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Abstract
We study the lift-and-project rank of the stable set polytopes of graphs with respect
to the Lovász–Schrijver SDP operator LS+. In particular, we focus on a search for
relatively small graphs with high LS+-rank (i.e., the least number of iterations of the
LS+ operator on the fractional stable set polytope to compute the stable set polytope).
We provide families of graphs whose LS+-rank is asymptotically a linear function of
its number of vertices, which is the best possible up to improvements in the constant
factor. This improves upon the previous best result in this direction from 1999, which
yielded graphs whose LS+-rank only grew with the square root of the number of
vertices.

Keywords Stable set problem · Lift and project · Combinatorial optimization ·
Semidefinite programming · Integer programming

Mathematics Subject Classification 90C22 · 90C27

1 Introduction

In combinatorial optimization, a standard approach for tackling a given problem is
to encode its set of feasible solutions geometrically (e.g., via an integer program-
ming formulation). While the exact solution set is often difficult to analyze, we can
focus on relaxations of this setthat have certain desirable properties (e.g., combinato-
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rially simple to describe, approximates the underlying set of solutions well, and/or
is computationally efficient to optimize over). In that regard, the lift-and-project
approach provides a systematic procedure which generates progressively tighter con-
vex relaxations of any given 0, 1 optimization problem. In the last four decades, many
procedures that fall under the lift-and-project approach have been devised (see, among
others, [2, 7, 13, 29, 33, 36]), and there is an extensive body of work on their general
properties and performance on awide range of discrete optimization problems (see, for
instance, [5] and the references therein). Lift-and-project operators can be classified
into two groups based on the type of convex relaxations they generate: Those that gen-
erate polyhedral relaxations only (leading to Linear Programming relaxations), and
those that generate spectrahedral relaxations (leading to Semidefinite Programming
relaxations) which are not necessarily polyhedral. Herein, we focus on LS+ (defined in
detail in Sect. 2), the SDP-based lift-and-project operator due to Lovász and Schrijver
[33], and its performance on the stable set problem of graphs. This lift-and-project
operator was originally called N+ in [33].

LS+ is an operator on convex subsets of the hypercube [0, 1]n—given a convex set
P ⊆ [0, 1]n , LS+(P) is a convex set sandwiched between P and the convex hull of
integral points in P , denoted by PI :

P ⊇ LS+(P) ⊇ PI .

The convex hull of integral points in a set is also called its integer hull. So, PI is the
integer hull of P .

We can apply LS+ iteratively to obtain yet tighter relaxations. Given p ∈ N, let
LSp

+(P) be the set obtained from applying p successive LS+ operations to P . Then it
is well known (e.g., it follows from [33, Theorem 1.4] and the definition of LS+) that

LS0+(P) := P ⊇ LS+(P) ⊇ LS2+(P) ⊇ · · · ⊇ LSn−1+ (P) ⊇ LSn+(P) = PI .

Thus, LS+ generates a hierarchy of progressively tighter convex relaxations which
converge to PI in no more than n iterations. The reader may refer to Lovász and
Schrijver [33] for some other fundamental properties of the LS+ operator.

The LS+-rank of a convex subset of the hypercube is defined to be the number of
iterations it takes LS+ to return its integer hull. As we stated above, the LS+-rank of
every convex set P ⊆ [0, 1]n is at most n, and a number of elementary polytopes in
R
n have been shown to have LS+-rank �(n) (see, among others, [3, 15, 24, 28, 38]).
Next, given a simple, undirected graph G = (V , E), we denote by STAB(G) the

stable set polytope of G (the convex hull of incidence vectors of stable sets in G),
and by FRAC(G) the fractional stable set polytope of G (which is defined by edge
inequalities—i.e., xi + x j ≤ 1 for every edge {i, j} ∈ E(G)—and non-negativity
constraints, see Sect. 2.2). Then, we define the LS+-rank of a graphG as the minimum
non-negative integer p for which LSp

+(FRAC(G)) = STAB(G). We denote the LS+-
rank of a graph G by r+(G). When G is bipartite, FRAC(G) = STAB(G), and thus
r+(G) = 0 in this case.

Another well-studied convex relaxation of STAB(G) is TH(G), the Lovász theta
body [31] of the given graph. A remarkable property of LS+ is that LS+(FRAC(G)) ⊆
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TH(G) for every graphG. That is, applying one iteration of LS+ to the fractional stable
set polytope of a graph already yields a tractable relaxation of the stable set polytope
that is stronger than TH(G) (see [33, Lemma 2.17 and Corollary 2.18] for a proof).
Therefore, it follows that r+(G) ≤ 1 when G is a perfect graph (defined in Sect. 2.2),
as it is well-known that TH(G) = STAB(G) in this case [31]. For more analyses of
various lift-and-project relaxations of the stable set problem, see (among others) [1,
2, 12, 18, 19, 22, 23, 27, 30, 33–35].

On the other hand, while the stable set problem is known to be stronglyNP-hard,
hardness results for LS+ (or any other lift-and-project operator utilizing semidefinite
programming) on the stable set problem have been relatively scarce. Prior to this
manuscript, the worst (in terms of performance by LS+) family of graphs was given
by the line graphs of odd cliques. Using the fact that the LS+-rank of the fractional
matching polytope of the (2k+1)-clique is k [37], the natural correspondence between
the matchings in a given graph and the stable sets in the corresponding line graph,
as well as the properties of the LS+ operator, it follows that the fractional stable set
polytope of the line graph of the (2k + 1)-clique (which contains

(2k+1
2

) = k(2k + 1)
vertices) has LS+-rank k, giving a family of graphs G with r+(G) = �

(√|V (G)|).
This lower bound on the LS+-rank of the fractional stable set polytopes has not been
improved since 1999. In this manuscript, we present what we believe is the first known
family of graphs whose LS+-rank is asymptotically a linear function of the number
of vertices.

1.1 A family of challenging graphs {Hk} for the LS+ operator

For a positive integer k, let [k] := {1, 2, . . . , k}. We first define the family of graphs
that pertains to our main result.

Definition 1 Given an integer k ≥ 2, define Hk to be the graph where

V (Hk) := {
i p : i ∈ [k], p ∈ {0, 1, 2}} ,

and the edges of Hk are

• {i0, i1} and {i1, i2} for every i ∈ [k];
• {i0, j2} for all i, j ∈ [k] where i �= j .

Figure 1 illustrates the graphs Hk for several small values of k. Note that H2 is the
cycle on six vertices.Moreover, Hk can be obtained from a complete bipartite graph by
fixing a perfect matching and replacing each edge by a path of length two (subdividing
each matching edge). Figure2 represents a drawing emphasizing this second feature.

The following is the main result of this paper. Its proof is given in Sect. 4.

Theorem 2 For every k ≥ 3, the LS+-rank of the fractional stable set polytope of Hk

is at least 1
16 |V (Hk)|.

We remark that, given p ∈ N and a polytope P ⊆ [0, 1]n with �(nc) facets for
some constant c, the straightforward formulation of LSp

+(P) is an SDP with size
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Fig. 1 Several graphs in the family Hk

Fig. 2 Alternative drawings of the graphs Hk

n�(p). Since the fractional stable set polytope of the graph Hk has dimension n = 3k
with �(n2) facets, Theorem 2 implies that the SDP described by LS+ that fails to
exactly represent the stable set polytope of Hk has size n�(n). Thus, the consequence
of Theorem 2 on the size of the SDPs generated from the LS+ operator is incomparable
with the extension complexity bound due to Lee et al. [32], who showed (in the context
of SDP extension complexity) that it takes an SDP of size 2�(n1/13) to exactly represent
the stable set polytope of a general n-vertex graph as a projection of a spectrahedron
(such sets are also called spectrahedral shadows). That is, while the general lower
bound by Lee et al. [32] covers every lifted-SDP formulation, our lower bound is
significantly larger but it only applies to a specific family of lifted-SDP formulations.

1.2 Organization of the paper

In Sect. 2,we introduce theLS+ operator and the stable set problem, and establish some
notations and basic facts that will aid our subsequent discussion. In Sect. 3, we study
the family of graphs Hk , their stable set polytope and set up some fundamental facts
and the proof strategy. We then prove Theorem 2 in Sect. 4. In Sect. 5 we determine
the Chvátal–Gomory rank of the stable set polytope of the graphs Hk . In Sect. 6, we
show that the results in Sects. 3 and 4 readily lead to the discovery of families of
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vertex-transitive graphs whose LS+-rank also exhibits asymptotically linear growth.
Finally, in Sect. 7, we close by mentioning some natural research directions inspired
by these new findings.

2 Preliminaries

In this section, we establish the necessary definitions and notation for our subsequent
analysis.

2.1 The lift-and-project operator LS+

Here, we define the lift-and-project operator LS+ due to Lovász and Schrijver [33]
and mention some of its basic properties. Given a convex set P ⊆ [0, 1]n , we define
the cone

cone(P) :=
{[

λ

λx

]
: λ ≥ 0, x ∈ P

}
,

and index the new coordinate by 0. Given a vector x and an index i , we may refer to
the i-entry in x by xi or [x]i . All vectors are column vectors, so here the transpose of
x , x	, is a row vector. Next, given a symmetric matrix M ∈ R

n×n (which necessarily
has only real eigenvalues), we say that M is positive semidefinite and write M 
 0 if
all eigenvalues of M are non-negative. We let Sn+ denote the set of n-by-n symmetric
positive semidefinite matrices, and diag(Y ) be the vector formed by the diagonal
entries of a square matrix Y . We also let ei be the i th unit vector.

Given P ⊆ [0, 1]n , the operator LS+ first lifts P to the following set of matrices:

L̂S+(P) :=
{
Y ∈ S

n+1+ : Ye0 = diag(Y ),Yei ,Y (e0 − ei ) ∈ cone(P) ∀i ∈ [n]
}

.

It then projects the set back down to the following set in R
n :

LS+(P) :=
{
x ∈ R

n : ∃Y ∈ L̂S+(P),Ye0 =
[
1
x

]}
.

Given x ∈ LS+(P), we say thatY ∈ L̂S+(P) is a certificatematrix for x ifYe0 =
[
1
x

]
.

The following is a foundational property of LS+ [33].

Lemma 3 Let P ⊆ [0, 1]n be a convex set. Then,

P ⊇ LS+(P) ⊇ PI .

Proof Let x ∈ LS+(P), and let Y ∈ L̂S+(P) be a certificate matrix for x . Since
Ye0 = Yei +Y (e0−ei ) for any index i ∈ [n] and L̂S+ imposes that Yei ,Y (e0−ei ) ∈
cone(P), it follows that Ye0 ∈ cone(P), and thus x ∈ P . On the other hand, given
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any integral vector x ∈ P ∩ {0, 1}n , observe that Y :=
[
1
x

] [
1
x

]	
∈ L̂S+(P), and so

x ∈ LS+(P). Thus, since PI := conv
(
P ∩ {0, 1}n) (i.e., the integer hull of P), we

deduce that

PI ⊆ LS+(P) ⊆ P

holds. ��
Therefore, LS+(P) contains the same set of integral solutions as P . Moreover, if P

is a tractable set (i.e., one can optimize a linear function over P in polynomial time),
then so is LS+(P). It is also known that LS+(P) is strictly contained in P unless
P = PI . Thus, while it is generally NP-hard to optimize over the integer hull PI ,
LS+(P) offers a tractable relaxation of PI that is tighter than the initial relaxation P .
Again, the reader may refer to Lovász and Schrijver [33] additional discussion and
properties of the LS+ operator.

2.2 The stable set polytope and the LS+-rank of graphs

Given a simple, undirected graph G := (V (G), E(G)), we define its fractional stable
set polytope to be

FRAC(G) :=
{
x ∈ [0, 1]V (G) : xi + x j ≤ 1,∀ {i, j} ∈ E(G)

}
.

We also define

STAB(G) := FRAC(G)I = conv
(
FRAC(G) ∩ {0, 1}V (G)

)

to be the stable set polytope of G. Notice that STAB(G) is exactly the convex hull
of the incidence vectors of stable sets in G. Also, to reduce cluttering, we will write
LSp

+(G) instead of LSp
+(FRAC(G)).

Given a graph G, recall that we let r+(G) denote the LS+-rank of G, which is
defined to be the smallest integer p where LSp

+(G) = STAB(G). More generally,
given a linear inequality a	x ≤ β valid for STAB(G), we define its LS+-rank to be
the smallest integer p for which a	x ≤ β is a valid inequality of LSp

+(G). Then r+(G)

can be alternatively defined as the maximum LS+-rank over all valid inequalities of
STAB(G).

It is well known that r+(G) = 0 (i.e., STAB(G) = FRAC(G)) if and only if G is
bipartite. Next, given a graph G and C ⊆ V (G), we say that C is a clique if every
pair of vertices in C is joined by edge in G. Then observe that the clique inequality∑

i∈C xi ≤ 1 is valid for STAB(G). A graph G is perfect if STAB(G) is defined by
only clique and non-negativity inequalities. Since clique inequalities of graphs have
LS+-rank 1 (see [33, Lemma 1.5] for a proof), we see that r+(G) ≤ 1 for all perfect
graphs G.
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The graphs G where r+(G) ≤ 1 are commonly called LS+-perfect graphs. In
addition to perfect graphs, it is known that odd holes, odd antiholes, and odd wheels
(among others) are alsoLS+-perfect.While it remains an open problem to find a simple
combinatorial characterization of LS+-perfect graphs, there has been significant recent
interest and progress on this front [8–11, 40].

Next, wemention two simple graph operations that have been critical to the analyses
of the LS+-ranks of graphs. Given a graph G and S ⊆ V (G), we let G − S denote
the subgraph of G induced by the vertices in V (G) \ S, and call G − S the graph
obtained by the deletion of S. (When S = {i} for some vertex i , we simply write G− i
instead of G − {i}.) Next, given i ∈ V (G), let �(i) := { j ∈ V (G) : {i, j} ∈ E(G)}
(i.e., �(i) is the set of vertices that are adjacent to i). Then the graph obtained from
the destruction of i in G is defined as

G � i := G − ({i} ∪ �(i)).

Then we have the following.

Theorem 4 For every graph G,

(i) [33, Corollary 2.16] r+(G) ≤ max {r+(G � i) : i ∈ V (G)} + 1;
(ii) [34, Theorem 36] r+(G) ≤ min {r+(G − i) : i ∈ V (G)} + 1.

We next mention a fact that is folklore, with related insights dating back to Balas’
work on disjunctive programming in the 1970s (see, for instance, [6] and [28, Lemma
3.2]).

Lemma 5 Let F be a face of [0, 1]n, and let P ⊆ [0, 1]n be a convex set. Then

LSp
+(P ∩ F) = LSp

+(P) ∩ F

for every integer p ≥ 1.

Proof It suffices to prove the claim for p = 1, as the general result would follow from
iterative application of this case. First, let x ∈ LS+(P ∩ F). Since LS+(P ∩ F) ⊆
P ∩ F ⊆ F , it follows that x ∈ F . Now let Y ∈ L̂S+(P ∩ F) be a certificate
matrix for x . Then Yei ,Y (e0 − ei ) ∈ cone(P ∩ F) ⊆ cone(P), and so it follows that
Y ∈ L̂S+(P), which certifies that x ∈ LS+(P).

Conversely, let x ∈ LS+(P)∩ F , and let Y ∈ L̂S+(P) be a certificate matrix for x .

Then Yei ,Y (e0−ei ) ∈ cone(P) for every i ∈ [n]. Now since x ∈ F and

[
1
x

]
= Yei +

Y (e0−ei ), it follows (from F being a face of [0, 1]n and thatYei ,Y (e0−ei ) ∈ cone(P)

and cone(P) is a subset of the cone of the hypercube [0, 1]n) that Yei ,Y (e0 − ei ) ∈
cone(F) for every i ∈ [n]. This implies that Yei ,Y (e0 − ei ) ∈ cone(P ∩ F), which
in turn implies that x ∈ LS+(P ∩ F). ��

Using Lemma 5, we obtain another elementary property of LS+ that will be useful.

Lemma 6 Let G be a graph, and let G ′ be an induced subgraph of G. Then r+(G ′) ≤
r+(G).
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Proof First, there is nothing to prove if r+(G ′) = 0, so we assume that r+(G ′) = p+1
for some p ≥ 0. Thus, there exists x̄ ′ ∈ LSp

+(G ′)\ STAB(G ′).
Now define x̄ ∈ R

V (G) where x̄i = x̄ ′
i if i ∈ V (G ′) and x̄i = 0 otherwise. It

is easy to see that x̄ ′ /∈ STAB(G ′) ⇒ x̄ /∈ STAB(G). Then, applying Lemma 5
with P := FRAC(G) and F := {

x ∈ [0, 1]V (G) : xi = 0 ∀i ∈ V (G)\V (G ′)
}
, we

obtain that x̄ ∈ LSp
+(G). Thus, we conclude that x̄ ∈ LSp

+(G) \ STAB(G), and
r+(G) ≥ p + 1. ��

We are interested in studying relatively small graphs with high LS+-rank—that is,
graphs whose stable set polytope is difficult to obtain for LS+. First, Lipták and the
second author [34, Theorem 39] proved the following general upper bound:

Theorem 7 For every graph G, r+(G) ≤
⌊ |V (G)|

3

⌋
.

In Sect. 4, we prove that the family of graphs Hk satisfies r+(Hk) = �(|V (Hk)|).
This shows that Theorem 7 is asymptotically tight, and rules out the possibility of a
sublinear upper bound on the LS+-rank of a general graph.

3 Analyzing Hk and exploiting symmetries

3.1 The graphs Hk and their basic properties

Recall the family of graphs Hk defined in Sect. 1 (Definition 1). For convenience, we
let [k]p := {

jp : j ∈ [k]} for each p ∈ {0, 1, 2}. Then, as mentioned earlier, one can
construct Hk by starting with a complete bipartite graph with bipartitions [k]0 and
[k]2, and then for every j ∈ [k] subdividing the edge { j0, j2} into a path of length 2
and labelling the new vertex j1. Figure2 illustrates alternative drawings for Hk which
highlight this aspect of the family of graphs.

Given a graph G, we say that σ : V (G) → V (G) is an automorphism of G if,
for every i, j ∈ V (G), {i, j} ∈ E(G) if and only if {σ(i), σ ( j)} ∈ E(G). Notice
that the graphs Hk have very rich symmetries, and we mention two automorphisms
of Hk that are of particular interest. Define σ1 : V (Hk) → V (Hk) where, for every
p ∈ {0, 1, 2},

σ1
(
jp
) :=

{
( j + 1)p if 1 ≤ j ≤ k − 1;
1p if j = k.

(1)

Also define σ2 : V (Hk) → V (Hk) where

σ2
(
jp
) := j(2−p) for every j ∈ [k] and p ∈ {0, 1, 2} . (2)

Visually, σ1 corresponds to rotating the drawings of Hk in Fig. 1 counterclockwise
by 2π

k , and σ2 corresponds to reflecting the drawings of Hk in Fig. 2 along the centre
vertical line. Also, notice that Hk � i is either isomorphic to Hk−1 (if i ∈ [k]1), or is
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bipartite (if i ∈ [k]0 ∪ [k]2). As we shall see, these properties are very desirable in our
subsequent analysis of Hk .

Given a graph G, let α(G) denote the maximum cardinality of a stable set in G.
Notice that since H2 is the 6-cycle, α(H2) = 3, and the maximum cardinality stable
sets of H2 are {10, 12, 21} and {11, 20, 22}. Moreover, due to the simple recursive
structure of this family of graphs, we can construct stable sets for Hk from stable
sets for Hk−1 for every integer k ≥ 3. If S is a (maximum-cardinality) stable set for
Hk−1 then S ∪ {k1} is a (maximum-cardinality) stable set for Hk . This shows that
α(Hk) = k + 1 for every k ≥ 2.

Also, notice that each of the sets [k]0, [k]1, and [k]2 is a stable set in Hk . While
they each have cardinality k and thus are not maximum cardinality stable sets in Hk ,
they are inclusion-wise maximal (i.e., each of them is not a proper subset of another
stable set in Hk). The following result characterizes all inclusion-wise maximal stable
sets in Hk .

Lemma 8 Let k ≥ 2 and let S ⊆ V (Hk) be an inclusion-wise maximal stable set in
Hk. Then one of the following is true:

(i) |S| = k, |S ∩ { j0, j1, j2} | = 1 for every j ∈ [k], and either S ∩ [k]0 = ∅ or
S ∩ [k]2 = ∅;

(ii) |S| = k + 1, and there exists j ∈ [k] where

S = ([k]1 \ { j1}) ∪ { j0, j2} .

Proof First, notice that if |S∩{ j0, j1, j2} | = 0 for some j ∈ [k], then S∪{ j1} is a stable
set, contradicting the maximality of S. Thus, we assume that |S ∩ { j0, j1, j2} | ≥ 1
for every j ∈ [k].

If |S ∩ { j0, j1, j2} | = 1 for all j ∈ [k], then |S| = k. Also, since
{
j0, j ′2

}
is an

edge for every distinct j, j ′ ∈ [k], we see that S ∩ [k]0 and S ∩ [k]2 cannot both be
non-empty. Thus, S belongs to (i) in this case.

Next, suppose there exists j ∈ [k] where |S ∩ { j0, j1, j2} | ≥ 2. Then it must be
that j0, j2 ∈ S and j1 /∈ S. Then it follows that, for all j ′ �= j , S∩{ j ′0, j ′1, j ′2

} = {
j ′1
}
,

and S belongs to (ii). ��
Next, we describe two families of valid inequalities of STAB(Hk) that are of

particular interest. Given distinct indices j, j ′ ∈ [k], define

Bj, j ′ := V (Hk) \ { j1, j2, j ′0, j ′1
}
.

Then we have the following.

Lemma 9 For every integer k ≥ 2,

(i) the linear inequality

∑

i∈Bj, j ′
xi ≤ k − 1 (3)

is a facet of STAB(Hk) for every pair of distinct j, j ′ ∈ [k].
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(ii) the linear inequality

∑

i∈[k]0∪[k]2
(k − 1)xi +

∑

i∈[k]1
(k − 2)xi ≤ k(k − 1) (4)

is valid for STAB(Hk).

Proof We first prove (i) by induction on k. When k = 2, (3) gives an edge inequality,
which is indeed a facet of STAB(H2) since H2 is the 6-cycle.

Next, assume k ≥ 3. By the symmetry of Hk , it suffices to prove the claim for the
case j = 1 and j ′ = 2. First, it follows from Lemma 8 that B1,2 does not contain a
stable set of size k, and so (3) is valid for STAB(Hk). Next, by the inductive hypothesis,

⎛

⎝
∑

i∈B1,2
xi

⎞

⎠− (
xk0 + xk1 + xk2

) ≤ k − 2 (5)

is a facet of STAB(Hk−1), and so there exist stable sets S1, . . . , S3k−3 ⊆ V (Hk−1)

whose incidence vectors are affinely independent and all satisfy (5) with equality. We
then define S′

i := Si ∪ {k1} for all i ∈ [3k − 3], S′
3k−2 := [k]0, S′

3k−1 := [k]2, and
S′
3k := [k − 1]1 ∪ {k0, k2}. Then we see that the incidence vectors of S′

1, . . . , S
′
3k are

affinely independent, and they all satisfy (3) with equality. This finishes the proof of
(i).

We next prove (ii). Consider the inequality obtained by summing (3) over all distinct
j, j ′ ∈ [k]:

∑

( j, j ′)∈[k]2, j �= j ′

⎛

⎝
∑

i∈Bj, j ′
xi

⎞

⎠ ≤
∑

( j, j ′)∈[k]2, j �= j ′
(k − 1). (6)

Now, the right hand side of (6) is k(k − 1)(k − 1). On the other hand, since |Bj, j ′ ∩
[k]0| = |Bj, j ′ ∩ [k]2| = k − 1 for all j, j ′, we see that if i ∈ [k]0 ∪ [k]2, then xi has
coefficient (k − 1)(k − 1) in the left hand side of (6). A similar argument shows that
xi has coefficient (k − 1)(k − 2) for all i ∈ [k]1. Thus, (4) is indeed 1

k−1 times (6).
Therefore, (4) is a non-negative linear combination of inequalities of the form (3), so
it follows from (i) that (4) is valid for STAB(Hk). ��

3.2 Working from the shadows to prove lower bounds on LS+-rank

Next, we aim to exploit the symmetries of Hk to help simplify our analysis of its LS+-
relaxations. Before we do that, we describe the broader framework of this reduction
that shall also be useful in analyzing lift-and-project relaxations in other settings.Given
a graph G, let Aut(G) denote the automorphism group of G. We also let χS denote the
incidence vector of a set S. Then we define the notion ofA-balancing automorphisms.

Definition 10 Given a graph G and A := {A1, . . . , AL} a partition of V (G), we say
that a set of automorphisms S ⊆ Aut(G) is A-balancing if
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(1) For every � ∈ [L], and for every σ ∈ S, {σ(i) : i ∈ A�} = A�.
(2) For every � ∈ [L], the quantity | {σ ∈ S : σ(i) = j} | is invariant under the choice

of i, j ∈ A�.

In other words, if S isA-balancing, then the automorphisms in S only map vertices
in A� to vertices in A� for every � ∈ [L]. Moreover, for every i ∈ A�, the |S| images of
i under automorphisms in S spread over A� evenly, with | {σ ∈ S : σ(i) = j} | = |S|

|A�|
for every j ∈ A�.

For example, for the graph Hk , consider the vertex partitionA1 := {[k]0, [k]1, [k]2}
and S1 :=

{
σ

j
1 : j ∈ [k]

}
(where σ1 is as defined in (1)). Then observe that, for every

p ∈ {0, 1, 2}, {σ(i) : i ∈ [k]p
} = [k]p, and

| {σ ∈ S1 : σ(i) = j} | = 1

for every i, j ∈ [k]p. Thus, S1 is A1-balancing. Furthermore, if we define A2 :=
{[k]0 ∪ [k]2, [k]1} and

S2 :=
{
σ

j
1 ◦ σ

j ′
2 : j ∈ [k], j ′ ∈ [2]

}
(7)

(where σ2 is as defined in (2)), one can similarly show that S2 is A2-balancing.
Next, we prove several lemmas aboutA-balancing automorphisms that are relevant

to the analysis of LS+-relaxations. Given σ ∈ Aut(G), we extend the notation to refer
to the function σ : RV (G) → R

V (G) where σ(x)i = xσ(i) for every i ∈ V (G). The
following lemma follows readily from the definition of A-balancing automorphisms.

Lemma 11 Let G be a graph, A := {A1, . . . , AL} be a partition of V (G), and S ⊆
Aut(G) be an A-balancing set of automorphisms. Then, for every x ∈ R

V (G),

1

|S|
∑

σ∈S
σ(x) =

L∑

�=1

1

|A�|

⎛

⎝
∑

i∈A�

xi

⎞

⎠χA�
.

Proof For every � ∈ [L] and for every i ∈ A�, the fact that S is A-balancing implies

1

|S|
∑

σ∈S
σ(ei ) = 1

|A�|χA�
. (8)

Since x = ∑
i∈V (G) xi ei , the claim follows by summing xi times (8) over all i ∈ V (G).

��
Lemma 12 Let G be a graph, σ ∈ Aut(G) be an automorphism of G, and p ≥ 0 be
an integer. If x ∈ LSp

+(G), then σ(x) ∈ LSp
+(G).

Proof When p = 0, LS0+(G) = FRAC(G), and the claim holds due to σ being
an automorphism of G. Next, it is easy to see from the definition of LS+ that the
operator is invariant under permutation of coordinates (i.e., given P ⊆ [0, 1]n , if we
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let Pσ := {σ(x) : x ∈ P}, then x ∈ LS+(P) ⇒ σ(x) ∈ LS+(Pσ )). Applying this
insight recursively proves the claim for all p. ��

Combining the above results, we obtain the following.

Proposition 13 Suppose G is a graph, A := {A1, . . . , AL} is a partition of V (G),
and S ⊆ Aut(G) is A-balancing. Let p ≥ 0 be an integer. If x ∈ LSp

+(G), then

x ′ :=
L∑

�=1

⎛

⎝ 1

|A�|
∑

i∈A�

xi

⎞

⎠χA�

also belongs to LSp
+(G).

Proof Since S is A-balancing, it follows from Lemma 11 that

x ′ = 1

|S|
∑

σ∈S
σ(x).

Also, since x ∈ LSp
+(G), Lemma 12 implies that σ(x) ∈ LSp

+(G) for every σ ∈ S.
Thus, x ′ is a convex combination of points in LSp

+(G), which is a convex set. Hence,
it follows that x ′ ∈ LSp

+(G). ��
Notice that the symmetrized vector x ′ in Proposition 13 has at most L distinct

entries, one for each of A� ∈ A. Thus, instead of fully analyzing a family of SDPs in
S

�(n p)
+ or its projections LSp

+(G), the presence ofA-balancing automorphisms allows
us to work with a spectrahedral shadow in [0, 1]L , a set of much lower dimension, for
a part of the analysis. For instance, in the extreme case when G is vertex-transitive,
we see that the entire automorphism group Aut(G) is {V (G)}-balancing, and so for

every x ∈ LSp
+(G), Proposition 13 implies that 1

|V (G)|
(∑

i∈V (G) xi
)
ē ∈ LSp

+(G),

where ē denotes the vector of all ones.
Now we turn our focus back to the graphs Hk . The presence of an A2-balancing

set of automorphisms (as described in (7)) motivates the study of points in LSp
+(Hk)

of the following form.

Definition 14 Given real numbers a, b ∈ R and an integer k ≥ 2, wk(a, b) ∈ R
V (Hk )

is defined as the vector with entries

[wk(a, b)]i :=
{
a if i ∈ [k]0 ∪ [k]2;
b if i ∈ [k]1.

For an example, the inequality (4) can be rewritten asw(k−1, k−2)	x ≤ k(k−1).
The following is a main reason why we are interested in looking into points of the
form wk(a, b).

Lemma 15 Suppose there exists x ∈ LSp
+(Hk) where x violates (4). Then there exist

real numbers a, b where wk(a, b) ∈ LSp
+(Hk) and wk(a, b) violates (4).
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Proof Given x , let a := 1
2k

∑
i∈[k]0∪[k]2 xi and b := 1

k

∑
i∈[k]1 xi . Due to the presence

of the A2-balancing automorphisms S2, as well as Proposition 13, we know that
x ′ := wk(a, b) belongs to LSp

+(Hk). Now since x violates (4),

k(k − 1) < w(k − 1, k − 2)	x = (k − 1)(2ka) + (k − 2)(kb) = w(k − 1, k − 2)	x ′,

and so x ′ violates (4) as well. ��

Akey ingredient in our proof of themain result is to find a point x ∈ LSp
+(Hk)where

x violates (4) for some p ∈ �(k), which would imply that r+(Hk) > p. Lemma 15
assures that, due to the symmetries of Hk , we are not sacrificing any sharpness of
the result by only looking for such points x of the form wk(a, b). This enables us to
capture important properties of LSp

+(Hk) by analyzing a corresponding “shadow” of
the set in R2. More explicitly, given P ⊆ R

V (Hk ), we define

�(P) :=
{
(a, b) ∈ R

2 : wk(a, b) ∈ P
}

.

For example, it is not hard to see that

�(FRAC(Hk)) = conv

({
(0, 0),

(
1

2
, 0

)
,

(
1

2
,
1

2

)
, (0, 1)

})

for every k ≥ 2. We can similarly characterize �(STAB(Hk)).

Lemma 16 For every integer k ≥ 2, we have

�(STAB(Hk)) = conv

({
(0, 0),

(
1

2
, 0

)
,

(
1

k
,
k − 1

k

)
, (0, 1)

})
.

Proof Let k ≥ 2 be an integer. Then, the empty set, [k]1, [k]0, and [k]2 are all stable
sets in Hk . Notice that χ∅ = wk(0, 0) and χ[k]1 = wk(0, 1), and thus (0, 0) and (0, 1)
are both in�(STAB(Hk)). Also, since 1

2χ[k]0 + 1
2χ[k]2 = wk

( 1
2 , 0

) ∈ STAB(Hk), we
have

( 1
2 , 0

) ∈ �(STAB(Hk)). Next, recall from Lemma 8 that for every j ∈ [k],

S j := ([k]1 \ { j1}) ∪ { j0, j2}

is a stable set of Hk . Thus, 1
k

∑k
j=1 χS j = wk

( 1
k ,

k−1
k

) ∈ STAB(Hk),

and so
( 1
k ,

k−1
k

) ∈ �(STAB(Hk)). Therefore, �(STAB(Hk)) ⊇
conv

({
(0, 0),

( 1
2 , 0

)
,
( 1
k ,

k−1
k

)
, (0, 1)

})
.

On the other hand, for all (a, b) ∈ �(STAB(Hk)), it follows from Lemma 9 that

2(k − 1)a + (k − 2)b ≤ k − 1
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Since�(STAB(Hk)) ⊆ �(FRAC(Hk)), using our characterization of�(FRAC(Hk)),
we deduce �(STAB(Hk)) is contained in the set

conv

({
(0, 0),

(
1

2
, 0

)
,

(
1

2
,
1

2

)
, (0, 1)

})

∩
{
(a, b) ∈ R

2 : 2(k − 1)a + (k − 2)b ≤ k − 1
}

.

However, the above set is exactly conv
({

(0, 0),
( 1
2 , 0

)
,
( 1
k ,

k−1
k

)
, (0, 1)

})
. Therefore,

�(STAB(Hk)) = conv

({
(0, 0),

(
1

2
, 0

)
,

(
1

k
,
k − 1

k

)
, (0, 1)

})
.

��
Even though STAB(Hk) is an integral polytope, notice that �(STAB(Hk)) is not

integral. Nonetheless, it is clear that

LSp
+(Hk) = STAB(Hk) ⇒ �(LSp

+(Hk)) = �(STAB(Hk)).

Thus, to show that r+(Hk) > p, it suffices to find a point (a, b) ∈ �(LSp
+(Hk)) \

�(STAB(Hk)). More generally, given a graph G with a set of A-balancing automor-
phisms where A partitions V (G) into L sets, one can adapt our approach and study
the LS+-relaxations of G via analyzing L-dimensional shadows of these sets.

3.3 Strategy for the proof of themain result

So far, we have an infinite family of graphs {Hk}with nice symmetries. In Lemma 9(i)
we derived a family of facets of STAB(Hk), and then showed in Lemma 9(ii) that
these facets imply a symmetrized valid inequality for STAB(Hk). Notably, the left
hand side of this symmetrized inequality only has two distinct entries—one for the
vertices in [k]0 ∪ [k]2, and the other for vertices in [k]1.

Also, due to the symmetries of Hk , these graphs admitA-balancing automorphisms.
Using that and Proposition 13, we can use an arbitrary point x ∈ LSp

+(Hk) to derive a
symmetrized point x ′ ∈ LSp

+(Hk) for every k ≥ 2 and p ≥ 0. In particular, using the
A-balancing automorphisms described in (7), we are assured that the symmetrized x ′
has at most two distinct entries—one for vertices in [k]0 ∪ [k]2, and one for vertices
in [k]1.

These findings motivate the study of the two dimensional shadow �(LSp
+(Hk))

of LSp
+(Hk). We also have a complete characterization of �(STAB(Hk)) for every

integer k ≥ 2 (Lemma 16). Thus, to show that Hk has LS+-rank greater than
p, it suffices to establish the existence of a point in the two dimensional set
�(LSp

+(Hk))\�(STAB(Hk)).
The rest of the proof of themain result, presented in the next section, starts by charac-

terizing all symmetric positive semidefinitematrices that could certify themembership
of a vector x ′ in LS+(Hk) (x ′, as mentioned above, has at most two distinct entries).
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This characterization is relatively simple, since due to the isolated symmetries of x ′,
there always exists a symmetric positive semidefinite certificate matrix for certifying
the membership of x ′ in LS+(Hk) which has at most four distinct entries (ignoring
the 00th entry of the certificate matrix, which is one). Next, we construct a compact
convex set which is described by three linear inequalities and a quadratic inequality
such that this set is a subset of �(LS+(Hk)) and a strict superset of �(STAB(Hk))

for every integer k ≥ 4. This enables us to conclude for all k ≥ 4, r+(Hk) ≥ 2, and
establish some of the tools for the rest of the proof. The point wk

( 1
k ,

k−1
k

)
already

plays a special role.
Then, we put all these tools together to prove that there is a point in LSp

+(Hk) \
STAB(Hk) which is very close to wk

( 1
k ,

k−1
k

)
(we do this partly by working in the

2-dimensional space where �(LSp
+(Hk) lives). For the recursive construction of cer-

tificate matrices (to establish membership in LSp
+(Hk)), we show that in addition

to the matrix being symmetric, positive semidefinite, and satisfying a simple lin-
ear inequality, membership of two suitable vectors wk−1(a1, b1) and wk−1(a2, b2)
in LSp−1

+ (Hk−1) suffice (Lemma 20). The rest of the analysis proves that there exist
values for these parameters which allow the construction of certificate matrices for
suitable pairs of integers k and p.

4 Proof of themain result

4.1 8(LS+(Hk))—the shadow of the first relaxation

Here, we aim to study the set �(LS+(Hk)). To do that, we first look into potential
certificate matrices for wk(a, b) that have plenty of symmetries. Given k ∈ N and

a, b, c, d ∈ R, we define the matrix Wk(a, b, c, d) :=
[

1 wk(a, b)	
wk(a, b) W

]
, where

W :=
⎡

⎣
a 0 a − c
0 b 0

a − c 0 a

⎤

⎦⊗ Ik +
⎡

⎣
c a − c 0

a − c d a − c
0 a − c c

⎤

⎦⊗ (Jk − Ik).

Note that ⊗ denotes the Kronecker product, Ik is the k-by-k identity matrix, and Jk is
the k-by-k matrix of all ones. Also,Wk(a, b, c, d) ∈ R

({0}∪V (Hk))×({0}∪V (Hk )), and the
|Vk | = 3k columns of W are indexed by the vertices 10, 11, 12, 20, 21, 22, . . . from
left to right, with the rows following the same ordering. Then we have the following.

Lemma 17 Let k ∈ N and a, b, c, d ∈ R. Then Wk(a, b, c, d) 
 0 if and only if the
following conditions hold:

(S1) c ≥ 0;
(S2) a − c ≥ 0;
(S3) (b − d) − (a − c) ≥ 0;
(S4) 2a + (k − 2)c − 2ka2 ≥ 0;
(S5) (2a+(k−2)c−2ka2)(2b+2(k−1)d−2kb2)−(2(k−1)(a−c)−2kab)2 ≥ 0.
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Proof Define matrices W 1,W 2,W 3 ∈ R
3k×3k where

W 1 := 1

2
· Jk ⊗

⎡

⎣
c 0 −c
0 0 0

−c 0 c

⎤

⎦ ,

W 2 := 1

k
· (k Ik − Jk) ⊗

⎡

⎣
a − c c − a a − c
c − a b − d c − a
a − c c − a a − c

⎤

⎦ ,

W 3 := 1

2k
· Jk

⊗
⎡

⎣
2a + (k − 2)c − 2ka2 2(k − 1)(a − c) − 2kab 2a + (k − 2)c − 2ka2

2(k − 1)(a − c) − 2kab 2b + 2(k − 1)d − 2kb2 2(k − 1)(a − c) − 2kab
2a + (k − 2)c − 2ka2 2(k − 1)(a − c) − 2kab 2a + (k − 2)c − 2ka2

⎤

⎦ .

Then

W 1 + W 2 + W 3

=
⎡

⎣
a − a2 −ab a − c − a2

−ab b − b2 −ab
a − c − a2 −ab a − ab2

⎤

⎦⊗ Ik

+
⎡

⎣
c − a2 a − c − ab −a2

a − c − ab d − b2 a − c − ab
−a2 a − c − ab c − a2

⎤

⎦⊗ (Jk − Ik)

= W − wk(a, b)(wk(a, b))	,

which is a Schur complement of Wk(a, b, c, d). Thus, we see that Wk(a, b, c, d) 
 0
if and only ifW 1 +W 2 +W 3 
 0. Moreover, observe that the columns ofWi andW j

are orthogonal whenever i �= j . Thus, W 1 + W 2 + W 3 
 0 if and only if W 1,W 2,
and W 3 are all positive semidefinite. Now observe that

W 1 
 0 ⇐⇒
[
c −c

−c c

]

 0 ⇐⇒ (S1) holds,

W 2 
 0 ⇐⇒
[
a − c c − a
c − a b − d

]

 0 ⇐⇒ (S2) and (S3) hold,

W 3 
 0 ⇐⇒
[
2a + (k − 2)c − 2ka2 2(k − 1)(a − c) − 2kab
2(k − 1)(a − c) − 2kab 2b + 2(k − 1)d − 2kb2

]


 0 ⇐⇒ (S4) and (S5) hold.

Thus, the claim follows. ��

Next, for convenience, define qk := 1 −
√

k
2k−2 , and

pk(x, y) := (2x2 − x) + 2q2k (y
2 − y) + 4qkxy.
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Fig. 3 Visualizing the set C for
the case k = 10

Notice that the curve pk(x, y) = 0 is a parabola for all k ≥ 3. Then, using Lemma 17,
we have the following.

Proposition 18 For every k ≥ 4,

�(LS+(Hk)) ⊇
{
(x, y) ∈ R

2 : pk(x, y) ≤ 0, x + y ≤ 1, x ≥ 0, y ≥ 0
}

. (9)

Proof For convenience, let C denote the set on the right hand side of (9). Notice that
the boundary points of the triangle {(x, y) : x + y ≤ 1, x ≥ 0, y ≥ 0} which lie in C
are also boundary points of �(STAB(Hk)). Thus, let us define the set of points

C0 :=
{
(x, y) ∈ R

2 : pk(x, y) = 0,
1

k
< x <

1

2

}
.

To prove our claim, it suffices to prove that for all (a, b) ∈ C0, there exist c, d ∈ R

such that Wk(a, b, c, d) certifies wk(a, b) ∈ LS+(Hk).
To help visualize our argument, Fig. 3 (which is produced using Desmos’ online

graphing calculator [17]) illustrates the set C for the case of k = 10.
Now given (a, b) ∈ R

2 (not necessarily in C0), consider the conditions (S3) and
(S5) from Lemma 17:

b − a + c ≥ d, (10)

(2a + (k − 2)c − 2ka2)(2b + 2(k − 1)d − 2kb2) − (2(k − 1)(a − c) − 2kab)2 ≥ 0.
(11)

If we substitute d = b − a + c into (11) and solve for c that would make both sides
equal, we would obtain the quadratic equation p2c2 + p1c + p0 = 0 where

p2 := (k − 2)(2(k − 1)) − (−2(k − 1))2,

p1 := (k − 2)(2b + 2(k − 1)(b − a) − 2kb2) + (2a − 2ka2)(2(k − 1))

− 2(−2(k − 1))(2(k − 1)a − 2kab),
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p0 := (2a − 2ka2)(2b + 2(k − 1)(b − a) − 2kb2) − (2(k − 1)a − 2kab)2.

We then define

c := −p1
2p2

= −a2 − 2ab − b2

2
+ 3a

2
+ b

2
+ b (b − 1)

2 (k − 1)
,

and d := b − a + c. We claim that, for all (a, b) ∈ C0, Wk(a, b, c, d) would certify
wk(a, b) ∈ LS+(Hk). First, we provide some intuition for the choice of c. Let qk :=
1 +

√
k

2k−2 and

pk(x, y) := (2x2 − x) + 2q2k(y
2 − y) + 4qkxy.

Then, if we consider the discriminant p := p21 − 4p0 p2, one can check that

p = 4(k − 1)2 pk(a, b)pk(a, b).

Thus, when p > 0, there would be two solutions to the quadratic equation p2x2 +
p1x+ p0 = 0, and cwould be defined as the midpoint of these solutions. In particular,
when (a, b) ∈ C0, pk(a, b) = p = 0, and so c = −p1

2p2
would indeed be the unique

solution that satisfies both (10) and (11) with equality.
Now we verify that Y := Wk(a, b, c, d), as defined, satisfies all the conditions

imposed by LS+. We first show that Wk(a, b, c, d) 
 0 by verifying the conditions
from Lemma 17. Notice that (S3) and (S5) must hold by the choice of c and d. Next,
we check (S1), namely c ≥ 0. Define the region

T :=
{
(x, y) ∈ R

2 : 1
k

≤ x ≤ 1

2
,
(1 − 2x)(k − 1)

k − 2
≤ y ≤ 1 − x

}
.

In other words, T is the triangular region with vertices
( 1
k ,

k−1
k

)
,
( 1
2 , 0

)
, and

( 1
2 ,

1
2

)
.

Thus, T contains C0 and it suffices to show that c ≥ 0 over T . Fixing k and viewing
c as a function of a and b, we obtain

∂c

∂a
= −2a − 2b + 3

2
,

∂c

∂b
= (−4a − 2b + 1)k + 4a + 4b − 2

2k − 2
.

Solving ∂c
∂a = ∂c

∂b = 0, we obtain the unique solution (a, b) = (−k+2
4k , 4k−2

4k

)
, which is

outside of T . Next, one can check that c is non-negative over the three edges of T , and
we conclude that c ≥ 0 over T , and thus (S1) holds. The same approach also shows
that both a − c and 2a + (k − 2)c − 2ka2 are non-negative over T , and thus (S2) and
(S4) hold as well, and we conclude that Y 
 0.

Next, we verify that Yei ,Y (e0 − ei ) ∈ cone(FRAC(Hk)). By the symmetry of Hk ,
it suffices to verify these conditions for the vertices i = 10 and i = 11.
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• Ye10 : Define S1 := {10, 12} ∪ {i1 : 2 ≤ i ≤ k} and S2 := [k]0. Observe that both
S1, S2 are stable sets of Hk , and that

Ye10 = (a − c)

[
1

χS1

]
+ c

[
1

χS2

]
, (12)

Since we verified above that c ≥ 0 and a − c ≥ 0, Ye10 ∈ cone(STAB(Hk)),
which is contained in cone(FRAC(Hk)).

• Ye11 : The non-trivial edge inequalities imposed by Ye11 ∈ cone(FRAC(Hk)) are

[Ye11 ]22 + Y [e11 ]30 ≤ [Ye11 ]0 ⇒ 2(a − c) ≤ b, (13)

[Ye11 ]20 + [Ye11 ]21 ≤ [Ye11 ]0 ⇒ a − c + d ≤ b. (14)

Note that (14) is identical to (S3), which we have already established. Next, we
know from (S4) that c ≥ 2ka2−2a

k−2 . That together with the fact that 2(k − 1)a +
(k − 2)b ≥ k − 1 for all (a, b) ∈ C0 and k ≥ 4 implies (13).

• Y (e0 − e10): The non-trivial edge inequalities imposed by Y (e0 − e10) ∈
cone(FRAC(Hk)) are

[Y (e0 − e10 )]22 + [Y (e0 − e10 )]30 ≤ [Y (e0 − e10 )]0 ⇒ a + (a − c) ≤ 1 − a, (15)

[Y (e0 − e10 )]21 + [Y (e0 − e10 )]22 ≤ [Y (e0 − e10 )]0 ⇒ (b − a + c) + a ≤ 1 − a.

(16)

(15) follows from (13) and the fact that a − c ≥ 0. For (16), we aim to show that
a + b + c ≤ 1. Define the quantity

g(x, y) := 1 − 5

2
x − 3

2
y + x2 + 1

2
y2 + 2xy − y (y − 1)

2 (k − 1)
.

Then g(a, b) = 1−a−b−c. Notice that, for all k, the curve g(x, y) = 0 intersects
with C at exactly three points: (0, 1),

( 1
k ,

k−1
k

)
, and

( 1
2 , 0

)
. In particular, the curve

does not intersect the interior of C . Therefore, g(x, y) is either non-negative or
non-positive over C . Since g(0, 0) = 1, it is the former. Hence, g(x, y) ≥ 0 over
C (and hence C0), and (16) holds.

• Y (e0 − e11): The non-trivial edge inequalities imposed by Y (e0 − e11) ∈
cone(FRAC(Hk)) are

[Y (e0 − e11)]10 + [Y (e0 − e11)]22 ≤ [Y (e0 − e11)]0 ⇒ a + c ≤ 1 − b, (17)

[Y (e0 − e11)]20 + [Y (e0 − e11)]21 ≤ [Y (e0 − e11)]0 ⇒ c + (b − d) ≤ 1 − b.
(18)

(17) is identical to (15), which we have verified above. Finally, (18) follows from
(S3) and the fact that a + b ≤ 1 for all (a, b) ∈ C .

This completes the proof. ��
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An immediate consequence of Proposition 18 is the following.

Corollary 19 For all k ≥ 4, r+(Hk) ≥ 2.

Proof For every k ≥ 4, the set described in (9) is not equal to �(STAB(Hk)). Thus,
there exists wk(a, b) ∈ LS+(Hk)\STAB(Hk) for all k ≥ 4, and the claim follows. ��

Corollary 19 is sharp—notice that destroying any vertex in H3 yields a bipartite
graph, so it follows from Theorem 4(i) that r+(H3) = 1. Also, since destroying a
vertex in H4 either results in H3 or a bipartite graph, we see that r+(H4) = 2.

4.2 Showing r+(Hk) = 2(k)

We now develop a few more tools that we need to establish the main result of this
section. Again, to conclude that r+(Hk) > p, it suffices to show that �(LSp

+(Hk)) ⊃
�(STAB(Hk)). In particular, we will do so by finding a point in �(LSp

+(Hk)) \
�(STAB(Hk)) that is very close to the point

( 1
k ,

k−1
k

)
. Given (a, b) ∈ R

2, let

sk(a, b) :=
k−1
k − b
1
k − a

.

That is, sk(a, b) is the slope of the line that contains the points (a, b) and
( 1
k ,

k−1
k

)
.

Next, define

f (k, p) := sup

{
sk(a, b) : (a, b) ∈ �(LSp

+(Hk)), a >
1

k

}
.

In other words, f (k, p) is the slope of the tangent line to �(LSp
+(Hk)) at the point( 1

k ,
k−1
k

)
towards the right hand side. Thus, for all � < f (k, p), there exists ε >

0 where the point
( 1
k + ε, k−1

k + �ε
)
belongs to �(LSp

+(Hk)). For p = 0 (and so
LSp

+(Hk) = FRAC(Hk)), observe that f (k, 0) = −1 for all k ≥ 2 (attained by
the point

( 1
2 ,

1
2

)
). Next, for p = 1, consider the polynomial pk(x, y) defined before

Proposition 18. Then any point (x, y) on the curve pk(x, y) = 0 has slope

∂

∂x
pk(x, y) = 1 − 4x − 4qk y

4q2k y − qk + 4qkx
.

Thus, by Proposition 18,

f (k, 1) ≥ ∂

∂x
pk(x, y)

∣∣
∣∣
(x,y)=

(
1
k , k−1

k

) = −1 − k

3k2 − 2(k − 1)2
√

2k
k−1 − 4k

(19)

for all k ≥ 4. Finally, if p ≥ r+(Hk), then f (k, p) = − 2(k−1)
k−2 (attained by the point

( 1
2 , 0

) ∈ �(STAB(Hk))).
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Wewill prove ourLS+-rank lower boundon Hk by showing that f (k, p) > − 2(k−1)
k−2

for some p = �(k). To do so, we first show that the recursive structure of Hk

allows us to establish (a, b) ∈ �(LSp
+(Hk)) by verifying (among other conditions)

the membership of two particular points in �(LSp−1
+ (Hk−1)), which will help us

relate the quantities f (k − 1, p − 1) and f (k, p). Next, we bound the difference
f (k−1, p−1)− f (k, p) fromabove,which implies that it takesLS+ many iterations to
knock the slopes f (k, p) from that of �(FRAC(Hk)) down to that of �(STAB(Hk)).

First, here is a tool that will help us verify certificate matrices recursively.

Lemma 20 Suppose a, b, c, d ∈ R satisfy all of the following:

(i) Wk(a, b, c, d) 
 0,
(ii) 2b + 2c − d ≤ 1,

(iii) wk−1
( a−c

b , d
b

)
, wk−1

(
a−c

1−a−c ,
b−a+c
1−a−c

)
∈ LSp−1

+ (Hk−1).

Then Wk(a, b, c, d) certifies wk(a, b) ∈ LSp
+(Hk).

Proof For convenience, let Y := Wk(a, b, c, d). First, Y 
 0 from (i). Next, we focus
on the following column vectors:

• Ye10 : Y 
 0 implies that c ≥ 0 and a − c ≥ 0 by Lemma 17. Then it follows
from (12) that Ye10 ∈ cone(STAB(Hk)) ⊆ cone(LSp−1

+ (Hk)).

• Ye11 : (iii) implies

[
b

wk−1(a − c, d)

]
∈ cone(LSp−1

+ (Hk−1)). Thus,

Ye11 =

⎡

⎢⎢⎢
⎢
⎣

b
0
b
0

wk−1(a − c, d)

⎤

⎥⎥⎥
⎥
⎦

∈ cone(LSp−1
+ (Hk)).

• Y (e0 − e10): Let S1 := [k]2, which is a stable set in Hk . Then observe that

Y (e0 − e10) = c

[
1

χS1

]
+

⎡

⎢⎢
⎢⎢
⎣

1 − a − c
0
b
0

wk−1(a − c, b − a + c)

⎤

⎥⎥
⎥⎥
⎦

.

By (iii) and the fact that cone(LSp−1
+ (Hk)) is a convex cone, it follows that Y (e0 −

e10) ∈ cone(LSp−1
+ (Hk)).

• Y (e0 − e11): Define S2 := [k]0, S3 := {10, 12} ∪ {i1 : 2 ≤ i ≤ k}, and S4 :=
{i1 : 2 ≤ i ≤ k}, which are all stable sets in Hk . Now observe that
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Y (e0 − e11) =c

[
1

χS1

]
+ c

[
1

χS2

]
+ (a − c)

[
1

χS3

]
+ (b − d − a + c)

[
1

χS4

]

+ (1 − 2b − 2c + d)

[
1
0

]
.

Since Y 
 0, b − d − a + c ≥ 0 from (S3). Also, 1 − 2b − 2c + d ≥ 0 by (ii).
Thus, Y (e0 − e11) is a sum of vectors in cone(STAB(Hk)), and thus belongs to
cone(LSp−1

+ (Hk)).

By the symmetry of Hk and Wk(a, b, c, d), it suffices to verify the membership con-
ditions for the above columns. Thus, it follows that Wk(a, b, c, d) indeed certifies
wk(a, b) ∈ LSp

+(Hk). ��
Example 21 We illustrate Lemma 20 by using it to show that r+(H7) ≥ 3. Let k =
7, a = 0.1553, b = 0.8278, c = 0.005428, and d = 0.6665. Then one can check
(via Lemma 17) that Wk(a, b, c, d) 
 0, and 2b + 2c − d ≤ 1. Also, one can

check thatwk−1
( a−c

b , d
b

)
andwk−1

(
a−c

1−a−c ,
b−a+c
1−a−c

)
both belong to LS+(Hk−1) using

Proposition 18. Thus, Lemma 20 applies, andwk(a, b) ∈ LS2+(Hk). Now observe that
2(k − 1)a + (k − 2)b = 6.0026 > k − 1, and so wk(a, b) /∈ STAB(Hk), and we
conclude that r+(H7) ≥ 3.

Next, we apply Lemma 20 iteratively to find a lower bound for the LS+-rank of
Hk as a function of k. The following is an updated version of Lemma 20 that gets us
a step closer to directly relating f (k, p) and f (k − 1, p − 1).

Lemma 22 Suppose a, b, c, d ∈ R satisfy all of the following:

(i) Wk(a, b, c, d) 
 0,
(ii) 2b + 2c − d ≤ 1,

(iii) max
{
sk−1

( a−c
b , d

b

)
, sk−1

(
a−c

1−a−c ,
b−a+c
1−a−c

)}
≤ f (k − 1, p − 1).

Then f (k, p) ≥ sk(a, b).

Proof Given a, b, c, d ∈ R that satisfy the given assumptions, define

a(λ) := λ

k
+ (1 − λ)a, b(λ) := λ(k − 1)

k
+ (1 − λ)b,

c(λ) := (1 − λ)c, d(λ) := λ(k − 2)

k
+ (1 − λ)d.

Then notice that

Wk(a(λ), b(λ), c(λ), d(λ)) = λWk

(
1

k
,
k − 1

k
, 0,

k − 2

k

)
+ (1 − λ)Wk(a, b, c, d).

(20)

Observe (e.g., via Lemma 17) that Wk
( 1
k ,

k−1
k , 0, k−2

k

) 
 0 for all k ≥ 2. Since
Wk(a, b, c, d) 
 0 from (i), it follows from (20) and the convexity of the positive
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semidefinite cone that

Wk(a(λ), b(λ), c(λ), d(λ)) 
 0

for all λ ∈ [0, 1].
Nowobserve that for allλ > 0, sk(a(λ), b(λ)) = sk(a, b), sk−1

(
a(λ)−c(λ)

b(λ)
,
d(λ)
b(λ)

)
=

sk−1
( a−c

b , d
b

)
, and sk−1

(
a(λ)−c(λ)

1−a(λ)−c(λ)
,
b(λ)−a(λ)+c(λ)
1−a(λ)−c(λ)

)
= sk−1

(
a−c

1−a−c ,
b−a+c
1−a−c

)
. By

assumption (iii), theremust be a sufficiently small λ > 0wherewk−1

(
a(λ)−c(λ)

b(λ)
,
d(λ)
b(λ)

)

and wk−1

(
a(λ)−c(λ)

1−a(λ)−c(λ)
,
b(λ)−a(λ)+c(λ)
1−a(λ)−c(λ)

)
are both contained in LSp−1

+ (Hk). Then

Lemma 20 implies that wk(a(λ), b(λ)) ∈ LSp
+(Hk), and the claim follows. ��

Next, we define four values corresponding to each k that will be important in our
subsequent argument:

u1(k) := −2(k − 1)

k − 2
, u2(k) := k − 4 − √

17k2 − 48k + 32

2(k − 2)
,

u3(k) := 4(k − 1)(−3k+4−2
√
k − 1)

(k − 2)(9k − 10)
, u4(k) := −1− k

3k2−2(k − 1)2
√

2k
k−1−4k

.

Notice that u1(k) = f (k, p) for all p ≥ r+(Hk), and u4(k) is the expression given
in (19), the lower bound for f (k, 1) that follows from Proposition 18. Then we have
the following.

Lemma 23 For every k ≥ 5,

u1(k) < u2(k) < u3(k) < u4(k).

Proof First, one can check that the chain of inequalities holds when 5 ≤ k ≤ 26, and
that

− 2 < u2(k) <
1 − √

17

2
< u3(k) < −4

3
< u4(k) (21)

holds for k = 27. Next, notice that

lim
k→∞ u1(k) = −2, lim

k→∞ u2(k) = 1 − √
17

2
, lim

k→∞ u3(k) = −4

3
,

and that ui (k) is an increasing function of k for all i ∈ [4]. Thus, (21) in fact holds for
all k ≥ 27, and our claim follows. ��

Now we are ready to prove the following key lemma which bounds the difference
between f (k − 1, p − 1) and f (k, p).
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Lemma 24 Given k ≥ 5 and � ∈ (u1(k), u3(k)), let

γ := (k − 2)(9k − 10)�2 + 8(k − 1)(3k − 4)� + 16(k − 1)2,

and

h(k, �) := 4(k − 2)� + 8(k − 1)√
γ + 3(k − 2)� + 8(k − 1)

− 2 − �.

If f (k − 1, p − 1) ≤ � + h(k, �), then f (k, p) ≤ �.

Proof Given ε > 0, define a := 1
k + ε and b := k−1

k + �ε. We solve for c, d so that
they satisfy condition (ii) in Lemma 22 and (S5) in Lemma 17 with equality. That is,

d − 2b − 2c = 1, (22)

(2a + (k − 2)c − 2ka2)(2b + 2(k − 1)d − 2kb2) − (2(k − 1)(a − c) − 2kab)2 = 0. (23)

To do so, we substitute d = 2b + 2c − 1 into (23), and obtain the quadratic equation

p2c
2 + p1c + p0 = 0

where

p2 := (k − 2)(4(k − 1)) − (−2(k − 1))2,

p1 := (k − 2)(2b + 2(k − 1)(2b − 1) − 2kb2) + (2a − 2ka2)(4(k − 1))

− 2(−2(k − 1))(2(k − 1)a − 2kab),

p0 := (2a − 2ka2)(2b + 2(k − 1)(2b − 1) − 2kb2) − (2(k − 1)a − 2kab)2.

We then define c := −p1+
√
p21−4p0 p2
2p2

(this would be the smaller of the two solutions,
as p2 < 0), and d := 2b + 2c − 1. First, we assure that c is well defined. If we
consider the discriminant p := p21 − 4p0 p2 as a function of ε, then p(0) = 0,

and that d2

dε2
p(0) > 0 for all � ∈ (u1(k), u3(k)). Thus, there must exist ε > 0 where

p ≥ 0, and so c, d are well defined.
Next, we verify thatWk(a, b, c, d) 
 0 for some ε > 0 by checking the conditions

fromLemma 17. First, by the choice of c, d, (S5) must hold. Next, define the quantities

θ1 := c, θ2 := a − c,

θ3 := b − d − a + c, θ4 := 2a + (k − 2)c − 2ka2.

Notice that at ε = 0, θi = 0 for all i ∈ [4]. Next, given a quantity q that depends on ε,
we use the notation q ′(0) denote the one-sided derivative limε→0+ q

ε
. Then it suffices

to show that θ ′
i (0) ≥ 0 for all i ∈ [4]. Observe that

θ ′
1(0) ≥ 0 ⇐⇒ c′(0) ≥ 0, θ ′

2(0) ≥ 0 ⇐⇒ c′(0) ≤ 1,
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θ ′
3(0) ≥ 0 ⇐⇒ c′(0) ≤ −1 − �, θ ′

4(0) ≥ 0 ⇐⇒ c′(0) ≥ 2

k − 2
.

Now one can check that

c′(0) = −3k� − √
γ − 4k + 2� + 4

4k − 4
.

As a function of �, c′(0) is increasing over (u1(k), u3(k)), with

c′(0)
∣∣
�=u1(k)

= 2

k − 2
, c′(0)

∣∣
�=u3(k)

= (6k − 4)
√
k − 1 + 10k − 12

(k − 2)(9k − 10)
.

Thus, for all k ≥ 5, we see that 2
k−2 ≤ c′(0) ≤ min {1,−1 − �} for all � ∈

(u1(k), u3(k)), and so there exists ε > 0 where Wk(a, b, c, d) 
 0.
Next, for convenience, let

s1 := sk−1

(
a − c

b
,
d

b

)
, s2 := sk−1

(
a − c

1 − a − c
,
b − a + c

1 − a − c

)
.

Notice that both s1, s2 are undefined at ε = 0, as
( a−c

b , d
b

) =
(

a−c
1−a−c ,

b−a+c
1−a−c

)
=

(
1

k−1 ,
k−2
k−1

)
in this case. Now one can check that

lim
ε→0+ s1 = −2

√
γ − 2(k − 2)� − 8(k − 1)√

γ + 3(k − 2)� + 8(k − 1)
,

lim
ε→0+ s2 = (−2k + 3)

√
γ − (2k − 1)(k − 2)� − 8(k − 1)2

(k − 2)
√

γ + (3k − 2)(k − 2)� + 8(k − 1)2
.

Observe that for k ≥ 5 and for all � ∈ (u1(k), 0), we have

0 >
−2

√
γ√

γ
>

(−2k + 3)
√

γ

(k − 2)
√

γ
,

0 >
−2(k − 2)� − 8(k − 1)

3(k − 2)� + 8(k − 1)
>

−(2k − 1)(k − 2)� − 8(k − 1)2

(3k − 2)(k − 2)� + 8(k − 1)2
.

Thus, we conclude that for all k, � under our consideration, s1 ≥ s2 for arbitrarily
small ε > 0.

Now, notice that h(k, �) = limε→0+ s1 − �. Thus, if � ∈ (u1(k), u3(k)), then there
exists ε > 0 where the matrix Wk(a, b, c, d) as constructed is positive semidefinite,
satisfies d ≥ 2b+2c−1 (by the choice of c, d), with s2 ≤ s1 ≤ h(k, �)+�. Hence, if
f (k−1, p−1) ≥ �+h(k, �), then Lemma 22 applies, andwe obtain that f (k, p) ≥ �.

��
Applying Lemma 24 iteratively, we obtain the following.

123



Y.H. Au, L. Tunçel

Lemma 25 Given k ≥ 5, suppose there exists �1, . . . , �p ∈ R where

(i) �p > u1(k), �2 < u3(k − p + 2), and �1 < u4(k − p + 1);
(ii) �i + h(k − p + i, �i ) ≤ �i−1 for all i ∈ {2, . . . , p}.
Then r+(Hk) ≥ p + 1.

Proof First, notice that �1 < u4(k − p + 1) ≤ f (k − p + 1, 1) by Proposition 18.
Then since �2 < u3(k − p + 2) and �2 + h(k − p + 2, �2) ≤ �1, Lemma 24 implies
that �2 ≤ f (k − p + 2, 2). Iterating this argument results in �i ≤ f (k − p + i, i) for
every i ∈ [p]. In particular, we have �p ≤ f (k, p). Since �p > u1(k), it follows that
r+(Hk) > p, and the claim follows. ��

Lemmas 24 and 25 provide a simple procedure of establishing LS+-rank lower
bounds for Hk .

Example 26 Let k = 7. Then �2 = −2.39 and �1 = �2+h(7, �2) certify that r+(H7) ≥
3. Similarly, for k = 10, one can let �3 = −2.24, �2 = �3 + h(10, �3), and �1 =
�2 + h(9, �2) and use Lemma 25 to verify that r+(H10) ≥ 4.

Next, we prove a lemma that will help us obtain a lower bound for r+(Hk)

analytically.

Lemma 27 For all k ≥ 5 and � ∈ (u1(k), u2(k)), h(k, �) ≤ 2
k−2 .

Proof One can check that the equation h(k, �) = 2
k−2 has three solutions: � =

u1(k), u2(k), and k−4−√
17k2−48k+32
2(k−2) (which is greater than u2(k)). Also, notice that

∂
∂�
h(k, �)

∣∣
�=u1(k)

= − 1
k−1 < 0. Since h(k, �) is a continuous function of � over

(u1(k), u2(k)), it follows that h(k, �) ≤ 2
k−2 for all � in this range. ��

We are finally ready to prove the main result of this section.

Theorem 28 The LS+-rank of Hk is

• at least 2 for 4 ≤ k ≤ 6;
• at least 3 for 7 ≤ k ≤ 9;
• at least �0.19(k − 2)� + 3 for all k ≥ 10.

Proof First, r+(H4) ≥ 2 follows from Corollary 19, and r+(H7) ≥ 3 was shown in
Example 21 and again in Example 26. Moreover, one can use the approach illustrated
in Example 26 to verify that r+(Hk) ≥ �0.19(k−2)�+3 for all k where 10 ≤ k ≤ 49.
Thus, we shall assume that k ≥ 50 for the remainder of the proof.

Let q := �0.19(k − 2)�, let ε > 0 that we set to be sufficiently small, and define

�i := ε + u1(k) +
q+2−i∑

j=1

2

k − 1 − j
.
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for every i ∈ [q + 2]. (We aim to subsequently apply Lemma 25 with p = q + 2.)
Now notice that

q∑

j=1

2

k − 1 − i
≤
∫ k−2

k−2−q

2

t
dt = 2 ln

(
k − 2

k − 2 − q

)
,

Also, notice that

u2(k − q) − u1(k) ≥ u2

(
4

5
k

)
− u1(k),

as u2 is an increasing function in k and q ≤ k
5 . Also, one can check that w(k) :=

u2
( 4
5k
)− u1(k) is also an increasing function for all k ≥ 5. Next, we see that

2 ln

(
k − 2

k − 2 − q

)
≤ w(50) ⇐⇒ q ≤

(
1 − 1

exp(w(50)/2)

)
(k − 2)

Since 1− 1
exp(w(50)/2) > 0.19, the first inequality does hold by the choice of q. Hence,

�2 − ε = u1(k) +
q∑

j=1

2

k − 1 − j
< u2(k − q).

Thus, we can choose ε sufficiently small so that �2 < u2(k − q). Then Lemma 27
implies that �i + h(k − q − 2 + i, �i ) ≤ �i−1 for all i ∈ {2, . . . , q + 2}. Also, for all
k ≥ 50, u2(k−q)+ 1

k−q−1 < u4(k−q−1). Thus, we obtain that �1 < u4(k−q−1),
and it follows from Lemma 25 that r+(Hk) ≥ q + 3. ��

Since Hk has 3k vertices, Theorem28 (and the fact that r+(H3) = 1) readily implies
Theorem 2. In other words, we now know that for every � ∈ N, there exists a graph
on no more than 16� vertices that has LS+-rank �.

5 Chvátal–Gomory rank of STAB(Hk)

In this section we determine the degree of hardness of STAB(Hk) relative to another
well-studied cutting plane procedure that is due to Chvátal [16] with earlier ideas
from Gomory [25]. Given a set P ⊆ [0, 1]n , if a	x ≤ β is a valid inequality of P
and a ∈ Z

n , we say that a	x ≤ �β� is a Chvátal–Gomory cut for P . Then we define
CG(P), the Chvátal–Gomory closure of P , to be the set of points that satisfy all
Chvátal–Gomory cuts for P . Note that CG(P) is a closed convex set which contains
all integral points in P . Furthermore, given an integer p ≥ 2, we can recursively define
CGp(P) := CG(CGp−1(P)). Then given any valid linear inequality of PI , we can
define its CG-rank (relative to P) to be the smallest integer p for which the linear
inequality is valid for CGp(P).
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In Sect. 4, we proved that the inequality (4) has LS+-rank�(|V (Hk)|). This implies
that the inequality (3) also has LS+-rank �(|V (Hk)|) (since it was shown in the proof
of Lemma 9(ii) that (4) is a non-negative linear combination of (3)). Here, we show
that (3) has CG-rank �(log(|V (Hk)|)).
Theorem 29 Let d be theCG-rank of the facet (3) ofSTAB(Hk) relative toFRAC(Hk).
Then

log4

(
3k − 7

2

)
< d ≤ log2 (k − 1) .

Before providing a proof of Theorem 29, first, we need a lemma about the valid
inequalities of STAB(Hk).

Lemma 30 Suppose a	x ≤ β is valid for STAB(Hk) where a ∈ Z
V (Hk)+ \ {0}. Then

β

a	ē > 1
3 .

Proof We consider two cases. First, suppose that a j1 = 0 for all j ∈ [k]. Since [k]p is
a stable set in Hk for p ∈ {0, 1, 2}, observe that

a	ē = a	 (χ[k]0 + χ[k]1 + χ[k]2
) ≤ β + 0 + β = 2β.

Thus, we obtain that β

a	ē ≥ 1
2 > 1

3 in this case. Otherwise, we may choose j ∈ [k]
where a j1 > 0. Consider the stable sets

S0 := ([k]0 \ { j0}) ∪ { j1} , S1 := ([k]1 \ { j1}) ∪ { j0, j2} , S2 := ([k]2 \ { j2}) ∪ { j1} .

Now χS0 + χS1 + χS2 = ē + e j1 . Since a j1 > 0, this implies that

a	ē < a	(ē + e j1) = a	 (χS0 + χS1 + χS2

) ≤ 3β,

and so β

a	ē > 1
3 in this case as well. ��

We will also need the following result.

Lemma 31 [14, Lemma 2.1] Let P ⊆ R
n be a rational polyhedron. Given u, v ∈ R

n

and positive real numbers m1, . . . ,md ∈ R, define

x (i) := u −
(

d∑

i=1

1

mi

)

v

for all i ∈ [d]. Suppose
(i) u ∈ P, and
(ii) for all i ∈ [d], a	x (i) ≤ β, for every inequality a	x ≤ β that is valid for PI and

satisfies a ∈ Z
n and a	v < mi .

Then x (i) ∈ CGi (P) for all i ∈ [d].
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We are now ready to prove Theorem 29.

Proof of Theorem 29 We first prove the rank lower bound. Given d ≥ 0, let k :=
1
3 (2

2d+1 + 7) (then d = log4
( 3k−7

2

)
). We show that the CG-rank of the inequality∑

i∈Bj, j ′ xi ≤ k − 1 is at least d + 1 using Lemma 31.

Let u := 1
2 ē, v := ē, and mi := 22i+1 for all i ∈ [d]. Then notice that x (i) =

22i+1+1
3·22i+1 ē for all i ∈ [d]. Now suppose a	x ≤ β is valid for STAB(Hk) where a is

an integral vector and a	v < mi (which translates to a	ē < 22i+1). Now Lemma 30
implies that β

a	ē > 1
3 . Furthermore, using the fact that β, a	ē are both integers,

a	ē < 22i+1, and 22i+1 ≡ 2 (mod 3), we obtain that β

a	ē ≥ 22i+1+1
3·22i+1 , which implies

that a	x (i) ≤ β. Thus, it follows from Lemma 31 that x (i) ∈ CGi (Hk) for every
i ∈ [d].

In particular, we obtain that x (d) = 22d+1+1
3·22d+1 ē ∈ CGd(Hk). However, notice that

x (d) violates the inequality
∑

i∈Bj, j ′ xi ≤ k − 1 for STAB(Hk), as

k − 1

|Bj, j ′ | = k − 1

3k − 4
= 22d+1 + 4

3 · 22d+1 + 3
>

22d+1 + 1

3 · 22d+1 .

Next, we turn to proving the rank upper bound. Given d ∈ N, let k := 2d + 1 (then
d = log2(k−1)).We prove that

∑
i∈Bj, j ′ xi ≤ k−1 is valid for CGd(Hk) by induction

on d. When d = 1, we see that k = 3 and Bj, j ′ induces a 5-cycle, so the claim holds.
Now assume d ≥ 2, and k = 2d + 1. Let j, j ′ be distinct, fixed indices in [k]. By

the inductive hypothesis, if we let T ⊆ [k]\ { j, j ′} where |T | = 2d−1 − 1, then the
inequality

x j0 + x j ′2 +
∑

�∈T

(
x�0 + x�1 + x�2

) ≤ 2d−1 (24)

is valid for CGd−1(Hk) (since the subgraph induced by {�0, �1, �2 : � ∈ T } ∪ { j0, j ′2
}

is a copy of that by Bj, j ′ in Hk−1). Averaging the above inequality over all possible
choices of T , we obtain that

x j0 + x j ′2 + 2d−1 − 1

k − 2

∑

�∈[k]\{ j, j ′}

(
x�0 + x�1 + x�2

) ≤ 2d−1 (25)

is valid for CGd−1(Hk). Next, using (24) plus two edge inequalities, we obtain that
for all T ⊆ [k]\ { j, j ′} where |T | = 2d−1 + 1, the inequality

∑

�∈T

(
x�0 + x�1 + x�2

) ≤ 2d−1 + 2
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is valid for CGd−1(Hk). Averaging the above inequality over all choices of T , we
obtain

2d−1 + 1

k − 2

∑

�∈[k]\{ j, j ′}

(
x�0 + x�1 + x�2

) ≤ 2d−1 + 2. (26)

Taking the sum of (25) and k−2d−1−1
2d−1+1

times (26), we obtain that

x j0 + x j ′2 +
∑

�∈[k]\{ j, j ′}

(
x�0 + x�1 + x�2

) ≤ k − 2d−1 − 1

2d−1 + 1
(2d−1 + 2) + 2d−1

(27)

is valid for CGd−1(Hk). Now observe that the left hand side of (27) is simply∑
i∈Bj, j ′ xi . On the other hand, the right hand side simplifies to k − 2 + k

2d−1+1
.

Since k = 2d + 1, 1 < k
2d−1+1

< 2, and so the floor of the right hand side of (27) is
k − 1. This shows that the inequality

∑
i∈Bj, j ′ xi ≤ k − 1 has CG-rank at most d. ��

Thus, we conclude that the facet (3) has LS+-rank �(|V (Hk)|) and CG-rank
�(log(|V (Hk)|)). We remark that the two results are incomparable in terms of com-
putational complexity since it is generally NP-hard to optimize over CGp(P) even
for p = O(1). These rank bounds for Hk also provides an interesting contrast with the
aforementioned example involving line graphs of odd cliques from [37], which have
LS+-rank �(

√|V (G)|) and CG-rank �(log(|V (G)|)). In the context of the match-
ing problem, odd cliques have CG-rank one with respect to the fractional matching
polytope. This last claim follows from an observation of Chvátal [16, pp. 309–310].

6 Symmetric graphs with high LS+-ranks

So far we have established that there exists a family of graphs (e.g., {Hk : k ≥ 2})
which have LS+-rank �(|V (G)|). However, the previous best result in this context
�(

√|V (G)|) was achieved by a vertex-transitive family of graphs (line graphs of odd
cliques). In this section, we show that there exists a family of vertex-transitive graphs
which also have LS+-rank �(|V (G)|).

6.1 The Lk construction

In this section, we look into a procedure that is capable of constructing highly
symmetric graphs with high LS+-rank by virtue of containing Hk as an induced
subgraph.

Definition 32 Given a graphG and an integer k ≥ 2, define the graph Lk(G) such that
V (Lk(G)) := {

i p : i ∈ [k], p ∈ V (G)
}
, and vertices i p, jq are adjacent in Lk(G) if

• i = j and {p, q} ∈ E(G), or
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Fig. 4 Illustrating the Lk (G) construction on the 4-cycle

• i �= j , p �= q, and {p, q} /∈ E(G).

For example, let C4 be the 4-cycle with V (C4) := {0, 1, 2, 3} and

E(C4) := {{0, 1} , {1, 2} , {2, 3} , {3, 0}} .

Figure4 illustrates the graphs L2(C4) and L3(C4).
Moreover, notice that if we define P2 to be the graph which is a path of length 2,

with V (P2) := {0, 1, 2} and E(P2) := {{0, 1} , {1, 2}}, then Lk(P2) = Hk for every
k ≥ 2. Thus, we obtain the following.

Proposition 33 Let G be a graph that contains P2 as an induced subgraph. Then the
LS+-rank lower bound in Theorem 28 for Hk also applies for Lk(G).

Proof Since G contains P2 as an induced subgraph, there must exist vertices a, b, c ∈
V (G) where {a, b} , {b, c} ∈ E(G), and {a, c} /∈ E(G). Then the subgraph of Lk(G)

induced by the vertices in
{
i p : i ∈ [k], p ∈ {a, b, c}} is exactly Lk(P2) = Hk . Thus,

it follows from Lemma 6 that r+(Lk(G)) ≥ r+(Hk). ��
Since Lk(C4) has 4k vertices, Theorem 28 and Proposition 33 immediately imply

the following.

Theorem 34 Let k ≥ 3 and G := Lk(C4). Then r+(G) ≥ 1
22 |V (G)|.

Since {Lk(C4) : k ≥ 3} is a family of vertex-transitive graphs, Theorem 34 can
also be proved directly by utilizing versions of the techniques in Sects. 3 and 4. The
graphs Lk(C4) are particularly noteworthy becauseC4 is the smallest vertex-transitive
graph that contains P2 as an induced subgraph. In general, observe that if G is vertex-
transitive, then so is Lk(G). Thus, we now know that there exists a family of vertex-
transitive graphs G with r+(G) = �(|V (G)|).
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6.2 Generalizing the Lk construction

Next, we study one possible generalization of the aforementioned Lk construction,
and mention some interesting graphs it produces.

Definition 35 Given graphs G1,G2 on the same vertex set V , and an integer k ≥ 2,
define Lk(G1,G2) to be the graphwith vertex set

{
i p : i ∈ [k], p ∈ V

}
. Vertices i p, jq

are adjacent in Lk(G1,G2) if

• i = j and {p, q} ∈ E(G1), or
• i �= j and {p, q} ∈ E(G2).

Thus, when G2 = G1 (the complement of G1), then Lk(G1,G2) specializes to
Lk(G1). Next, given � ∈ N and S ⊆ [�], let Q�,S denote the graph whose vertices are
the 2� binary strings of length �, and two strings are joined by an edge if the number of
positions they differ by is contained in S. For example, Q�,{1} gives the �-cube. Then
we have the following.

Proposition 36 For every � ≥ 2,

L4(Q�,{1}, Q�,{�}) = Q�+2,{1,�+2}.

Proof LetG := L4(Q�,{1}, Q�,{�}). Given i p ∈ V (G) (where i ∈ [4] and p ∈ {0, 1}�),
we define the function

f (i p) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

00p if i = 1;
01p if i = 2;
10p if i = 3;
11p if i = 4.

Note that p denotes the binary string obtained from p by flipping all � bits. Now we
see that

{
i p, jq

} ∈ E(G) if and only if f (i p) and f ( jq) differ by either 1 bit or all
� + 2 bits, and the claim follows. ��

The graph Qk,{1,k} is known as the folded-cube graph, and Proposition 36 implies
the following.

Corollary 37 Let G := Qk,{1,k} where k ≥ 3. Then r+(G) ≥ 2 if k is even, and
r+(G) = 0 if k is odd.

Proof First, observe that when k is odd, Qk,{1,k} is bipartite, and hence has LS+-rank
0. Next, assume k ≥ 4 is even. Notice that Qk−2,{1} contains a path of length k−2 from
the all-zeros vertex to the all-ones vertex, while Qk−2,{k−2} joins those two vertices
by an edge. Thus, Qk,{1,k} = L4(Qk−2,{1}, Qk−2,{k}) contains the induced subgraph
L4(Pk−2) (where Pk−2 denotes the graph that is a path of length k − 2). Since k − 2
is even, we see that L4(Pk−2) can be obtained from L4(P2) = H4 by odd subdivision
of edges (i.e., replacing edges by paths of odd lengths). Thus, it follows from [34,
Theorem 16] that r+(L4(Pk−2)) ≥ 2, and consequently r+(Qk,{1,k}) ≥ 2. ��
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Example 38 The case k = 4 in Corollary 37 is especially noteworthy. In this case
G := Q4,{1,4} is the (5-regular) Clebsch graph. Observe that G � i is isomorphic to
the Petersen graph (which has LS+-rank 1) for every i ∈ V (G). Thus, together with
Corollary 37 we obtain that the Clebsch graph has LS+-rank 2.

Alternatively, one can show that r+(G) ≥ 2 by using the fact that the sec-
ond largest eigenvalue of G is 1. Then it follows from [1, Proposition 8] that
max

{
ē	x : x ∈ LS+(G)

} ≥ 6, which shows that r+(G) ≥ 2 since the largest stable
set in G has size 5.

We remark that the Clebsch graph is also special in the following aspect. Given
a vertex-transitive graph G, we say that G is transitive under destruction if G � i
is also vertex-transitive for every i ∈ V (G). As mentioned above, destroying any
vertex in the Clebsch graph results in the Petersen graph, and so the Clebsch graph
is indeed transitive under destruction. On the other hand, even though L(G1,G2) is
vertex-transitive whenever G1,G2 are vertex-transitive, the Clebsch graph is the only
example which is transitive under destruction we could find using the Lk construction.
For instance, one can check that Qk,{1,k} � i is not a regular graph for any k ≥ 5.
Also, observe that the Clebsch graph can indeed be obtained from the “regular” Lk

construction defined in Definition 32, as

Q4,{1,4} = L4(Q2,{1}, Q2,{2}) = L4(C4,C4) = L4(C4).

However, one can check that Lk(C�) is transitive under destruction if and only if
(k, �) = (4, 4) (i.e., the Clebsch graph example), and that Lk(K�,�) is transitive under
destruction if and only if (k, �) = (4, 2) (i.e., the Clebsch graph example again).
It would be fascinating to see what other interesting graphs can result from the Lk

construction.

7 Some future research directions

In this section, we mention some follow-up questions to our work in this manuscript
that could lead to interesting future research.

Problem 39 What is the exact LS+-rank of Hk?

While we showed that r+(Hk) ≥ 0.19k asymptotically in Sect. 4, there is likely
room for improvement for this bound. First, Lemma 20 is not sharp. In particular, the
assumptions needed for Y (e0 − e10),Y (e0 − e11) ∈ LSp−1

+ (Hk) are sufficient but not
necessary. Using CVX, a package for specifying and solving convex programs [20,
21] with SeDuMi [39], we obtained that r+(H6) ≥ 3. However, there do not exist
a, b, c, d that would satisfy the assumptions of Lemma 20 for k = 6.

Even so, using Lemma 25 and the approach demonstrated in Example 26, we found
computationally that r+(Hk) > 0.25k for all 3 ≤ k ≤ 10000. One reason for the gap
between this computational bound and the analytical bound given in Theorem 28 is
that the analytical bound only takes advantage of squeezing �i ’s over the interval
(u1(k), u2(k)). Since we were able to show that h(k, �) = �( 1k ) over this interval

123



Y.H. Au, L. Tunçel

(Lemma 27), this enabled us to establish a �(k) rank lower bound. Computationally,
we see that we could get more �i ’s in over the interval (u2(k), u3(k)). However, over

this interval, h(k, �) is an increasing function that goes from 2
k−2 at u2(k) to �

(
1√
k

)

at u3(k). This means that simply bounding h(k, �) from above by h(k, u3(k)) would
only add an additional factor of �(

√
k) in the rank lower bound. Thus, improving the

constant factor in Theorem 28 would seem to require additional insights.
As for an upper bound on r+(Hk), we know that r+(H4) = 2, and r+(Hk+1) ≤

r+(Hk)+ 1 for all k. This gives the obvious upper bound of r+(Hk) ≤ k − 2. It would
be interesting to obtain sharper bounds or even nail down the exact LS+-rank of Hk .

Problem 40 Given � ∈ N, is there a graph G with |V (G)| = 3� and r+(G) = �?

Theorem 7 raises the natural question: Are there graphs on 3� vertices that have
LS+-rank exactly �? Such �-minimal graphs have been found for � = 2 [34] and for
� = 3 [19]. Thus, results from [19, 34] show that the answer is “yes” for � = 1, 2, 3.
In [4], we construct the first 4-minimal graph which shows that the answer is also
“yes” for � = 4. Does the pattern continue for larger �? And more importantly, how
can we verify the LS+-rank of these graphs analytically or algebraically, as opposed
to primarily relying on specific numerical certificates?

Problem 41 What can we say about the lift-and-project ranks of graphs for other
positive semidefinite lift-and-project operators? To start with some concrete questions
for this research problem, what are the solutions of Problems 39 and 40 when we
replace LS+ with Las,BZ+,�p, or SA+?

After LS+, many stronger semidefinite lift-and-project operators (such as Las [29],
BZ+ [13],�p [26], and SA+ [2]) have been proposed. While these stronger operators
are capable of producing tighter relaxations than LS+, these SDP relaxations can also
be more computationally challenging to solve. For instance, while the LSp

+-relaxation
of a set P ⊆ [0, 1]n involves O(n p) PSD constraints of order O(n), the operators
Lasp,BZp

+ and SAp
+ all impose one (or more) PSD constraint of order �(n p) in their

formulations. It would be interesting to determine the corresponding properties of
graphs which are minimal with respect to these stronger lift-and-project operators.
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