (sk) if ρk > ρ′,
xk otherwise,

�k+1 =

⎧⎪⎨
⎪⎩

1
4�k if ρk < 1

4 ,

min(2�k , �̄) if ρk > 3
4 and ‖sk‖ = �k ,

�k otherwise.

Shortcomings of trust-region with exact subproblem solver. There exist algorithms
to efficiently solve the subproblem exactly (up to some accuracy). Can we provide
strong guarantees in the presence of non-isolated minima using an exact subproblem
solver? Assume for simplicity that Hk = ∇2 f (xk). We recall [77, Thm. 4.1] that a
vector s ∈ TxkM is a global solution of the subproblem (TRS) if and only if ‖s‖ ≤ �k

and there exists a scalar λ ≥ 0 such that

(∇2 f (xk) + λI
)
s = −∇ f (xk), λ(�k − ‖s‖) = 0 and ∇2 f (xk) + λI � 0.

(22)

As mentioned in [66, 94, 95], if f is convex in a neighborhood of x̄ then S is locally
convex, hence affine. Assuming that S is not flat around x̄ , it follows that ∇2 f must
have a negative eigenvalue in any neighborhood of x̄ . Consider an iterate xk close to
x̄ , and for which ∇2 f (xk) has a negative eigenvalue. Conditions (22) imply λ > 0
and hence ‖s‖ = �k , meaning that s is at the border of the trust region. Consequently,
even if x0 is arbitrarily close to x̄ , we can arrange for the next iterate to be far away (if
the radius �0 is large). This shows that capture results such as Corollary 3.7 fail for
this algorithm.

As an example, define f : R2 → R as f (x, y) = (x2 + y2 − 1)2. The set of
minima is the unit circle, on which f satisfies MB. Given t > 0, define x(t) = 0 and
y(t) = 1 − t . Consider the subproblem (TRS) at (x(t), y(t))� with exact Hessian
∇2 f and with parameter �. For small enough t there are two solutions:

s =
[
±
√

�2 − t2(t−2)2

4(t−1)2
t(t−2)
2(t−1)

]
.

The criterion (22) with λ = 4t(2− t) confirms optimality.We find that s → (±�, 0)�
as t → 0, so the tentative step is far even when t is small. We could arrange for that
step to be accepted by adjusting the function value at the tentative iterate. That rules
out even basic capture-type theorems. This type of behavior does not happen when
the Hessian is positive definite at the minimum.
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Trust-region with Cauchy steps. As just discussed, TR with an exact subproblem
solver can fail in the face of non-isolated minima. However, practical implementations
of TR typically solve the subproblem only approximately. We set out to investigate
the robustness of such mechanisms to non-isolated minima.

Our investigation is prompted by the empirical observation that TR with a popular
approximate subproblem solver known as truncated conjugate gradient (tCG, see [3,
33]) seems to enjoy superlinear convergence under PŁ, evenwith non-isolatedminima.
We confirmed this subsequently [85] using significant additional machinery.

As a more direct illustration, we show the following theorem, regarding TR with a
crude subproblem solver that computes Cauchy steps (see (25) below). It is relevant
in particular because tCG generates a sequence of increasingly good tentative steps,
the first of which is the Cauchy step.

Theorem 4.9 Suppose A2, A3 and μ-(PŁ) hold around x̄ ∈ S. Let U be a neigh-
borhood of x̄ . There exists a neighborhood V of x̄ such that if a sequence of iterates
generated by TR with Cauchy steps enters V then the sequence converges linearly to

some x∞ ∈ U ∩ S with rate
√
1 − μ

λmax
, where λmax = λmax(∇2 f (x∞)).

A local convergence analysis of TR with Cauchy steps is given in [73] for non-
singular local minima. Here, we prove that the favorable convergence properties also
hold if we only assume PŁ.

To prove Theorem 4.9, we first establish a number of intermediate results only
assuming the subproblem solver satisfies the properties (23) and (24) defined below.
We then secure these properties for Cauchy steps. First, given a local minimum x̄ ∈ S,
we assume that the step sk satisfies the sufficient decrease condition

mk(0) − mk(sk) ≥ cp‖∇ f (xk)‖min

(
�k,

‖∇ f (xk)‖3∣∣〈∇ f (xk), Hk[∇ f (xk)]〉
∣∣
)

(23)

whenever the iterate xk is sufficiently close to x̄ . (If the denominator is zero, consider
the rightmost expression to be infinite.) This condition holds for many practical sub-
problem solvers and ensures global convergence guarantees in particular (see [4, §7.4]
and [24, §6.4]). Second, given a local minimum x̄ ∈ S, we assume that there exists a
constant cs ≥ 0 such that

‖sk‖ ≤ cs‖∇ f (xk)‖ (24)

when xk is sufficiently close to x̄ .
Wefind that the ratios {ρk} are large aroundminimawhere these twoconditions hold.

This is because they imply that the trust-region model is an accurate approximation
of the local behavior of f . It follows that the steps {sk} decrease f nearly as much as
predicted by the model.

Proposition 4.10 Suppose that A2 and A3 hold around x̄ ∈ S. Also assume that the
steps sk satisfy (23) and (24) around x̄. For all ε > 0 there exists a neighborhood U
of x̄ such that if an iterate xk is in U then ρk ≥ 1 − ε.
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Proof We follow and adapt some arguments from [4, Thm. 7.4.11], which is stated
there assuming ∇2 f (x̄) � 0. We can dismiss the case where ∇ f (xk) = 0 because it
implies ρk = 1. Using the definitions of mk and ρk we have

1 − ρk = f (Rxk (sk)) − mk(sk)

mk(0) − mk(sk)
.

Assuming xk is sufficiently close to x̄ , we bound the numerator as f (Rxk (sk)) −
mk(sk) ≤ L ′

H
6 ‖sk‖3 ≤ L ′

H c2s
6 ‖sk‖‖∇ f (xk)‖2 using A2 and inequality (24). Combining

this with the sufficient decrease (23) and A3 gives

1 − ρk ≤ L ′
H c2s ‖sk‖‖∇ f (xk)‖

6cp min
(
�k,

‖∇ f (xk )‖
‖∇2 f (xk)‖+βH ‖∇ f (xk )‖

) .

If �k is active in the denominator then we obtain 1 − ρk ≤ L ′
H c2s
6cp

‖∇ f (xk)‖ because

‖sk‖ ≤ �k . Otherwise, using (24) we obtain 1− ρk ≤ L ′
H c3s
6cp

‖∇ f (xk)‖
(‖∇2 f (xk)‖ +

βH ‖∇ f (xk)‖
)
. In both cases this yields the result. ��

This result notably implies that the trust-region radius does not decrease in the
vicinity of the minimum x̄ . It means that the trust region eventually becomes inactive
when the iterates converge to x̄ . We now employ the particular alignment between the
gradient and the top eigenspace of the Hessian induced by PŁ (see Lemma 2.14) to
derive bounds on the inner products 〈∇ f (x),∇2 f (x)[∇ f (x)]〉.
Proposition 4.11 Suppose that f is μ-(PŁ) around x̄ ∈ S. Let μ� < μ and λ	 >

λmax(∇2 f (x̄)). Then there exists a neighborhood U of x̄ such that for all x ∈ U we
have

μ�‖∇ f (x)‖2 ≤ 〈∇ f (x),∇2 f (x)[∇ f (x)]〉 ≤ λ	‖∇ f (x)‖2.

Proof By continuity of eigenvalues, there exists a neighborhoodU of x̄ such that for all
x ∈ U we have λmax(∇2 f (x)) ≤ λ	. The upper-bound 〈∇ f (x),∇2 f (x)[∇ f (x)]〉 ≤
λ	‖∇ f (x)‖2 follows immediately. We now prove the lower-bound. Let d be the rank
of ∇2 f (x̄). Given x sufficiently close to x̄ , we let P(x) : TxM → TxM denote the
orthogonal projector onto the top d eigenspace of∇2 f (x). From Lemma 2.14 we have
‖(I − P(x))∇ f (x)‖2 = o(‖∇ f (x)‖2) as x → x̄ . If we write Q(x) = I − P(x), we
obtain

〈∇ f (x),∇2 f (x)[∇ f (x)]〉
= 〈P(x)∇ f (x),∇2 f (x)P(x)∇ f (x)〉 + 〈Q(x)∇ f (x),∇2 f (x)Q(x)∇ f (x)〉
≥ λd(∇2 f (x))‖∇ f (x)‖2 + o(‖∇ f (x)‖2)

as x → x̄ . ��
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Combining these results guarantees a linear rate of convergence.

Proposition 4.12 Suppose that A2, A3 and μ-(PŁ) hold around x̄ ∈ S. Let {xk} be
a sequence of iterates produced by TR converging to x̄ . Assume that the steps sk

satisfy (23) and (24) around x̄. Then the iterates converge at least linearly with rate√
1 − 2cpμ

λmax
, where λmax = λmax(∇2 f (x̄)).

Proof We can assume that ∇ f (xk) is non-zero for all k (otherwise the sequence con-
verges in a finite number of steps). We show that the sequence satisfies the sufficient
decrease property (5). Given μ� < μ and λ	 > λmax(∇2 f (x̄)), Proposition 4.11
and A3 ensure that

1

λ	
≤ ‖∇ f (xk)‖2

〈∇ f (xk), Hk[∇ f (xk]〉 ≤ 1

μ�

for all large enough k. We let 0 < ε < 3
4 and Proposition 4.10 implies that ρk ≥ 1− ε

for all large enough k. In particular, the radii {�k} are bounded away fromzero (because
the update mechanism does not decrease the radius when ρk ≥ 1

4 ). Combining the
definition of ρk and the sufficient decrease (23) gives

f (xk) − f (xk+1) = ρk
(
mk(0) − mk(sk)

) ≥ (1 − ε)cp

λ	
‖∇ f (xk)‖2

for all large enough k. We can now conclude with Proposition 3.9. ��
We are now in a position to prove Theorem 4.9. The Cauchy step at itera-

tion xk is defined as the minimum of (TRS) with the additional constraint that
sk ∈ span(∇ f (xk)). We can find an explicit expression for it: when ∇ f (xk) �= 0,
the Cauchy step is sc

k = −tck ∇ f (xk), where

tck =
{
min
( ‖∇ f (xk )‖2

〈∇ f (xk),Hk [∇ f (xk )]〉 ,
�k‖∇ f (xk )‖

)
if 〈∇ f (xk), Hk[∇ f (xk)]〉 > 0,

�k‖∇ f (xk)‖ otherwise.
(25)

Cauchy steps notably satisfy the sufficient decrease property (23) globallywith cp = 1
2

(see [33, Thm. 6.3.1]). We now prove that they also satisfy (24) around minima where
PŁ holds.

Proposition 4.13 Suppose that A3 and μ-(PŁ) hold around x̄ ∈ S. Given μ� < μ,
there exists a neighborhood U of x̄ such that if an iterate xk is in U then the Cauchy
step satisfies ‖sc

k‖ ≤ 1
μ� ‖∇ f (xk)‖.

Proof Given μ� < μ, Proposition 4.11 and A3 yield that 〈∇ f (xk), Hk[∇ f (xk)]〉 ≥
μ�‖∇ f (xk)‖2 if xk is sufficiently close to x̄ . It implies that the step-sizes defined
in (25) are bounded as tck ≤ 1

μ� , which gives the result. ��
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In particular, this proposition shows that TR with Cauchy steps satisfies the (VS)
property at x̄ with η(x) = cr

μ� ‖∇ f (x)‖, where cr is as in (RD). Furthermore, Cauchy
steps satisfy the model decrease

mk(0) − mk(s
c
k ) ≥ 1

2
‖∇ f (xk)‖‖sc

k‖,

as shown in [2, Lem. 4.3]. It implies that TR with Cauchy steps generates sequences
that satisfy the strong decrease property (4) with σ = ρ′

2cr
, where cr is as in (RD), and

ρ′ is defined in the algorithm description in Sect. 4.2. See [2, Thm. 4.4] for details
on this. As a consequence, TR with Cauchy steps satisfies the bounded path length
property (BPL) at points where a Łojasiewicz inequality holds (Lemma 3.8). More-
over, if the iterates of this algorithm stay in a compact region then they accumulate
only at critical points [4, Thm. 7.4.4]. We can finally combine the statements from
Corollary 3.7 and Proposition 4.12 to obtain Theorem 4.9.

Remark 4.14 The model decrease (23) is not a sufficient condition for the strong
decrease property (4) to hold. As a result, it is not straightforward to determinewhether
the bounded path length property (BPL) holds for a given subproblem solver: see [2,
§4.2] for a discussion of this.

5 Conclusions and perspectives

We showed the (local) equivalence (up to arbitrarily small losses in constants) of MB,
PŁ, EB and QG (Sect. 2). We then revisited classical capture results compatible with
non-isolated minima to factor out the roles of vanishing step-sizes and bounded path
lengths (Sect. 3). The MB property and the alignment of the gradient with respect to
the Hessian eigenspaces (Lemma 2.14) are particularly adapted to analyze second-
order algorithms. Accordingly, assuming the above conditions we establish quadratic
convergence for ARC with inexact subproblem solvers and linear convergence for TR
with Cauchy steps (Sect. 4).

We conclude with a few research directions:

• In Sect. 4.2 we analyze a simple subproblem solver (Cauchy steps) for TR. It is
natural to explore more advanced subproblem solvers. For example in [85] we
show superlinear convergence for a truncated CG method assuming MB.

• In Sect. 4.2 we argue that TR with an exact subproblem solver cannot satisfy
a standard capture property in the presence of non-isolated minima. However,
establishing capture is only a means to an end. It may still be possible to obtain
other satisfactory guarantees.

• More generally, using the tools from Sects. 2 and 3, there is an opportunity to
revisit analyses of other algorithms that currently require strong local convexity.
For example, Goyens and Royer [47] control the global complexity of hybrid TR
algorithms for strict saddle functions, and currently require non-singular minima.

• Likewise, Remark 2.20 illustrates equivalence of MB with the restricted secant
inequality (RSI). Showing MB implies RSI is direct. The converse is facilitated
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via equivalence ofMBwithEB.Theremaybe other local properties in the literature
that turn out to be equivalent to these.

A Łojasiewicz and function growth

We review here the classical arguments at the basis of Proposition 2.2. Given an initial
point x0 ∈ M, we let x : I → M denote a solution of the negative gradient flow

x ′(t) = −∇ f (x(t)) with x(0) = x0 (GF)

on the maximum interval I . The following is classical [69], restated succinctly to
highlight neighborhood assumptions.

Lemma A.1 Suppose f satisfies (Ł) with constants θ ∈ [0, 1[ and μ > 0 in a neigh-
borhood U of x̄ ∈ S. Also suppose that f (x) > fS for all x ∈ U\S. Let x be a
solution to (GF) for some x0 ∈ U\S. Suppose that for all t ∈ ]0, T [ we have x(t) ∈ U
and ∇ f (x(t)) �= 0. Then the path length is bounded as

∫ T

0
‖x ′(t)‖dt ≤ 1

(1 − θ)
√
2μ

| f (x0) − fS |1−θ .

Proof Define h(t) = 1
(1−θ)

√
2μ

| f (x(t)) − fS |1−θ . For all t ∈ [0, T [, the Łojasiewicz
inequality provides:

‖x ′(t)‖ = ‖∇ f (x(t))‖ = ‖∇ f (x(t))‖2
‖∇ f (x(t))‖ ≤ ‖∇ f (x(t))‖2√

2μ( f (x(t)) − fS)θ
= −h′(t).

It follows that
∫ T
0 ‖x ′(t)‖dt ≤ ∫ T

0 −h′(t)dt = h(0) − h(T ) ≤ h(0). ��
As shown below, this bound implies that the trajectories are trapped and have a

limit point if x0 is close enough to S.
Proposition A.2 (Lyapunov stability) Suppose that f satisfies (Ł) around x̄ ∈ S and
let U be a neighborhood of x̄ . There exists a neighborhood V of x̄ such that if x0 ∈ V
then the solution x to (GF) is defined on [0,+∞[, and x(t) ∈ U for all t ≥ 0.

Proof The set U contains a ballB centered on x̄ of radius δ1 such that (i) f satisfies (Ł)
with constants θ and μ in B, and (ii) f (y) > fS for all y ∈ B\S. By continuity of f
there exists an open ball V ⊆ B of radius δ2 around x̄ such that for all y ∈ V we have

1

(1 − θ)
√
2μ

| f (y) − fS |1−θ + δ2 < δ1.

Given x0 ∈ V , let x : I → M be the maximal solution to (GF). Suppose that {t ∈ I :
t ≥ 0 and x(t) /∈ B} is non-empty and let T be the infimum of this set. Then x(t) ∈ B
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for all 0 ≤ t < T . Suppose first that there exists t ∈ [0, T [ such that ∇ f (x(t)) = 0.
Then x(t ′) = x(t) for all t ′ > t , which is impossible. So ∇ f (x(t)) �= 0 for all
t ∈ [0, T [. It follows that the assumptions of Lemma A.1 are satisfied, and the path
length is bounded as

∫ T

0
‖x ′(t)‖dt ≤ 1

(1 − θ)
√
2μ

| f (x0) − fS |1−θ .

This implies that

dist(x(T ), x̄) ≤
∫ T

0
‖x ′(t)‖dt + dist(x0, x̄) < δ1,

and hence that x(T ) ∈ B. This is a contradiction and we deduce that x(t) ∈ B for all
t ∈ I . Therefore, the total path length of x is bounded, and the escape lemma [58,
Lem. A.43] implies that x is defined for all t ≥ 0. ��
Corollary A.3 Suppose that f satisfies (Ł) around x̄ ∈ S. There exists a neighborhood
V of x̄ such that for all x0 ∈ V the solution to (GF) is defined on [0,+∞[ and has a
limit in S.

Proof LetU be a compact neighborhood of x̄ such that f satisfies (Ł) around all points
in U ∩ S, and such that all critical points of f in U are in S. Let V be a neighborhood
of x̄ associated to U as in Proposition A.2. Let x : [0,+∞[ → M denote a solution
of (GF) starting from x0 ∈ V . Then x(t) ∈ U for all t ≥ 0. The set U is compact so x
has an accumulation point x∞ ∈ U . This is a critical point for f so x∞ ∈ S. It is also
Lyapunov stable because f satisfies (Ł) around x∞ (Proposition A.2). We deduce that
lim x(t) = x∞. ��

From this we deduce that the Łojasiewicz inequality implies the local growth of f
announced in Proposition 2.2.

Proof of Proposition 2.2 Let U be a neighborhood of x̄ where (Ł) holds with constants
μ and θ . Proposition A.2 and Corollary A.3 give a neighborhood V of x̄ such that for
all x0 ∈ V the solution to (GF) is defined on [0,∞[, stays in U at all times, and has a
limit x∞ ∈ S. Then, Lemma A.1 provides the first inequality in

1

(1 − θ)
√
2μ

| f (x0) − fS |1−θ ≥
∫ ∞

0
‖x ′(t)‖dt ≥ dist(x0, x∞) ≥ dist(x0,S),

which concludes the proof. ��

B Other Łojasiewicz exponents

Weprove here the statements of Remark 2.21. From Proposition 2.2, there exists c > 0
such that

f (x) − fS ≥ c dist(x,S)
1

1−θ (26)
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for all x sufficiently close to x̄ .
Assume first that f is C1 and∇ f is L-Lipschitz continuous around x̄ . Then f (x)−

fS ≤ L
2 dist(x,S)2 for all x sufficiently close to x̄ (see for example [24, Cor. 10.54]).

When θ < 1
2 , this inequality is incompatible with (26) if f is non-constant around x̄ .

Now assume that f is C2 and ∇2 f is L-Lipschitz continuous around x̄ . Define
h : (y, v) �→ 〈v,∇2 f (y)[v]〉. Lipschitz continuity of ∇2 f gives that [24, Cor. 10.56]

f (Expy(tv)) − fS − t2

2
h(y, v) ≤ L

6
t3

for all y ∈ S close enough to x̄ , all unitary v ∈ NyS and t > 0 small enough. Take
t → 0 and invoke Lemma 2.6 to see that h(y, v) must be positive for this inequality
to be compatible with the function growth (26) when θ ∈ [ 12 , 2

3 [. We conclude that
there is a compact neighborhood V of x̄ such that h(y, v) > 0 for all y ∈ V ∩ S
and v ∈ NyS unitary. The function h is continuous and the set D = {(y, v) : y ∈
V ∩ S, v ∈ NyS unitary} is compact so μ = inf(y,v)∈D h(y, v) is positive. Now let
W be a neighborhood of x̄ as in Lemma 1.5 such that for all x ∈ W the projection
projS(x) is included in V ∩ S. Then for all x ∈ W we have

f (x) − fS = h(y, v) + o(‖v‖2) ≥ μ dist(x,S)2 + o(dist(x,S)2),

where y ∈ projS(x) and v = Logy(x). We conclude that QG holds around x̄ , which
implies PŁ, as shown in Sect. 2.2.

Now assume that f is C3. The argument is similar in this case. Let y ∈ S and
v ∈ NyS unitary and assume that h(y, v) = 0. Then a Taylor expansion gives

f (Expx (tv)) − fS = o(t3)

because the third-order term vanishes. This is incompatible with the function
growth (26) when y is close to x̄ and θ ∈ [ 12 , 2

3 ]. So h(y, v) must be positive and
we conclude with the same arguments as above.

C Łojasiewicz and bounded path length

Proof of Lemma 3.8 Let U be an open neighborhood of x̄ such that (i) f satisfies (Ł)
with constants θ ∈ [0, 1[ and μ > 0 in U , (ii) f (x) ≥ fS for all x ∈ U and (iii)
condition (4) holds in U . For all x ∈ U we have

0 ≤ | f (x) − fS |2θ ≤ 1

2μ
‖∇ f (x)‖2, and so ‖∇ f (x)‖ ≥ √2μ| f (x) − fS |θ .

Let xL , . . . , xK be consecutive iterates in U . For such an iterate xk , either∇ f (xk) = 0
and dist(xk, xk+1) = 0, or ∇ f (xk) �= 0 and f (xk) > fS . In this second case,
combining the lower-bound on ‖∇ f (x)‖ above with the strong decrease condition
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in (4), we find that

dist(xk, xk+1) ≤ 1

σ
√
2μ

f (xk) − f (xk+1)

| f (xk) − fS |θ
≤ 1

σ(1 − θ)
√
2μ

((
f (xk) − fS

)1−θ − ( f (xk+1) − fS
)1−θ

)
,

where the second inequality comes from

f (xk) − f (xk+1)

| f (xk) − fS |θ =
∫ f (xk )

f (xk+1)

1

| f (xk) − fS |θ dt

≤
∫ f (xk)

f (xk+1)

1

|t − fS |θ dt

= 1

1 − θ

((
f (xk) − fS

)1−θ − ( f (xk+1) − fS
)1−θ

)
.

Summing the bound on dist(xk, xk+1) over k = L, . . . , K −1 gives the (BPL) property.
��

D Łojasiewicz and linear convergence rate

Proof of Proposition 3.9 Let U be a neighborhood of x̄ where PŁ holds. The sufficient
decrease (5) and (PŁ) give

f (xk+1) − f (xk) ≤ −ω‖∇ f (xk)‖2 ≤ −2μω
(

f (xk) − fS
)

for large enough k. Adding f (xk) − fS on both sides yields

f (xk+1) − fS ≤ (1 − 2ωμ)
(

f (xk) − fS
)
,

showing the linear rate for function values. We now prove the rate for {‖∇ f (xk)‖}
and {dist(xk,S)}. The sufficient decrease (5) gives that for large enough k we have

ω‖∇ f (xk)‖2 ≤ f (xk) − f (xk+1) ≤ f (xk) − fS ,

and so ‖∇ f (xk)‖ ≤
√

1

ω

(
f (xk) − fS

)
.

This shows that {‖∇ f (xk)‖} converges linearly to zero with rate
√
1 − 2ωμ. For

{dist(xk,S)}we use the local quadratic growth (Proposition 2.2). For all x sufficiently
close to x̄ we have

f (x) − fS ≥ μ

2
dist(x,S)2, and so dist(xk,S) ≤

√
2

μ

(
f (xk) − fS

)
.
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We conclude that dist(xk,S) converges linearly to zero with rate
√
1 − 2ωμ. ��

Proof of Proposition 3.10 When xk is sufficiently close to x̄ , the Lipschitz-type prop-
erty (6) implies

f (xk) − f (xk+1) = f (xk) − f (Rx (sk)) ≥ −
(
〈∇ f (xk), sk〉 + L

2
‖sk‖2

)
. (27)

Plugging sk = −γ∇ f (xk) yields f (xk) − f (xk+1) ≥ (1 − L
2 γ
)‖∇ f (xk)‖‖sk‖. The

number 1 − L
2 γ is positive because γ ∈ ]0, 2

L [. So this algorithm satisfies the strong
decrease property (4) around x̄ with constant σ = 1

cr
(1− L

2 γ ), where cr is as in (RD). It
further satisfies (BPL) by Lemma 3.8, so Corollary 3.7 ensures capture of the iterates.
Equation (27) additionally gives f (xk)− f (xk+1) ≥ (γ − L

2 γ 2
)‖∇ f (xk)‖2. It follows

that the iterates satisfy the sufficient decrease (5) with ω = γ − L
2 γ 2. We obtain the

linear convergence rate with Proposition 3.9. ��
Using performance estimation, it is possible to derive sharper convergence rates

for gradient descent with constant step-sizes under the PŁ assumption [1, Thm. 3].
The Lipschitz-type property (6) also implies the sufficient decrease (5) for gradient
descent with backtracking line-search.

Proposition D.1 Suppose that f andR satisfy (6) around x̄ ∈ S. Let {xk} be a sequence
of iterates generated by gradient descent with Armijo backtracking line-search con-
verging to x̄ . Then {xk} satisfies (5) with

ω = σ min
(
ᾱ,

2β(1 − σ)

L

)
.

Proof See [24, Lem. 4.12] for the Riemannian case. ��
See also [53] for more results on line-search with Łojasiewicz inequalities.
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