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Abstract
Approximate integer programming is the following: For a given convex body K ⊆ R

n ,
either determine whether K ∩Z

n is empty, or find an integer point in the convex body
2 ·(K −c)+c which is K , scaled by 2 from its center of gravity c. Approximate integer
programming can be solved in time 2O(n) while the fastest known methods for exact
integer programming run in time 2O(n) · nn . So far, there are no efficient methods for
integer programming known that are based on approximate integer programming. Our
main contribution are two suchmethods, each yielding novel complexity results. First,
we show that an integer point x∗ ∈ (K ∩Z

n) can be found in time 2O(n), provided that
the remainders of each component x∗

i mod � for some arbitrarily fixed � ≥ 5(n + 1)
of x∗ are given. The algorithm is based on a cutting-plane technique, iteratively halving
the volume of the feasible set. The cutting planes are determined via approximate inte-
ger programming. Enumeration of the possible remainders gives a 2O(n)nn algorithm
for general integer programming. This matches the current best bound of an algo-
rithm by Dadush (Integer programming, lattice algorithms, and deterministic, vol.
Estimation. Georgia Institute of Technology, Atlanta, 2012) that is considerably more
involved. Our algorithm also relies on a new asymmetric approximate Carathéodory
theorem that might be of interest on its own. Our second method concerns integer pro-
gramming problems in equation-standard form Ax = b, 0 ≤ x ≤ u, x ∈ Z

n . Such a
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problem can be reduced to the solution of
∏

i O(log ui + 1) approximate integer pro-
gramming problems. This implies, for example that knapsack or subset-sum problems
with polynomial variable range 0 ≤ xi ≤ p(n) can be solved in time (log n)O(n). For
these problems, the best running time so far was nn · 2O(n).

Keywords Integer programming · Lattices · Convex geometry

Mathematics Subject Classification 15A · 52B · 52C · 68Q · 68R · 68W · 90B · 90C

1 Introduction

Many combinatorial optimization problems as well as many problems from the
algorithmic geometry of numbers can be formulated as an integer linear program

max{〈c, x〉 | Ax ≤ b, x ∈ Z
n} (1)

where A ∈ Z
m×n, b ∈ Z

m and c ∈ Z
n , see, e.g. [1–3]. Lenstra [4] has shown that

integer programming can be solved in polynomial time, if the number of variables
is fixed. A careful analysis of his algorithm yields a running time of 2O(n2) times a
polynomial in the binary encoding length of the input of the integer program. Kannan
[5] has improved this to nO(n), where, from now on we ignore the extra factor that
depends polynomially on the input length. At the time this paper was first submitted,
the best algorithm was the one of Dadush [6] with a running time of 2O(n) · nn .

The question whether there exists a singly exponential time, i.e., a 2O(n)-algorithm
for integer programming is one of the most prominent open problems in the area of
algorithms and complexity. Integer programming can be described in the following
more general form.Here, a convex body is synonymous for a full-dimensional compact
and convex set.

Integer Programming (IP)

Given a convex body K ⊆ R
n , find an integer solution x∗ ∈ K ∩Z

n or assert that
K ∩ Z

n = ∅.

The convex body K must be well described in the sense that there is access to a
separation oracle, see [1]. Furthermore, one assumes that K contains a ball of radius
r > 0 and that it is contained in some ball of radius R. In this setting, the current best
running times hold as well. The additional polynomial factor in the input encoding
length becomes a polynomial factor in log(R/r) and the dimension n. Central to this
paper is Approximate integer programming which is as follows.

Approximate Integer Programming (Approx-IP)

Given a convex body K ⊆ R
n , let c ∈ R

n be its center of gravity. Either find an
integer vector x∗ ∈ (2 · (K − c) + c) ∩ Z

n , or assert that K ∩ Z
n = ∅.
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The convex body 2 · (K − c) + c is K scaled by a factor of 2 from its center
of gravity. The algorithm of Dadush [7] solves approximate integer programming in
singly exponential time 2O(n). Despite its clear relation to exact integer programming,
there is no reduction from exact to approximate known so far. Our guiding question
is the following: Can approximate integer programming be used to solve the exact
version of (specific) integer programming programming problems?

1.1 Contributions of this paper

We present two different algorithms to reduce the exact integer programming
problem (IP) to the approximate version (Approx- IP).

a) Our first method is a randomized cutting-plane algorithm that, in time 2O(n) and
for any � ≥ 5(n + 1) finds a point in K ∩ (Zn/�) with high probability, if K
contains an integer point. This algorithm uses an oracle for (Approx- IP) on K
intersected with one side of a hyperplane that is close to the center of gravity.
Thereby, the algorithm collects � integer points close to K . The collection is such
that the convex combination with uniform weights 1/� of these points lies in K .
If, during an iteration, no point is found, the volume of K is roughly halved and
eventually K lies on a lower-dimensional subspace on which one can recurse.

b) If equipped with the component-wise remainders v ≡ x∗ (mod �) of a solution
x∗ of (IP), one can use the algorithm to find a point in (K − v) ∩Z

n and combine
it with the remainders to a full solution of (IP), using that (K − v) ∩ �Zn �= ∅.
This runs in singly exponential randomized time 2O(n). Via enumeration of all
remainders, one obtains an algorithm for (IP) that runs in time 2O(n) · nn . This
matches the best-known running time for general integer programming [7], which
is considerably involved.

c) Our analysis depends on a new approximate Carathéodory theorem thatwe develop
in Sect. 4.While approximate Carathéodory theorems are known for centrally sym-
metric convex bodies [8–10], our version is for general convex sets and might be
of interest on its own.

d) Our second method is for integer programming problems Ax = b, x ∈ Z
n, 0 ≤

x ≤ u in equation standard form. We show that such a problem can be reduced
to 2O(n) · (

∏
i log(ui + 1)) instances of (Approx- IP). This yields a running time

of (log n)O(n) for such IPs, in which the variables are bounded by a polynomial
in the dimension. The so-far best running time for such instances was 2O(n) · nn

at the time of the first submission of this paper. Well known benchmark problems
in this setting are knapsack and subset-sum with polynomial upper bounds on the
variables, see Sect. 5.

1.2 Related work

If the convex body K is an ellipsoid, then the integer programming problem (IP) is
the well known closest vector problem (CVP) which can be solved in time 2O(n) with
an algorithm by Micciancio and Voulgaris [11]. Blömer and Naewe [12] previously
observed that the sampling technique of Ajtai et al. [13] can be modified in such a
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way as to solve the closest vector approximately. More precisely, they showed that a
(1+ε)-approximation of the closest vector problem can be found in time O(2+1/ε)n

time. This was later generalized to arbitrary convex sets by Dadush [7]. This algorithm
either asserts that the convex body K does not contain any integer points, or it finds
an integer point in the body stemming from K scaled by (1 + ε) from its center of
gravity. Also the running time of this randomized algorithm is O(2 + 1/ε)n . In our
paper, we restrict to the case ε = 1 which can be solved in singly exponential time.
The technique of reflection sets was also used by Eisenbrand et al. [14] to solve (CVP)
in the �∞-norm approximately in time O(2 + log(1/ε))n .

In the setting in which integer programming can be attacked with dynamic pro-
gramming, tight upper and lower bounds on the complexity are known [15–17]. Our
nn ·2O(n) algorithm could be made more efficient by constraining the possible remain-
ders of a solution (mod �) efficiently. This barrier is different than the one in classical
integer-programming methods that are based on branching on flat directions [1, 4] as
they result in a branching tree of size nO(n).

The subset-sum problem is as follows. Given a set Z ⊆ N of n positive integers and
a target value t ∈ N, determine whether there exists a subset S ⊆ Z with

∑
s∈S s = t .

Subset sum is a classical NP-complete problem that serves as a benchmark in algo-
rithm design. The problem can be solved in pseudopolynomial time [18] by dynamic
programming. The current fastest pseudopolynomial-time algorithm is the one of
Bringmann [19] that runs in time O(n + t) up to polylogarithmic factors. There exist
instances of subset-sum whose set of feasible solutions, interpreted as 0/1 incidence
vectors, require numbers of value nn in the input, see [20]. Lagarias and Odlyzko [21]
have shown that instances of subset sum in which each number of the input Z is drawn
uniformly at random from {1, . . . , 2O(n2)} can be solved in polynomial time with high
probability. The algorithm of Lagarias and Odlyzko is based on the LLL-algorithm
[22] for lattice basis reduction.

1.3 Subsequent work

After the acceptance of the conference version of this work, Reis and Rothvoss [23]
proved that an algorithm originally suggested by Dadush [6] can solve any n-variable
integer program max{〈c, x〉 | Ax ≤ b, x ∈ Z

n} in time (log n)O(n) times a polyno-
mial in the encoding length of A, b and c. However, the question whether there is a
2O(n)-time algorithm remains wide open and the approach used by Reis and Rothvoss
inherently cannot provide running times below (log n)O(n).

2 Preliminaries

A lattice � is the set of integer combinations of linearly independent vectors, i.e.
� := �(B) := {Bx | x ∈ Z

r } where B ∈ R
n×r has linearly independent columns.

The determinant is the volume of the r -dimensional parallelepiped spanned by the
columns of the basis B, i.e. det(�) := √

detr (BT B). We say that � has full rank if
n = r . In that case the determinant is simply det(�) = | detn(B)|. For a full rank
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lattice �, we denote the dual lattice by �∗ = {y ∈ R
n | 〈x, y〉 ∈ Z ∀x ∈ �}. Note

that det(�∗) · det(�) = 1. For an introduction to lattices, we refer to [24].
A set Q ⊆ R

n is called a convex body if it is convex, compact and has a non-empty
interior. A set Q is symmetric if Q = −Q. Recall that any symmetric convex body
Q naturally induces a norm ‖ · ‖Q of the form ‖x‖Q = min{s ≥ 0 | x ∈ s Q}.
For a full rank lattice � ⊆ R

n and a symmetric convex body Q ⊆ R
n we denote

λ1(�, Q) := min{‖x‖Q | x ∈ �\{0}} as the length of the shortest vector with respect
to the norm induced by Q. We denote the Euclidean ball by Bn

2 := {x ∈ R
n | ‖x‖2 ≤

1} and the �∞-ball by Bn∞ := [−1, 1]n . An (origin centered) ellipsoid is of the form
E = A(Bn

2 ) where A : Rn → R
n is an invertible linear map. For any such ellipsoid

E there is a unique positive definite matrix M ∈ R
n×n so that ‖x‖E = √

xT Mx . The
barycenter (or centroid) of a convex body Q is the point 1

Voln(Q)

∫
Q x dx . We will

use the following version of (Approx- IP) that runs in time 2O(n), provided that the
symmetrizer for the used center c is large enough. This is the case for c being the
center of gravity, see Theorem 5. Note that the center of gravity of a convex body can
be (approximately) computed in randomized polynomial time [25, 26].

Theorem 1 (Dadush [7]) There is a 2O(n)-time algorithm ApxIP(K , c,�) that takes
as input a convex body K ⊆ R

n, a point c ∈ K and a lattice � ⊆ R
n. Assuming

that Voln((K − c) ∩ (c − K )) ≥ 2−�(n)Voln(K ) the algorithm either returns a point
x ∈ (c + 2(K − c)) ∩ � or returns empty if K ∩ � = ∅.

One of the classical results in the geometry of numbers isMinkowski’s Theoremwhich
we will use in the following form:

Theorem 2 (Minkowski’s Theorem) For a full rank lattice � ⊆ R
n and a symmetric

convex body Q ⊆ R
n one has

λ1(�, Q) ≤ 2 ·
( det(�)

Voln(Q)

)1/n

We will use the following bound on the density of sublattices which is an imme-
diate consequence of Minkowski’s Second Theorem. Here we abbreviate λ1(�) :=
λ1(�, Bn

2 ).

Lemma 3 Let � ⊆ R
n be a full rank lattice. Then for any k-dimensional sublattice

�̃ ⊆ � one has det(�̃) ≥ (
λ1(�)√

k
)k .

Finally, we revisit a few facts from convex geometry. Details and proofs can be
found in the excellent textbook by Artstein-Avidan, Giannopoulos and Milman [27].

Lemma 4 (Grünbaum’s Lemma) Let K ⊆ R
n be any convex body and let 〈a, x〉 = β

be any hyperplane through the barycenter of K . Then 1
e Voln(K ) ≤ Voln({x ∈ K |

〈a, x〉 ≤ β}) ≤ (1 − 1
e )Voln(K ).

For a convex body K , there are two natural symmetric convex bodies that approximate
K in many ways: the “inner symmetrizer” K ∩ (−K ) (provided 0 ∈ K ) and the “outer
symmetrizer” in form of the difference body K − K . The following is a consequence
of a more general inequality of Milman and Pajor.
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Theorem 5 Let K ⊆ R
n be any convex body with barycenter 0. Then Voln(K ∩

(−K )) ≥ 2−nVoln(K ).

In particular Theorem 5 implies that choosing c as the barycenter of K in Theorem 1
results in a 2O(n) running time— however this will not be the choice that we will later
make for c. Also the size of the difference body can be bounded:

Theorem 6 (Inequality of Rogers and Shephard) For any convex body K ⊆ R
n one

has Voln(K − K ) ≤ 4nVoln(K ).

Recall that for a convex body Q with 0 ∈ int(Q), the polar is Q◦ = {y ∈ R
n |

〈x, y〉 ≤ 1 ∀x ∈ Q}. We will use the following relation between volume of a sym-
metric convex body and the volume of the polar; to be precise we will use the lower
bound (which is due to Bourgain and Milman).

Theorem 7 (Blaschke-Santaló-Bourgain-Milman) For any symmetric convex body
Q ⊆ R

n one has

Cn ≤ Voln(Q) · Voln(Q◦)
Voln(Bn

2 )2
≤ 1

where C > 0 is a universal constant.

We will also rely on the result of Frank and Tardos to reduce the bit complexity of
constraints:

Theorem 8 (Frank, Tardos [28]) There is a polynomial time algorithm that takes
(a, b) ∈ Q

n+1 and � ∈ N+ as input and produces a pair (ã, b̃) ∈ Z
n+1 with

‖ã‖∞, |b̃| ≤ 2O(n3) · �O(n2) so that 〈a, x〉 = b ⇔ 〈ã, x〉 = b̃ and 〈a, x〉 ≤ b ⇔
〈ã, x〉 ≤ b̃ for all x ∈ {−�, . . . ,�}n.

3 The cut-or-average algorithm

First, we discuss our Cut- Or- Average algorithm that on input of a convex set K ,
a lattice � and integer � ≥ 5(n + 1), either finds a point x ∈ �

�
∩ K or decides that

K ∩� = ∅ in time 2O(n). Note that for any polyhedron K = {x ∈ R
n | Ax ≤ b} with

rational A, b and lattice � with basis B one can compute a value of � so that log(�)

is polynomial in the encoding length of A, b and B and K ∩ � �= ∅ if and only if
K ∩ [−�,�]n ∩ � �= ∅. See Schrijver [29] for details. In other words, w.l.o.g. we
may assume that our convex set is bounded. The pseudo code of the algorithm can be
found in Fig. 1.

An intuitive description of the algorithm is as follows: we compute the barycenter
c of K and an ellipsoid E that approximates K up to a factor of R = n + 1.

The goal is to find a point z close to the barycenter c so that z is a convex combination
of lattice points that all lie in a 3-scaling of K . We begin by choosing z as any such
lattice vector and then iteratively update z using the oracle for approximate integer
programming from Theorem 1 to move closer to c (Fig. 2).
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Fig. 1 The Cut-Or-Average algorithm

Fig. 2 Visualization of the inner
WHILE loop where
Q := K ∩ {x ∈ R

n | 〈a, x〉 ≥〈
a, c + ρ

2 d
〉}

If this succeeds, then we can directly use an asymmetric version of the Approximate
Carathéodory Theorem (Lemma 18) to find an unweighted average of � lattice points
that lies in K ; this would be a vector of the form x ∈ �

�
∩ K . If the algorithm fails to

approximately express c as a convex combination of lattice points, then we will have
found a hyperplane H going almost through the barycenter c so that K ∩ H≥ does
not contain a lattice point. Then the algorithm continues searching in K ∩ H≤. This
case might happen repeatedly, but after polynomial number of times, the volume of
K will have dropped below a threshold so that we may recurse on a single (n − 1)-
dimensional subproblem. We will now give the detailed analysis. Note that in order to
obtain a clean exposition we did not aim to optimize any constant. However by merely
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tweaking the parameters one could make the choice of � = (1 + ε)n work for any
constant ε > 0.

3.1 Bounding the number of iterations

We begin the analysis with a few estimates that will help us to bound the number of
iterations.

Lemma 9 Any point x found in line (7) lies in a 3-scaling of K around c, i.e. x ∈
c + 3(K − c) assuming 0 < ρ ≤ 1.

Proof We verify that

x ∈ (c − ρd) + 2(K − (c − ρd)) = c + 2(K − c) + ρd ⊆ c + 3(K − c)

using that ‖ρd‖E = ρ ≤ 1. ��
Next we bound the distance of z to the barycenter:

Lemma 10 At the beginning of the kth iterations of the WHILE loop on line (5), one

has ‖c − z‖2E ≤ 9R2

k .

Proof We prove the statement by induction on k. At k = 1, by construction on line
(4), z ∈ c + 2(K − c) ⊆ c + 2RE . Thus ‖c − z‖2E ≤ (2R)2 ≤ 9R2, as needed.

Now assume k ≥ 2. Let z, z′ denote the values of z during iteration k − 1 before
and after the execution of line (9) respectively, and let x be the vector found on line (7)
during iteration k − 1. Note that z′ = (1− 1

k )z + 1
k x . By the induction hypothesis, we

have that ‖z −c‖2E ≤ 9R2/(k −1). Our goal is to show that ‖z′ −c‖2E ≤ 9R2/k. In (6),
we define d as the normalized version of z − c with ‖d‖E = 1 and hence d ∈ K − c.
By construction 〈a, x − c〉 ≥ 0 and from Lemma 9 we have x ∈ c + 3(K − c) which
implies ‖x − c‖E ≤ 3R. The desired bound on the E -norm of z′ − c follows from the
following calculation:

‖z′ − c‖2E =
∥
∥
∥
(
1 − 1

k

)
(z − c) + 1

k
(x − c)

∥
∥
∥
2

E

=
(
1 − 1

k

)2‖z − c‖2E − 2
(
1 − 1

k

)1

k
〈a, x − c〉 + 1

k2
‖x − c‖2E

≤
(
1 − 1

k

)2‖z − c‖2E + 1

k2
‖x − c‖2E

≤
((

1 − 1

k

)2 1

k − 1
+ 1

k2

)
· 9R2 = 9R2

k
.

��
In particular Lemma 10 implies an upper bound on the number of iterations of the
inner WHILE loop:

Corollary 11 The WHILE loop on line (5) never takes more than 36R2 iterations.

123



From approximate to exact integer programming

Proof By Lemma 10, for k := 36R2 one has ‖c − z‖2E ≤ 9R2

k ≤ 1
4 . ��

Next, we prove that every time we replace K by K ′ ⊂ K in line (8), its volume drops
by a constant factor.

Lemma 12 In step (8) one has Voln(K ′) ≤ (1− 1
e ) · (1+ ρ

2 )n ·Voln(K ) for any ρ ≥ 0.
In particular for 0 ≤ ρ ≤ 1

4n one has Voln(K ′) ≤ 3
4Voln(K ).

Proof The claim is invariant under affine linear transformations, hencewemay assume
w.l.o.g. that E = Bn

2 , M = In and c = 0. Note that then Bn
2 ⊆ K ⊆ RBn

2 . Let us
abbreviate K≤t := {x ∈ K | 〈d, x〉 ≤ t}. In this notation K ′ = K≤ρ/2. Recall that

Grünbaum’s Lemma (Lemma 4) guarantees that 1
e ≤ Voln(K≤0)

Voln(K )
≤ 1 − 1

e . Moreover,

it is well known that the function t �→ Voln(K≤t )
1/n is concave on its support, see

again [27]. Then

Voln(K≤0)
1/n ≥

( 1

1 + ρ/2

)
· Voln(K≤ρ/2)

1/n +
( ρ/2

1 + ρ/2

)
· Voln(K≤−1)

1/n

︸ ︷︷ ︸
≥0

≥
( 1

1 + ρ/2

)
· Voln(K≤ρ/2)

1/n

and so

(
1 − 1

e

)
· Voln(K ) ≥ Voln(K≤0) ≥

( 1

1 + ρ/2

)n · Voln(K≤ρ/2)

Rearranging gives thefirst claim in the formVoln(K≤ρ/2) ≤ (1− 1
e )·(1+ ρ

2 )n ·Voln(K ).
For the 2nd partwe verify that forρ ≤ 1

4n one has (1− 1
e )·(1+ ρ

2 )n ≤ (1− 1
e )·exp( ρ

2 ) ≤
3
4 . ��
Lemma 13 Consider a call of Cut- Or- Average on (K ,�) where K ⊆ r Bn

2 for
some r > 0. Then the total number of iterations of the outer WHILE loop over all
recursion levels is bounded by O(n2 log( nr

λ1(�)
)).

Proof Consider any recursive run of the algorithm. The convex set will be of the form
K̃ := K ∩ U and the lattice will be of the form �̃ := � ∩ U where U is a subspace
and we denote ñ := dim(U ). We think of K̃ and �̃ as ñ-dimensional objects. Let
K̃t ⊆ K̃ be the convex body after t iterations of the outer WHILE loop. Recall that
Volñ(K̃t ) ≤ ( 34 )

t · Volñ(K̃ ) by Lemma 12 and Volñ(K̃ ) ≤ r ñVolñ(Bñ
2 ). Our goal

is to show that for t large enough, there is a non-zero lattice vector y ∈ �̃∗ with
‖y‖

(K̃t −K̃t )◦ ≤ 1
2 which then causes the algorithm to recurse, see Fig. 3. To prove

existence of such a vector y, we use Minkowski’s Theorem (Theorem 2) followed by
the Blaschke-Santaló-Bourgain-Milman Theorem (Theorem 7) to obtain

λ1(�̃
∗, (K̃t − K̃t )

◦)
Thm 2≤ 2 ·

( det(�̃∗)
Volñ((K̃t − K̃t )◦)

)1/ñ
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Fig. 3 Visualization of lines
(12)+(13) (with n = 2 and
� = Z

2 = �∗)

Thm 7≤ 2C ·
( Volñ(K̃t − K̃t )

det(�̃) · Volñ(Bñ
2 )2

)1/ñ

Thm 6≤ 2 · 4 ·
√

ñ

2
· C

( Volñ(K̃t )

det(�̃) · Volñ(Bñ
2 )

)1/ñ

≤ 4C
√

ñ · r · (3/4)t/ñ

det(�̃)1/ñ

≤ 4C · ñ · r

λ1(�)
· (3/4)t/ñ

Here we use the convenient estimate of Volñ(Bñ
2 ) ≥ Volñ( 1√

ñ
Bñ∞) = ( 2√

ñ
)ñ .

Moreover, we have used that by Lemma 3 one has det(�̃) ≥ (
λ1(�)√

ñ
)ñ . Then

t = �(ñ log( ñr
λ1(�)

)) iterations suffice until λ1(�̃
∗, (K̃t − K̃t )

◦) ≤ 1
2 and the algo-

rithm recurses. Hence the total number of iterations of the outer WHILE loop over all
recursion levels can be bounded by O(n2 log( nr

λ1(�)
)). ��

The iteration bound of Lemma 13 can be improved by amortizing the volume
reduction over the different recursion levels following the approach of Jiang [30]. We
refrain from that to keep our approach simple.

3.2 Running times of the subroutines

Wehave already seen that the number of iterations of theCut- or- Average algorithm
is polynomially bounded. Goal of this subsection is to prove that all used subroutines
can be implemented in time that is single-exponential or less. First we prove that steps
(2)+(3) take polynomial time.

Lemma 14 For any convex body K ⊆ R
n one can compute the barycenter c and a

0-centered ellipsoid E in randomized polynomial time so that c + E ⊆ K ⊆ c + (n +
1)E .

Proof We say that a convex body Q ⊆ R
n is centered and isotropic if the uniform

random sample X ∼ Q satisfies the following conditions: (i) E[X ] = 0 and (ii)
E[X X T ] = In . For any convexbody K one can compute an affine linear transformation
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Fig. 4 Visualization of the proof
of Lemma 15 where c̃ = c + ρd

T : Rn → R
n in polynomial time1 so that T (K ) is centered and isotropic; this can

be done for example by obtaining polynomially many samples of X , see [31, 32].
A result by Kannan, Lovász and Simonovits (Lemma 5.1 in [31]) then says that any
such centered and isotropic body T (K ) satisfies Bn

2 ⊆ T (K ) ⊆ (n + 1)Bn
2 . Then

c := T −1(0) and E := T −1(Bn
2 ) − c satisfy the claim. ��

In order for the call ofApxIP in step (7) to be efficient, we need that the symmetrizer
of the set is large enough volume-wise, see Theorem 1. We will prove now that this is
indeed the case. In particular for any parameters 2−�(n) ≤ ρ ≤ 0.99 and R ≤ 2O(n)

wewill haveVoln((Q−c̃)∩(c̃−Q)) ≥ 2−�(n)Voln(Q)which suffices for our purpose
(Fig. 4).

Lemma 15 In step (7), the set Q := {x ∈ K | 〈a, x〉 ≥ 〈
a, c + ρ

2 d
〉} and the point

c̃ := c + ρd satisfy Voln((Q − c̃) ∩ (c̃ − Q)) ≥ (1 − ρ)n · ρ
2R · 2−n · Voln(Q).

Proof Consider the symmetrizer K ′ := (K − c) ∩ (c − K ) which has Voln(K ′) ≥
2−nVoln(K ) byTheorem5 as c is the barycenter of K . Set K ′′ := {x ∈ K ′ | | 〈a, x〉 | ≤
ρ
2 | 〈a, d〉 |}. As K ′ is symmetric and all x ∈ K ′ satisfy | 〈a, x〉 | ≤ R| 〈a, d〉 |, we have
Voln(K ′′) ≥ ρ

2RVoln(K ′). Now consider

P := (1 − ρ)(K ′′ + c) + ρ(c + d)

= (1 − ρ)K ′′ + (c + ρd)

(∗)⊆ K ∩ {
x ∈ R

n : 〈a, x〉 ≥ 〈
a, c + ρ

2
d
〉} = Q.

For the inclusion in (∗) we use that K ′′ + c ⊆ K and c + d ∈ K ; moreover for
any x ∈ K ′′ one has 〈a, (1 − ρ)x + c + ρd〉 ≥ 〈

a, c + ρ
2 d

〉
. Finally, P is symmetric

about c + ρd and hence

Voln((Q − c̃) ∩ (c̃ − Q)) ≥ Voln(P) ≥ (1 − ρ)n · ρ

2R
· 2−n · Voln(Q)

as Q ⊆ K . ��
1 At least up to negligible error terms.
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Step (10) can be done in polynomial time and we defer the analysis to Sect. 4. Step
(12) corresponds to finding a shortest non-zero vector in a latticew.r.t. norm ‖·‖(K−K )◦
which can be done in time 2O(n) using the Sieving algorithm [33].

3.3 Conclusion on the cut-or-average algorithm

From the discussion above, we can summarize the performance of the algorithm in
Fig. 1 as follows:

Theorem 16 Given a full rank matrix B ∈ Q
n×n and parameters r > 0 and � ≥

5(n + 1) with � ∈ N and a separation oracle for a closed convex set K ⊆ r Bn
2 , there

is a randomized algorithm that with high probability finds a point x ∈ K ∩ 1
�
�(B)

or decides that K ∩ �(B) = ∅. Here the running time is 2O(n) times a polynomial in
log(r) and the encoding length of B.

This can be easily turned into an algorithm to solve integer linear programming:

Theorem 17 Given a full rank matrix B ∈ Q
n×n, a parameter r > 0 and a separation

oracle for a closed convex set K ⊆ r Bn
2 , there is a randomized algorithm that with

high probability finds a point x ∈ K ∩�(B) or decides that there is none. The running
time is 2O(n)nn times a polynomial in log(r) and the encoding length of B.

Proof Suppose that K ∩ � �= ∅ and fix an (unknown) solution x∗ ∈ K ∩ �. We set
� := �5(n + 1)�. We iterate through all v ∈ {0, . . . , � − 1}n and run Theorem 16 on
the set K and the shifted lattice v+��. For the outcome of v with x∗ ≡ v mod � one
has K ∩ (v+��) �= ∅ and so the algorithm will discover a point x ∈ K ∩ (v+�). ��

4 An asymmetric approximate Carathéodory theorem

In this section we show correctness of (10) and prove that given lattice points X ⊆ �

that are contained in a in a 3-scaling of K and satisfy c ∈ conv(X), we can find a point
in �

�
∩ K . The Approximate Carathéodory Theorem states the following.

Given any point-set X ⊆ Bn
2 in the unit ball with 0 ∈ conv(X) and a parameter

k ∈ N, there exist u1, . . . , uk ∈ X (possibly with repetition) such that

∥
∥
∥
∥
∥

1

k

k∑

i=1

ui

∥
∥
∥
∥
∥
2

≤ O
(
1/

√
k
)

.

The theorem is proved, for example, by Novikoff [8] in the context of the perceptron
algorithm. An �p-version was provided by Barman [9] to find Nash equilibria. Deter-
ministic and nearly-linear time methods to find the convex combination were recently
described in [10]. In the following, we provide a generalization to asymmetric convex
bodies and the dependence on k will be weaker but sufficient for our analysis of our
Cut- or- Average algorithm from Sect. 3.
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Recall that with a symmetric convex body K , we one can associate the Minkowski
norm ‖ · ‖K with ‖x‖K = inf{s ≥ 0 | x ∈ sK }. In the following we will use the same
definition also for an arbitrary convex set K with 0 ∈ K . Symmetry is not given but
one still has ‖x + y‖K ≤ ‖x‖K + ‖y‖K for all x, y ∈ R

n and ‖αx‖K = α‖x‖K for
α ∈ R≥0. Using this notation we can prove the main result of this section.

Lemma 18 Given a point-set X ⊆ K contained in a convex set K ⊆ R
n with 0 ∈

conv(X) and a parameter k ∈ N, there exist u1, . . . , uk ∈ X (possibly with repetition)
so that

∥
∥
∥
∥
∥

1

k

k∑

i=1

ui

∥
∥
∥
∥
∥

K

≤ min{|X |, n + 1}/k.

Moreover, given X as input, the points u1, . . . , uk can be found in time polynomial in
|X |, k and n.

Proof Let � = min{|X |, n + 1}. The claim is true whenever k ≤ � since then we may
simply pick an arbitrary point in X . Hence from now on we assume k > �.

By Carathéodory’s theorem, there exists a convex combination of zero, using �

elements of X . We write 0 = ∑�
i=1 λivi where vi ∈ X , λi ≥ 0 for i ∈ [�] and

∑�
i=1 λi = 1. Consider the numbers Li = (k − �)λi + 1. Clearly,

∑�
i=1 Li = k. This

implies that there exists an integer vectorμ ∈ N
� withμ ≥ (k−�)λ and

∑�
i=1 μi = k.

It remains to show that we have
∥
∥
∥
∥
∥

1

k

�∑

i=1

μivi

∥
∥
∥
∥
∥

K

≤ �/k.

In fact, one has

∥
∥
∥

�∑

i=1

μivi

∥
∥
∥

K
=

∥
∥
∥

�∑

i=1

(μi − (k − �)λi )︸ ︷︷ ︸
≥0

vi + (k − �)
︸ ︷︷ ︸

≥0

�∑

i=1

λivi

∥
∥
∥

K

≤
�∑

i=1

(μi − (k − �)λi ) ‖vi‖K︸ ︷︷ ︸
≤1

+(k − �)

∥
∥
∥

�∑

i=1

λivi

∥
∥
∥

K

︸ ︷︷ ︸
=0

≤ �.

For the moreover part, note that the coefficients λ1, . . . , λ� are the extreme points of
a linear program which can be found in polynomial time. Finally, the linear system
μ ≥ �(k −�)λ�,∑�

i=1 μi = k has a totally unimodular constraint matrix and the right
hand side is integral, hence any extreme point solution is integral as well, see e.g. [29].

��
Lemma 19 For any integer � ≥ 5(n + 1), the convex combination μ computed in line
(10) satisfies

∑
x∈X μx x ∈ K .
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Proof We may translate the sets X and K so that c = 0 without affecting the claim.
Recall that z ∈ conv(X). By Carathéodory’s Theorem there are v1, . . . , vm ∈ X with
m ≤ n + 1 so that z ∈ conv{v1, . . . , vm} and so 0 ∈ conv{v1 − z, . . . , vm − z}.
We have vi ∈ 3K by Lemma 9 and −z ∈ 1

4E ⊆ 1
4 K as well as z ∈ 1

4 K . Hence
‖vi − z‖K ≤ ‖vi‖K + ‖ − z‖K ≤ 13

4 . We apply Lemma 18 and obtain a convex

combination μ ∈ Z
m≥0
�

with ‖∑m
i=1 μi (vi − z)‖ 13

4 K ≤ m
�
. Then

∥
∥
∥

m∑

i=1

μivi

∥
∥
∥

K
≤

∥
∥
∥

m∑

i=1

μi (vi − z)
∥
∥
∥

K
+ ‖z‖K︸ ︷︷ ︸

≤1/4

≤ 13

4

m

�
+ 1

4
≤ 1

if � ≥ 13
3 m. This is satisfies if � ≥ 5(n + 1). ��

5 IPs with polynomial variable range

Now we come to our second method that reduces (IP) to (Approx- IP) that applies to
integer programming in standard equation form

Ax = b, x ∈ Z
n, 0 ≤ xi ≤ ui , i = 1, . . . , n, (2)

Here, A ∈ Z
m×n , b ∈ Z

m , and the ui ∈ N+ are positive integers that bound the
variables from above. Our main goal is to prove the following theorem.

Theorem 20 The integer feasibility problem (2) can be solved in time
2O(n)

∏n
i=1 log2(ui + 1).

We now describe the algorithm. It is again based on the approximate integer pro-
gramming technique ofDadush [7].We exploit it to solve integer programming exactly
via the technique of reflection sets developed byCook et al. [34]. For each i = 1, . . . , n
we consider the two families of hyperplanes that slice the feasible region with the
shifted lower and upper bounds respectively

xi = 2 j−1 and xi = ui − 2 j−1, 0 ≤ j ≤ �log2(ui )�. (3)

Following [34], we consider two points w, v that lie in the region between two
consecutive planes xi = 2 j−1 and xi = 2 j for some j , see Fig. 5.

Suppose that wi ≤ vi holds. Let s be the point such that w = 1/2(s + v). The line-
segment s, v is the line segment w, v scaled by a factor of 2 from v. Let us consider
what can be said about the i-th component of s. Clearly si ≥ 2 j−1 − (2 j −2 j−1) = 0.
Similarly, ifw and v lie in the region in-between xi = 0 and xi = 1/2, then si ≥ −1/2.
We conclude with the following observation.

Lemma 21 Consider the hyperplane arrangement defined by the equations (3) as well
as by xi = 0 and xi = ui for 1 ≤ i ≤ n. Let K ⊆ R

n a cell of this hyperplane
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Fig. 5 The reflection set

Fig. 6 Visualization of the proof of Theorem 20

arrangement and v ∈ K . If K ′ is the result of scaling K by a factor of 2 from v, i.e.

K ′ = {v + 2(w − v) | w ∈ K },

then K ′ satisfies the inequalities −1/2 ≤ xi ≤ ui + 1/2 for all 1 ≤ i ≤ n.

We use this observation to prove Theorem 20:

Proof of Theorem 20 The task of (2) is to find an integer point in the affine subspace
defined by the system of equations Ax = b that satisfies the bound constraints 0 ≤
xi ≤ ui .We first partition the feasible regionwith the hyperplanes (3) as well as xi = 0
and xi = ui for each i . We then apply the approximate integer programming algorithm
with approximation factor 2 on each convex set PK = {x ∈ R

n | Ax = b} ∩ K where
K ranges over all cells of the arrangement (see Fig. 6). In 2O(n) time, the algorithm
either finds an integer point in the convex set CK that results from PK by scaling it
with a factor of 2 from its center of gravity, or it asserts that PK does not contain
an integer point. Clearly, CK ⊆ {x ∈ R

n | Ax = b} and if the algorithm returns
an integer point x∗, then, by Lemma 21, this integer point also satisfies the bounds
0 ≤ xi ≤ ui . The running time of the algorithm is equal to the number of cells times
2O(n) which is 2O(n)

∏n
i=1 log2(ui + 1). ��
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IPs in inequality form

We can also use Theorem 20 to solve integer linear programs in inequality form. Here
the efficiency is strongly dependent on the number of inequalities.

Theorem 22 Let A ∈ Q
m×n, b ∈ Q

m, c ∈ Q
n and u ∈ N

n+. Then the integer linear
program

max
{ 〈c, x〉 | Ax ≤ b, 0 ≤ x ≤ u, x ∈ Z

n}

can be solved in time nO(m)·(2 log(1+�))O(n+m) where� := max{ui | i = 1, . . . , n}.
Proof Via binary search it suffices to solve the feasibility problem

〈c, x〉 ≥ γ, Ax ≤ b, 0 ≤ x ≤ u, x ∈ Z
n (4)

in the same claimed running time.We apply the result of Frank andTardos (Theorem8)
and replace c, γ, A, b by integer-valued objects of bounded ‖ · ‖∞-norm so that the
feasible region of (4) remains the same. Hence we may indeed assume that c ∈ Z

n ,
γ ∈ Z, A ∈ Z

m×n and b ∈ Z
m with ‖c‖∞, |γ |, ‖A‖∞, ‖b‖∞ ≤ 2O(n3) · �O(n2). Any

feasible solution x to (4) has a slack bounded by γ −〈c, x〉 ≤ |γ |+‖c‖∞ · n ·� ≤ N
where we may choose N := 2O(n3)�O(n2). Similarly bi −〈Ai , x〉 ≤ N for all i ∈ [n].
We can then introduce slack variables y ∈ Z≥0 and z ∈ Z

m≥0 and consider the system

〈c, x〉 + y = γ, Ax + z = b,

0 ≤ x ≤ u, 0 ≤ y ≤ N , 0 ≤ z j ≤ N ∀ j ∈ [m],
(x, y, z) ∈ Z

n+1+m
(5)

in equality form which is feasible if and only if (4) is feasible.
Then Theorem 20 shows that such an integer linear program can be solved in time

2O(n+m) ·
( n∏

i=1

ln(1 + ui )
)

· (ln(1 + N ))m+1 ≤ nO(m) · (2 log(1 + �))O(n+m).

��

Subset sum and knapsack

The subset-sum problem (with multiplicities) is an integer program of the form (2)
with one linear constraint. Polak and Rohwedder [35] have shown that subset-sum
with multiplicities — that means

∑n
i=1 xi zi = t, 0 ≤ xi ≤ ui ∀i ∈ [n], x ∈ Z

n

— can be solved in time O(n + z5/3max) times a polylogarithmic factor where zmax :=
maxi=1,...,n zi . The algorithmof Frank andTardos [28] (Theorem8) finds an equivalent

instance in which zmax is bounded by 2O(n3)uO(n2)
max . All-together, if each multiplicity
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is bounded by a polynomial p(n), then the state-of-the-art for subset-sum with multi-
plicities is straightforward enumeration resulting in a running time nO(n) which is the
current best running time for integer programming. We can significantly improve the
running time in this regime. This is a direct consequence of Theorem 22.

Corollary 23 The subset sum problem with multiplicities of the form
∑n

i=1 xi zi =
t, 0 ≤ x ≤ u, x ∈ Z

n can be solved in time 2O(n) · (log(1 + ‖u‖∞))n. In particular
if each multiplicity is bounded by a polynomial p(n), then it can be solved in time
(log n)O(n).

Knapsack with multiplicities is the following integer programming problem

max
{ 〈c, x〉 | x ∈ Z

n≥0, 〈a, x〉 ≤ β, 0 ≤ x ≤ u
}
, (6)

where c, a, u ∈ Z
n≥0 are integer vectors. Again, via the preprocessing algorithm of

Frank and Tardos [28] (Theorem 8) one can assume that ‖c‖∞ as well as ‖a‖∞ are

bounded by 2O(n3)uO(n2)
max . If each ui is bounded by a polynomial in the dimension,

then the state-of-the-art2 for this problem is again straightforward enumeration which
leads to a running time of nO(n). Also in this regime, we can significantly improve the
running time which is an immediate consequence of Theorem 22.

Corollary 24 A knapsack problem (6) can be solved in time 2O(n) · (log(1+ ‖u‖∞))n.
In particular if ‖u‖∞ is bounded by a polynomial p(n) in the dimension, it can be
solved in time (log n)O(n).
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