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Abstract
We study rectangle stabbing problems in which we are given n axis-aligned rectangles
in the plane that we want to stab, that is, we want to select line segments such that
for each given rectangle there is a line segment that intersects two opposite edges
of it. In the horizontal rectangle stabbing problem (Stabbing), the goal is to find
a set of horizontal line segments of minimum total length such that all rectangles
are stabbed. In the horizontal–vertical stabbing problem (HV- Stabbing), the goal
is to find a set of rectilinear (that is, either vertical or horizontal) line segments of
minimum total length such that all rectangles are stabbed. Both variants are NP-
hard. Chan et al. (ISAAC, 2018) initiated the study of these problems by providing
constant approximation algorithms.Recently, Eisenbrand et al. (AQPTAS for stabbing
rectangles, 2021) have presented a QPTAS and a polynomial-time 8-approximation
algorithm for Stabbing, but it was open whether the problem admits a PTAS. In this
paper, we obtain a PTAS for Stabbing, settling this question. For HV- Stabbing,
we obtain a (2 + ε)-approximation. We also obtain PTASs for special cases of HV-
Stabbing: (i) when all rectangles are squares, (ii) when each rectangle’s width is
at most its height, and (iii) when all rectangles are δ-large, that is, have at least one
edge whose length is at least δ, while all edge lengths are at most 1. Our result also
implies improved approximations for other problems such as generalized minimum
Manhattan network.
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1 Introduction

Rectangle stabbing problems are natural geometric optimization problems. Here, we
are given a set of n axis-parallel rectanglesR in the two-dimensional plane. For each
rectangle Ri ∈ R, we are given points (x (i)

1 , y(i)
1 ), (x (i)

2 , y(i)
2 ) ∈ R

2 that denote its
bottom-left and top-right corners, respectively. Also, we denote its width and height
bywi :=x (i)

2 −x (i)
1 and hi :=y(i)

2 −y(i)
1 , respectively.We assume thatwi > 0 and hi > 0

for each rectangle Ri ∈ R. Our goal is to compute a set of line segmentsL that stab all
input rectangles.We call a rectangle Ri ∈ R stabbed if a segment � ∈ L intersects both
edges of Ri that are perpendicular to �. We study several variants. In the horizontal
rectangle stabbing problem (Stabbing) we want to find a set of horizontal segments
of minimum total length such that each rectangle is stabbed. The horizontal–vertical
stabbing (HV- Stabbing) problem generalizes Stabbing and involves finding a set of
axis-parallel segments ofminimum total length such that each rectangle inR is stabbed
(see Fig. 1). The horizontal–vertical square stabbing (Square- Stabbing) problem is
a special case of HV- Stabbingwhere all rectangles in the input instance are squares.
These problems have applications in bandwidth allocation, message scheduling with
time windows on a direct path, and geometric network design [6, 8, 14].

Note that Stabbing and HV- Stabbing are special cases of weighted geometric
set cover, where the rectangles correspond to elements and potential line segments
correspond to sets, and the weight of a set equals the length of the corresponding
segment. A set contains an element if the corresponding line segment stabs the corre-
sponding rectangle. This already implies an O(log n)-approximation algorithm [13]
for HV- Stabbing and Stabbing.

Chan et al. [8] initiated the study of Stabbing. They proved Stabbing to be
NP-hard via a reduction from planar vertex cover. Also, they presented a constant1

factor approximation using decomposition techniques and the quasi-uniform sampling
method [39] for weighted geometric set cover. In particular, they showed that HV-
Stabbing instances canbedecomposed into twodisjoint laminar set cover instances of
small shallow cell complexity for which the quasi-uniform sampling yields a constant
approximation using techniques introduced by Chan et al. [10].

Recently, Eisenbrand et al. [16] presented a quasi-polynomial time approximation
scheme (QPTAS) for Stabbing. This shows that Stabbing is not APX-hard unless
NP ⊆ DTIME(2poly log n). The QPTAS relies on the shifting technique by Hochbaum
andMaass [24], applied to a grid, consisting of randomly shifted vertical grid lines that
are equally spaced. With this approach, the plane is partitioned into narrow disjoint
vertical strips which they then process further. Then, this routine is applied recursively.

1 The constant is not explicitly stated, and it depends on a not explicitly stated constant in a work by Chan
et al. [10].
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A PTAS for the horizontal rectangle... 609

Fig. 1 A solution to an instance of Stabbing and HV- Stabbing

They also gave a polynomial time exact algorithm, based on dynamic programming,
for laminar instances of Stabbing(in which the projections of the rectangles to the
x-axis yield a laminar family of intervals). Then they provided a simple polynomial-
time 8-approximation algorithm by reducing any given instance to a laminar instance.
It remains open whether there is a PTAS for the problem.

1.1 Our results

In this paper, we give a PTAS for Stabbing and thus resolve this open question. Also,
we extend our techniques to HV- Stabbing for which we present a polynomial time
(2+ ε)-approximation and PTASs for several special cases: when all input rectangles
are squares, more generally when for each rectangle its width is at most its height, and
finally for δ-large rectangles, that is, when each rectangle has one edge whose length
is within [δ, 1] and 1 is the maximum length of each edge of any input rectangle (in
each dimension).

To obtain an algorithm for Stabbing we first give a PTAS to solve the HV-
Stabbing problem, when the input consists of rectangles whose width is at most
their height. The high level idea is quite easy to state: it is a dynamic program (DP)
that recursively subdivides the plane into smaller and smaller rectangular regions. In
the process, it guesses line segments from OPT. However, its analysis is intricate.
We show that there is a sequence of recursive decompositions that yields a solution
whose overall cost is (1 + ε)OPT. Instead of using a set of equally spaced grid lines
as in the earlier QPTAS [16], we use a hierarchical grid with several levels for the
decomposition. In each level of our decomposition, we subdivide the given rectangular
region into strips of narrow width and guess Oε(1) line segments from OPT inside
them which correspond to the current level. One crucial ingredient is that we slightly
extend the segments, such that the guessed horizontal line segments are aligned with
our grid. The key consequence is that it will no longer be necessary to remember these
line segments once we have advanced three levels further in the decomposition. Also,
for the guessed vertical line segments of the current level, we introduce additional
(very short) horizontal line segments, such that we do not need to remember them
either, once we advanced three levels more in the decomposition. Therefore, the DP
needs to remember previously guessed line segments from only the last three previous
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levels and afterward these line segments vanish. This allows us to bound the number
of arising subproblems (and hence of the DP cells) by a polynomial.

The algorithm above directly implies a PTAS for Square- Stabbing and can also
be used to obtain a PTAS for Stabbing, and a polynomial time (2+ε)-approximation
for HV- Stabbing—thus improving on the constant approximation by Chan et al. [8].

Then, we extend our techniques above to the setting of δ-large rectangles of HV-
Stabbing. This is an important subclass of rectangles and is well-studied for other
geometric problems [1, 30]. To this end, we first reduce the problem to the setting
in which all input rectangles are contained in rectangular boxes, and the instance
corresponding to any such box admits a solution of cost O(1/ε3). Then we guess
the relatively long line segments in OPT in polynomial time. The key argument is
that then the remaining problem splits into two independent subproblems, one for the
horizontal and one for the vertical line segments in OPT. For each of those, we then
apply our PTAS for Stabbing which then yields a PTAS for HV- Stabbing if all
rectangles are δ-large.

Finally, our PTAS for Stabbing implies improved approximation ratios for the
Generalized Minimum Manhattan Network (GMMN) and x-separated 2D-
GMMN problems, of (4 + ε) log n and 4 + ε, respectively, by improving certain
subroutines of the previously known algorithm [14].

The paper is organized as follows: the PTAS for Stabbing is given in Sect. 2, which
is followed by the PTAS for δ-large rectangles in Sect. 3. Finally in Sect. 4 we present
our results for the generalized minimum Manhattan network problem.

1.2 Further related work

Finke et al. [17] gave a polynomial time exact algorithm for a special case of Stab-
bing where all input rectangles have their left edges lying on the y-axis. Das et al.
[14] studied a related variant in the context of the Generalized Minimum Man-
hattan Network (GMMN) problem. In GMMN, we are given a set of n terminal
pairs and the goal is to find a minimum-length rectilinear network such that each pair
is connected by a Manhattan path. They obtained a 4-approximation for a variant of
Stabbing where all rectangles intersect a vertical line. Then they used it to obtain a
(6+ ε)-approximation algorithm for the x-separated 2D-GMMN2 problem, a special
case of 2D-GMMN, and a (6 + ε)(log n)-approximation algorithm for 2-D GMMN.

Gaur et al. [22] studied the problem of stabbing rectangles by a minimum number
of axis-aligned lines and gave an LP-based 2-approximation algorithm. Kovaleva and
Spieksma [34] considered a weighted generalization of this problem and gave an
O(1)-approximation algorithm.

Stabbing and HV- Stabbing are related to geometric set cover which is a funda-
mental geometric optimization problem. In a seminal paper,Brönnimann andGoodrich
[7] gave an O(d log(dOPT))-approximation algorithm for unweighted geometric set
cover where d is the dual VC-dimension of the set system and OPT is the value
of the optimal solution. Using ε-nets, Aronov et al. [3] gave an O(log log O PT )-
approximation algorithm for hitting set for axis-parallel rectangles. Later, Varadarajan

2 Refer to Sect. 4 for formal problem definitions.
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[39] developed quasi-uniform sampling and provided sub-logarithmic approximation
for weighted set cover where sets are fat triangles or disks. Chan et al. [10] gener-
alized this to any set system with low shallow cell complexity. Bansal and Pruhs [5]
reduced several scheduling problems to a particular geometric set cover problem for
anchored rectangles and obtained O(1)-approximation using quasi-uniform sampling.
Afterward, Chan, and Grant [9] and Mustafa et al. [38] have settled the APX-hardness
statuses of all natural weighted geometric set cover problems. Online and dynamic
variants of geometric set cover have also recently received some attention [2, 11, 28].

Another related problem is the maximum independent set of rectangles (MISR).
Adamaszek and Wiese [1] gave a QPTAS for MISR using balanced cuts with small
complexity that intersect only a few rectangles in the solution. Recently, Mitchell [35]
obtained the first polynomial time constant approximation algorithm for the problem,
followed by a (2 + ε)-approximation by Gálvez et al. [21].

Many other rectangle packing problems are also well-studied [12], such as geomet-
ric knapsack [19, 20, 25, 29], geometric bin packing [4, 31, 32], strip packing [15, 18,
23, 27], storage allocation problem [26, 36, 37], etc.

2 Dynamic program

We present a dynamic program that computes a (1 + ε)-approximation to HV-
Stabbing, for any given constant ε > 0, for the case when for each input rectangle
Ri ∈ R its width is at most its height, that is, wi ≤ hi . This implies directly a PTAS
for the setting of squares for the same problem, and we will argue that it also yields
a PTAS for Stabbing. Also, we will use it later as a subroutine to obtain a (2 + ε)-
approximation for HV- Stabbing and a PTAS for the setting of δ-large rectangles of
HV- Stabbing.

For a line segment �, we use the notation |�| to represent its length, and for a set
of segments L, we use the notation c(L) to represent the cost of the set, which is also
the total length of the segments contained in it. We use the term OPT interchangeably
to refer to the optimal solution to the problem and also to c(OPT), that is, the cost of
the optimal solution. Similarly, the term SOL is interchangeably used to represent a
solution returned by the algorithm, and its cost.

2.1 Preprocessing step

First, we show that by some simple scaling and discretization steps, we can ensure
some simple properties that we will use later. Without loss of generality, we assume
that (1/ε) ∈ N, and we say that a value x ∈ R is discrete if x is an integral multiple
of εd , where we define d ∈ N such that ε3/n < εd ≤ ε2/n; note that hence d is
unique. A point is called discrete if its x and y coordinates are discrete, and similarly
a segment or a rectangle is said to be discrete if both of its end points, or both of
its diagonally opposite corners are discrete. Note that solving a scaled version of the
problem is equivalent to solving the problem, so we uniformly scale the width and
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height of each rectangle inR so that the largest width of a rectangle is 1− 2ε. Let this
be the instance under consideration, with OPT being the optimal solution for it.

Lemma 1 For any positive constant ε < 1/3, in polynomial time we can compute a
new instance R′ of HV- Stabbing, which satisfies

(i) for each Ri ∈ R′, ε/n < wi ≤ 1,
(ii) for each Ri ∈ R′, x (i)

1 , x (i)
2 are discrete and within [0, n],

(iii) for each Ri ∈ R′, y(i)
1 , y(i)

2 are discrete and within [0, 4n2].
(iv) The instance admits a valid solution of cost at most (1 + O(ε)) · OPT, in which

each horizontal line segment has a width of at most 1/ε.

Further, a solution to this instance can be modified in polynomial time, to obtain a
valid solution to the original instance of cost (1 + O(ε)) · c(OPT).

Proof See Fig. 2 for a visual representation of these properties.We start withR′′ = R,
and remove all rectangles with width at most ε/n from R′′. So for each rectangle in
R′′ we have ε/n < wi ≤ 1 − 2ε.

Now we incorporate a discretization step. Since each rectangle Ri ∈ R′′ has width
wi ≤ 1 − 2ε, the instance either has some x-coordinate that is not covered by any
rectangle—in which case we can split the instance into smaller subproblems around
this x-coordinate—or the total width of the instance is less than n(1− 2ε). Hence, all
the x-coordinates of the rectangles can be assumed to be between 0 and n(1 − 2ε).
Further, we extend the rectangles on both sides to make their x-coordinates align
with the next nearest multiple of εd . This ensures Property (i i). This step involves an
extension by at most 2εd < 2ε/n to the width of every rectangle, which hence bounds
the total cost of an optimal solution OPT′′ to R′′, by at most (1 + 2ε) · OPT. Thus,
ε/n < wi ≤ 1 which ensures Property (i).

Next, we show Property (i i i) using a stretching step. Since we have hi ≥ wi for the
input instance, the heights of the rectangles could still be arbitrarily large. But after
scaling the rectangles, as wi ≤ 1, we know that c(OPT′′) is clearly less than n. So,
there cannot be any vertical line segment in OPT′′ which is longer than n. We exploit
this fact to scale the heights of the rectangles in R′′, to obtain a set R′ as follows: of
the at most 2n distinct y-coordinates of the rectangles, if the distance between any
consecutive coordinates is more than 2n, we shrink it down to the nearest multiple
of εd which is less than 2n. Since all the y-coordinates are separated by at most 2n,
they can be assumed to be within [0, 4n2]. This operation does not affect the cost and
validity of OPT′′, since given any such solution, there cannot be a segment that spans
one of these stretched vertical sections (as it would add cost at least 2n − εd ).

Now, similar to the x-coordinates, we extend the rectangles by at most εd on each
side along the y-coordinate, which gives us that an optimal solution OPT′ toR′, is of
cost at most (1 + 2ε) · OPT′′.

We now consider the final property. We have shown the cost of OPT′ to exceed the
cost of the original optimal solutionOPT by atmost a factor of 1+O(ε). Now, consider
any horizontal segment � ∈ OPT′ that is longer than 1/ε. From the left endpoint, we
divide the segment into consecutive smaller segments of length 1/ε − 2 each, with
one potential last piece being smaller than 1/ε − 2. Now, for each smaller segment,
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A PTAS for the horizontal rectangle... 613

we extend it on both sides in such a way that it completely stabs the rectangles that it
intersects (that is, that it intersects before the extension). Since the maximum width
of a rectangle is 1, we extend each such segment by at most 2 units. We denote by |�|
the length of � and conclude that we increase the length of � by at most a factor of

(
|�| +

⌈ |�|
1/ε − 2

⌉
· 2

)
· 1

|�| ≤ 1 + 2

|�| ·
⌈

ε|�|
1 − 2ε

⌉

≤ 1 + 2

|�| ·
(
1 + ε|�|

1 − 2ε

)

≤ 1 + 2ε + 2ε · 1

1 − 2ε
(since |�| > 1/ε)

≤ 1 + 2ε + 2ε · 1

1 − 2/3
(since ε < 1/3)

≤ 1 + 8ε.

We note here that we have only made the rectangles larger, and constructed a solution
of cost (1+ O(ε)) ·OPT that stabs these rectangles. This solution hence already stabs
all rectangles of width larger than ε/n in the original instance R. But, the rectangles
that have been removed fromR can be stabbed greedily using segments of total length
at most ε. Since the width of the widest rectangle is at least 1 − 2ε, we also get that
c(OPT′) ≥ c(OPT) ≥ 1 − 2ε. So, if ε < 1/3, the cost of including these greedily
picked segments increases the cost of a solution by a factor of at most

OPT′ + ε

OPT′ ≤ 1 + ε

1 − 2ε
≤ 1 + ε · 1

1 − 2(1/3)
= 1 + 3 · ε.

This completes the proof of the lemma. ��
Henceforth in this paperwhenwe refer to the set of input rectanglesR, we are referring
to a set R′ that has been obtained after applying the preprocessing from Lemma 1 to
the input setR, and when we refer to OPT, we are abusing notation by referring to the
valid solution to the set of discretized rectangles R′ obtained from Lemma 1, which
is a (1 + O(ε))-approximation of the optimal solution to the input instance.

2.2 Description of the dynamic program

Our algorithm is based on a dynamic program. It has a cell DP(S,L) for each combi-
nation of

– a rectangular region S ⊆ [0, n] × [0, 4n2] with discrete coordinates (that is not
necessarily equal to an input rectangle in R).

– a set L of at most 3(1/ε)3 axis-aligned line segments, such that for each � ∈ L we
have that � ⊆ S, and � is discrete.

This DP cell corresponds to the subproblem of stabbing all rectangles in R that are
contained in S and that are not already stabbed by the line segments in L. There-
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Fig. 2 Pre-processing steps

fore, the DP stores a near-optimal solution SOL(S,L) in the cell DP(S,L) such that
SOL(S,L) ∪ L stabs all rectangles in R that are contained in S.

Given a DP cell DP(S,L), our dynamic program computes a solution for it as
follows. IfL already stabs each rectangle fromR that is contained in S, thenwe simply
define the solution SOL(S,L):=∅ for the cell DP(S,L) and do not compute anything
further. Another simple case is when there is a line segment � ∈ L such that S \ � is
divided into two rectangular regions S1, S2 (these regions are henceforth referred to
as connected components. Note that these components need not be closed rectangles).
In this case, we define SOL(S,L):=SOL(S1,L∩ S1)∪SOL(S2,L∩ S2)∪{�}, where
for any set of line segments L′ and any rectangle S′ we define L′ ∩ S′:={�′ ∩ S′|(�′ ∈
L′) ∧ (�′ ∩ S′ = ∅)}. In case there is more than one such line segment � ∈ L then we
pick one according to some arbitrary but fixed global tie-breaking rule. We will later
refer to this as a trivial operation.

Otherwise, we do each of the following operations which produce a set of candidate
solutions:

1. Add operation: Consider each set L′ of line segments with discrete coordinates
such that |L ∪ L′| ≤ 3ε−3 and each � ∈ L′ is axis-aligned and contained in S.
For each such set L′ we define the solution L′ ∪ SOL(S,L ∪ L′) as a candidate
solution.

2. Line operation: Consider each axis-aligned line � passing through some discrete
point such that S \ � has two connected components S1 and S2. Let R� denote
the rectangles from R that are contained in S and that are stabbed by �. For the
line � we do the following:

a. Compute an O(1)-approximate solution L(R�) for the rectangles inR� using
a polynomial time algorithm [8].

b. Produce the candidate solution L(R�)∪SOL(S1,L∩ S1)∪SOL(S2,L∩ S2).
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Note that in the line operation we consider entire lines, not just line segments. We
define SOL(S,L) to be the solution ofminimumcost among all the candidate solutions
produced above and store it in DP(S,L).

Wedo the operation above for eachDPcellDP(S,L). Finally,we output the solution
SOL([0, n] × [0, 4n2],∅), that is, the solution corresponding to the cell DP([0, n] ×
[0, 4n2],∅).

We remark that instead of using the existing O(1)-approximation algorithm [8] for
stabbing the rectangles in R�, one could design an algorithm with a better approxi-
mation guarantee, using the fact that all rectangles in R� are stabbed by the line �.
However, for our purposes an O(1)-approximate solution is good enough.

2.3 DP-decision trees

Wewant to show that the DP above computes a (1+ε)-approximate solution. For this,
we define a tree T in which each node corresponds to a cell DP(S,L) of the DP and a
corresponding solution SOL(S,L) to this cell. The root node of T corresponds to the
cellDP([0, n]×[0, 4n2],∅). Intuitively, the outgoing edges (when considered in root to
leaf direction) from a node represent application of someDP operation (as described in
the section above) to the parent node, and the child nodes are the subproblems obtained
due to application of said operation. The corresponding solution stored at a node is
the solution obtained by choosing certain operations, corresponding to the edges in
the subtree at that node. This structure now allows us to represent a valid sequence
of operations by the algorithm as a tree. Since the DP always picks the solution of
minimum total cost this implies that the computed solution has a cost that is at most
the cost of the root, c(SOL([0, n]×[0, 4n2],∅)) of any such tree. Formally, we require
T to satisfy the following properties:

1. We require that a node v is a leaf if and only if for the corresponding DP cell
DP(S,L) the DP directly defined that SOL(S,L) = ∅. This is because all rectan-
gles inR that are contained in S are already stabbed by the segments in L.

2. If a node v for a DP cell DP(S,L) has exactly one child, then we require that we
reduce the problem for DP(S,L) to the child by applying the add operation, that is,
there is a set L′ of axis-aligned line segments with discrete coordinates such that
|L| ∪ |L′| ≤ 3(1/ε)3, the child node of v corresponds to the cell DP(S,L ∪ L′),
and SOL(S,L) = SOL(S,L ∪ L′) ∪ L′.

3. Similarly, if a node v has two children then we require that we can reduce the prob-
lem of DP(S,L) to these two children by applying the trivial operation or the line
operation. Formally, assume that the child nodes correspond to the subproblems
DP(S1,L1) and DP(S2,L2).

– If there is a segment � ∈ L such that S1∪S2∪� = S, then the applied operation
was a trivial operation, and it must also be true that L1 ∪ L2 ∪ {�} = L and
SOL(S,L) = SOL(S1, S1 ∩ L) ∪ SOL(S2, S2 ∩ L) ∪ {�}.

– If no such segment exists, then the applied operation was a line operation
along the line �, such that S1 ∪ S2 ∪ � = S, L1 ∪ L2 = L, and SOL(S,L) =
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SOL(S1, S1 ∩ L) ∪ SOL(S2, S2 ∩ L) ∪ L(R�); where L(R�) is an O(1)-
approximate solution to the set of rectangles intersected by �.

We call a tree T with these properties a DP-decision tree.

Lemma 2 If there is a DP-decision tree T ′ for which c(SOL([0, n] × [0, 4n2],∅)) ≤
(1 + ε)OPT, then the DP is a (1 + ε)-approximation algorithm with a running time
of (n/ε)O(1/ε3).

Proof Weknow that theDPalways picks a solution that corresponds to theDP-decision
tree with the minimum cost. Since T ′ is a valid DP-decision tree, the solution picked
by the DP is of cost at most c(SOL([0, n] × [0, 4n2],∅)).

Now let us consider the running time of the algorithm. Since a DP problem is
defined on a discrete rectangular cell, there are at most

n

εd
× 4n2

εd
= 4n3

ε2d
≤ 4n5

ε6
(since ε3/n < εd ≤ ε2/n)

possibilities for a corner vertex of a rectangle, and hence
(4n5/ε6

2

) = O(n10/ε12)

possible rectangles.
Similarly, the subproblemdefinition also includes a set of segmentsL of size atmost

3ε−3. Since the segments are discrete, we can count the number of vertical segments by
picking two points (corresponding to the starting and ending points) from the available
discrete points on a vertical line, and then fixing its x-coordinate. We repeat a similar
process for horizontal lines giving us,

(
4n2/εd

2

)
× n

εd
+

(
n/εd

2

)
× 4n2

εd
≤

(
4n3/ε3

2

)
× n2

ε3
+

(
n2/ε3

2

)
× 4n3

ε3

that is, O(n8/ε9) possible segments.3 So there are at most (n/ε)O(1/ε3) subsets of
segments L of size at most 3ε−3, and at most (n/ε)O(1/ε3) valid DP cells.

For each DP cell, we have to consider all possible candidate solutions and select the
minimum. There are at most n2/ε3+4n3/ε3 = O(n3/ε3) possible line operations and
(n/ε)O(1/ε3) possible add operations. Note that if the DP performs a trivial operation,
then there is no choice to make here, but the trivial operation is selected automatically.

Hence, the total number of possible operations for a given DP cell is (n/ε)O(1/ε3).
For each line operation we call the O(1)-approximation algorithm which also runs in
polynomial time [8]. Since we have (n/ε)O(1/ε3) DP cells, our overall running time is
bounded by (n/ε)O(1/ε3). ��
We now define a DP-decision tree for which c(SOL(S,L)) ≤ (1 + ε)OPT. Recall
that 1/ε ∈ N. We start by defining a hierarchical grid of vertical lines. Let a ∈ [0, n]
be a discrete random offset to be defined later. The grid lines have levels. For each

3 Note that we allow all possible discrete segments. Hence, the simple bound of O(n3) on the number of
segments used in [16] is not valid.
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level j ∈ N0, there is a grid line {a + k · ε j−2} × R for each k ∈ N. Note that for
each j ∈ N0 each grid line of level j is also a grid line of level j + 1, and that for all
j ≤ d + 2, the grid lines of level j have discrete x-coordinates. We also note that any
two consecutive lines of some level j are exactly ε j−2 units apart.

We say that a line segment � ∈ OPT is of level j if the length of � is in (ε j , ε j−1]
(Note that we can have vertical segments which are longer than 1/ε, we consider
these also to be of level 0). We say that a horizontal line segment of some level j is
well-aligned if both its left and its right x-coordinates lie on a grid line of level j + 3,
that is, if both of its x-coordinates are of the form a +k ·ε j+1, for some k ∈ Z. We say
that a vertical line segment of some level j is well-aligned if both its top and bottom
y-coordinates are integral multiples of ε j+1. This would be similar to the segment’s
end points lying on an (imaginary) horizontal grid line of level j + 3. Recall that by
Lemma 1, each horizontal segment � ∈ OPT satisfies that ε/n < |�| ≤ ε−1. By our
choice of d we have εd−1 ≤ ε/n < εd−2 which implies εd−1 < |�| ≤ ε−1. Since a
segment is of level j if its length is in the range (ε j , ε j−1], we can conclude that all
segments in OPT belong to levels in the range {0, . . . , d − 1}. From this we can infer
that any well-aligned horizontal segment is aligned to a vertical grid line of level at
most d + 2, which as we noted earlier has discrete x-coordinates.

Lemma 3 There exists a solution SOL′ to the problem that consists only of well-aligned
segments, and the cost of this solution is (1 + O(ε)) · OPT.

Proof We show the existence of such a solution by considering an optimal solution,
and extending its segments on both sides, such that they get well-aligned. A segment
� ∈ OPT in some level j will be of length in (ε j , ε j−1]. To align it to a grid line of
level j +3 we would need to extend it by at most ε j+1 on each side. The new segment
�′ thus obtained is of length

|�′| ≤ |�| + 2ε j+1 ≤ |�|
(
1 + 2ε j+1

|�|
)

< |�|
(
1 + 2ε j+1

ε j

)
= |�| · (1 + 2ε).

Therefore, the sum of weights over all the well-aligned segments is

∑
�∈OPT

|�′| ≤
∑

�∈OPT
|�| · (1 + 2ε) = (1 + 2ε) · OPT.

��
We note that since the input rectangles have been discretized, any vertical (respec-

tively horizontal) segment in the well aligned solution SOL′ can be shifted vertically
(respectively horizontally) to the nearest grid line without changing the set of rectan-
gles it intersects. This fact, in conjunction with their well-alignment (from Lemma 3)
ensures that the end-points of segments in SOL′ are discrete points. Since SOL′ is
only a (1 + O(ε) factor more in cost than OPT, it is a permissible solution when
constructing a PTAS.We shall hence assume that there exists an optimal solution with
only discrete segments that are also well-aligned.
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We define the tree T by defining recursively one of the possible operations (trivial
operation, add operation, line operation) for each node v of the tree. After applying
an operation, we always add children to the processed node v that corresponds to the
subproblems that we reduce to, that is, for a node v corresponding to the subproblem
DP(S,L), if we are applying the trivial (respectively line) operation along a segment
(respectively line) �, then we add children corresponding to the DP subproblems
DP(S1, S1 ∩ L) and DP(S2, S2 ∩ L), where S1 and S2 are the connected components
of S\�. Similarly if we apply the add operation on v with the set of segments L′ then
we add the child node corresponding to the subproblem DP(S,L ∪ L′).
First level ( j = 0). Consider the line operations corresponding to vertical grid lines
of level 0, in some arbitrary order. We start by applying the first operation to the root
DP([0, n] × [0, 4n2],∅). We then continue by applying the following operations, in
sequence, to the appropriate child node obtained from the earlier operation. Consider
one of the resulting subproblems DP(S,∅). Suppose that there are more than ε−3 line
segments (horizontal or vertical) from OPT of level 0 inside S. We want to partition
S into smaller rectangles, such that within each of these rectangles S′ at most ε−3

of these level 0 line segments start or end. This will make it possible for us to guess
them. To this end, we consider the horizontal and vertical line segments from OPT
of level 0 inside S, take (the multiset of) their endpoints and order these endpoints
non-decreasingly by their y-coordinates. Let p1, p2, . . . , pk be these points in this
order. For each k′ ∈ N with k′/ε3 ≤ k, we consider the point pk′/ε3 . Let �′ be the
horizontal line that contains pk′/ε3 . We apply the line operation to �′.

Proposition 1 Let DP(S′,∅) be one of the subproblems after applying the operations
above. There are at most ε−3 line segments L′ (horizontal or vertical) from OPT of
level 0 that have an endpoint inside S′.

In each resulting subproblem DP(S′,∅), for each vertical line segment � ∈ OPT
that crosses S′, that is, such that S′ \ � has two connected components, we apply
the line operation for the line that contains �. (As earlier, we do the operations in
arbitrary order, by applying a line operation to the appropriate child node obtained
after previous operations.) In each subproblem DP(S′′,∅) obtained after this step, we
apply the add operation to the line segments from OPT of level 0 that intersects S′′ (or
to be more precise, their intersection with S′′), that is, to the set L′:={� ∩ S′′ | (� ∈
OPT)∧(�∩ S′′ = ∅)∧(� is of level 0)}. Proposition 1 implies that |L′| ≤ ε−3. In each
obtained subproblem we apply the trivial operation until it is no longer applicable. We
say that all these operations correspond to level 0.

Subsequent levels. Next, we do a sequence of operations that correspond to levels
j = 1, 2, 3, . . . Assume by induction that for some j each leaf in the current tree
T corresponds to a subproblem DP(S,L) such that for any line segment � ∈ OPT
of level j ′ ∈ [ j − 3, j) with � ∩ S = ∅, we have � ∩ S ∈ L. (It is easy to see
from the following construction that all such segments from OPT will be added to
the subproblem. We shall formally show in Lemma 4, that segments from the smaller
levels will in fact also get removed.) Consider one of these leaves and suppose that it
corresponds to a subproblem DP(S,L). We apply the line operation for each vertical
line that corresponds to a (vertical) grid line of level j intersecting S.
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Fig. 3 Horizontal line operations

Consider a resulting subproblem DP(S′,L). Suppose that there are more than ε−3

line segments (horizontal or vertical) from OPT of level j that have an endpoint inside
S′. Like above, we consider these endpoints and we order them non-decreasingly by
their y-coordinates. Let p1, p2, . . . , pk be these points in this order. For each k′ ∈ N

with k′/ε3 ≤ k, we consider the point pk′/ε3 and apply the line operation for the
horizontal line �′ that contains pk′/ε3 . If for a resulting subproblem DP(S′′,L) there
is a vertical line segment � ∈ L of some level j ′ < j − 2 with an endpoint p inside
S′′, then we apply the line operation for the horizontal line that contains p.

Proposition 2 Let DP(S′′,L) be one of the subproblems after applying the operations
above. There are at most ε−3 line segments L′ (horizontal or vertical) from OPT of
level j that have an endpoint inside S′′.

Consider a resulting subproblem DP(S′′,L). For each line segment � ∈ OPT such
that � crosses S′′, that is, S′′ \ � has two connected components, we apply the line
operation to the line that contains �. In each subproblem DP(S′′′,L) obtained after
this step, we intuitively apply the add operation to the line segments of level j that
intersect S′′′. Formally, we apply them to the line segments in the set L′:={� ∩ S′′′ |
(� ∈ OPT)∧(�∩S′′′ = ∅)∧(� is of level j)}.Wewill prove later that |L′| is sufficiently
small such that |L∪L′| ≤ 3ε−3 and, hence, we are allowed to apply the add operation
to |L′|. Also, we will show that after this operation, the resulting set of line segments
L ∪ L′ contains � ∩ S′′′ for each line segment � ∈ OPT of level at least j − 3 that
intersects S′′′.

We now apply the trivial operation until it is no longer applicable. We say that the
above series of operations correspond to level j .

As an example, look at Fig. 3, with ε = 1/2. The horizontal and vertical solid
segments in it are of level 0, the horizontal and vertical dashed-dotted segments are of
level 1, the vertical dashed segments are of level 2, and the vertical dotted segments
are of level 3. Also, the black segments are vertical grid lines, the blue segments are
(well-aligned) segments in OPT and the red segments are lines along which horizontal
line operations are applied. Here, say for level 0, we first apply line operations along
the vertical grid lines of that level to get two subproblems. Then in the left subproblem,
we start counting end points of segments in OPT, and at every eighth point, we do a
horizontal line operation along its y-coordinate. Thenwe continue doing operations for
the further levels. It can also be seen here that a well-aligned segment of level 0, always
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starts and ends at grid lines of level 3. So when we do operations corresponding to
level 3, it will get removed by a trivial operation (we prove this formally in Lemma 4).

2.4 Analysis of the DP-decision tree

We want to prove that the resulting tree T is indeed a DP-decision tree corresponding
to a solution of cost at most (1 + ε)OPT. To this end, first we need to show that
whenever we apply the add operation to a subproblem DP(S,L) for a set L′ then
|L| + |L′| ≤ 3ε−3. The key insight for this is that if we added a line segment � ∈ OPT
of some level j , then it will not be included in the respective setL of later subproblems
of level j + 3 or higher since � is well-aligned. More precisely, if � is horizontal then
its x-coordinates are aligned with the grid lines of level j + 3. Hence, if � or a part of
� is contained in a set L of some subproblem DP(S,L) of level j +3, then we applied
the trivial operation to � (since it is well-aligned) and thus � “disappeared” from L
(note that here, by disappear we mean that the segment does not need to be considered
in L anymore, and gets added to the solution of the DP subproblem). If � is vertical
and it appears in a DP(S,L) of level j + 3 then we applied the line operation to the
horizontal lines that contain the two endpoints of �. Afterward, we applied the trivial
operation to � until � “disappeared” from L.

In particular, for each subproblem DP(S,L) constructed by operations of level j ,
the set L can contain line segments of levels j − 2, j − 1, and j ; but no line segments
of a level j ′ with j ′ < j − 2. We make this and some other technicalities formal in
the proof of the next lemma.

Lemma 4 The constructed tree T is a DP-decision tree.

Proof We first notice that any reduction in the tree corresponding to a trivial or line
operation on DP(S,L) can only lead to subproblems of the form DP(S′,L′) with
L′ ⊆ L, and not lead to any violations of the DP-decision tree properties.

We now consider the add operations to ensure that any newly created node, by
applying the add operation on the set L′:={� ∩ S′ | (� ∈ OPT) ∧ (� ∩ S′ = ∅) ∧
(� is of level j)} to the subproblem DP(S,L), maintains the property that |L| ∪ |L′| ≤
3ε−3. We do this by induction,

Hypothesis: We assume that all add operations in the sequence of operations corre-
sponding to level j − 1, satisfied the property that |L| + |L′| ≤ 3ε−3.

Base case: For the sequence of operations of level j < 3, we know by Propositions 1
and 2 that the ‘added’ set L′ always satisfies |L′| ≤ ε−3. Since these are
the only added sets in the first 3 levels, we can be sure that |L| + |L′| ≤
3ε−3.

Induction: Consider an add operation for segments in OPT of level j . Any such
operation was preceded by a series of line operations along grid lines
of level j and all viable trivial operations. The grid lines of level j are
separated by ε j−2 units, and hence any horizontal segments from OPT
in L of level j ′ < j − 2 (which have length ≥ ε j−2 and being well
aligned, completely cut across any cell they intersect) can have the trivial
operation applied to them, and be removed from L. Similarly, for any

123



A PTAS for the horizontal rectangle... 621

vertical segment in OPT of level j ′ < j − 2, we explicitly apply the
line operation to the horizontal lines that contain its endpoints, and hence
again this also gets removed from L when we apply all possible trivial
operations. Thus, we are left only with segments added in operations of
levels j − 1 and j − 2 in L. But we know from Proposition 2 that at
each level we add at most ε−3 segments. Thus, the application of an add
operation at this stage ensures that |L| + |L′| ≤ 3ε−3.

��
We want to show that the cost of the solution corresponding to T is at most (1 +

O(ε))OPT. In fact, depending on the offset a, thismight ormight not be true. However,
we show that there is a choice for a such that this is true (in fact, we will show that
for a random choice for a, the cost will be at most (1 + O(ε))OPT in expectation).
Intuitively, when we apply the line operation to a vertical grid line � of some level j
then the incurred cost is at most O(1) times the cost of the line segments from OPT
of level j or larger that stab at least one rectangle intersected by �. A line segment
�′ ∈ OPT of level j stabs such a rectangle only if �′ is intersected by � (if �′ is
horizontal) or the x-coordinate of �′ is close to � (if �′ is vertical). Here we use that
hi ≥ wi for each rectangle Ri ∈ R.

Thus, we want to bound the total cost over all levels j of the line segments from
OPT that are in level j and that are intersected or close to grid lines of level j (or
smaller levels, but this need not be separately considered since all grid lines of smaller
levels are also grid lines of level j). We will show that if we choose a randomly then
the total cost of such grid lines is at most ε · OPT in expectation. Hence, by using
a constant approximation algorithm [8], in expectation the total cost due to all line
operations for vertical line segments is at most O(ε) · OPT.

When we apply the line operation for a horizontal line, then the cost of stabbing
the corresponding rectangles is at most the width of the rectangle S of the current
subproblem DP(S,L). We will charge this cost to the line segments of OPT inside S
of the current level or higher levels (that is, levels of higher numerical value). We will
argue that we can charge each such line operation to line segments from OPT whose
total width is at least 1/ε times the width of S. This costs another O(ε) ·OPT in total
due to all applications of line operations for horizontal line segments.

The add operation yields a cost of exactly OPT and the trivial operation does not
cost anything. This yields a total cost of (1 + O(ε))OPT.

Formally, we prove this in the following lemma.

Lemma 5 There is a discrete value for the offset a such that a ∈ {0, εd , 2εd , . . . , ε−2}
and the solution SOL([0, n] × [0, 4n2],∅) in T has a cost of at most (1+ O(ε))OPT.

Proof In the tree as defined above, the add operations are only applied on segments
from OPT (or their parts), and hence the cost across all such add operations is at most
c(OPT). Similarly, the trivial operations are applied on segments that were ‘added’
before, and hence their cost is also already accounted for. So we are left with ana-
lyzing the cost of stabbing the rectangles which are intersected by the lines along
which we apply the line operations. We claim that for a discretized random offset
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a ∈ {0, εd , 2εd , . . . , ε−2}, the expected cost is O(ε · OPT), which would give us the
required result.

Let us first consider any line operation of level j that is applied to a horizontal
line �. This operation would create two cells of width at most ε j−2 (since vertical
grid lines of level j are separated by ε j−2), one of which either contains at least ε−3

endpoints of segments (horizontal or vertical) from OPT of level j ; or contains at least
one vertical segment from OPT of level j ′ < j − 2, that is, the cost of the segments
from OPT with at least one endpoint in this cell is at least ε j−3 (in the former case,
each of the segments is of length at least ε j , and in the latter the single segment is of
the required length). Since a segment of width ε j−2 (width of the cell) is sufficient to
stab all rectangles stabbed by �, we see that this horizontal line takes only ε times the
cost of the segments in OPT with at least one endpoint in the cell. We charge the cost
of this horizontal segment to these corresponding endpoints. Since each such segment
in OPT of level j can be charged at most twice, by summing over all horizontal line
operations over all levels we get that the cost of such line operations is at most 2ε ·OPT.

Now, let us consider the line operations applied to vertical grid lines. We wish to
bound the cost of stabbing all the rectangles intersected or close to grid lines (will
be formally defined shortly), over all levels j . This as mentioned above can also be
stated as bounding the cost, over all levels j , of line segments of level j in OPT (call
this set OPT j ) intersected or close to grid lines of level j . For a horizontal segment
� ∈ OPT j , let I� be the indicator variable representing the event that a grid line of
level j intersects � (I� = 0 for vertical segments). Now, since any two consecutive
grid lines of level j are separated by ε j−2, there are ε j−2/εd possible shifts for these
grid lines due to our offset, and each of these shifts has the same probability. Similarly,
since |�| ≤ ε j−1 (by virtue of being well-aligned), at most (ε j−1/εd) + 1 of the valid
offsets will cause a grid line to intersect �. So, if we take a random discrete offset
a ∈ {0, εd , 2εd , . . . , ε−2}, we have that

E[I�]≤ (ε j−1/εd)+1

ε j−2/εd
=ε+ε2+(d− j) ≤ 2ε (since j ∈ [0, d − 1].)

For a vertical segment � ∈ OPT j , let J� be the indicator variable representing the event
that a grid line of level j intersects a rectangle stabbed by � (J� = 0 for horizontal
segments). Since for j > 0, |�| ≤ ε j−1, we know that for each rectangle Ri stabbed by
�, the dimensions satisfy wi ≤ hi ≤ ε j−1. This means that to stab such a rectangle, �
has to lie close to (that is, within ±ε j−1 of) the vertical grid line, further implying that
at most (2ε j−1/εd) + 1 of the discrete offsets are valid for event J�. So for a discrete
random offset a ∈ {0, εd , 2εd , . . . , ε−2} and level j > 0 we have that:

E[J�] ≤ (2ε j−1)/εd + 1

ε j−2/εd
= 2ε + ε2+(d− j) ≤ 3ε.

For level j = 0, we note that even though the vertical segments can be very long, the
maximum width of a rectangle is at most 1. So � has to lie within ±1 of the grid line.
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So if we take a random offset a ∈ {0, εd , 2εd , . . . , ε−2} we have that

E[J�] ≤ 2/εd + 1

ε−2/εd
= 2ε2 + εd+2 ≤ 3ε.

With the expectations computed above, we can upper bound the expected cost of
segments in OPT intersected by, or close to vertical grid lines as:

E

⎡
⎣∑

j

∑
�∈OPT j

(I� + J�) · |�|
⎤
⎦ =

∑
j

∑
�∈OPT j

E [(I� + J�) · |�|]

=
∑

j

∑
�∈OPT j

|�| · (E[I�] + E[J�])

≤
∑

j

∑
�∈OPT j

|�| · (2ε + 3ε)

= 5ε · OPT.

Recall that the bound above gives us a bound on the total cost of vertical line operations.
Now, by using anα-approximation algorithm for stabbing [8], whereα is a constant,

the solution returned by our algorithm takes an additional cost of 5α · ε · OPT. ��
For a fixed value of our random offset a, the running time of our algorithm is poly-

nomial. There are only ε−2/εd = ε−d−2 < n/ε5 possible choices for a. Therefore,
we can derandomize our algorithm by simply trying all of these possible choices and
returning the best solution obtained in this way.

Now we prove our main theorem.

Theorem 1 There is a (1 + ε)-approximation algorithm for the horizontal–vertical
stabbing problem with a running time of (n/ε)O(1/ε3), assuming that hi ≥ wi for each
rectangle Ri ∈ R.

Proof We gave a DP algorithm in Sect. 2.2 which was shown to have the required
running time in Lemma 2. Further in Lemma 5 we showed the correctness and that the
solution computed by the DP is actually a 1+ O(ε) approximation of the solution. ��

Theorem 1 has some direct implications. First, it yields a PTAS for the horizontal–
vertical square stabbing problem.

Corollary 1 There is a PTAS for the horizontal–vertical square stabbing problem.

Also, it yields a (2+ ε)-approximation algorithm for the horizontal–vertical stabbing
problem for arbitrary rectangles: we can simply split the input into rectangles Ri for
which hi ≥ wi holds, and those for which hi < wi holds, and output the union of
these two solutions.

Corollary 2 There is a (2 + ε)-approximation algorithm for the horizontal–vertical
stabbing problem with a running time of (n/ε)O(1/ε3).
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Finally, it yields a PTAS for the horizontal rectangle stabbing problem: we can take the
input of that problem and stretch all input rectangles vertically such that it is always
very costly to stab any rectangle vertically (so in particular our (1 + ε)-approximate
solution would never do this). Then we apply the algorithm due to Theorem 1.

Corollary 3 There is a (1 + ε)-approximation algorithm for the horizontal rectangle
stabbing problem with a running time of (n/ε)O(1/ε3).

3 ı-large rectangles

We now consider the case of δ-large rectangles for some given constant δ, that is,
where for each input rectangle Ri we assume thatwi ≤ 1, and hi ≤ 1, and additionally
wi ≥ δ or hi ≥ δ. In other words, none of the rectangles are small (less than δ) in
both dimensions at the same time. For this case, we again give a PTAS in which we
use our algorithm due to Theorem 1 as a subroutine.

First, by losing only a factor of 1 + ε, we divide the instance into independent
subproblems which are disjoint rectangular cells. For each cell Ci , we denote by
OPT(Ci ) the segments from OPT that are contained in Ci and our routine ensures that
c(OPT(Ci )) ≤ O(1/ε3). Then for each cell Ci , the number of segments in OPT(Ci )

with a length longer than δ is bounded by O(1/(δε3)). We guess them in polynomial
time. Now, the remaining segments in OPT are all of length smaller than δ, and hence
they can stab a rectangle only along its shorter dimension. Hence, we can divide the
remaining rectangles into two disjoint sets, one with hi ≥ wi and the other with
wi > hi , and use Theorem 1 to get a 1 + ε approximation of the remaining problem.
In the following, we describe our algorithm in detail.

3.1 Guessing long segments in the solution

In the following, we will call a coordinate discrete if it is an integral multiple of ε/n.
We first start by discretizing the input in a similar way as in Lemma 1,

Lemma 6 By losing a factor 1+ O(ε) in the approximation ratio, we can assume for
each Ri ∈ R that the following properties hold:

(i) x (i)
1 , x (i)

2 , y(i)
1 , y(i)

2 are discrete and within [0, n],
(ii) each line segment in OPT has length of at most 1/ε.

Proof Wefirst prove Property (i). Since each rectangle Ri ∈ R has awidthwi ≤ 1, the
instance either has some x-coordinate that is not covered by any rectangle—in which
case we can split the instance into smaller subproblems around this x-coordinate—
or the total width of the instance is at most n. Hence, all the x-coordinates of the
rectangles can be assumed to be between 0 and n. Further, we extend the rectangles
on both sides to make their x-coordinates align with the next nearest multiple of ε/n
(discretization). Clearly this involves extension by at most 2ε/n to the width of every
rectangle, and at most a 2ε addition to the cost of the solution. We can use the same
argument to show that the heights are also discretized and between 0 and n, since the
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heights of all rectangles are also less than 1. The height discretization similarly adds
another 2ε to the cost of the solution.

Now we look at Property (i i). Consider any horizontal (respectively vertical) seg-
ment � ∈ OPT, that is longer than 1/ε. From the left (respectively bottom) endpoint,
we divide the segment into consecutive smaller segments of length 1/ε −2 each, with
one potential last piece being smaller than 1/ε − 2. Now, for each smaller segment,
we extend it on both sides in such a way that it completely stabs the rectangles that
it intersects. Since the maximum width (respectively height) of a rectangle is 1, we
extend each such segment by at most 2 units.

With the same calculation as in the proof of Lemma 1, we can bound the increase
of our cost by

(
|�| +

⌈ |�|
1/ε − 2

⌉
· 2

)
· 1

|�| ≤ 1 + 8ε.

��
Thenwe continue by constructing vertical grid lines at each x-coordinate a+k ·ε−2

with k ∈ N and a random offset a ∈ N0. By removing the rectangles that intersect
with these grid lines, we divide the input instance into strips of width 1/ε2 (and height
n) each. Next, we show that the removed rectangles can be stabbed at very low total
cost.

Lemma 7 Consider the input rectangles that are intersected by vertical grid lines.
They can all be stabbed by a set of segments of total expected cost O(ε) · OPT.

Proof Similar to Lemma 5, we wish to bound the cost of stabbing all the rectangles
intersected or close to grid lines, which can also be stated as bounding the cost, of
line segments of OPT intersected or close to the grid lines. For a horizontal segment
� ∈ OPT, let I� be the indicator variable representing the event that a grid line intersects
� (I� = 0 for vertical segments). Since |�| ≤ 1/ε (by Lemma 6), if we take a random
offset a, we have that,

E[I�] ≤ ε−1

ε−2 = ε.

For a vertical segment � ∈ OPT, let J� be the indicator variable representing the event
that a grid line intersects a rectangle stabbed by � (J� = 0 for horizontal segments).
Since the width of all rectangles is less than 1, to stab a rectangle, � has to lie close to
(that is, within ±1 of) the vertical grid line. So for a random offset a we have that,

E[J�] ≤ 2

ε−2 = 2ε2 ≤ 2ε.

With the expectations computed above, we can upper bound the expected cost of
segments in OPT intersected by vertical line operations as,

E

[ ∑
�∈OPT

(I� + J�) · |�|
]

=
∑

�∈OPT
E [(I� + J�) · |�|]
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=
∑

�∈OPT
|�| · (E[I�] + E[J�])

≤
∑

�∈OPT
|�| · (ε + 2ε)

= 3ε · OPT

Now, by using the α-approximate algorithm for HV- Stabbing[8], where α is a con-
stant, we can find a set of segments that stabs the set of rectangles intersected by the
vertical grid lines with an additional cost of 3α · ε · OPT. ��

Now we divide these vertical strips into smaller rectangular cells such that the
optimal solution for each cell is O(1/ε3).

Lemma 8 In time nO(1) we can compute a set of horizontal line segments of total cost
O(ε) · OPT that, together with the vertical grid lines, divides the input instance into
rectangular cells containing independent subproblems, each with an optimal solution
of cost O(1/ε3).

Proof We will consider each vertical strip of width at most 1/ε2 separately as they
constitute independent subproblems. Consider one such strip. Since all rectangles
are contained in [0, n] × [0, n], we consider only the portion of the strip contained
in [0, n] × [0, n]. We sweep a horizontal line from bottom to top, and at each
discrete y-coordinate compute a constant approximate solution (using a known O(1)-
approximation algorithm [8] for HV- Stabbing) for the subproblem of the rectangles
that are completely contained in the area of the strip below the line down to the bottom
of the strip, or the end of a previous cell, whichever is closer. (Note here that we are
only computing these solutions, and not adding all of them to our final answer.) At the
smallest y-coordinate y0, at which the cost of the solution exceeds 1/ε3, we take the
line [0, 1/ε2] × y0 as a part of our solution and discard the rectangles already stabbed
by it. Note that if we had moved the line up by another ε/n, the cost of the solution
of the considered area could have increased by at most 1/ε2 (by also considering the
segment [0, 1/ε2]× y0 as part of the solution of the considered area), therefore the cost
of segments from OPT in the considered area is between 1/(αε3) and 1/ε3 + 1/ε2,
which is �(1/ε3).

Thus, every time we perform a step as described above, we add a segment of length
1/ε2 to the solution, and create a subproblem that has an optimal solution of cost
�(1/ε3). Hence the cost of the added segment is at most O(ε−2/ε−3) = O(ε) times
the cost of the solution to the subproblem that it creates. Since an optimal solution to
all such subproblems can be at most the cost of the original instance, the cost of the
horizontal segments that we have added is at most O(ε) · OPT. ��

Now, in any optimal solution to a subproblem contained in a cell as described above,
there can be at most O(1/(δε3)) long segments, that is, segments of length at least
δ. Since there are only a polynomial number of discrete candidate segments we can
guess the set of long segments in the solution in polynomial time (the exact analysis
is shown later).
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3.2 Computing short segments in the solution

For each guess made for the set of long segments in the solution, we compute a
(1+ ε)-approximation for the short segments, that is, segments of length at most δ in
the solution using Theorem 1.

Note that any rectangle with both height and width at least δ will have to be stabbed
by a segment of length at least δ. However, since all such long segments in the solution
have already been guessed, each remaining segment can stab a δ-large rectangle only
along its shorter dimension. So the rectangles in the instance that have not yet been
stabbed can be partitioned into two independent instances, one which has rectangles
with width less than δ (will be stabbed horizontally) and one which has rectangles
with height less than δ (will be stabbed vertically). We apply Theorem 1 on each of
these independent instances and combine the solutions to get a (1 + ε)-approximate
solution for the remaining problem.

Theorem 2 For HV- Stabbingwith δ-large rectangles, there is a (1+ε)-approximation
algorithm with a running time of (n/ε)O(1/(δε3)).

Proof First, we analyze the running time. In the first phase of the algorithm, we
divide the given instance into n/(1/ε2) = nε2 strips, and run the constant factor
nO(1) approximation algorithm [8] for each discrete y-coordinate. This requires a
running time of nε2 × n/(ε/n) × nO(1) = ε · nO(1). Now in a strip there are at
most (n/(ε/n)) × ((1/ε2)/(ε/n)) = n3/ε4 possible discrete endpoints for segments,

which means there are less than
(n3/ε4

2

)
, that is, O(n6/ε8) possible candidate segments

in a strip. Hence, we can enumerate over all of their subsets of size O(1/(δε3)) in
(n/ε)O(1/(δε3)) time. Following this we have two invocations of Theorem 1 to solve
the independent subproblems which would together take (n/ε)O(1/ε3). This yields an
overall running time of (n/ε)O(1/(δε3)).

Now to showcorrectness, let us partition theOPT set into three sets,OPTδ consisting
of segments of length at least δ, OPTx consisting of horizontal segments shorter than δ,
and OPTy consisting of vertical segments shorter than δ. We can correctly guess OPTδ

(up to a factor of 1 + O(ε) by Lemmas 6 and 8), and hence identify the rectangles
that are stabbed by OPTx but not by OPTδ (since these are the remaining rectangles
which have width at most δ) and by OPTy but not by OPTδ . Now by Theorem 1 we
can compute (1 + ε)-approximations for these two sets, and hence get a solution of
cost

SOL ≤ (1 + O(ε))OPTδ + (1 + ε)OPTx + (1 + O(ε))OPTy ≤ (1 + O(ε))OPT.

Now by appropriately adjusting the value of ε, we can obtain the claimed result. ��

4 GeneralizedminimumManhattan network

In the generalizedminimumManhattan network problem (GMMN), we are given a set
R of n unordered terminal pairs, and the goal is to find a minimum-length rectilinear
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network such that every pair in R is connected by a Manhattan-path, which is a path
consisting of axis-parallel segments whose total length is the Manhattan distance of
the pair under consideration.

For the special case of 2D-GMNN,where all terminals lie on a 2-dimensional plane,
Das et al. [14] gave an O(log n)-approximate solution using a (6 + ε)-approximate
solution for x-separated 2D-GMMN instances. An instance of GMMN is called x-
separated if there is a vertical line that intersects every rectangle formed by a pair of
terminals as the diagonally opposite corners of the rectangle. Let OPTver and OPThor
refer to the cost of the vertical and horizontal segments respectively in an optimal
solution. The algorithm solves an x-separated instance by giving a solution of the
form N = Aup ∪ Adown ∪ S, where S is a set of horizontal segments stabbing all the
rectangles in the instance and Aup ∪ Adown is a set of segments of cost bounded by
(2 + 2ε) · (OPT + OPTver). Using a 4-approximation algorithm for finding the set of
segments S, horizontally stabbing the rectangles, a bound of (6+ ε) ·OPT is obtained
for the cost of segments in N . But instead of the 4-approximate algorithm we can
instead use the PTAS from Corollary 3 to obtain a better bound of (4 + ε) · OPT on
the cost as follows,

c(N ) = c(Aup) + c(Adown) + c(S)

≤ (2 + 2ε) · (OPT + OPTver) + (1 + ε) · OPThor

≤ (2 + 2ε) · OPT + (2 + 2ε) · (OPTver + OPThor)

= (4 + ε′) · OPT.

5 Conclusion

In this paper, we have settled the Stabbing problem by giving a PTAS for it, and
also give a (2+ ε)-approximate solution for the HV- Stabbing problem and PTASes
for some related special cases of these problems. It is not immediately clear whether
these techniques could be extended to obtain a PTAS for the HV- Stabbing problem.
Further, since the question of the APX-hardness of HV- Stabbing is still open, it is
not even clear whether such a PTAS exists.
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