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Abstract
We present a new feasible proximal gradient method for constrained optimization
where both the objective and constraint functions are given by summation of a smooth,
possibly nonconvex function and a convex simple function. The algorithm converts the
original problem into a sequence of convex subproblems. Formulating those subprob-
lems requires the evaluation of at most one gradient-value of the original objective and
constraint functions. Either exact or approximate subproblems solutions can be com-
puted efficiently in many cases. An important feature of the algorithm is the constraint
level parameter. By carefully increasing this level for each subproblem, we provide
a simple solution to overcome the challenge of bounding the Lagrangian multipliers
and show that the algorithm follows a strictly feasible solution path till convergence
to the stationary point. We develop a simple, proximal gradient descent type analysis,
showing that the complexity bound of this new algorithm is comparable to gradient
descent for the unconstrained settingwhich is new in the literature. Exploiting this new
design and analysis technique, we extend our algorithms to some more challenging
constrained optimization problems where (1) the objective is a stochastic or finite-sum
function, and (2) structured nonsmooth functions replace smooth components of both
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objective and constraint functions. Complexity results for these problems also seem
to be new in the literature. Finally, our method can also be applied to convex function
constrained problems where we show complexities similar to the proximal gradient
method.

Keywords Function constrained optimization · Proximal gradient descent · Moving
balls method · Stochastic optimization

Mathematics Subject Classification 90C26 · 90C30 · 90C06 · 90C51 · 49M37

1 Introduction

In this paper, we study the following constrained optimization problem

min
x∈Rd

ψ0(x) := f0(x) + χ0(x)

s.t. ψi (x) := fi (x) + χi (x) ≤ ηi , i = 1, . . . ,m.
(1.1)

where ψi (x) is a composite function that sums up functions fi (x) and χi (x).
Here, fi , i = 0, 1, . . . ,m, are smooth functions, χ0(x) is a proper, convex, lower-
semicontinuous (lsc) function and χi (x), i = 1, . . . ,m, are convex continuous
functions over the domain of χ0 (i.e. domχ0 ). We consider that χi , i = 0, . . . ,m
are ‘simple’ functions, namely, a feasible optimization problem of the form below

min
x∈Rd

{‖x − a0‖2 + χ0(x) : ‖x − ai‖2 + χi (x) ≤ bi , i = 1, . . . ,m.
}

(1.2)

can be solved to efficiently obtain either an exact solution or an inexact solution of
desired accuracy. Note that if χi = 0, i = 1, . . . ,m, then (1.2) becomes a proximal
operator for function χ0 on the intersection of balls. If we further assume χ0 = 0, then
(1.2) is a special type of quadratically constrained quadratic programming (QCQP)
that can be solved efficiently because all theHessians are identitymatrices. In addition,
we consider the case where constraints fi , i = 1, . . . ,m, are structured nonsmooth
functions which can be approximated by smooth functions (also called smoothable
functions). Note that problem (1.1) covers a variety of convex and nonconvex function
constrained optimization depending on the assumptions of fi , i = 0, . . . ,m.

Nonlinear optimization with function constraints is a classical topic in continuous
optimization. While the earlier study focused on the asymptotic performance, recent
work has put more emphasis on the complexity analysis of algorithms, mainly driven
by the growing interest in large-scale optimization and machine learning. For most
of our discussion on the complexity analysis, we generally require convergence to an
ε-approximate KKT point (c.f. Definition 3). Penalty methods [9, 25, 33], including
augmented Lagrangian methods [22–24, 34], is one popular approach for constrained
optimization. In [8], Cartis et al. presented an exact penalty method by minimizing a
sequence of convex composition functions. When the penalty weight is bounded, this
method solves O(1/ε) trust region subproblems. If the penalty weight is unbounded,
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the complexity is ofO(1/ε2.5) to reach an ε-KKT point. In a subsequent work [9], the
authors provided a target following method that achieves the complexity of O(1/ε),
regardless of the growth of the penalty parameter. In [33], Wang et al. extended the
penalty method for solving constrained problems where the objective takes the expec-
tation form. Sequential quadratic programming (SQP) is another important approach
for constrained optimization. Typically, SQP involves linearization of the constraints,
quadratic approximation of the objective, and possibly some trust region constraint
for the convergence guarantee [6, 7]. The recent work [12] established a unified con-
vergence analysis of SQP (GSQP) in more general settings where the feasibility and
constraint qualification may or may not hold. Different from the standard SQP, the
Moving Balls Approximation (MBA) method [1] follows a feasible solution path and
transforms the initial problem into a diagonal QCQP. A subsequent work [3] presented
a unified analysis of MBA and other variants of SQP methods. Under the assumption
of Kurdyka-Łojasiewicz (KL) property, they establish the global convergence rates
which depend on the Łojasiewicz exponent.

Despite much progress in prior works, there are some significant remaining issues.
Specifically, most of the analysis is carried out for only smooth optimization and
requires that the exact optimal solution of the convex subproblem is readily available.
Unfortunately, both assumptions can be unrealistic in many large-scale applications.
To overcome these issues, [4, 25, 26] presented some new proximal point algorithms
that iteratively solve strongly convex proximal subproblems inexactly using first-order
methods. A significant computational advantage is that first-order methods only need
to compute a relatively easy proximal gradient mapping in each iteration. In particular,
[4] proposed to solve the proximal point subproblem by a new first-order primal-dual
method called ConEx. Under some strict feasibility assumption, they derived the
total complexities of the overall algorithm for which the objective and constraints
can be either stochastic or deterministic, and either nonsmooth or smooth. Notably,
for nonconvex and smooth constrained problems, inexact proximal point [4] requires
O(1/ε1.5) function/gradient evaluations. A similar complexity bound is obtained by
the proximal point penalty method [25] when a feasible point is available. Neverthe-
less, at this point, it may be difficult to directly compare the efficiency of the proximal
point with the earlier approach, given that very different oracles are employed in each
method. The inexact proximal point method appears to be less efficient in terms of
gradient and function value computations since first-order penalty method [9] and a
variant of SQP [12] (where the surrogate is formed by first-order approximation) has
an O(1/ε) complexity bound. Nevertheless, it might be more efficient if the corre-
sponding proximal mapping is much easier to solve than the subproblems in penalty
or SQP methods.

In this paper, we attempt to alleviate some of the aforementioned issues in solving
nonconvex constrained optimization. Our main contribution is the development of a
novelLevelConstrainedProximalGradient (LCPG) method for constrained optimiza-
tion, based on the following key ideas.

First, we convert the original problem (1.1) into a sequence of simple convex sub-
problems of the form (1.2) for which an exact or an approximate solution can be
computed efficiently. In particular, solving the subproblem requires at most one gra-
dient and function value computation for fi , i = 0, . . . ,m. This phenomenon is quite
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similar to simple single-loop methods even though LCPG method can be multi-loop
since we allow for an inexact solution of (1.2) using some kind of iterative scheme.

Second, starting from a strictly feasible initial point and carefully controlling the
feasibility levels of the subproblem constraints, we ensure that LCPG follows a strictly
feasible solution path. This also allows us to deal with nonsmooth constraints where χi

is not necessarily 0 and further extendsLCPG to the inexact casewhere the subproblem
admits an approximate solution. Even though subtle, the level-control design is crucial
in bounding the Lagrange multipliers under the well-known Mangasarian–Fromovitz
constraint qualification (MFCQ) [4, 27]. Subsequently, we also show asymptotic con-
vergence of the LCPG method.

Third, we offer a new insight into the complexity analysis of LCPG as a gradient
descent type method, which could be of independent interest. When the objective
and constraints are nonconvex composite, we aim to find a first-order ε-KKT point
(c.f. Definition 3) under the aforementioned MFCQ assumption. We can show that
LCPGmethod converges in O(1/ε) iterations. Furthermore, each subproblem requires
at most one function-value and gradient computation. The net outcome is that gradient
complexity of our method is of O(1/ε). Notice that the number of iterations required
by the proximal point method under MFCQ is also O(1/ε) (see [4, Theorem 5]).
However, each iteration of this method requires O(1/ε0.5) gradient computation, and
hence its total gradient complexity can be bounded by O(1/ε1.5). This is much worse
than LCPG method. We compare with some significant lines of work in Table 1.

Exploiting the intrinsic connection between LCPG and proximal gradient (without
function constraints), we extend LCPG to a variety of cases. (1) We can show a similar
O(1/ε) gradient complexity for an inexact LCPGmethod for which the subproblem is
solved to a pre-specified accuracy. If we assume χi = 0, then the corresponding sub-
problem (1.2) (i.e. diagonal QCQP) can be efficiently solved by a customized interior
pointmethod in logarithmic time. In themore general settingwhenχi �= 0, we propose
to solve (1.2) by the first-order method ConEx, which has very cheap iterations. (2)
We also extend LCPGmethod to stochastic (LCSPG) and variance-reduced (LCSVRG)
variants when f0 is either stochastic or finite-sum function, respectively. LCSPG and
LCSVRG require O(1/ε2) (similar to SGD [15]) and O(

√
n/ε) (similar to SVRG

[18]) stochastic gradients, respectively, where n is the number of components in the
finite-sum objective. The complexity of variants of LCPGmethod for stochastic cases
can also be seen in Table 2. (3)We consider the case when function fi , i = 0, 1, . . . ,m
are nondifferentiable but contain a smooth saddle structure (referred to as structured
nonsmooth). We extend LCPG method for such nonsmooth nonconvex function con-
strained problem using Nesterov’s smoothing scheme [29]. In this case, LCPGmethod
requires O(1/ε2) gradients.

We show that the GD-type analysis of the LCPG method can be extended to the
convex case. In particular, when the objective and constraint functions are convex, we
show that LCPGmethod requires O(1/ε) gradient computations for smooth and com-
posite constrained problems, and this complexity improves to O(log (1/ε)) when the
objective is smooth and strongly-convex. Furthermore, we develop the complexity of
inexact variants of LCPG method by leveraging the analysis of gradient descent with
inexact projection oracles [31]. Inexact LCPGmethodmaintains the gradient complex-
ity of O(1/ε) and O(log(1/ε)) for convex and strongly convex problems, respectively.
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Table 1 Comparison of algorithm function/gradient evaluation complexities

Algorithms Function
type

Composite? Inexact? CQ Criteria Gradient complexity†

MBA[1] str cvx No No Feasibility+MFCQ Opt. gap O(log(1/ε))

GSQP [12] noncvx No No Extended MFCQ KKT O(1/ε)

IPP noncvx Yes Yes Strong feasibility KKT O(1/ε1.5)

+ConEx [4]

IPPP [25] noncvx No Yes Feasibility +
Nonsingularity

KKT O(1/ε1.5)

Nonsingularity O(1/ε2)

IQRC [26] noncvx Yes* Yes Uniform Slater KKT O(1/ε1.5)

LCPG (this work) cvx Yes Yes Slater+MFCQ Opt. gap O(1/ε)

str cvx Opt. gap O(log(1/ε))

noncvx KKT O(1/ε)

cvx: convex, str cvx: strongly convex, and noncvx: nonconvex. For convex problems, we consider the
complexity to reach a feasible solution with O(ε)-optimality gap. For nonconvex problems, we consider
the complexity to reach an approximate KKT solution that satisfies ‖∂L‖2− ≤ ε. Note that different works
have quite different error measurements of the complementary slackness. For example, in our translation,
[12, 25] requires anO(

√
ε) error on the complementary slackness and feasibility. Our measure requires 0-

feasibility error andO(ε)-complementary slackness error. * IQRC does not explicitly discuss the composite
case. Their subproblem oracle can be upgraded to handle proximal cases relatively easily
†Different methods have different costs for solving the subproblem. Somemethods require explicit gradient
computations for solving the subproblems and hence, are expected to be quite computationally costly.
Some methods (including ours) have simple subproblems. See Remark 11 for a detailed discussion. Hence,
comparing total computational complexity is not possible. We instead compare gradient complexities to
provide a realistic estimate of the computational effort of each of these methods

Throughout our analysis, we require that the Lagrange multipliers for the convex
subproblems of type (1.2) are bounded. This problem is addressed in different ways in
arguably all works in the literature. In this paper, we show that under the assumption
of MFCQ, Lagrange multipliers associated with the sequence of subproblems remain
bounded by a quantity specified as B. Even then, the value of B cannot be estimated
a priori. Fortunately, this bound is not needed in the implementation of our methods.
However, it plays a role in complexity analysis. Hence, our comparison with the
existing complexity literature (e.g., proximal point method of [4]) is valid when bound
B on the sequence of Lagrange multipliers largely depends on the problem itself and
not on the sequence of subproblems. One can easily see that such uniform bounds on
Lagrange multipliers hold under the strong feasibility constraint qualification [4], a
similar uniform Slater’s condition [26] or for nonsmooth nonconvex relaxation in the
application of sparsity constrained optimization [5]. The problemof comparing bounds
B on Lagrange multipliers requires getting into specific applications, which is not the
purpose of this paper. Hence, throughout our comparison with existing literature, we
assume that bound B for different methods is of a similar order.

Comparison with MBA method Auslender et al. [1] provided a Moving Balls Approx-
imation (MBA) method for smooth constrained problems, i.e. χi (x), i = 0, . . . ,m, are
not present. They use Lipschitz continuity of constraint gradients along withMFCQ to
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Table 2 Total number of
stochastic gradient evaluations to
obtain O(ε, ε) randomized KKT
points in the finite sum problem

LCPG LCSPG LCSVRG

Complexity O(nε−1) O(ε−2) O(n1/2ε−1)

ensure that the subproblems satisfy Slater’s conditions (see [1, Proposition 2.1(iii)]).
A similar result is also used in [35] where they provide a line-search version of MBA
for functions satisfying certain KL properties. The MBAmethod was studied for semi-
algebraic functions in [3]where theyused theKL-property of semi-algebraic functions.
The work [1] also provides the complexity guarantee for constrained programs with
a smooth and strongly convex objective. Our results differ from the past studies in
the following several aspects. First, we do not assume any KL property on the class
of functions, hence making the method applicable to a wider class of problems. Sec-
ond, we show complexity analysis for a variety of cases, e.g., stochastic, finite-sum,
or structured nonsmooth cases. Note that complexity results are not known for the
MBA type method even for the purely smooth problem. Third, we show complexity
results for both convex and strongly convex cases which strictly subsumes the results
in [1]. Fourth, it should be noted that [1] also considered the efficiency of solving
subproblems. They proposed an accelerated gradient method that obtains O(1/

√
ε)

complexity for solving the dual of the QCQP subproblem. However, it is unclear what
accuracy is enough for ensuring asymptotic convergence of the whole algorithm.

Comparison with generalized SQP The work [12] developed the first complexity anal-
ysis of the generalized SQP (GSQP) method by using a novel ghost penalty approach.
Different from our feasible method, they consider a general setting where the fea-
sibility and constraint qualification may or may not hold. They show that SQP-type
methods have an O(1/ε2) complexity for reaching some ε-approximate generalized
stationary point. Under an extended MFCQ condition, they established an improved
complexityO(1/ε) for reaching the scaled-KKT point, whichmatches our complexity
result under a similar MFCQ assumption. Notably, both their analysis and ours rely
on MFCQ to show that the global upper bound (constant B) on the multipliers of the
subproblems exists. However, to obtain the bestO(1/ε) complexity, GSQP explicitly
relies on the value of such unknown upper bound to determine the stepsize, which
appears to be rather challenging in practical use. In contrast, our algorithm does not
involve the constant B in the algorithm implementation; we only require the Lipschitz
constants of the gradients, which is standard for gradient descent methods.

OutlineThis paper is organized as follows: Sect. 2 describes notations and assumptions.
It also provides various definitions used throughout the paper. Section3 presents the
LCPG method which uses exact solutions of subproblems. It also establishes asymp-
totic convergence and convergence rate results. Section4.1 and Sect. 4.2 provides the
LCSPG andLCSVRGmethod for stochastic andfinite-sumproblems, respectively. Sec-
tion5 shows the extension of LCPG for nonsmooth nonconvex function constraints.
Section6 introduces the inexact LCPG method and provides its complexity analysis
when the subproblems are inexactly solved by an interior point method or first-order
method. Finally, Sect. 7 extends LCPG method for convex optimization problems and
establishes its complexity for both strongly convex and convex problems.
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2 Notations and assumptions

Notations. R
n+ stands for the non-negative orthant in R

n . We use ‖·‖ to express the
Euclidean norm. For a setX , we define ‖X‖− = dist(0,X ) = inf

{‖x‖, x ∈ X
}
. IfX

is a convex set then we denote its normal cone at x as NX (x). Furthermore, we denote
the dual cone of the normal cone at x as N∗

X (x). Let e be a vector full of elements
one. For simplicity, we denote [m] = {1, 2, . . . ,m}, f (x) = [ f1(x), . . . , fm(x)]T,
χ(x) = [χ1(x), . . . , χm(x)]T, and ψ(x) = [ψ1(x), ψ2(x), . . . , ψm(x)]T. For vectors
x, y ∈ R

m , x ≤ y is understood as xi ≤ yi for i ∈ [m].
Assumption 1 (General) We assume that the optimal value of problem (1.1) is finite:
ψ∗
0 > −∞. Furthermore, the objective and constraint functions have the following

properties.

1: χ0 is a proper, convex, and lower semi-continuous (lsc) function. Moreover, we
assume that for all i = 1, . . . ,m, the function χi (x) is convex continuous over
domχ0 .

2: fi (x) is Li -Lipschitz smooth on domχ0 : ‖∇ fi (x) − ∇ fi (y)‖ ≤ Li‖x − y‖ for
any x, y ∈ domχ0 . For brevity, we denote L = [L1, . . . , Lm]T.

3: The feasible set for (1.1), i.e.,
⋂

i∈[m]{x : ψi (x) ≤ ηi } ∩ domχ0 is nonempty and
compact.1

The Lagrangian function of problem (1.1) is denoted by

L(x, λ) = ψ0(x) +
m∑

i=1

λi [ψi (x) − ηi ]. (2.1)

For functions ψi , we denote its subdifferential as

∂ψi (x) = {∇ fi (x)} + ∂χi (x), i = 0, . . . ,m,

where the sum is in theMinkowski sense. Note that this definition of the subdifferential
for nonconvex functions was first proposed in [4]. Moreover, ∂ψi = {∇ fi } when ψi

is a “purely” smooth nonconvex function and ∂ψi = ∂χi when ψi is a nonsmooth
convex function. Hence, it is a valid definition for the subdifferential of a nonconvex
function. Below, we define the KKT condition using the above subdifferential.

Definition 1 (KKT condition) We say x ∈ domχ0 is a KKT point of problem (1.1) if
x is feasible and there exists a vector λ ∈ R

m+ such that

0 ∈ ∂xL(x, λ), 0 =
m∑

i=1

λi
[
ψi (x) − ηi

]
. (2.2)

The values {λi } are called Lagrange multipliers.

1 This assumption is used to ensure the limit point of a certain sequence in the analysis. There are other
conditions that can ensure the existence of a limit point as we will discuss in Remark 1.

123



D. Boob et al.

It is known that the KKT condition is necessary for optimality under the assumption
of certain constraint qualifications (c.f. [2]). Our result will be based on a variant of
the Mangasarian–Fromovitz constraint qualification, which is formally given below.

Definition 2 (MFCQ)We say that a point x satisfies theMangasarian–Fromovitz con-
straint qualification for (1.1) if there exists a vector z ∈ −N∗

domχ0
(x) such that

max
v∈∂ψi (x)

〈v, z〉 < 0, i ∈ A(x), (2.3)

where A(x) = {i : 1 ≤ i ≤ m, ψi (x) = ηi }.

Proposition 1 (Necessary condition) Let x be a local optimal solution of Prob-
lem (1.1). If it satisfies MFCQ (2.3), then there is a vector λ ∈ R

m+ such that the
KKT condition (1) holds.

Next, we introduce some optimality measures before formally presenting any algo-
rithms. It is natural to characterize algorithm performance by measuring the error of
satisfying the KKT condition. Towards this goal, we have the following definition.

Definition 3 We say that x is an ε type-I (approximate) KKT point if it is feasible (i.e.
ψ(x) ≤ η), and there exists a vector λ ∈ R

m+ satisfying the following conditions:

‖∂xL(x, λ)‖2− ≤ ε

−
m∑

i=1

λi [ψi (x) − ηi ] ≤ ε.

Moreover, x is a randomized ε type-IKKTpoint if both x andλ are feasible randomized
primal-dual solutions that satisfy

E[‖∂xL(x, λ)‖2−] ≤ ε

E[−
m∑

i=1

λi [ψi (x) − ηi ]] ≤ ε,

where the expectation is taken over the randomness of x and λ.

Besides the above definition, we invoke a second optimality measure which will help
analyze the performance of a proximal algorithm (see, for example, [4]). Therein, it is
arguably more convenient to approach the proximity of some nearly stationary points.

Definition 4 We say that x is a (ε, ν) type-II KKT point if there exists an ε type-I KKT
point x̂ and ‖x − x̂‖2 ≤ ν. Similarly, x is a randomized (ε, ν) type-II KKT point if x̂
is a random vector and E[‖x − x̂‖2] ≤ ν.
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3 A proximal gradient method

Wepresent the level constrainedproximal gradient (LCPG)method inAlgorithm1.The
main idea of this algorithm is to turn the original nonconvex problem into a sequence
of relatively easier subproblems that involve some convex surrogate functions ψk

i (x)
(0 ≤ i ≤ m) and variable constraint levels ηk :

min
x∈Rd

ψk
0 (x)

s.t. ψk
i (x) ≤ ηki , i ∈ [m].

(3.1)

Above, we take the surrogate function ψk
i (x) (0 ≤ i ≤ m) by partially linearizing

ψi (x) at xk and adding the proximal term Li
2 ‖x − xk‖2:

ψk
i (x) := fi (x

k) + 〈∇ fi (x
k), x − xk

〉+ Li
2 ‖x − xk‖2 + χi (x). (3.2)

It should be noted that our algorithmmay not be well-defined if it were to be initialized
by an infeasible solution x0. Furthermore, we require the initial point to be strictly
feasible with respect to the nonlinear constraints ψ(x) ≤ η. Therefore, we explicitly
state this assumption below and assume it holds throughout the paper.

Assumption 2 (Strict feasibility) There exist a point x0 ∈ domχ0 and a vector η
0 ∈ R

m

satisfying

ψi (x
0) < η0 < η.

With a strictly feasible solution, we assume that the constraint levels {ηk} are incre-
mentally updated and converge to the constraint levels for the original problem:

lim
k→∞ ηki = ηi , i ∈ [m].

Algorithm 1 Level constrained proximal gradient method (LCPG)

1: Input: x0, η0;
2: for k=0,1,2,...,K do
3: For i = 0, 1, . . . ,m, set ψk

i (x) by (3.2);

4: Update xk+1 by solving (3.1);
5: Choose δk > 0 and update ηk+1 by

ηk+1
i = ηki + δki < ηi , i = 1, 2, . . . ,m. (3.3)

6: end for
7: Output: xk̂+1 where k̂ is a random index sampled from {0, 1, 2, ..., K }.

The following Lemma will be used many times throughout the rest of the paper.
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Lemma 1 [Three-point inequality] Let g : R
d → (−∞,∞] be a proper lsc convex

function and

x+ = argmin
z∈Rd

{
g(z) + γ

2 ‖z − y‖2
}

,

then for any x ∈ R
d , we have

g(x+) − g(x) ≤ γ
2

(‖x − y‖2 − ‖x+ − y‖2 − ‖x − x+‖2). (3.4)

Next, we present some important properties of the generated solutions in the fol-
lowing theorem.

Proposition 2 Suppose that Assumption 2 holds, then Algorithm 1 has the following
properties.

1. The sequence
{
xk
}
is well-defined and is feasible for problem (1.1). {xk} satisfies

the sufficient descent property:

L0
2 ‖xk+1 − xk‖2 ≤ ψ0(x

k) − ψ0(x
k+1). (3.5)

Moreover, the sequence of objective values
{
ψ0(xk)

}
is monotonically decreasing

and limk→∞ ψ0(xk) exists.
2. There exists a vector λk+1 ∈ R

m+ such that the KKT condition holds:

∂ψk
0 (xk+1) +

m∑

i=1

λk+1
i ∂ψk

i (xk+1) � 0

λk+1
i

[
ψk
i (xk+1) − ηki

] = 0, i ∈ [m].
(3.6)

Proof Part 1). First, we show that {xk} is a well-defined sequence, namely,Xk ∩domχ0

is a nonempty set where Xk = {
x : ψk

i (x) ≤ ηki

}
. This result clearly holds for k = 0

by Assumption 2. We show the general case (k > 0) by induction. Suppose that xk

is well-defined, i.e., Xk−1 ∩ domχ0 is nonempty. Then, by the definition of ψk
i , ψk−1

i
and the definition xk , we have xk ∈ domχ0 and

ψk
i (xk) = ψi (x

k) ≤ ψk−1
i (xk) ≤ ηk−1

i < ηki for all i ∈ [m]. (3.7)

Here, the first inequality follows due to the smoothness of fi (x) which ensures for all
x ,

fi (x) ≤ fi (x
k−1) + 〈∇ fi (x

k−1), x − xk−1〉 + Li
2 ‖x − xk−1‖2, ∀i ∈ [m].

This is equivalent to xk ∈ Xk ∩ domχ0 , implying that Xk ∩ domχ0 is nonempty. We
conclude that xk+1 is well-defined. Hence, by induction, we conclude that {xk} is a
well-defined sequence. Furthermore, in view of xk ∈ domχ0 , relation (3.7) and the
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fact that ηki < ηi , we have xk ∈ domχ0 ∩{x : ψi (x) ≤ ηi , i = 1, . . . ,m}. Hence, the
whole sequence {xk} remains feasible for the original problem.

Now, let us apply Lemma 1 with g(x) = 〈∇ f0(xk), x〉 + χ0(x) + 1Xk (x), y = xk

and γ = L0. Then, for any x ∈ domχ0 ∩Xk , we have

〈∇ f0(x
k), xk+1 − x〉 + χ0(x

k+1) − χ0(x)

≤ L0
2

(‖x − xk‖2 − ‖x − xk+1‖2 − ‖xk − xk+1‖2).

Placing x = xk in the above relation, we have

〈∇ f0(x
k), xk+1 − xk〉 + χ0(x

k+1) − χ0(x
k) ≤ −L0‖xk+1 − xk‖2. (3.8)

Moreover, since f0(·) is Lipschitz smooth, we have that

f0(x
k+1) ≤ f0(x

k) + 〈 f0(xk), xk+1 − xk〉 + L0
2 ‖xk+1 − xk‖2.

Summing up the above two inequalities and using the definition ψ0 = f0 + χ0,
we conclude (3.5). Hence, the sequence

{
ψ0(xk)

}
is monotonically decreasing. The

convergence of
{
ψ0(xk)

}
follows from the lower boundedness assumption.

Part 2). Note that (3.7) ensures the strict feasibility of xk w.r.t. the constraint setXk

for the kth subproblem. Therefore, Slater’s condition for (3.1) and the optimality of
xk+1 imply that there must exist a vector λk+1 ∈ R

m+ satisfying KKT condition (3.6).
Hence, we complete the proof. ��
In order to show convergence to the KKT solutions, we need the following constraint
qualifications.

Assumption 3 [Uniform MFCQ] All the feasible points of problem (1.1) satisfy
MFCQ.

We state themain asymptotic convergence property of LCPG in the following theorem.

Theorem 1 Suppose that Assumption 3 holds, then we have the following conclusions.

1. The dual solutions {λk+1} are bounded from above. Namely, there exists a constant
B > 0 such that

sup
0≤k≤∞

‖λk+1‖ < B. (3.9)

2. Every limit point of Algorithm 1 is a KKT point.

Proof Part 1). First, we can immediately see that {xk} is a bounded sequence and
hence the limit point exists. This result is from Assumption 1.3: and the feasibility
of xk for problem (1.1) (c.f. Proposition 2, Part 1). Without loss of generality, we
can assume limk→∞ xk = x̄ . For the sake of contradiction, suppose that λk+1 is
unbounded, then passing to a subsequence if necessary, we can assume ‖λk+1‖ → ∞
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for simplicity. Note that we also have limk→0‖xk+1 − xk‖2 = 0 due to the sufficient
descent property (3.5). From the KKT condition (3.6), we have

ψk
0 (x) + 〈λk+1, ψk(x) − ηk〉 ≥ ψk

0 (xk+1) + 〈λk+1, ψk(xk+1) − ηk〉, ∀x ∈ dom
χ0

.

(3.10)
Let X := ⋂

i∈[m]{x : ψi (x) ≤ ηi } ∩ domχ0 be the feasible domain for problem (1.1).
Due to the fact that xk ∈ X (Proposition 2), boundedness of X (Assumption 1.3:) and
strong convexity of ψk

0 , there exists l0 ∈ R such that X ⊂ {x : ψk
0 (x) < l0} for all

k. Then, using (3.10) for all x ∈ domχ0 ∩{ψk
0 (x) ≤ l0} and dividing both sides by

‖λk+1‖, we have

ψk
0 (x)/‖λk+1‖ + 〈λk+1/‖λk+1‖, ψk(x)

〉

≥ ψk
0 (xk+1)/‖λk+1‖ + 〈λk+1/‖λk+1‖, ψk(xk+1)

〉
. (3.11)

Let us take k → ∞ on both sides of (3.11). Note that for all x ∈ domχ0 ∩{ψk
0 (x) ≤ l0},

we have

lim
k→∞ ψk

0 (x)/‖λk+1‖ = 0, lim
k→∞ ψk

0 (xk+1)/‖λk+1‖ = 0, (3.12)

lim
k→∞ ψk

i (x) = fi (x̄) + 〈∇ fi (x̄), x − x̄〉 + Li
2 ‖x − x̄‖2 + χi (x), i ∈ [m], (3.13)

lim
k→∞ ψk

i (xk+1) = fi (x̄) + χi (x̄) = ψi (x̄), i ∈ [m], (3.14)

where (3.12) is due to boundedness of ψk
0 (x) on domχ0 ∩{ψk

0 (x) ≤ l0} and bound-
edness of ψk

0 (xk+1) since xk+1 ∈ X which is a bounded set. Moreover, (3.13) and
(3.14) use the continuity of fi (x) and χi (x), i ∈ [m]. Next, we consider the sequence
{uk = λk+1/‖λk+1‖}. Since ‖uk‖ is a bounded sequence, it has a convergent subse-
quence. Let ū be a limit point of {uk} and the subsequence { jk} ⊆ {1, 2, ..., } such that
limk→∞ u jk = ū. Since the subsequence of a convergent sequence is also convergent,
we pass to the subsequence jk in (3.11) and apply (3.12), (3.13) and (3.14), yielding

m∑

i=1

ūi
[〈∇ fi (x̄), x − x̄〉 + Li

2 ‖x − x̄‖2 + χi (x)
] ≥

m∑

i=1

ūiχi (x̄), (3.15)

for all x ∈ domχ0 ∩{ψk
0 (x) ≤ l0}. Hence, x̄ minimizes

∑m
i=1 ūi

[〈∇ fi (x̄), x − x̄〉 +
Li
2 ‖x − x̄‖2 + χi (x)

]
on domχ0 ∩{ψk

0 (x) ≤ l0}. Now noting x̄ ∈ X ⊂ {ψk
0 (x) < l0}

and using the stationarity condition for optimality of x̄ , we have

0 ∈
m∑

i=1

ūi
[∇ fi (x̄) + ∂χi (x̄)

]+ Ndomχ0
(x̄) =

m∑

i=1

ūi∂ψi (x̄) + Ndomχ0
(x̄), (3.16)

where we dropped the constraint ψk
0 (x) ≤ l0 due to complementary slackness and the

fact that ψk
0 (x̄) < l0.

123



Level constrained first order methods for...

Let B = {i : ūi > 0}, then we must have limk→∞ λ
jk
i = limk→∞ ūi‖λ jk‖ = ∞

for i ∈ B. Based on complementary slackness, we have ψ
jk
i (x jk+1) = η

jk
i for any

i ∈ B for large enough k. Due to (3.14), we have the limit: ψi (x̄) = ηi . Therefore, the
i th constraint is active at x̄ , i.e. i ∈ A(x̄). In view of (3.16), there exists subgradients
vi ∈ ∂ψi (x̄), i ∈ [m] and v0 ∈ Ndomχ0

(x̄) such that

0 = v0 +
∑

i∈B
ūivi . (3.17)

However, equation (3.17) contradicts the MFCQ assumption. This is because MFCQ
guarantees the existence of z∈ −N∗

domχ0
(x̄) such that 〈z, vi 〉 < 0 for all i ∈ A(x̄),

which implies

0 = 〈z, v0 +
∑

i∈B
ūivi 〉 ≤

∑

i∈B
ūi 〈z, vi 〉 ≤

∑

i∈B
ūi max

v∈∂ψi (x̄)
〈z, v〉 < 0,

where the first inequality follows since z ∈ −Ndomχ0
(x̄) and v0 ∈ Ndomχ0

(x̄) implying
that 〈z, v0〉 ≤ 0, the second inequality follow since ūi ≥ 0 and vi ∈ ∂ψi (x̄), and the
last strict inequality follows due to uniform MFCQ (c.f. Assumption 3 and relation
(2.3)) and ūi > 0 for at least one i ∈ B. This clearly leads to a contradiction. Hence,
we conclude that {λk+1} is a bounded sequence and conclude the proof.

Part 2). Without loss of generality, we assume that x̄ is the only limit point. Since
{λk+1} is a bounded sequence, there exists a limit point λ̄. Passing to a subsequence
if necessary, we have λk+1 → λ̄.

From the optimality condition 0 ∈ ∂xLk(xk+1, λk+1), for any x , we have

〈∇ f0(x
k)+

m∑

i=1

λk+1
i ∇ fi (x

k), xk+1−x
〉+χ0(x

k+1)−χ0(x)+〈λk+1, χ(xk+1)−χ(x)
〉

≤ L0+〈λk+1,L〉
2

[‖x − xk‖2 − ‖xk+1 − xk‖2 − ‖x − xk+1‖2]. (3.18)

Let us take k → ∞ on both sides of (3.18). We note that limk→∞‖xk − xk+1‖ = 0
due to Proposition 2, limk→∞ χi (xk+1) = χi (x̄) due to the continuity of χi (i ∈ [m]),
and χ0(x̄) ≤ lim infk→∞ χ0(xk) due to the lower semi-continuity of χ0(·). It then
follows that

〈∇ f0(x̄) +
m∑

i=1

λ̄i∇ fi (x̄), x̄ − x
〉+ χ0(x̄) − χ0(x) + 〈λ̄, χ(x̄) − χ(x)

〉 ≤ 0. (3.19)

In other words, x̄ is the minimizer of convex optimization problem minx
〈∇ f0(x̄) +∑m

i=1 λ̄i∇ fi (x̄), x
〉+ χ0(x) + λ̄

[
χ(x) − η

]
over domχ0 . Hence we have

0 ∈ ∇ f0(x̄) + ∂χ0(x̄) + 〈λ̄, ∂ψ(x̄)〉. (3.20)
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In addition, using the complementary slackness, we have

0 = lim
k→∞

m∑

i=1

λk+1
i

[
ψk
i (xk+1) − ηki

]

= lim
k→∞

m∑

i=1

λk+1
i

[
fi (x

k)+〈∇ fi (x
k), xk+1−xk〉+ Li

2 ‖xk+1−xk‖2+χi (x
k+1)−ηki

]

=
m∑

i=1

λ̄i
[
fi (x̄) + χi (x̄) − ηi

] = 〈λ̄, ψ(x̄) − η〉, (3.21)

due to the convergence limk→∞ λk+1 = λ̄, limk→∞ ηk = η, limk→∞ χ(xk+1) =
χ(x̄) and limk→∞‖xk+1 − xk‖ = 0. Putting (3.20) and (3.21) together, we conclude
that (x̄, λ̄) satisfies the KKT condition. ��

Remark 1 To show the existence of a limit point x̄ , we use Assumption 1.3: to ensure
that the sequence xk remains in a bounded domain. For the sake of conciseness,
we henceforth assume the existence of a limit point x̄ and do not delve into the
technical assumption used to ensure this condition. Moreover, it should be noted that
the boundedness property can be obtained under other assumptions, e.g., assuming
the compactness of sublevel set {x : ψ0(x) ≤ ψ0(x0)} and using the sufficient descent
condition (3.5), we can immediately show the existence of x̄ . However, it appears to
be more challenging to show convergence via this approach when sufficient descent
condition fails (e.g., in the forthcoming stochastic optimization).

3.1 Dependence of B on the constraint qualification.

In Theorem 1, we proved existence of a bound B on the dual multiplier. However,
the size of that bound still remains unknown. Through Example 1 below, we observe
that the limiting behaviour of the sequence λk (which largely governs the size of B)
is closely tied to the magnitude of the number c(x̄), where

c(x) := − min‖z‖≤1
max

v∈∂ψi (x)
〈v, z〉.

Here, the inner max follows from the relation (2.3) and outer min tries to find the best
possible z that ensures MFCQ. It is observed that if c(x̄) is a large positive number,
then MFCQ is strongly satisfied and B is a reasonable bound. In contrast, if c(x̄) is
close to 0, then B can get quite large.

Example 1 Consider a two dimensional optimization problem with SCAD constraint:
minx ψ0(x) subject to ψ1(x) ≤ η1 where ψ0(x) = 7 − x1 and ψ1(x) = β‖x‖1 −
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∑2
i=1 hβ,θ (xi ). Note that

hβ,θ (u) =

⎧
⎪⎨

⎪⎩

0 if |u| ≤ β;
(|u|−β)2

2(θ−1) if β ≤ |u| ≤ βθ;
β|u| − (θ+1)β2

2 if |u| ≥ βθ

. (3.22)

This function fits our framework with the smoothness parameter 1
θ−1 . Lets consider

β = 1, θ = 5, the level η1 = 3 and limit point x̄ = (5, 0). Clearly, the constraint is

active at x̄ and h is 1
4 -smooth function. Then, ∂ψ(x̄) = {

[
0
t

]
: t ∈ [−1, 1]} as per

the definition. Then, one can see that uniform MFCQ is violated at the limit point x̄ .
Indeed,

max
v∈∂ψ(x)

〈v, z〉 = max
t∈[−1,1] t z2 = |z2| ≮ 0,

implying c(x̄) = 0. Furthermore, no λ can be found satisfying the KKT condition

[−1
0

]
+ λ

[
0
t

]
=
[
0
0

]
,

for all t ∈ [−1, 1]. Hence, as we get close to this limit point, bound on ‖λk‖ will get
arbitrarily large. Easy way to see this fact is to construct a subproblem at the limit
point itself. After observing the feasible region for the subproblem at (5, 0), it is clear
that it has only one feasible solution (5, 0) which gives rise to degeneracy. See Fig. 1
for more details. Figure1a shows the well-behaved subproblem at an interior point
while Fig. 1b show the degeneracy at the limit.

However, as we change level η1 to any value either above or below 3, we do not
get any violation of MFCQ. It also gives nondegenerate feasible sets at limit point
and λk remains bounded for all k. See Fig. 2 below for more details. In particular, if
η1 = 2.5 < 3, then x̄ = (3, 0) is the limit point. At this point, we have ∂ψ(x̂) =
{
[
0.5
t

]
: t ∈ [−1, 1]}. Moreover, we have

max
v∈∂ψ(x̄)

〈v, z〉 = 0.5z1 + max
t∈[−1,1] t z2 = 0.5z1 + |z2|.

Choosing the unit vector z = (z1, z2) = (−1, 0), we obtain that point x̄ satisfies
MFCQ with c(x̄) = 0.5. Hence, even when the search point reaches the limit point x̂
(i.e., ε → 0), the λk still exists. (See, in particular, Fig. 2b whose subproblem at x̄ has
a nonempty interior).

The view of the above example, we see that the limiting behavior of ‖λk‖ (and
by implication the order of B) is closely related to the “strength” of the constraint
qualification MFCQ at the limit point. In order to get an apriori bound B, we use a
somewhat stronger yet verifiable constraint qualification called as strong feasibility
which is a slight modification of the CQ proposed in [4, Assumption 3].

123



D. Boob et al.

Fig. 1 The nonconvex constraint ψ1(x) ≤ η1 where η1 = 3. The dotted blue curves are the subproblem
constraint for two different points. Since the MFCQ is violated at (5, 0), the subproblem reduces to a single
feasible point at the limit point (5, 0)

Fig. 2 The nonconvex constraint ψ1(x) ≤ η1 where η1 = 2.5. The dotted blue curves are subproblem
constraint for two different points. Since the MFCQ is satisfied, the limiting subproblem constraint at (3, 0)
is still a full dimensional set with nonempty interior

Assumption 4 [Strong feasibility CQ] There exists x̂ ∈ X := ⋂
i∈[m]{x : ψi (x) ≤

ηi } ∩ domχ0 such that
ψi (x̂) ≤ η0i − 2Li D

2
X (3.23)

where DX := maxx1,x2∈X ‖x1 − x2‖ is the diameter of the set X .

In view of Assumption 1.3:, we note that X is a bounded set. Hence, DX and (conse-
quently) Assumption 4 are well-defined. See [4] for a connection betweenAssumption
4 and Assumption 3. Below, we show that strong feasibility CQ leads to a fixed apriori
bound on λk .

Lemma 2 Suppose Assumption 4 is satisfied. Then, ‖λk‖1 ≤ B := ψ0(x̂)−ψ∗
0+L0D2

X
LminD2

X
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Proof Note that

ψk
i (x̂) = fi (x

k) + 〈∇ fi (x
k), x̂ − xk〉 + Li

2 ‖x̂ − xk‖2 + χi (x̂)

≤ fi (x̂) + χi (x̂) + Li‖x̂ − xk‖2
= ψi (x̂) + Li‖x̂ − xk‖2 ≤ η0i − Li D

2
X < ηki − Li D

2
X , (3.24)

where first inequality uses fi (x̂) ≥ fi (xk)+〈∇ fi (xk), x̂−xk〉− Li
2 ‖x̂−xk‖2 (follows

due to Li -smoothness of fi ), and second inequality follows by Assumption 4 along
with the fact that xk ∈ X (see Proposition 2).

In view of (3.24), we have strict feasibility of subproblem (3.1) for all k implying
that λk+1 exists. Hence, we have xk+1 = argminx ψk

0 (x) + 〈λk+1, ψk(x)〉. Then, for
all x ∈ domχ0 , we have

ψk
0 (xk+1) = ψk

0 (xk+1) + 〈λk+1, ψk(xk+1) − ηk〉
≤ ψk

0 (x) + 〈λk+1, ψk(x) − ηk〉

where equality follows from the complementary slackness of the KKT condition,
and inequality is due to optimality of xk+1. Using x = x̂ in the above relation and
combining with (3.24), we obtain

ψk
0 (x̂) − ψk

0 (xk+1) ≥ 〈λk+1, ηk − ψk(x̂)〉 ≥ 〈λk+1, L〉D2
X ≥ ‖λk+1‖1LminD

2
X

(3.25)

Finally, note that

ψk
0 (x̂) − ψk

0 (xk+1) ≤ ψ0(x̂) + L0‖x̂ − xk‖2 − ψ0(x
k+1) ≤ ψ0(x̂) − ψ∗

0 + L0D
2
X

where first inequality follows by (3.24) for i = 0 and ψk
0 (x) ≥ ψ0(x), and second

inequality follows by the definition ofψ∗
0 and DX . Combining the above relation with

(3.25), we get the result. Hence, we conclude the proof. ��
The discussion above implies that the value of B is intricately related to the con-

straint qualification. While uniform MFCQ is unverifiable and does not allow for a
priori bounds on B, it is widely used in nonlinear programming to ensure the exis-
tence of such a bound [2]. As observed in Fig. 1b and Fig. 2b, the actual value of B
depends on the closeness of the MFCQ violation at the limit point. This situation is
rare, but the current assumptions do not eliminate that possibility. Problems of this
nature are ill-conditioned, and to our knowledge, no algorithm can ensure bounds on
the dual in such a situation. The existing literature deals with this issue in two ways:
One track assumes existence of B (similar to Theorem 1) and performs the complexity
or convergence analysis; A second track assumes a stronger constraint qualification
that removes the ill-conditioned problems and shows more explicit bound on the dual
(similar to Lemma 2. We perform our analysis for both cases. To conclude, we hence-
forth assume that the bound B is a constant and do not delve into the discussion on
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related constraint qualification. To substantiate that the bound B is small, we perform
detailed numerical experiments in Sect. 8.

3.2 Convergence rate analysis of LCPGmethod

Our main goal now is to develop some non-asymptotic convergence rates for Algo-
rithm 1.

Lemma 3 In Algorithm 1, for k = 1, 2, ..., we have

‖∂xL(xk+1, λk+1)‖− ≤ 2
(
L0 + 〈λk+1, L〉)‖xk+1 − xk‖. (3.26)

Proof Let Lk be the Lagrangian function of subproblem (3.1):

Lk(x, λ) = ψk
0 (x) +

m∑

i=1

λi [ψk
i (x) − ηki ]. (3.27)

Using (2.1) and (3.27), we have

∂xLk(x
k+1, λk+1)

= ∇ f0(x
k) + L0(x

k+1 − xk)

+ ∂χ0(x
k+1) +

m∑

i=1

λk+1
i

[∇ fi (x
k) + Li (x

k+1 − xk) + ∂xχi (x
k+1)

]

= ∂xL(xk+1, λk+1) + ∇ f0(x
k) − ∇ f0(x

k+1)

+
m∑

i=1

λk+1
i

[∇ fi (x
k) − ∇ fi (x

k+1)
]

+ (L0 + 〈λk+1, L〉)(xk+1 − xk
)
. (3.28)

Using the smoothness of fi (x), the optimality condition 0 ∈ ∂xLk(xk+1, λk+1) and
the triangle inequality, we obtain

‖∂xL(xk+1, λk+1)‖− ≤ 2L0‖xk+1 − xk‖ + 2〈λk+1, L〉‖xk+1 − xk‖. (3.29)

Hence we conclude the proof. ��
In view of Lemma 3, we derive the complexity of LCPG to attain approximate KKT

solutions in the following theorem.

Theorem 2 Let αk > 0 (k = 0, 1, .., K ) be a non-decreasing sequence and suppose
that Assumption 3 holds, then there exists a constant B > 0 such that

K∑

k=0

αk‖∂xL(xk+1, λk+1)‖2− ≤ 8(L0 + B‖L‖)2D2αK , (3.30)
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K∑

k=0

αk〈λk+1, |ψ(xk+1) − η|〉 ≤ 2B‖L‖D2αK + B
K∑

k=0

αk‖η − ηk‖, (3.31)

where D =
√

ψ0(x0)−ψ∗
0

L0
. Moreover, if we choose the index k̂ ∈ {0, 1, ..., K } with

probability P(k̂ = k) = αk/(
∑K

k=0 αk), then xk̂+1 is a randomized εK type-I KKT
point with

εK = 1∑K
k=0 αk

max
{
8(L0 + B‖L‖)2D2αK , 2B‖L‖D2αK + B

K∑

k=0

αk‖η − ηk‖}

(3.32)

Proof From the sufficient descent property (3.5), we have

K∑

k=0

αk‖xk − xk+1‖2 ≤ 2
L0

K∑

k=0

αk
[
ψ0(x

k) − ψ0(x
k+1)

]

= 2
L0

[
α0ψ0(x

0) +
K∑

k=1

(αk − αk−1)ψ0(x
k) − αKψ0(x

K+1)
]

≤ 2αK
L0

[
ψ0(x

0) − ψ0(x
K+1)

]

≤ 2αK
L0

[
ψ0(x

0) − ψ0(x
∗)
] = 2αK D2, (3.33)

where the second inequality uses the monotonicity of sequence ψ0(xk). In view of
Theorem 1 and Cauchy-Schwarz inequality, we have 〈λk+1, L〉 ≤ ‖λk+1‖‖L‖ ≤
B‖L‖. This relation and (3.26) implies

‖∂xL(xk+1, λk+1)‖2− ≤ 4(L0 + B‖L‖)2‖xk − xk+1‖2.

Combining the above inequality with (3.33) immediately yields (3.30).
Next, we bound the error of complementary slackness. We have

m∑

i=1

λk+1
i |ψi (x

k+1) − ηi |

=
m∑

i=1

λk+1
i

∣∣ψk
i (xk+1) − ηki − (ηi − ηki ) + ψi (x

k+1) − ψk
i (xk+1)

∣∣

≤
m∑

i=1

[
λk+1
i

∣∣ψk
i (xk+1) − ηki

∣∣+ λk+1
i (ηi − ηki )

+ λk+1
i

∣∣ fi (xk+1) − fi (x
k) − 〈∇ fi (x

k), xk+1 − xk〉 − Li
2 ‖xk+1 − xk‖2∣∣]

≤
m∑

i=1

λk+1
i (ηi − ηki ) + λk+1

i Li‖xk+1 − xk‖2
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≤ B‖η − ηk‖ + B‖L‖‖xk+1 − xk‖2 (3.34)

where the first inequality uses the triangle inequality, the second inequality uses com-
plementary slackness and the Lipschitz smoothness of fi (·), and the last inequality
follows from Cauchy-Schwartz inequality and boundedness of λk+1. Summing up
(3.34) weighted by αk for k = 0, ..., K , we have

K∑

k=0

αk〈λk+1, |ψ(xk+1) − η|〉 ≤
K∑

k=0

αk
[
B‖L‖‖xk+1 − xk‖2 + B‖η − ηk‖].

Combining the above result with (3.33) gives (3.31). Finally, the fact that xk̂+1 is a
randomized εK type-I KKT point for εK defined in (3.32) is immediately follows from
(3.30), (3.31) and Definition 3. ��
The following corollary shows that the output of Algorithm 1 is a randomizedO(1/K )

KKT point under more specific parameter selection.

Corollary 1 In Algorithm 1, suppose that all the assumptions of Theorem 2 hold. Set

δk = η−η0

(k+1)(k+2) and αk = k + 1. Then xk̂+1 is a randomized ε Type-I KKT point with

ε = 2
K+2 max

{
8(L0 + B‖L‖)2D2, 2B‖L‖D2 + B‖η − η0‖} (3.35)

Proof Notice that αK = K + 1,
∑K

k=0 αk = (K+1)(K+2)
2 . Moreover, for i ∈ [m] and

k ≥ 0, we have

ηki = η0i +
k−1∑

i=0

δi = η0i + (ηi − η0i )

k−1∑

i=0

1
(i+1)(i+2) = k

k+1ηi + 1
k+1η

0
i ,

which implies that
∑K

k=0 αk‖η −ηk‖ = (K + 1)‖η −η0‖. Plugging these values into
(3.32) gives us the desired conclusion. ��
Remark 2 Corollary 1 shows that the gradient complexity of LCPG for smooth com-
posite constrained problems is on a par with that of gradient descent for unconstrained
optimization problems. To the best of our knowledge, this is the first complexity
result for a constrained problem where the constraint functions can be nonsmooth
and nonconvex. Note that the convergence rate involves the unknown bound B on
the Lagrangian multipliers. The presence of such a constant is not new in nonlin-
ear programming literature [1, 8, 9, 12, 13]. Fortunately, we can safely implement
LCPG method since the step-size scheme does not rely on B. On the other hand, the
bound B is often a problem-dependent quantity. E.g., in [4] authors show a class of
problems for which an a priori bound B can be established, or [5] shows the exact
value of B for a class of nonconvex relaxations of sparse optimization problems. In
such cases, our comparisons are arguably fair. Hence, throughout the paper, we make
comparative statements under the assumption that B largely depends on the problem.
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4 Stochastic optimization

The goal of this section is to extend our proposed framework to stochastic constrained
optimization where the objective f0 is an expectation function:

f0(x) := Eξ∈Ξ [F(x, ξ)]. (4.1)

Here, F(x, ξ) is differentiable and ξ denotes a random variable following a certain
distribution Ξ . Directly evaluating either the objective f0 or its gradient can be com-
putationally challenging due to the stochastic nature of the problem. To address this,
we introduce the following additional assumptions.

Assumption 5 The information of f0 is available via a stochastic first-order oracle
(SFO). Given any input x and a random sample ξ , SFO outputs a stochastic gradient
∇F(x, ξ) such that

E
[∇F(x, ξ)

] = ∇ f0(x), and E
[‖∇F(x, ξ) − ∇ f0(x)‖2

] ≤ σ 2,

for some σ ∈ (0,∞).

4.1 Level constrained stochastic proximal gradient

In Algorithm 2, we present a stochastic variant of LCPG for solving problem 1.1 with
f0 defined by (4.1). As observed in (4.2) and (4.3), the LCSPG method uses a mini-
batch of random samples to estimate the true gradient in each iteration. It should be
noted that the value f0(xk) is presented in (4.3) only for the ease of description, it is
not required when solving (3.1).

Algorithm 2 Level constrained stochastic proximal gradient (LCSPG)

1: Input: x0, η0 < η, bk , δ
k ;

2: for k = 0, 1, . . . , K do
3: Sample a mini-batch Bk of size bk and compute

Gk = 1
bk

mk∑

i=1

∇F(xk , ξi,k ); (4.2)

4: Set ψk
0 (x) by

ψk
0 (x) := 〈

Gk , x
〉+ γk

2 ‖x − xk‖2 + χ0(x); (4.3)

5: For i = 1, . . . ,m, set ψk
i (x) by (3.2);

6: Update xk+1 by (3.1) and update ηk+1 by (3.3);

7: end forOutput: xk̂+1 where k̂ is a random index sampled from {0, 1, 2, ..., K }.
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Note that the proximal point method of [4] does not need to account for a stochastic
nonconvex problem separately since they solve corresponding stochastic convex sub-
problems using a ConEx method developed in their work. On the contrary, LCSPG
directly applies to stochastic nonconvex function constrained problems and convex
subproblems are deterministic in nature. Hence, we need to develop asymptotic con-
vergence and convergence rates for the LCSPG method separately.

Let ζ k = Gk − ∇ f (xk) denote the error of gradient estimation. We have

E
[‖ζ k‖2] = 1

b2k

bk∑

i=1

Eξ

[‖∇F(xk, ξi,k) − ∇ f (xk)‖2] ≤ σ 2

bk
.

The following proposition summarizes some important properties of the generated
solutions of LCSPG.

Proposition 3 In Algorithm 2, for any βk ∈ (0, 2γk − L0), we have

ψ0(x
k+1) ≤ ψ0(x

k) − 2γk−βk−L0
2 ‖xk+1 − xk‖2 + ‖ζ k‖2

2βk
. (4.4)

Moreover, there exists a vector λk+1 ∈ R
m+ such that the KKT condition (3.6) (with

ψk
0 defined in (4.3)) holds.

Proof By the KKT condition, xk+1 is the minimizer of Lk(·, λk+1). Therefore, we
have

Lk(x
k+1, λk+1) + γk+〈λk+1,L〉

2 ‖xk+1 − x‖2 ≤ Lk(x, λ
k+1), ∀x ∈ X . (4.5)

Placing x = xk in (4.5) and using (3.27), we have

〈Gk, xk+1 − xk〉 + χ0(x
k+1) − χ0(x

k)

≤
m∑

i=1

λk+1
i

[
ψk
i (xk) − ηki

]− λk+1
i

[
ψk
i (xk+1) − ηki

]− γk‖xk+1 − xk‖2

≤ − γk‖xk+1 − xk‖2, (4.6)

where the second inequality is due to the complementary slackness λk+1
i

[
ψk
i (xk+1)−

ηki

] = 0 and strict feasibility λk+1
i

[
ψk
i (xk) − ηki

] = λk+1
i

[
ψi (xk) − ηki

]
< 0.

Using (4.6) and Lipschitz smoothness of f0, we have

ψ0(x
k+1) ≤ f0(x

k) + 〈∇ f0(x
k), xk+1 − xk〉 + L0

2

∥∥xk+1 − xk
∥∥2 + χ0(x

k+1)

= f0(x
k)+χ0(x

k+1)+〈Gk, xk+1−xk〉+ L0
2

∥∥xk+1−xk
∥∥2−〈ζ k, xk+1−xk〉

≤ ψ0(x
k) − 2γk−L0

2 ‖xk+1 − xk‖2 − 〈ζ k, xk+1 − xk〉
= ψ0(x

k)− 2γk−βk−L0
2 ‖xk+1−xk‖2+‖ζ k‖ · ‖xk+1−xk‖−βk

2 ‖xk+1−xk‖2
≤ ψ0(x

k) − 2γk−βk−L0
2 ‖xk+1 − xk‖2 + ‖ζ k‖2

2βk
. (4.7)
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Above, the last inequality uses the fact − a
2 x

2 + bx ≤ b2
2a for any x, b ∈ R, a > 0.

Showing the existence of the KKT condition follows a similar argument of proving
part 2, Proposition 2. ��
We prove a technical result in the following lemma which plays a crucial role in
proving dual boundedness.

Lemma 4 Let {Xk}k≥1 be a sequence of random vectors such that E[Xk] = 0 for all
k ≥ 1 and

∑∞
k=1 σ 2

k ≤ M < ∞ where σk := √
E[‖Xk‖2]. Then, limk→∞ Xk = 0

almost surely (a.s.).

Proof We prove this result by contradiction. If the result does not hold then there exists
ε > 0 and c > 0 such that

P

(
lim sup

k
‖Xk‖ ≥ ε

)
≥ c. (4.8)

However, due to Chebyshev’s inequality, we have P(‖Xk‖ ≥ ε) ≤ σ 2
k

ε2
. Since σ 2

k is

summable, there exists k0 such that
∑∞

k=k0 P(‖Xk‖ ≥ ε) ≤ ∑∞
k=k0

σ 2
k

ε2
< c. Therefore,

we have

P

(
lim sup

k
‖Xk‖ ≥ ε

)
= P

(
lim sup
k≥k0

‖Xk‖ ≥ ε
)

≤
∞∑

k=k0

P(‖Xk‖ ≥ ε) < c.

The above relation contradicts (4.8). Hence, we have limk→∞ Xk = 0 a.s. ��
In the following theorem, we present the main asymptotic property of LCSPG.

Theorem 3 Suppose that
∑∞

k=0 b
−1
k < ∞, then we have that limk→∞‖xk+1 − xk‖ =

0, a.s. Moreover, suppose that Assumption 3 holds, γk < ∞, βk is lower bounded and
2γk − βk − L0 > 0, then we have that (1) supk‖λk‖ < ∞ a.s., and (2) all the limit
points of Algorithm 2 satisfy the KKT condition, a.s.

Proof First, we fix notations. Let (Ω,F , P) be the probability space defined over the
sampling minibatches B0, B1, . . . ,. Let Ek[·] be the expectation conditioned on the
sub σ -algebra generating B0, B1, . . . , Bk−1. Applying it to (4.4) gives

Ek[ψ0(x
k+1)] ≤ ψ0(x

k) + σ 2

2bkβk
.

In view of the super-martingale convergence theorem [30], we have that

lim
k→∞ ψ0(x

k) exists and is finite a.s., when
∞∑

k=0

(bkβk)
−1 < ∞. (4.9)

Let Ck+1 = ∑k
s=0

2γs−βs−L0
2 ‖xs+1 − xs‖2 for k ≥ 0 and C0 = 0. We have

Ek[ψ0(x
k+1) + Ck+1] ≤ ψ0(x

k) + Ck + σ 2

2bkβk
.
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Applying the super-martingale convergence theorem [30] again we can show that the
limit of ψ0(xk) +Ck exists a.s. Together with (4.9) and lower-boundedness of βk and
2γk − βk − L0, we have that limk→∞‖xk+1 − xk‖2 = 0, a.s.

Next, we prove the boundedness of ‖λk‖. Let us consider the events

U =
{
ω ∈ Ω : sup

k
‖λk(ω)‖ = ∞

}
, A =

{
ω ∈ Ω : sup

k
‖Gk(ω)‖ < ∞

}
,

B =
{
ω ∈ Ω : lim

k
‖xk+1(ω) − xk(ω)‖ = 0

}
.

We just argued P(B) = 1. It is easy to see that if both conditions (i) P(A) = 1 and
(ii) U ⊆ Ac ∪ Bc hold, then we have P(U) ≤ P(Ac) + P(Bc) = 0. Hence {λk} is a
bounded sequence a.s.

Since {b−1
k } is summable, we have

∑∞
k=1 E[‖ζ k‖2] ≤ σ 2

bk
< ∞. Hence, using

Lemma 4, we have that limk→∞ ζ k = 0 a.s. Due to the boundedness of ∇ f (xk), we
have that Gk = ζ k + ∇ f (xk) is bounded, a.s.

We prove condition (ii) by contradiction. Suppose that our claim fails. We take
an element ω ∈ U ∩ (A ∩ B) and then pass to a subsequence { jk} such that
limk→∞‖λ jk (ω)‖ = ∞. In the rest of the proof, we skip ω for brevity. Passing to
another subsequence if necessary, let x̄ be a limit point of {x jk }. By our presumption,
x̄ satisfies MFCQ. Moreover, the KKT condition implies that

〈G jk , x jk+1〉 + χ0(x jk+1) + γ jk
2 ‖x jk+1 − x jk‖2 + 〈λ jk+1, ψ jk (x jk+1)〉

≤ 〈G jk , x〉 + χ0(x) + γ jk
2 ‖x − x jk‖2 + 〈λ jk+1, ψ jk (x)〉, ∀x ∈ domχ0 . (4.10)

Dividing both sides by ‖λ jk+1‖ gives

[〈G jk , x jk+1〉 + χ0(x jk+1) + γ jk
2 ‖x jk+1 − x jk‖2]/‖λ jk+1‖ + 〈uk, ψ jk (x jk+1)〉

≤ [〈G jk , x〉 + χ0(x) + γ jk
2 ‖x − x jk‖2]/‖λ jk+1‖ + 〈uk, ψ jk (x)〉, ∀x ∈ domχ0 .

(4.11)

where we denote uk = λ jk+1

‖λ jk+1‖ . Since {uk} is bounded, passing to a subsequence if

needed,we have limk→∞ uk = ū. Sinceω ∈ A∩B, {G jk } is bounded and { γ jk
2 ‖x jk+1−

x jk‖2} converges to 0. Therefore, taking k → ∞ on both sides of (4.11), we have

〈ū, χ(x̄)〉 ≤ 〈
ū, ψ(x̄) + 〈∇ψ(x̄), x − x̄〉 + L

2 ‖x − x̄‖2 + χ(x)
〉
, ∀x ∈ dom

χ0
. (4.12)

Analogous to the proof of Theorem 1, it is easy to show that x̄ violates MFCQ, which
however, contradicts Assumption 3. As a consequence of this argument, we have
U ⊆ Ac ∪ Bc. Hence, we claim that the event supk‖λk‖ < ∞ will happen a.s. and
complete our proof of the boundedness condition.

Next, we prove asymptotic convergence to KKT solutions. For any random element
ω, let x̄(ω) be any limit point of {xk}. Passing to some subsequence if necessary, we
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assume that limk→∞ xk = x̄ and limk→∞ λk+1 = λ̄.

〈Gk + ∇ f (xk)λk+1, xk+1 − x〉 + χ0(x
k+1) − χ0(x) + 〈λk+1, χ(xk+1) − χ(x)

〉

≤ γk+〈λk+1,L〉
2

(‖x − xk‖2 − ‖xk+1 − xk‖2 − ‖x − xk+1‖2).

Moreover, we have

〈Gk, xk+1 − x〉 = 〈∇ f0(x
k), xk+1 − x〉 + 〈ζ k, xk+1 − x〉

= 〈∇ f0(x
k), xk+1 − x〉 + 〈ζ k, xk+1 − xk〉 + 〈ζ k, xk − x〉

≥ 〈∇ f0(x
k), xk+1 − x〉 − ‖ζ k‖‖xk+1 − xk‖ + 〈ζ k, xk − x〉.

Combining the above two results, we have

〈∇ f0(x
k)+∇ f (xk)λk+1, xk+1 − x〉 + χ0(x

k+1) − χ0(x) + 〈λk+1, χ(xk+1) − χ(x)〉
≤ γk+〈λk+1,L〉

2

(‖x − xk‖2 − ‖xk+1 − xk‖2 − ‖x − xk+1‖2)

+ ‖ζ k‖‖xk+1 − xk‖ + 〈ζ k, x − xk〉
≤ γk+〈λk+1,L〉

2

(‖x − xk‖2 − ‖x − xk+1‖2)+ ‖ζ k‖2
2(γk+〈λk+1,L〉) + 〈ζ k, x − xk〉.

Taking k → ∞ in the above relation and noting that almost surely we have
limk→∞ ζ k = 0 and limk→∞‖xk − xk+1‖ = 0, then

〈∇ f0(x̄) + ∇ f (x̄)λk+1, x̄ − x〉 + χ0(x̄) − χ0(x) + 〈λk+1, χ(x̄) − χ(x)〉 ≤ 0, a.s.

Using an argument similar to the one in Theorem 1, we can show that x̄ is almost
surely a KKT point. ��

Our next goal is to develop the iteration complexity of Algorithm 2. To achieve this
goal, we need to assume that the dual is uniformly bounded, namely, condition (3.9)
holds for all the random events. While this condition is stronger than the almost sure
boundedness of λk+1 shown by Theorem 3, it is indeed satisfied in many scenarios,
e.g., when strong feasibility (Assumption 4) holds or other scenarios described in [4,
5]. We present the main complexity result in the following theorem.

Theorem 4 Suppose that condition (3.9) holds. Then, the sequence {(xk+1, λk+1)}
satisfies that

K∑

k=0

αk (2γk−βk−L0)

4(γk+L0+2B‖L‖)2 ‖∂xL(xk+1, λk+1)‖2−

≤ L0D
2αK +

K∑

k=0

(
αk (2γk−βk−L0)

2(γk+L0+2B‖L‖)2 + αK
2βk

)
‖ζ k‖2 (4.13)
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K∑

k=0

αk
(
2γk − βk − L0

)〈λk+1, |ψ(xk+1) − η|〉

≤ 2BL0‖L‖D2αK + B‖L‖
K∑

k=0

αK ‖ζ k‖2
βk

+ B
K∑

k=0

αk
(
2γk − βk − L0

)‖η − ηk‖. (4.14)

Proof First, appealing to (4.3), (2.1) and (3.27), we have

∂xLk(x
k+1, λk+1)

= ∂xL(xk+1, λk+1) + ∇ f0(x
k) − ∇ f0(x

k+1)

+
m∑

i=1

λk+1
i

[∇ fi (x
k) − ∇ fi (x

k+1)
]

+ (γk + 〈λk+1, L〉)(xk+1 − xk
)+ ζ k .

It follows that

‖∂xL(xk+1, λk+1)‖−
≤ ‖∇ f0(x

k) − ∇ f0(x
k+1)‖ + ‖ζ k‖

+
m∑

i=1

λk+1
i ‖∇ fi (x

k) − ∇ fi (x
k+1)‖ + (γk + 〈λk+1, L〉)‖xk+1 − xk‖

≤ (
γk + L0 + 2〈λk+1, L〉)‖xk+1 − xk‖ + ‖ζ k‖.

In view of the above result and basic inequality (a + b)2 ≤ 2a2 + 2b2, we have

‖∂xL(xk+1, λk+1)‖2− ≤ 2
(
γk + L0 + 2B‖L‖)2‖xk+1 − xk‖2 + 2‖ζ k‖2. (4.15)

Let us denote an auxiliary sequence Ck =
{

ψ0(x0) k = 0

ψ0(xk) −∑k−1
s=0

‖ζ s‖2
2βs

k > 0
. Proposi-

tion 3 implies that
2γk−βk−L0

2 ‖xk+1 − xk‖2 ≤ Ck − Ck+1. (4.16)

Putting this relation and (4.15) together, we have

2γk−βk−L0
4(γk+L0+2B‖L‖)2 ‖∂xL(xk+1, λk+1)‖2− ≤ Ck − Ck+1 + 2γk−βk−L0

2(γk+L0+2B‖L‖)2 ‖ζ k‖2.
(4.17)
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Summing up (4.17) over k = 0, 1, . . . , K weighted by αk leads to

K∑

k=0

αk (2γk−βk−L0)

4(γk+L0+2B‖L‖)2 ‖∂xL(xk+1, λk+1)‖2

≤
K∑

k=0

αk(Ck − Ck+1) +
K∑

k=0

αk (2γk−βk−L0)

2(γk+L0+2B‖L‖)2 ‖ζ k‖2.

Moreover, since {Ck} is monotonically decreasing, we have

K∑

k=0

αk(Ck − Ck+1) ≤ α0C0 +
K∑

k=1

(αk − αk−1)Ck − αKCK+1

≤ αK (C0 − CK+1) ≤ L0D
2αK + αK

K∑

k=0

‖ζ k‖2
2βk

.

Combining the above two relations leads to our first result (4.13).
For the second part, note that (3.34) remains valid in the stochastic setting. Putting

(3.34) and (4.16) together, we obtain

(2γk−βk−L0)〈λk+1, |ψ(xk+1)−η|〉 ≤ 2B‖L‖(Ck−Ck+1)+B(2γk−βk−L0)‖η−ηk‖.

Multiplying both ends by αk and then summing up the resulting terms over k =
0, . . . , K gives (4.14). ��
We next obtain more specific convergence rate by choosing the parameters properly.

Corollary 2 In Algorithm LCSPG, set γk = L0, βk = L0/2, αk = k + 1, bk = K + 1

and δk = (η−η0)
(k+1)(k+2) . Then xk̂+1 is a randomized ε type-I KKT point with

ε = 4
K+2 max

{
8(L0 + B‖L‖)2(D2 + 17σ 2

16L2
0

)
, 2B‖L‖D2 + 2B‖L‖σ 2

L2
0

+ B‖η−η0‖
2

}
.

Proof Plugging in the value of γk , αk , βk in the relation (4.13) and taking expectation
over all the randomness, we have

L0
32(L0+B‖L‖)2

K∑

k=0

(k + 1)E[‖∂xL(xk+1, λk+1)‖2−]

≤ L0D
2(K + 1) +

K∑

k=0

(
L0(k+1)

16(L0+B‖L‖)2 + k+1
L0

)
E[‖δk‖2]

≤ L0D
2(K + 1) + 17σ 2

16L0
(K + 1).
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Moreover, due to the random sampling of k̂, we have

Ek̂

[‖∂xL(xk̂+1, λk̂+1)‖2−
] = 2

(K+1)(K+2)

K∑

k=0

(k + 1)‖∂xL(xk+1, λk+1)‖2−.

Combining the above two results, we have

E
[‖∂xL(xk̂+1, λk̂+1)‖2−

] ≤ 32(L0+B‖L‖)2
K+2

(
D2 + 17σ 2

16L2
0

)
.

Second, plugging in the values of γk , βk and δk in (4.14), we have

L0
2

K∑

k=0

(k + 1)〈λk+1, |ψ(xk+1) − η|〉 ≤ 2BL0‖L‖D2(K + 1)

+2B‖L‖σ 2(K+1)
L0

+ BL0‖η−η0‖(K+1)
2 . (4.18)

It then follows from (4.18) and the definition of k̂ that

E
[〈λk̂+1, |ψ(xk̂+1) − η|〉] ≤ 4

K+2

{
2B‖L‖D2 + 2B‖L‖σ 2

L2
0

+ B‖η−η0‖
2

}
.

This completes our proof. ��
Remark 3 In order to obtain some ε-error in satisfying the type I KKT condition,
LCSPG requires a number ofO(ε−2) calls to the SFO, which matches the complexity
bound of stochastic gradient descent for unconstrained nonconvex optimization [15].
Moreover, due to minibatching, LCSPG obtains an even better O(ε−1) complexity in
the number of evaluations of fi (x) and ∇ fi (x) (i ∈ [m]).

4.2 Level constrained stochastic variance reduced gradient descent

We consider the finite sum problem:

f0(x) = 1
n

n∑

i=1

F(x, ξi ), (4.19)

where each F(x, ξi ) is Lipschitz smooth with the parameter L0, i = 1, 2, . . . , n.
To further improve the convergence performance in this setting, we present a new
variant of the stochastic gradient method by extending the stochastic variance reduced
gradient descent to the constrained setting.

We present the level constrained stochastic variance-reduced gradient descent
(LCSVRG) in Algorithm 3, which extends the nonconvex variance reduced mirror
descent (see [20]) to handle nonlinear constraint. Algorithm 3 can be viewed as a
double-loop algorithm in which the outer loop computes the full gradient ∇ f (xk)
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Algorithm 3 Level constrained stochastic variance-reduced gradient descent
(LCSVRG)
1: Input: x0, x−1, η0 < η, T ;
2: for k = 0, 1, . . . , K do
3: if k%T == 0 then
4: Gk = ∇ f0(x

k );
5: else
6: Sample a mini-batch Bk of size b uniformly at random and compute

Gk = 1
b

∑

i∈Bk

[∇F(xk , ξi ) − ∇F(xk−1, ξi )
]+ Gk−1; (4.20)

7: end if
8: Set ψk

0 (x) by (4.3) and set ψk
i (x) by (3.2) for i ∈ [m];

9: Update xk+1 by (3.1) and update ηk+1 by (3.3);
10: end for

once every T iterations and the nested loop performs stochastic proximal gradient
updates based on an unbiased estimator of the true gradient. In this view, we let k
indicate the t th iteration at the r th epoch, for some values t and r . Then we use k and
(r , t) interchangeably throughout the rest of this section. We keep the notation ζ k (or
ζ (r , j)) for expressing Gk − ∇ f (xk) and note that ζ (r ,0) = 0.

Our next goal is to develop some iteration complexity results of LCSVRG. We skip
the asymptotic analysis since it is similar to that of LCSPG. The following Lemma
(see [20, Lemma 6.10]) presents a key insight of Algorithm 3 that the variance is
controlled by the point distances. We provide proof for completeness.

Lemma 5 In Algorithm 3, Gk is an unbiased estimator of ∇ f0(xk). Moreover, Let
(r , t) correspond to k. If t > 0, then we have

E
[‖ζ (r ,t)‖2] ≤ L2

0
b

t−1∑

i=0

E
[‖x (r ,i+1) − x (r ,i)‖2].

Proof We prove the first part by induction. When k = 0, we have G0 = ∇ f0(x0).
Then for k > 0, if k%T == 0, we have Gk = ∇ f (xk) by definition. Otherwise, we
have

Ek
[
Gk] = ∇ f (xk) − ∇ f (xk−1) + Gk−1 = ∇ f0(x

k)

by induction hypothesis Ek−1
[
Gk−1

] = ∇ f (xk−1).
Next, we estimate the variance of the stochastic gradient. Appealing to (4.20), we

have

Ek
[‖ζ k‖2] = E

[∥∥ 1
b

∑

i∈Bk

[∇F(xk, ξi ) − ∇F(xk−1, ξi )
]+ Gk−1 − ∇ f (xk)

∥∥2]

= E
[∥∥ 1

b

∑

i∈Bk

[∇F(xk, ξi ) − ∇F(xk−1, ξi )
]− [∇ f (xk) − ∇ f (xk−1)

]+ ζ k−1
∥∥2]
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= E
∥∥ 1
b

∑

i∈Bk

[∇F(xk, ξi ) − ∇F(xk−1, ξi ) − ∇ f (xk) + ∇ f (xk−1)
]∥∥2 + ∥∥ζ k−1

∥∥2

≤ 1
b2

∑

i∈Bk
Eξ‖∇F(xk, ξ) − ∇F(xk−1, ξ)‖2 + ∥∥ζ k−1

∥∥2

≤ L2
0
b ‖xk − xk−1‖2 + ∥∥ζ k−1

∥∥2,

where the third equality uses the independence of Bk and ζ k−1, the first inequal-
ity uses the bound Var(x) ≤ E‖x‖2, and the second inequality uses the Lipschitz
smoothness of F(·, ξ). Taking expectation over all the randomness generating
B(r ,1), B(r ,2), . . . , B(r ,t), we have

E
[‖ζ k‖2] ≤ L2

0
b

t∑

i=1

E
[‖x (r ,i) − x (r ,i−1)‖2].

��
The next Lemma shows that the generated solutions satisfy a property of sufficient
descent on expectation.

Lemma 6 Assume that γk = γ and βk = β and L̃ := 2γ−β−L0
2 − L2

0(T−1)
2βb > 0. Then

we have

L̃
t∑

j=0

E
[‖x (r , j+1) − x (r , j)‖2] ≤ E

[
ψ0(x

(r ,0))
]− E

[
ψ0(x

(r ,t+1))
]
, 0 ≤ t < T .

(4.21)

Proof In view of (3), at the j th iteration of the r th epoch, we have

ψ0(x
(r , j+1)) ≤ ψ0(x

(r , j)) − 2γ−β−L0
2 ‖x (r , j+1) − x (r , j)‖2 + ‖ζ (r , j)‖2

2β .

Summing up the above result over j = 0, 1, 2, ..., t (t < T ) and using Lemma 5, we
have

2γ−β−L0
2

∑t
j=0E

[‖x (r , j+1) − x (r , j)‖2]

≤ E
[
ψ0(x

(r ,0))
]− E

[
ψ0(x

(r ,t+1))
]+ L2

0
2βb

∑t
j=0
∑ j−1

i=0 E
[‖x (r ,i+1) − x (r ,i)‖2]

≤ E
[
ψ0(x

(r ,0))
]− E

[
ψ0(x

(r ,t+1))
]+ L2

0t
2βb

∑t−1
i=0E

[‖x (r ,i+1) − x (r ,i)‖2]

≤ E
[
ψ0(x

(r ,0))
]− E

[
ψ0(x

(r ,t+1))
]+ L2

0(T−1)
2βb

∑t−1
i=0E

[‖x (r ,i+1) − x (r ,i)‖2].

Here we use
∑−1

j=0· = 0. ��
We present the main convergence property of Algorithm 3 in the next theorem.
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Theorem 5 Suppose that condition (3.9) and assumptions of Lemma 6 hold, b ≥ 2T
and K = r0T + j0 for some r0, j0 ≥ 0. Let {αk} be a non-decreasing sequence and
{α(r , j)} be its equivalent form in (r , j) notations. Suppose that α(r , j) = α(r ,0) for
j = 1, 2, ..., T − 1. Then we have

∑K
k=0αkE

[‖∂xL(xk+1, λk+1)‖2−
]

≤ 8L̃−1L0(γ + L0 + B‖L‖)2D2α(r0,0), (4.22)
∑K

k=0αkE
[〈λk+1, |ψ(xk+1) − η|〉]

≤ B
∑K

k=0αk‖η − ηk‖ + BL̃−1‖L‖L0D
2α(r0,0). (4.23)

Moreover, if we take T = �√n�, b = 8T , γ = L0, β = L0/2, and αk = T �k/T �+1,

and set δk = η−η0

(k+1)(k+2) . Then xk̂+1 is a randomized Type-I ε-KKT point with

ε = K+1
(K−T+1)2

max
{
128(2L0 + B‖L‖)2D2, B‖η − η0‖ + 16B‖L‖D2}. (4.24)

Proof First, using Lemma 5 and the assumption that b ≥ 2T , for any t ≤ T − 1 we
have

∑t
j=0E

[‖ζ (r , j)‖2]

≤ L2
0
b

∑t
j=0
∑ j−1

i=0 E
[‖x (r ,i+1) − x (r ,i)‖2]

≤ L2
0t
b

∑t−1
j=0E

[‖x (r ,i+1) − x (r ,i)‖2]

≤ L2
0
2

∑t−1
j=0E

[‖x (r ,i+1) − x (r ,i)‖2. (4.25)

Note that (4.15) still holds. Therefore, combining (4.15) and (4.25) leads to

∑t
j=0E

[‖L(x (r , j+1), λ(r , j+1))‖2−
]

≤ 2
(
γ + L0 + 2B‖L‖)2∑t

j=0E
[‖x (r , j+1) − x (r , j)‖2]

+ 2
∑t

j=0E
[‖ζ (r , j)‖2]

≤ 8(γ + L0 + B‖L‖)2∑t
j=0E

[‖x (r , j+1) − x (r , j)‖2].

It then follows from Lemma 6 that

∑t
j=0E

[‖∂xL(x (r , j+1), λ(r , j+1))‖2−
]

≤ 8L̃−1(γ + L0 + B‖L‖)2E[ψ0(x
(r ,0)) − ψ0(x

(r ,t+1))
]
. (4.26)

Let K = r0T + j0. Summing up the above inequality weighted by αk and exchanging
the notation αk ↔ α(r , j), then we have

∑K
k=0αkE

[‖∂xL(xk+1, λk+1)‖2−
]
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= ∑r0−1
r=0

∑T−1
j=0 α(r , j)E

[‖∂xL(x (r , j+1), λ(r , j+1))‖2−
]

+∑ j0
j=0α(r0, j)E

[‖∂xL(x (r0, j+1), λ(r0, j+1))‖2−
]

≤ 8L̃−1(γ + L0 + B‖L‖)2
{∑r0−1

r=0 α(r ,0)E[ψ0(x
(r ,0)) − ψ0(x

(r+1,0))]
+ α(r0,0)E[ψ0(x

(r0,0)) − ψ0(x
(r0, j0+1))]

}

≤ 8L̃−1(γ + L0 + B‖L‖)2α(r0,0)E[ψ0(x
(0,0)) − ψ0(x

(r0, j0+1))]
≤ 8L̃−1L0(γ + L0 + B‖L‖)2D2α(r0,0). (4.27)

Above, the first inequality applies (4.26) and uses x (r ,T ) = x (r+1,0) while the second
inequality uses the monotonicity of {ψ0(xk)} and an argument similar to (3.33).

The second part is similar to the argument of Theorem 4. Particularly, combining
(3.34) and (4.21) gives

∑t
j=0E〈λ(r , j+1), |ψi (x

(r , j+1)) − η|〉 ≤ BL̃−1‖L‖E[ψ0(x
(r ,0)) − ψ0(x

(r ,t+1))]
+B

∑t
j=0

∥∥η − η(r , j+1)
∥∥ (4.28)

Consequently, using the above relation and an argument similar to show (3.33), we
deduce

∑K
k=0αkE 〈λk+1, |ψ(xk+1) − η|〉
= ∑r0−1

r=0

∑T−1
j=0 α(r , j)E 〈λ(r , j+1), |ψ(x (r , j+1)) − η|〉

+∑ j0
j=0α(r0, j)E 〈λ(r0, j+1), |ψ(x (r0, j+1)) − η|〉

= B
∑K

k=0αk‖η − ηk‖
+ BL̃−1‖L‖E

{∑r0−1
r=0 α(r ,0)[ψ0(x

(r ,0)) − ψ0(x
(r+1,0))]

+ α(r0,0)[ψ0(x
(r0,0)) − ψ0(x

(r0, j0+1))]
}

≤ B
∑K

k=0αk‖η − ηk‖ + BL̃−1‖L‖L0D
2α(r0,0).

Therefore, we complete the proof of (4.22) and (4.23).

Using the provided parameter setting, we have L̃ = 2γ−L0−β
2 − L2

0(T−1)
2βb ≥ L0

4 −
L0
8 = L0

8 . Moreover, since αk = T �k/T � + 1, we have αk ≤ T · k/T + 1 ≤ k + 1. It
is easy to check

∑K
k=0αk = T +∑K

k=T

(⌊ k
T

⌋
T + 1

) ≥ T +∑K
k=T

[[ k
T − 1

]
T + 1

] ≥ (K−T+1)2

2 .

��
Remark 4 It is interesting to compare the performance of LCSVRG with the other
two level constrained first-order methods in the finite sum setting (4.19). Simi-
lar to LCPG, LCSVRG runs for O(ε−1) iterations to compute Type-I ε-KKT point.
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Moreover, LCSVRG has an appealing feature that the number of stochastic gradient
∇F(x, ξ) computed can be significantly reduced for a large value of n. Specifically,
Algorithm 3 requires a full gradient ∇ f0(x) every T iterations, which contributes
N1 = O

(
n
⌈ K
T

⌉) = O(
√
nK ) stochastic gradient computations. During the other

iterations, Algorithm 3 invokes a batch of size b = O(T ) each time, exhibiting a
complexity of N2 = O

(
bK
) = O(

√
nK ). Therefore, the total number of stochastic

gradient computations is N = N1 + N2 = O
(√

nK
)
. This is better than the O(nK )

stochastic gradients needed by LCPG. Moreover, it is better than the bound O(K 2)

of LCSPG when K is at an order larger than Ω(
√
n), which corresponds to a higher

accuracy regime of ε � 1√
n
. The complexities of all the proposed algorithms for

getting some ε-KKT solutions are listed in Table 2.

Remark 5 While we mainly discuss the finite-sum objective (4.19), it is possible to
extend the variance reduction technique to handle the expectation-based objective (4.1)
and improve the O(ε−2) bound of LCSPG to O(ε−3/2). To achieve this goal, we
impose an additional assumption that F(x, ξ) is L0-Lipschitz smooth for each ξ in
the support set. We choose to omit a detailed discussion on this particular extension,
as the technical development for this can be readily derived from the arguments in
Sec. 6.5.2. [21] and our previous analysis.

5 Smooth optimization of nonsmooth constrained problems

In this section, we consider the constrained problem (1.1) with nonsmooth objective
and nonsmooth constraint functions. We assume that fi (i ∈ {0, 1, ...,m}) exhibits a
difference-of-convex (DC) structure fi (x) := gi (x)−hi (x): 1) hi is an Lhi -Lipschitz-
smooth convex function and 2) gi is a structured nonsmooth convex function:

gi (x) = max
yi∈Yi

〈Ai x, yi 〉 − pi (yi ),

where Ai ∈ R
ai×n is a linear mapping, Yi ⊂ R

ai is a convex compact set and
pi : Yi → R is a convex continuous function. In view of such a nonsmooth structure,
we can not simply apply the LCPG method, as the crucial quadratic upper-bound on
fi (x) does not hold in the nonsmooth cases. However, as pointed out by Nesterov [29],
the nonsmooth convex function gi can be closely approximated by a smooth convex
function. Let us denote ŷi := argminyi∈Yi

‖yi‖, DYi := maxyi∈Yi ‖yi − ŷi‖ and define
the approximation function

gβi
i (x) := max

yi∈Yi

〈Ai x, yi 〉 − p(yi ) − βi
2 ‖yi − ŷi‖2, f βi

i (x) := gβi
i (x) − hi (x),

where βi > 0.

Given some properly chosen smoothing parameter βi , we propose to apply LCPG to
solve the following smooth approximation problem:

min
x

ψ
β0
0 (x) = f β0

0 (x) + χ0(x)
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s.t. ψ
βi
i (x) = f βi

i (x) + χi (x)≤ ηi i = 1, . . . ,m. (5.1)

Prior to the analysis of our algorithm, we need to develop some properties of the
smooth function f βi

i . We first present a key Lemma which builds some important
connection between the quadratic approximation of smooth function and Lipschitz
smoothness. The proof is left in Appendix A.

Lemma 7 Suppose p(·) is continuously differentiable function satisfying

− μ
2 ‖x − y‖2 ≤ p(x) − p(y) − 〈∇ p(y), x − y〉 ≤ L

2 ‖x − y‖2, (5.2)

for all x, y. Then, p(·) satisfies

‖∇ p(x) − ∇ p(y)‖ ≤ max{L, μ}‖x − y‖. (5.3)

In smooth approximation, it is shown in [29] that gβi
i is a Lipschitz smooth function

and it approximates the function value of gi with some O(βi )-error:

gβi
i (x) ≤ gi (x) ≤ gβi

i (x) + βi D2
Yi

2 , ∀x, (5.4)

‖∇gβi
i (x) − ∇gβi

i (z)‖ ≤ Lβi
gi ‖x − z‖, ∀x, z, Lβi

gi := ‖Ai‖2
βi

. (5.5)

Similar properties of f βi
i are developed in the following proposition.

Proposition 4 We have the following properties about the approximation function f βi
i

(βi > 0).

1. Let β̄i ∈ [0, βi ], then we have

f βi
i (x) ≤ f β̄i

i (x) ≤ f βi
i (x) + (βi−β̄i )D2

Yi
2 . (5.6)

2. f βi
i (x) has upper curvature Lβi

gi and negative lower curvature −Lhi , namely,

f βi
i (x) ≤ f βi

i (y) + 〈∇ f βi
i (y), x − y〉 + L

βi
gi
2 ‖x − y‖2, (5.7)

f βi
i (x) ≥ f βi

i (y) + 〈∇ f βi
i (y), x − y) − Lhi

2 ‖x − y‖2. (5.8)

3. f βi
i is Lipschitz smooth with modulus Lβi

i := max{Lβi
gi , Lhi }. Namely, for any x, y,

we have
‖∇ f β

i (x) − ∇ f β
i (y)‖ ≤ Lβi

i ‖x − y‖. (5.9)

Proof Part 1. If β̄ < β, then by definition we have f β̄i
i (x) ≥ f βi

i (x). On the other
hand, using the boundedness of Yi , we have

f βi
i (x) = max

yi∈Yi

〈Ai x, yi 〉 − p(yi ) − β̄i
2 ‖yi − ŷi‖2 − βi−β̄i

2 ‖yi − ŷi‖2 − h(x)
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≥ max
yi∈Yi

〈Ai x, yi 〉 − p(yi ) − β̄i
2 ‖yi − ŷi‖2 − h(x) − βi−β̄i

2 D2
Yi

= f β̄i
i (x) − βi−β̄i

2 D2
Yi

.

Combining the above two results gives the desired inequality.
Part 2. Since gβi

i and hi are both convex and smooth functions, we have

gβi
i (x1) ≤ gβi

i (x2) + 〈∇gβi
i (x2), x1 − x2〉 + Lβi gi

2 ‖x1 − x2‖2,
hi (x1) ≤ hi (x2) − 〈∇hi (x2), x1 − x2〉.

Summing up the above two inequalities and noting the definition of f βi
i ,∇ f βi

i , we

conclude that f βi
i has an upper curvature of Lβi

gi . Similarly, using convexity of gβi
i and

smoothness of hi , we obtain that f βi
i has a negative lower curvature −Lhi .

Part 3. The Lipschitz continuity (5.9) is an immediate consequence of part 2) and
Lemma 7. ��
Remark 6 When β̄i = 0, Relation (5.6) reads f βi

i (x) ≤ fi (x) ≤ f βi
i (x) + βi D2

Yi
2 .

Together with Assumption 2, it can be seen that x0 is also strictly feasible for prob-
lem (5.1). This justifies that LCPG is well-defined for problem (5.1).

Remark 7 The Lipschitz constant of ∇ f βi
i can be derived in a different way. Since

∇gβi
i and ∇hi are Lβi

gi and Lhi Lipschitz continuous, respectively, we can show by

triangle inequality that ∇ f βi
i (x) is Lβi

gi + Lhi -Lipschitz continuous. In contrast, by
exploiting the asymmetry between lower and upper curvature, Proposition 4 derived
a slightly sharper bound on the gradient Lipschitz constant.

Throughout this section, we choose specific βi to ensure βi D2
Yi

is constant for all
i ∈ [m]. Hence, we can define the additive approximation factor above as

ν := βi D2
Yi

2 , i ∈ [m]. (5.10)

Note that (5.4) provides an approximation error for function values, or the so-called
zeroth-order oracle of function gi . However, convergence results for nonconvex opti-
mization are generally given in terms of first-order stationarity measure, implying that
we need approximation for first-order oracle for the function fi and consequently
function gi . Below we discuss a widely used approximate subdifferential for convex
functions and generalize it for nonsmooth nonconvex functions.

Definition 5 [ν-subdifferential] We say that a vector v ∈ R
n is a ν-subgradient of the

convex function p(·) at x if for any z, we have

p(z) ≥ p(x) + 〈v, z − x〉 − ν.

The set of all ν-subgradients of p at x is called the ν-subdifferential, denoted by
∂ν p(x). Moreover, we define ν subdifferential of nonconvex function fi as ∂ν fi (x) :=
∂νgi (x) + {−∇hi (x)} where the addition of sets is in Minkowski sense.
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Finally, we define a generalization of type-I KKT convergence criterion for struc-
tured nonsmooth nonconvex function constrained optimization problem:

Definition 6 We say that a point x is an (ε, ν) type-III KKT point of (1.1) if there
exists λ ≥ 0 satisfying the following conditions:

‖∂νψ0(x) +∑m
i=1λi∂

νψi (x)‖2− ≤ ε, (5.11)
∑m

i=1λi |ψi (x) − ηi | ≤ ε, (5.12)

‖[ψ(x) − η]+‖1 ≤ ε. (5.13)

Moreover, we say that x is a randomized (ε, ν) type-III KKT point of (1.1) if (5.11),
(5.12) and (5.13) are satisfied in expectation.

The ε-subdifferential and the type-III KKT point are essential for associating
smooth approximationwith the original nonsmooth problem.Webuild some important
properties in the following proposition.

Proposition 5 Let βi and ν satisfy (5.10).

1. For any x ∈ R
d , we have ∇ f βi

i (x) ∈ ∂ν fi (x), i = 0, 1, 2, ...,m.
2. Suppose that x is a (randomized) Type-I ε-KKT point of problem (5.1) and λ is the

associated dual variable with bound ‖λ‖ ≤ B, then x is a (randomized) Type-III
(ε̄, ν)-KKT point of problem (1.1) for ε̄ = max{ε + Bν,mν}.

Proof Part 1. It suffices to show ∇gβ
i (x) ∈ ∂νgi (x). Due to the convexity of gβi

i and
(5.4), we have

gi (z) ≥ gβi
i (z) ≥ gβi

i (x) + 〈∇gβi
i (x), z − x〉 ≥ gi (x) + 〈∇gβi

i (x), z − x〉 − βi D2
Yi

2 ,

where the first inequality follows from the first relation in (5.4), and the third inequal-
ity follows from second relation in (5.4). Noting the definition of ν-subgradient, we
conclude the proof.

Part 2. It suffices to show the conversion of randomized Type-I KKT points to
randomized Type-III KKT points. Suppose that x is a randomized Type-I ε-KKT
point and we have ‖λ‖1 ≤ B. Using Part 1 it is easy to see ∂L(x, λ) ⊆ ∂νψ0(x) +∑m

i=1∂
νψi (x), therefore, we have

E‖∂νψ(x) +∑m
i=1∂

νψν
i (x)‖2− ≤ ε.

Using Proposition 4, we have

λi (ψ
βi
i (x) − ηi ) ≤ ∑m

i=1λi (ψi (x) − ηi ) ≤ λi (ψ
βi
i (x) − ηi ) + λiν ≤ λiν.

This implies

|λi (ψi (x) − ηi )| ≤ max{|λi (ψβi
i (x) − ηi )|, λiν}.
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Summing up this inequality over i = 1, 2, 3, ...,m and taking expectation with all the
randomness, we have the

∑m
i=1E|λi (ψi (x) − ηi )| ≤ E

∑m
i=1|λi (ψβi

i (x) − ηi )| +∑m
i=1λiν ≤ ε + Bν.

Moreover, we have

∑m
i=1[ψi (x) − ηi ]+ = ∑m

i=1[ψβi
i (x) − ηi + ψi (x) − ψ

βi
i (x)]+

≤ ∑m
i=1[ψi (x) − ψ

βi
i (x)] ≤ mν.

��

Now, we are ready to discuss the convergence rate of LCPG for nonsmooth non-
convex function constrained optimization.

Theorem 6 Assume that βi , ν satisfy (5.10) and set δk = η−η0

(k+1)(k+2) when run-

ning LCPG to solve problem (5.1). Denote ci = ‖Ai‖2D2
Yi

(0 ≤ i ≤ m), c =
[c1, c2, ..., cm]T and let ‖λk‖1 ≤ B. Suppose that ν = o( ci

Lhi
) for i = 0, 1, 2, ...,m,

then xk̂+1 is a randomized Type-III (ε̄, ν)-KKT point with

ε̄ = O
{

2
K+2

[( 8(c0+B‖c‖)2

c0ν
+ 2B‖c‖

c0

)
(Δ + ν) + B‖η − η0‖]+ Bν + mν

}
.

Proof Our analysis resembles the proof of Theorem 2. Using a similar argument
in (3.33), we have

∑K
k=0αk‖xk − xk+1‖2 ≤ 2αK

L0

[
ψ

β0
0 (x0) − ψ

β0
0 (xK+1)

]

≤ 2αK

L
β0
0

[
ψ0(x

0) − ψ0(x
K+1) + ν

]
. (5.14)

Combining this result with Lemma 3 we obtain

∑K
k=0αk‖∂xL(xk+1, λk+1)‖2− ≤ 8

(L
β0
0 +B‖Lβ‖)2

L
β0
0

αK (Δ + ν),

∑K
k=0αk〈λk+1, |ψ(xk+1) − η|〉 ≤ 2B ‖Lβ‖

L
β0
0

αK (Δ + ν) + B
∑K

k=0αk‖η − ηk‖,

(5.15)
whereΔ = ψ0(x0)−ψ0(x∗),αk ≥ 0 andLβ(x, λ) := ψ

β0
0 (x)+∑m

i=1λi (ψ
βi
i (x)−ηi ).

Taking δk = η−η0

(k+1)(k+2) and αk = k + 1 in (5.15), we see that xk̂+1 is a Type-I ε-KKT
point for

ε = 2
K+2 max

{ 8(Lβ0
0 +B‖Lβ‖)2

L
β0
0

(Δ + ν),
2B‖Lβ‖

L
β0
0

(Δ + ν) + B‖η − η0‖}.
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Noting that Lβi
gi = ‖Ai‖2

βi
= ‖Ai‖2D2

Yi
2ν = ci

2ν and ν = o( ci
Lhi

), we have
(L

β0
0 +B‖Lβ‖)2

L
β0
0

=
O
( (c0+B‖c‖)2

c0ν

)
and ‖Lβ‖

L
β0
0

= ‖c‖
c0

. Using the definition of k̂ and Proposition 5 we obtain

the desired result. ��

6 Inexact LCPG

LCPG requires the exact optimal solution of subproblem (3.1), which, however, poses a
great challengewhen the subproblem is difficult to solve. To alleviate such an issue, we
consider an inexact variant of LCPGmethod for which the update of xk+1 only solves
problem (3.1) approximately. This section is organized as follows. First, we present a
general convergence property of inexact LCPGwhen the subproblem solutions satisfy
certain approximation criterion. Next, we analyze the efficiency of inexact LCPGwhen
the subproblems are handled by different external solvers. When the subproblem is a
quadratically constrained quadratic program (QCQP), we propose an efficient interior
point algorithm by exploiting the diagonal structure.When the subproblem has general
proximal components, we propose to solve it by first-order methods. Particularly, we
consider solving the subproblem by the constraint extrapolation (ConEx) method and
develop the total iteration complexity of ConEx-based LCPG.

6.1 Convergence analysis under an inexactness criterion

Throughout the rest of this section, we will denote the exact primal-dual solution of
(3.1) as (̃xk+1, λ̃k+1). We use the following criterion for measuring the accuracy of
subproblem solutions.

Definition 7 We say that a point x is an ε-solution of (3.1) if

ψk
0 (x) − ψk

0 (̃xk+1) ≤ ε, ‖[ψk(x)]+‖ ≤ ε, Lk(x, λ̃
k+1) ≤ Lk (̃x

k+1, λ̃k+1) + ε.

The following theorem shows asymptotic convergence to stationarity for inexact
LCPG method under mild assumptions. Since the proof is similar to the previous
argument, we present the details in Appendix B for the sake of completeness. Note
that the theorem applies to a general nonconvex problem and hence applies to convex
problems as well.

Theorem 7 Suppose that Assumption 3 holds and let xk+1 be an εk-solution of (3.1)
satisfying εk < mini∈[m] δki . Then all the conclusions of Theorem 1 still hold. Then the
dual sequence {λ̃k} is uniformly bounded by a constant B > 0. Moreover, every limit
point of inexact LCPG is a KKT point.

Under the inexactness condition in Definition 7, we establish the complexity of
inexact LCPG in the following theorem.
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Theorem 8 Under the assumptions of Theorem 7, we have

∑K
k=0αk‖∂xL(x̃ k+1, λ̃k+1)‖2− ≤ 8(L0+B‖L‖)2

L0
Δ̃, (6.1)

∑K
k=0αk〈λ̃k+1, |ψ(x̃ k+1) − η|〉 ≤ B

∑K
k=0αk‖η − ηk‖ + 2B‖L‖

L0
Δ̃, (6.2)

∑K
k=0αk‖xk − x̃ k+1‖2 ≤ 2

L0
Δ̃, (6.3)

where Δ̃ = ∑K
k=0αk[ψ0(xk) − ψ0(xk+1) + εk]. Moreover, if we choose the index

k̂ ∈ {0, 1, . . . , K }with probabilityP(k̂ = k) = αk/(
∑K

i=0αi ), then xk̂ is a randomized
(ε, δ) type-II KKT point with

ε = 1
/
(
∑K

i=0αi )max
{ 8(L0+B‖L‖)2

L0
Δ̃, B

∑K
k=0αk‖η − ηk‖ + 2B‖L‖

L0
Δ̃
}
,

δ = 2Δ̃
/
(L0

∑K
i=0αi ).

(6.4)

In particular, using αk = k + 1, εk = mini∈[m]
δki
2 and δki = ηi−ηki

(k+1)(k+2) , we have x
k̂ is

(ε, δ) type-II KKT point of (1.1) where

ε = 2
K+2 max

{
4(L0+B‖L‖)2[2D2+‖η−η0‖

L0
], B‖η − η0‖+B‖L‖[2D2+‖η−η0‖

L0
]},

δ = 2
K+2

(
2D2 + ‖η−η0‖

L0

)
.

(6.5)

Proof Using (3.8) with xk+1 replaced by x̃ k+1 (the optimal solution of problem (3.1))
and adding f (xk) + L0

2 ‖xk − x̃ k+1‖2 on both sides, we have

L0
2 ‖xk − x̃ k+1‖2 ≤ ψk

0 (xk) − ψk
0 (̃xk+1)

≤ ψ0(xk) − ψk
0 (xk+1) + εk

≤ ψ0(xk) − ψ0(x
k+1) + εk, (6.6)

where the second inequality follows from ψk
0 (xk) = ψ0(xk) as well as xk+1 being

an εk-solution (see Definition 7) of subproblem (3.1), and the third inequality follows
from the fact that ψk

0 (x) ≥ ψ0(x) for all x ∈ dom χ0.
UsingLemma3 (again xk+1 is replaced by x̃ k+1), noting that εk satisfies the require-

ments of Theorem 7 implying that ‖̃λk‖ ≤ B and using (6.6), we have

‖∂xL(x̃ k+1, λ̃k+1)‖2− ≤ 4(L0 + B‖L‖)2‖x̃ k+1 − xk‖2

≤ 8(L0+B‖L‖)2

L0

[
ψ0(x

k) − ψ0(x
k+1) + εk

]
. (6.7)

Similar to the argument of (3.34), we have

∑m
i=1λ̃

k+1
i |ψi (x̃

k+1) − ηi | ≤ B‖η − ηk‖ + B‖L‖‖x̃ k+1 − xk‖2
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≤ B‖η − ηk‖ + 2B‖L‖
L0

[
ψ0(x

k) − ψ0(x
k+1) + εk

]
.

(6.8)

Multiplying (6.6), (6.7) and (6.8) by αk and summing over k = 0, 1, . . . , K give (6.1),
(6.2) and (6.3).

We derive a convergence rate based on the specified parameters. First, from relation
(6.6), we note that ψ0(xk+1) ≤ ψ0(xk) + εk . Hence, we have by induction that

ψ0(x
k+1) ≤ ψ0(x

0) +∑k
i=0εi . (6.9)

By setting αk = (k + 1) and εk = mini∈[m]
δki
2 = mini∈[m]

ηi−ηki
2(k+1)(k+2) for all k ≥ 0

(note that εk satisfies the requirement of Theorem 7), we have

Δ̃ = ∑K
k=0αk[ψ0(x

k) − ψ0(x
k+1)] +∑K

k=0αkεk

= α0ψ0(x
0) +∑K−1

k=0 (αk+1 − αk)ψ0(x
k+1) − αKψ0(x

K+1) +∑K
k=0αkεk

(i)≤ α0ψ0(x
0)+∑K−1

k=0 (αk+1−αk)[ψ0(x
0)+∑k

i=0εi ] − αKψ0(x
K+1) +∑K

k=0αkεk
(ii)= αK [ψ0(x

0) − ψ0(x
K+1)] +∑K−1

k=0
∑k

i=0εi +∑K
k=0αkεk

= αK [ψ0(x
0) − ψ0(x

K+1)] +∑K−1
i=0

∑K−1
k=i εi +∑K

k=0αkεk
(iii)= αK [ψ0(x

0) − ψ0(x
K+1)] +∑K

i=0(K − i)εi +∑K
k=0αkεk

(iv)≤ αK [ψ0(x
0) − ψ0(x

K+1)] + ‖η−η0‖
2

∑K
k=0

K−k
(k+1)(k+2) + 1

k+2

= αK [ψ0(x
0) − ψ0(x

K+1)] + ‖η−η0‖
2

∑K
k=0

K+1
(k+1)(k+2)

≤ αK
[
ψ0(x

0) − ψ0(x
K+1) + ‖η−η0‖

2

]
. (6.10)

Here, (i), (ii) follows from (6.9) and αk+1 − αk = 1(> 0), (iii) follows (K − i) is 0 at

i = K , (iv) follows by observing εk ≤ ‖η−η0‖
2(k+1)(k+2) and last inequality follows since

∑∞
k=0

1
(k+1)(k+2) = 1 and αK = K + 1.

Applying same arguments as those in Corollary 1, we have
∑K

k=0αk‖η − ηk‖ =
αK ‖η − η0‖. Using this relation along with∑K

k=0αk = (K+1)(K+2)
2 and (6.10) inside

(6.4), we have (6.5). Hence, we conclude the proof. ��
Remark 8 Compared to the convergence result (3.31) for exact LCPG, we have to
control the accumulated error in Δ̃ for the inexact case (6.4). However, we need an even
more stringent condition on the error to ensure asymptotic convergence. Specifically,
we assume εk to be smaller than the level increments δki to ensure that each subsequent
subproblem is strictly feasible. As long as the subproblems are solved deterministically
with sufficient accuracy, we can ensure such feasibility as well as the boundedness of
the dual.

Remark 9 Note that the convergence analysis of the inexact method for the stochastic
case will go through in a similar fashion. In particular, the subproblems of LCSPG are
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still deterministic in nature. Hence, a deterministic error can be easily incorporated
into the analysis of the stochastic outer loop. In particular, Proposition 3 will have an

additional εk in the RHS. We can use εk = mini∈[m]
δki
2 to ensure the strict feasibility.

Following the analysis in Theorem 4, we will get the additional term
∑K

k=0αkεk .
Note that we have identical policies for αk in the above analysis and Corollary 2.
Furthermore, since δk used above and in Corollary 2 are the same, we have identical
values of εk as well. Following the above development, we can easily bound the
additional

∑K
k=0αkεk term.

6.2 Solving the subproblemwith the interior point method

Our goal is to develop an efficient interior point algorithm to solve problem (3.1)
when χi (x) = 0, i ∈ [m]. Without loss of generality, we express the subproblem as
the following QCQP:

min
x∈Rd

g0(x) := L0
2 ‖x − a0‖2

s.t. gi (x) := L0
2 ‖x − ai‖2 − bi ≤ 0, i ∈ [m].

(6.11)

We assume that the initial solution x̂ of such problem is strictly feasible, namely, there
exists δ > 0 such that

gi (x̂) ≤ −δ, i = 1, 2, . . .m. (6.12)

Let e1 = [1, 0, . . . , 0]T ∈ R
d+1. With a slight abuse of notation, we can formu-

late (6.11) as the following problem

min eT1 u

s.t. g̃0(u) = g0(x) − η ≤ 0,

g̃i (u) = gi (x) ≤ 0, i ∈ [m],
g̃m+1(u) = Lm+1

2 ‖u − (0, am+1)
T‖2 − bm+1 ≤ 0,

u = (η, x) ∈ R × R
d .

(6.13)

Here we set artificial variables Lm+1 = 1, am+1 = 0 and bm+1 = 1
2 R

2 for some
sufficiently large R. We explicitly add such a ball constraint to ensure bound on (η, x).
Note that the bound R always exists since our domain is compact and the objective is
Lipschitz continuous. Our goal is to apply the path-following method to solve (6.13).
We denote

φ(u) = −∑m+1
i=0 log−g̃i (u) (6.14)

Since each g̃i (u) is convex quadratic in u, φ(u) is a self-concordant barrier with
υ = m + 2. The key idea of the path-following algorithm is to approximately solve a
sequence of penalized problems

min
u

φτ (u) := τη + φ(u) (6.15)
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with increased values of τ , and generate a sequence of strictly feasible solution uτ

close to the central path-a trajectory composed of theminimizers u∗
τ = argminu φτ (u).

We apply a standard path-following algorithm (See [28, Chapter 4]) for solving
(6.13), and outline the overall procedure in Algorithm 4. This algorithm consists of
two main steps:

1. Initialization: We seek a solution u0 near the analytic center (i.e. minimizer of
φ(u)). To this end, we solve a sequence of auxiliary problems φ̂τ (u) = τwTu +
φ(u) where w = −∇φ(û). It can be readily seen that û is in the central path of
this auxiliary problem with τ = 1. Performing a reverse path-following scheme (
decreasing rather than increasing τ ), we gradually converge to the analytic center.

2. Path-following: We solve a sequence of penalized problems with an increasing
value of τ by a damped version of Newton’s method, which ensures the solutions
in the proximity of the central path.

Algorithm 4 Path-following Interior Point Method ([28])

� Newton decrement n( f , u) :=
√

∇ f (u)T[∇2 f (u)]−1∇ f (u)

1: Input: û, κ ∈ (0, 1), γ > 0, ε; Set τ0 = 1, u0 = û;
� Phase Zero: Approximate analytic center

2: for i = 0, 1, . . . do
3: τi+1 = (

1 + γ√
υ

)−1
τi ;

4: Obtain ui+1 from calling Newton(φτi+1 , u
i , τi+1, κ/2);

5: if n(φ, ui+1) ≤ 3
4 κ then

6: Set u∗ = ui+1 and Break;
7: end if
8: end for

� Phase One: Path-following scheme

9: Set u0 = u∗, τ0 = max{τ : n(φτ , u0) ≤ κ}, s = ⌈√
υ

γ ln 2υ
τ0ε

⌉− 1;
10: for i = 0, 1, . . . , s do
11: τi+1 = (

1 + γ√
υ

)
τi ;

12: Obtain ui+1 from calling Newton(φτi+1 , u
i , τi+1, κ);

13: end for
14: Output: us+1.

� Damped Newton method for solving the subproblem.
15: function Newton( f , v0, τ , ε)
16: for s = 0, 1, 2, . . . do
17: if n( f , vs ) ≤ ε then Break;
18: end if
19: vs+1 = vs − 1

1+n( f ,vs ) [∇2 f (vs )]−1∇ f (vs );
20: end for
21: end function

6.2.1 Solving the Newton equation

First, we calculate the gradient and Hessian map of φt (·):

∇φτ (u) = τe1 +∑m+1
i=0 θi∇ g̃i (u),
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∇2φτ (u) = ∑m+1
i=0 θ2i ∇ g̃i (u)g̃i (u)T +∑m+1

i=0 θi∇2 g̃i (u) = NNT + Γ ,

where θi = −g̃i (u)−1, and

N = [
θ0∇ g̃0(u), . . . , θm+1∇ g̃m+1(u)

] ∈ R
(d+1)×(m+2),

Γ =
[
θm+1Lm+1 0

0
∑m+1

i=0 θi Li Id

]
∈ R

(d+1)×(d+1).

Note that computing the gradient∇φt (u) takesO(dm), hence the computation burden
is from forming and solving the Newton systems. This is divided into two cases.

1. m < d. Then the Hessian is the sum of a low rank matrix and a diagonal matrix.
Based on the Sherman-Morrison-Woodbury formula, we have

[∇2φτ (u)]−1 = Γ −1 − Γ −1N
(
I + NTΓ −1N

)−1
NTΓ −1. (6.16)

Computing the product NTΓ −1N takesO(m2d) while performing Cholesky fac-
torization takes O(m3). Therefore, the overall complexity of each Newton step is
O(m3 + m2d) = O(m2d).

2. m ≥ d. In such case, we can directly compute NNT inO(md2) and then perform
Cholesky factorization ∇2φτ (x) = LLT in O(d3), followed by two triangle sys-
tems. Hence the overall complexity of a Newton step isO(d3 +md2) = O(md2).

Due to the above discussion, the cost of computing each Newton system is

O
(
min{d,m} · md

)
. (6.17)

6.2.2 Complexity

Before deriving the complexity of solving the subproblems,we require some additional
assumptions. We assume that M = maxx

{‖∇gi (x)‖
}
and max g0(x)−minx g0(x) ≤

V . Note that these assumptions are easily satisfied if we assume functions in the
original problem have bounded level sets.

According to [28, Theorem4.5.1], the complexity of interior pointmethods depends
not only on the time to follow the central path, but also on the time to arrive near the
analytic center from an arbitrary initial point. Let us put it in the context ofAlgorithm1.
Despite the strict feasibility guarantee, we do not know whether xk is near the analytic
center of each subproblem. It remains to show how to control the complexity of
approximating the analytic center.

To measure the strict feasibility of the initial point, we use the Minkowsky function
of the domain, which is defined by πx (y) = inf{t > 0 : x + t−1(y − x) ∈ D} for
any given x in the interior of the domain. With the help of the Minkowsky function,
we bound the distance between the initial point and the boundary in the following
proposition.
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Proposition 6 Let û = (g0(η̂), x̂) where η̂ = g0(x̂) + δ. If ‖u − û‖ ≤ δ
M+1 , then u is

feasible for problem (6.13). Moreover, we have

πu∗(û) ≤ (M+1)R
(M+1)R+δ

, (6.18)

where u∗ is defined in phase zero of Algorithm 4.

Proof We have

|g̃0(u) − g̃0(û)| ≤ |g0(x) − g0(x̂)| + |η − η̂| ≤ M
M+1δ + δ

M+1 = δ,

Analogously, for i = 0, 1, . . . ,m, we have

|gi (x) − gi (x̂)| ≤ M‖x − x̂‖ ≤ M
M+1δ ≤ δ.

Using triangle inequality, we have g̃i (u) = gi (x) ≤ gi (x̂) + δ=0. The last constraint
in (6.13) is trivially satisfied for sufficiently large R. Therefore, u is a feasible point
of (6.13).

Let t+ = (M+1)‖û−u∗‖
(M+1)‖û−u∗‖+δ

, then from the above analysis, we know that the point

u+ = u∗ + 1
t+ (û − u∗) = û + δ(û−u∗)

(M+1)‖û−u∗‖

must be a feasible solution. Using the last constraint ‖u‖ ≤ R, we immediately obtain
the bound (6.18). ��

Using [28, Theorem 4.5.1] and Proposition 6, we can derive the total complexity
of solving the diagonal QCQP.

Theorem 9 Under the assumptions of Proposition 6, the total number of Newton steps
to get an ε solution is

Nε = O(1)
√
m + 2 ln

(
(m+2)V ((M+1)R+δ)

δε
+ 1

)
.

Corollary 3 In the inexact LCPG method, assume that the subproblems are solved
by Algorithm 4 and the returned solution satisfies the inexactness requirement in
Theorem 8. Then, to get an O(ε, ε) Type-II KKT point, the overall arithmetic cost of
Algorithm 4 is

T = O
(
min{m, d} · m1.5d · 1

ε
ln
( 1

ε

))
.

Proof According to Theorem 8, the total number of LCPG is K = O(1/ε). In the kth
iteration of LCPG, we set the error criteria ν = O( 1

k2
) and ε = O( 1

k2
). Theorem 9

implies that the number of Newton steps is Nk = O(
√
m ln(k)). Therefore, the total

number of Newton steps in LCPG is TK = ∑K
k=0Nk = O

(√
m 1

ε
ln
( 1

ε

))
. Combining

this result with (6.17) gives us the desired bound. ��
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Remark 10 First, at the kth step of LCPG, we need log(k) iterations of interior point
methods, of which the complexity order is equally contributed by the two phases of
IPM. Specifically, we first requireO(ln(k))Newton steps to pull the iterates from near
the boundary to the proximity of the central path, and then requireO(ln(k)) to obtain
an O(1/k2)-accurate solution. Second, it is interesting to consider the case when the
constraint is far less than the feature dimensionality, namely, m � d. We observe that
the total computation

O
(
dm2.5K ln K

)

is linear in dimensionality. Third, despite the simplicity, the basic barrier method
offers a relatively stronger approximate solution than what is needed in Theorem 8,
the feasibility of the solution path allows us to weaken the assumption to ε̂k = 0.
Nevertheless, besides our approach, it is possible to employ long-step and infeasible
primal-dual interior point methods which may give a better empirical performance.

6.3 Solving subproblems with the first-order method

In this section, we use a previously proposed ConEx method [4] to solve the subprob-
lem (3.1) when general proximal functionsχi are present. Then, we analyze the overall
complexity of LCPG method with ConEx method as a subproblem solver. First, we
formally state the extended version of problem (6.11) as follows:

min
x∈X φ0(x) := g0(x) + χ0(x)

s.t. φi (x) := gi (x) + χi (x) ≤ 0, i = 1, . . . ,m.
(6.19)

For the application of ConEx for the subproblem, we need access to a convex compact
set X such that ∩i dom χi ⊆ X . Moreover, X is a “simple” set in the sense that it
allows easy computation of the proximal operator of χ0(x) +∑

i=1wiχi (x) for any
given weights wi , i = 1, . . . ,m. Such assumptions are not very restrictive as many
machine learning and engineering problems explicitly seek the optimal solution from
a bounded set. Under these assumptions, we apply ConEx to solve the subproblem
(3.1) of LCPG. We now reproduce a simplified optimality guarantee of the ConEx
method below without necessarily going into the details of the algorithm.

Theorem 10 [4] Let x be the output of ConEx after T iterations for problem (6.19).
Assume that φ0 is a strongly convex function and (̃x, λ̃) is the optimal primal-dual
solution. Moreover, Let B be a parameter of the ConEx method which satisfies B >

‖̃λ‖. Then, the solution x satisfies

φ0(x) − φ0(̃x) ≤ O
( 1
T 2 (B

2 + ‖̃λ‖2)),
‖[φ(x)]+‖ ≤ O

( 1
T 2 (B

2 + ‖̃λ‖2)).
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Even though ConEx can be applied to a wider variety of convex function con-
strained problems, it has two vital and intricate issues that need to be addressed in our
context:

1. The solution path of ConEx can be arbitrarily infeasible in the early iterations,
while the successive iterations make the solutions infeasibility smaller. Note that
the approximation criterion in Definition 7 requires guarantees on the amount of
infeasibility. This implies ConEx has to run a significant number of iterations
before getting sufficiently close to the feasible set.

2. Since ConEx is a primal-dual method, its convergence guarantees depend on the
optimal dual solution λ∗. Moreover, a bound on the dual, B(> ‖λ∗‖), is required
to implement the algorithm to achieve an accelerated convergence rate of O(1/T 2)

for strongly convex problems.

From Theorem 10, it is clear that ConEx requires a bound B. This requirement natu-
rally leads to two cases: (1) bound B can be estimated apriori, e.g., see Lemma 2; and
(2) bound B is known to exist but cannot be estimated, e.g., see Theorem 1. Both cases
have different convergence rates for the subproblem which leads to different overall
computational complexity.
Case 1: B can be estimated apriori. In this case, we do not need to estimate Bk as in
(6.20). Using the bound B, we can get accelerated convergence of ConEx in accor-
dance with Theorem 10 which leads to better performance of the LCPG method. The
corollary below formally states the total computational complexity of LCPG method
for this case.

Corollary 4 If an explicit value of B is known, the LCPG method with ConEx as
subproblem solver obtains O( 1

K , 1
K ) type-II KKT point in O(K 2) computations.

Proof According to Theorem 10, the required ConEx iterations for each subproblem
can be bounded by

T k = O( B√
εk

).

Since B is a constant, we have T k = O(ε
−1/2
k ) = O(k). Finally, we have total

computations
∑K

k=1T
k = O(K 2). Hence, we conclude the proof. ��

Case 2: B is known to exist but cannot be estimated. For the subproblem (3.1), we
can easily find Bk > ‖̃λk+1‖ by using the difference in levels of successive iterations.
This bound is weak, especially in the limiting case as it does not take into account

Proposition 7 For subproblem (3.1), we have

‖̃λk+1‖ ≤ ψ0(xk )−ψ∗
0

mini∈[m] δki
. (6.20)

Proof By Slater’s condition, we know that λ̃k+1 exists. Then, due to saddle point
property of (̃xk+1, λ̃k+1), we have for all x ∈ X

ψk
0 (x) + λ̃k+1[ψk(x) − ηk+1] ≥ ψk

0 (̃xk+1) + λ̃k+1[ψk (̃xk+1) − ηk+1]
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= ψk
0 (̃xk+1),

where the equality follows by complementary slackness. Using x = xk in the above
relation and noting that xk satisfies ψ(xk) ≤ ψk−1(xk) ≤ ηk , we have ηk+1 −
ψk(xk) = ηk+1 − ψ(xk) ≥ ηk+1 − ηk = δk implying that

ψk
0 (xk) − ψk

0 (̃xk+1) ≥ 〈̃λk+1, δk〉 ≥ ‖λk+1‖1 · min
i∈[m] δ

k
i ≥ ‖λk+1‖ · min

i∈[m] δ
k
i ,

where second inequality follows from λ̃k+1 ≥ 0 and δk > 0 and last inequality follows
due to the fact that ‖̃λk+1‖1 ≥ ‖̃λk+1‖. We can further upper bound the LHS of the
above relation as follows

ψk
0 (xk) − ψk

0 (̃xk+1) = ψ0(x
k) − ψk

0 (̃xk+1) ≤ ψ0(x
k) − ψ0(̃x

k+1) ≤ ψ0(x
k) − ψ∗

0 ,

where the last inequality follows since x̃ k+1 is feasible for the original problem (1.1).
Combining the above two relations, we obtain (6.20). Hence, we conclude the proof.

��
We now state the final computation complexity of LCPG withConEx which uses the
bound in (6.20).

Corollary 5 If an explicit value of B is not known, the LCPG method with ConEx as
subproblem solver obtains O( 1

K , 1
K ) type-II KKT point in O(K 4) computations.

Proof Using Proposition 7, we can set Bk := ψ0(xk )−ψ∗
0

δki∗
where i∗ := argmini∈m ηi −

η0i . Then, required ConEx iterations T k can be bounded by

T k = O
( Bk√

εk

)
.

Finally, in view of (6.9) and the fact that
∑∞

i=0εi ≤ ‖η − η0‖ implies that Bk ≤
1

δki∗
[ψ0(x0) − ψ∗

0 + ‖η − η0‖] for all k. Moreover, for all k ≤ K , we have εk = δki∗
2 .

Hence, we get T k = O(ε
−3/2
k ) = O(k3). Finally, we have

∑K
k=1 T

k = O(K 4) which
is the overall computational complexity of LCPGmethod with ConEx as subproblem
solver to obtain (O( 1

K ), O( 1
K )) type-II KKT point. ��

Remark 11 [Gradient complexity vs. computational complexity] Note that evaluating
the gradient ofψk

i (x) is relatively simple since it does not involve any new computation
of∇ fi (x). In that sense, the entire inner loop requires only one∇ fi computation; hence
the total gradient complexity of ∇ fi equals the total outer loops of inexact LCPG. On
the other hand, inner loop computation does contribute to the problem’s computational
complexity. However, such iterations are expected to be very cheap given the ease of
obtaining gradients for the QP subproblem (3.1) with identity hessian matrices.
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7 LCPG for convex optimization

In this section, we establish the complexity of LCPG (i.e., Algorithm 1) when the
objective f0 and constraint fi , i ∈ [m] are convex. In particular, we consider two
convex problems, depending on whether f0 is convex or strongly convex. To provide
a combined analysis of the two cases, we assume the following:

Assumption 6 f0(x) is μ0-convex function for some μ0 ≥ 0. Namely,

f0(x) ≥ f0(y) + 〈∇ f0(y), x − y〉 + μ0
2 ‖x − y‖2, for any x, y ∈ R

d .

Note that if μ0 = 0 then f0 is simply a convex function. Now we provide the conver-
gence rate of LCPG to optimality.

For more generality, we consider an inexact variant of LCPG for which an approx-
imate solution in terms of Definition 7 is returned in each iteration. Let (̃xk+1, λ̃k+1)

be the saddle-point solutionLk(x, λ̃), i.e., x̃ k+1 is an exact solution of the subproblem
(3.1). First, we extend the three-point inequality in Lemma 1 for an inexact solution.

Lemma 8 Let z+ be an ε-approximate solution of problemminx∈Rd {g(x)+ γ
2 ‖x−z‖2}

where g(x) is a proper, lsc. and convex function. Then,

g(z+)−g(x) ≤ γ
2

[‖z−x‖2−‖z+ −x‖2−‖z+ − z‖2]+ε+√
2γ ε ‖z+ −x‖. (7.1)

Proof First, let x+ be the optimal solution of minx∈Rd {g(x) + γ
2 ‖x − z‖2}. In view

of Lemma 1, for any x , we have

g(x+) + γ
2 ‖x+ − z‖2 + γ

2 ‖x − x+‖2 ≤ g(x) + γ
2 ‖x − z‖2. (7.2)

Placing x = z+ above, we have

g(x+) + γ
2 ‖x+ − z‖2 + γ

2 ‖z+ − x+‖2 ≤ g(z+) + γ
2 ‖z+ − z‖2. (7.3)

On the other hand, by the definition of ε-solution, we have

g(z+) + γ
2 ‖z+ − z‖2 ≤ g(x+) + γ

2 ‖x+ − z‖2 + ε. (7.4)

Combining the above two inequalities gives

γ
2 ‖z+ − x+‖2 ≤ ε. (7.5)

Summing up (7.2) and (7.4) again and then rearranging the terms, we get

g(z+) − g(x) ≤ γ
2 ‖x − z‖2 − γ

2 ‖z+ − z‖2 − γ
2 ‖x − x+‖2 + ε

≤ γ
2 ‖x − z‖2− γ

2 ‖z+ − z‖2− γ
2 ‖x − z+‖2+γ ‖x − z+‖‖z+−x+‖+ε,
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where the last inequality uses the fact that − 1
2‖a + b‖2 ≤ − 1

2‖a‖2 − 〈a, b〉 ≤
− 1

2‖a‖2 + ‖a‖‖b‖ with a = x − z+ and b = z+ − x+. Finally, combining the above
two results gives the desired inequality (7.1). ��
Using the above lemma, we provide the main convergence property of LCPG for
convex optimization.

Lemma 9 Let x be feasible solution. Then, we have

ψ0(x
k+1) − ψ0(x) ≤ 〈̃λk+1, ψ(x) − ηk〉 + L0+〈̃λk+1,L〉−μ0

2 ‖xk − x‖2

− L0+〈̃λk+1,L〉
2 ‖xk+1 − x‖2 + 2εk +

√
2(L0 + 〈̃λk+1, L〉)εk‖xk+1 − x‖.

(7.6)

Proof Note that

ψ0(x
k+1)

(i)≤ ψk
0 (xk+1)

(ii)≤ ψk
0 (̃xk+1) + εk

(iii)= ψk
0 (̃xk+1) + 〈̃λk+1, ψk (̃xk+1) − ηk〉 + εk

≤ψk
0 (xk+1) + 〈̃λk+1, ψk(xk+1) − ηk〉+ εk

(iv)≤ ψk
0 (x) + 〈̃λk+1, ψk(x) − ηk〉 − L0+〈̃λk+1,L〉

2 ‖xk+1 − x‖2
+ 2εk + √

2(L0 + 〈̃λk+1, L〉)εk‖xk+1 − x‖, (7.7)

where (i) follows from the definition of ψk
0 , (ii) follows since x

k+1 is an εk solution of
(3.1), (iii) follows by complementary slackness for the optimal primal-dual solution
for (3.1) and (iv) follows from Lemma 8. In particular, we use g(x) + γ

2 ‖x − z‖2 =
ψk
0 (x)+〈̃λk+1, ψk(x)−ηk〉with z = xk , z+ = xk+1, ε = εk and γ = L0+〈̃λk+1, L〉.

Note that xk+1 is an εk-approximate solution for minx∈Rd ψk
0 (x)+〈̃λk+1, ψk(x)−ηk〉

due to Definition 7.
Finally, note that

ψk
0 (x) + μ0

2 ‖x − xk‖2 ≤ ψ0(x) + L0
2 ‖x − xk‖2,

ψk
i (x) ≤ ψi (x) + Li

2 ‖x − xk‖2.
Using the above two relations in (7.7), we obtain (7.6). Hence, we conclude the proof.

��
Let x∗ be an optimal solution of (1.1) and D̃ := max{‖x − y‖ : x, y ∈

dom χ0, ψi (x) ≤ ηi , ψi (y) ≤ ηi , for all i ∈ [m]}. Now, we show convergence rate
guarantees.

Theorem 11 Consider general convex optimization problems with μ0 = 0. Suppose

Assumption 3 is satisfied and set δk = (η−η0)
(k+1)(k+2) . Then we have

ψ0(x̄K ) − ψ0(x
∗) ≤ L0+B‖L‖

(K+1)

[
D̃2 + (4B+2)‖η−η0‖

L0
+ D̃

√
‖η−η0‖

L0
+ ‖η−η0‖

L0

log K
K

]

(7.8)

123



D. Boob et al.

Proof From Lemma 9 with μ0 = 0 for convex part and ψ(x∗) ≤ η, we have

ψ0(x
k+1) − ψ0(x

∗)
= 〈̃λk+1, η − ηk〉 + L0+〈̃λk+1,L〉

2 ‖xk − x∗‖2 − L0+〈̃λk+1,L〉
2 ‖xk+1 − x∗‖2

+ 2εk +√
2(L0 + 〈̃λk+1, L〉)εk‖xk+1 − x‖.

Dividing both sides by L0+〈̃λk+1,L〉
2 , we have

2[ψ0(xk+1)−ψ0(x∗)]
L0+〈̃λk+1,L〉 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2

+ 2〈̃λk+1,η−ηk 〉
L0+〈̃λk+1,L〉 + 4εk

L0+〈̃λk+1,L〉 +
√

8εk
L0+〈̃λk+1,L〉 ‖xk+1 − x∗‖

Note that the sequence {̃λk+1} is uniformly bounded above such that ‖̃λk+1‖ ≤ B for
all k ≥ 0. Using this fact and the above relation, we have

2[ψ0(xk+1)−ψ0(x∗)]
L0+B‖L‖ ≤‖xk−x∗‖2−‖xk+1−x∗‖2+ 2B‖η−ηk‖

L0
+ 4εk

L0
+
√

8εk
L0

‖xk+1−x∗‖.

(7.9)

Using δk = η−η0

(k+1)(k+2) and εk = ‖η−η0‖
2(k+1)(k+2) , we have x

k is strictly feasible solutions
for (3.1) for all k. Hence, under Assumption 3, we can follow the steps of Theorem 1
to show uniform bound B on sequence {‖̃λk‖}. Using these values in (7.9), we have

2[ψ0(xk+1)−ψ0(x∗)]
L0+B‖L‖ ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 2B‖η−η0‖

L0(k+1)

+ 2‖η−η0‖
L0(k+1)(k+2) +

√
‖η−η0‖

L0

1
k+1‖xk+1 − x∗‖. (7.10)

Due to the optimality of the exact solution x̃ k+1, we have ψk
0 (̃xk+1) ≤ ψk

0 (xk) =
ψ0(xk). We also haveψ0(xk+1) ≤ ψk

0 (xk+1) ≤ ψk
0 (̃xk+1)+εk . Combining these two

relations, we get:

ψ0(x
k+1) ≤ ψ0(x

k) + εk .

Effectively, inexact LCPG method is almost (up to an additive error of εk) a descent
method. Using this relation recursively, we have

ψ0(x
K ) ≤ ψ0(x

k+1) +∑K−1
i=k+1εi .

≤ ψ0(x
k+1) + ‖η−η0‖

2

∑K−1
i=k+1

1
(i+1)(i+2)

= ψ0(x
k+1) + ‖η−η0‖

2
(K−k−1)

(k+2)(K+1) .
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Using the above relation in (7.10), we have

2[ψ0(xK )−ψ0(x∗)]
L0+B‖L‖

≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 2B‖η−η0‖
L0(k+1)

+ 2‖η−η0‖
L0(k+1)(k+2) +

√
‖η−η0‖

L0

1
k+1‖xk+1 − x∗‖

+ ‖η−η0‖
L0+B‖L‖

K−k−1
(k+2)(K+1) .

Multiplying the above relation by k + 1 and summing from k = 0 to K − 1, we have

K (K+1)[ψ0(xK )−ψ0(x∗)]
L0+B‖L‖ ≤ ∑K−1

k=0 ‖xk − x∗‖2 + 2B‖η−η0‖K
L0

+ ‖η−η0‖ log(K+2)
L0

+
√

‖η−η0‖
L0

∑K−1
k=0 ‖xk+1 − x∗‖+ ‖η−η0‖K

L0+B‖L‖

≤ K D̃2 + 2(B+1)‖η−η0‖K
L0

+
√

‖η−η0‖
L0

K D̃.

After rearranging, this relation implies (7.8). Hence, we conclude the proof. ��

Theorem 12 Consider strongly convex problems (μ0 > 0) and suppose that Assump-
tion 3 is satisfied. Set δk = ρk(1 − ρ)(η − η0) where ρ = L0−μ0

2(L0−aμ0)
, 2εk ≤

a(1 − ρ)ρk‖η − η0‖ and a ∈ (0, 1). Then we have

ψ0(x
K ) − ψ0(x

∗) ≤ exp
(− (1−a)μ0K

L0+B‖L‖−aμ0

)
(L0 + B‖L‖ − μ0)

{[
(4B+1)

2(L0−μ0)
+ L0+B‖L‖+2aμ0

μ0(L0−μ0)
(1 − ρ)

]‖η − η0‖ + 1
2‖x0 − x∗‖2}.

(7.11)

Moreover, if εk = 0, we have

ψ0(x
K ) − ψ0(x

∗) ≤ exp
(− μ0K

L0+B‖L‖
)
(L0 + B‖L‖ − μ0)

{[
(4B+1)

2(L0−μ0)

]‖η − η0‖ + 1
2‖x0 − x∗‖2

}
. (7.12)

Proof Proceeding similar to the convex case, using Lemma 9, we obtain

ψ0(x
k+1) − ψ0(x

∗)
= 〈̃λk+1, η − ηk〉 + L0+〈̃λk+1,L〉−μ0

2 ‖xk − x∗‖2
− L0+〈̃λk+1,L〉

2 ‖xk+1 − x∗‖2
+ 2εk +√

2(L0 + 〈̃λk+1, L〉)εk‖xk+1 − x‖.
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For 0 < a < 1, we have

√
2(L0 + 〈̃λk+1, L〉)εk‖xk+1 − x‖ ≤ L0+〈̃λk+1,L〉

aμ0
εk + aμ0

2 ‖xk+1 − x∗‖2.

Combining the above two results, we have

ψ0(x
k+1) − ψ0(x

∗)

≤ 〈̃λk+1, η − ηk〉 + L0+〈̃λk+1,L〉−μ0
2 ‖xk − x∗‖2

− L0+〈̃λk+1,L〉−aμ0
2 ‖xk+1 − x∗‖2

+ (2 + L0+〈̃λk+1,L〉
aμ0

)
εk .

Let us denote

Γk =
{
1 if k = 0;
L0+〈̃λk ,L〉−aμ0
L0+〈̃λk ,L〉−μ0

Γk−1 if k ≥ 1.

Multiplying both sides of the above inequality by Γk
L0+〈̃λk+1,L〉−μ0

and noting that

η − ηk = ρk(η − η0) (follows by the choice of δk), we obtain

Γk
L0+〈̃λk+1,L〉−μ0

[
ψ0(x

k+1) − ψ0(x
∗)
]

≤ Γk
L0+〈̃λk+1,L〉−μ0

ρk 〈̃λk+1, η − η0〉
+ Γk

2 ‖x∗ − xk‖2 − Γk+1
2 ‖x∗ − xk+1‖2

+ L0+〈̃λk+1,L〉+2aμ0
aμ0(L0+〈̃λk+1,L〉−μ0)

Γkεk . (7.13)

Since ‖̃λk‖ ≤ B, we have (
L0+B‖L‖−aμ0
L0+B‖L‖−μ0

)k ≤ Γk ≤ (
L0−aμ0
L0−μ0

)k . Moreover, we have

2εk ≤ a(1 − ρ)ρk‖η − η0‖ and ρ = L0−μ0
2(L0−aμ0)

. Using these relations in (7.13), we
have

Γk
L0+B‖L‖−μ0

[
ψ0(x

k+1) − ψ0(x
∗)
]

≤ B‖η−η0‖
L0−μ0

Γkρ
k + L0+B‖L‖+2aμ0

aμ0(L0−μ0)
Γkεk + Γk

2 ‖xk − x∗‖2 − Γk+1
2 ‖xk+1 − x∗‖2

≤ B‖η−η0‖
L0−μ0

1
2k

+ L0+B‖L‖+2aμ0
μ0(L0−μ0)

1−ρ

2k+1 ‖η − η0‖ + Γk
2 ‖xk − x∗‖2−Γk+1

2 ‖xk+1 − x∗‖2.
(7.14)

Similar to the convex part, we also have

ψ0(x
K ) ≤ ψ0(x

k+1)

+∑K−1
i=k+1εi ≤ ψ0(x

k+1)
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+ ‖η−η0‖(1−ρ)

2

∑K−1
i=k+1ρ

i ≤ ψ0(x
k+1)

+ ‖η−η0‖ρk+1

2 .

Using the above relation into (7.14), we have

Γk
L0+B‖L‖−μ0

[
ψ0(x

K ) − ψ0(x
∗)
] ≤ (4B+1)‖η−η0‖

L0−μ0

1
2k+2 + L0+B‖L‖+2aμ0

μ0(L0−μ0)
1−ρ

2k+1 ‖η − η0‖
+ Γk

2 ‖xk − x∗‖2 − Γk+1
2 ‖xk+1 − x∗‖2.

Summing the above relation from k = 0 to K − 1, we have

ΓK−1
L0+B‖L‖−μ0

[
ψ0(x

K ) − ψ0(x
∗)
]

≤ ∑K−1
k=0

Γk
L0+B‖L‖−μ0

[
ψ0(x

K ) − ψ0(x
∗)
]

≤ [
(4B+1)

2(L0−μ0)

+ L0+B‖L‖+2aμ0
μ0(L0−μ0)

(1 − ρ)
]‖η − η0‖ + 1

2‖x0 − x∗‖2.

Note that

Γ −1
K−1 ≤ (

1 − (1−a)μ0
L0+B‖L‖−aμ0

)K ≤ exp
(− (1−a)μ0K

L0+B‖L‖−aμ0

)
.

Combining the above two relations we obtain the desired result (7.11). ��

8 Numerical study

In this section, we conduct some preliminary studies to examine our theoretical results
and the performance of the LCPG method. The experiments are run on CentOS with
Intel Xeon (2.60 GHz) and 128 GB memory.

8.1 A simulated study on the QCQP

In the first experiment, we compare LCPG with some established open-source solvers
such as CVXPY [11] and DCCP [32]. We consider the penalized Quadratically Con-
strained Quadratic Program (QCQP) described as follows,

min
x∈Rn

1
2 x

T Q0x + bT0 x + α‖x‖1
s.t. 1

2 x
T Qi x + bTi x + ci ≤ 0, i = 1, 2, . . . ,m − 1

s.t. ‖x‖ ≤ r

(8.1)

where each Qi (0 ≤ i ≤ m) is an n × n matrix, b0, b1, . . . , bm are n-dimensional real
vectors, α is a positive weight on the �1 norm penalty, which helps to promote sparse
solution. In the first setting, we consider a convex constrained problem where each Qi
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Table 3 Comparison of algorithms on convex quadratic problems. Running time is measured in seconds

n LCPG CVXPY

Objective Time DNorm Max DNorm Objective Time DNorm

500 −1.785e+02 9.46e+00 1.773e−01 1.773e−01 -1.785e+02 3.29e+00 1.774e−01

1000 −9.698e+01 1.97e+01 1.478e−01 1.478e−01 -9.698e+01 1.61e+01 1.479e−01

2000 −5.418e+01 6.30e+01 1.117e−01 1.117e−01 -5.419e+01 7.82e+01 1.120e−01

3000 −4.010e+01 1.44e+02 9.525e−02 9.525e−02 -4.011e+01 2.36e+02 9.602e−02

4000 −3.293e+01 2.45e+02 8.255e−02 8.255e−02 -3.294e+01 4.96e+02 8.384e−02

is a positive semidefinite matrix. We set Qi = V DV T where V is an n × n random
sparse matrix with density 0.01, and its nonzero entries are uniformly distributed in
[0, 1]. D is a diagonal matrix whose diagonal elements are uniformly distributed in
between [0, 100]. We set bi = 10e+v, where e is a vector of ones and v ∈ N (0, In×n)

is sampled from standard Gaussian distribution. We set ci = −10 to make x = 0 a
strictly feasible initial solution. Furthermore, we add a ball constraint to ensure that
the domain is a compact set. We set r = √

20 and α = 1. We fix m = 10 and explore
different dimensions n from the set {500, 1000, 2000, 3000, 4000}.

We solve Problem (8.1) by both CVXPY and LCPG. Both use the initial solution x =
0. For CVXPY, we useMOSEK as the internal solver due to its superior performance in
quadratic optimization. In LCPG, for simplicity, we also solve the diagonal quadratic
subproblem by MOSEK through CVXPY. Note that calling the external API repetitively
for each LCPG subproblem only causes more overheads to run LCPG. Nonetheless, as
we shall see, the standard IPM solvers can still fully leverage the diagonal structure
and exhibit fast convergence.

In Table 3, we present the experiment results of the compared algorithms. The
final objective, the norm of the dual solution (DNorm), and for LCPG, the maximum
dual norm in the solution path (Max DNorm) are reported. All values represent the
average of 5 independent runs. From the results, we observe that while LCPG does not
outperform CVXPY for the small-size problem (n = 500),LCPG becomes increasingly
favorable as the problem dimension increases. This justifies the empirical advantage of
our proposed approach as we do not need to construct a full Hessian matrix. Moreover,
interestingly, we observe that the dual solution norm {‖λk‖} is increasing, reaching
the maximum at the last iteration. This accounts for the equal values of DNorm and
Max DNorm. Meanwhile, in all the cases, the dual remains bounded and the reported
dual norm closely aligns with the solution returned by CVXPY. This result confirms
our intuition that the dual bound is intricately tied to the nature of problems.

In the second setting of this experiment, we examine the performance of LCPG on
nonconvex constrained optimization. Specifically, we express Qi as the difference of
two matrices: Qi = Pi − Si , where Pi is generated in the same manner as Qi in the
first setting, and Si = 10In×n . Given the construction of the quadratic components,
it is natural to view the function 1

2 x
T Qi x + bTi x + ci as a difference of two convex

quadratic functions: 1
2 x

T Pi x + bTi x + ci − 1
2 x

T Si x . Leveraging this decomposition,
we apply the DC programming, and more specifically, the DCCP framework to solve
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Table 4 Comparison of algorithms on nonconvex quadratic problems

n LCPG DCCP

Objective Time DNorm Max DNorm Objective Time DNorm Max DNorm

500 −3.056e+01 1.525e+01 1.194e−01 1.194e−01 −3.056e+01 1.400e+01 1.199e−01 1.199e−01

1000 −2.112e+01 3.350e+01 7.602e−02 7.608e−02 −2.112e+01 5.665e+01 7.672e−02 7.672e−02

2000 −1.609e+01 1.052e+02 4.502e−02 4.588e−02 −1.609e+01 2.678e+02 4.571e−02 4.571e−02

3000 −1.425e+01 1.918e+02 3.216e−02 3.523e−02 −1.426e+01 6.505e+02 3.301e−02 3.301e−02

4000 −1.329e+01 3.837e+02 2.485e−02 2.738e−02 −1.330e+01 1.201e+03 2.574e−02 2.574e−02

Fig. 3 Comparison of LCPG, LCSPG and LCSVRG. The first row reports the results on covtype (left:
σ = 0.4; right: σ = 0.6). The second row reports the results on real-sim (left: σ = 0.1; right: σ = 0.2)

(8.1). Each convex subproblem of DCCP is solved by MOSEK through the CVXPY
interface. In Table 4, we describe the performance of LCPG and the DCCP algorithm. It
can be observed that LCPG compares favorably against the DCCP solver. Furthermore,
the boundedness of the dual for both algorithms is also observed, which is consistent
with our intuition.

8.2 Study of gradient complexities

In the next experiment, our primary goal is to examine the main theoretical
results, namely, the gradient complexities of LCPG, its stochastic variants LCSPG
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and LCSVRG. We apply all these algorithms to a sparsity-induced finite-sum problem,
wherein a nonconvex constraint is incorporated into the supervised learning framework
to actively enforce a sparse solution. The optimization problem is as follows

min
x∈Rd

ψ0(x) := 1
n

n∑

i=1

fi (x)

s.t. ψ1(x) = β‖x‖1 − g(x) ≤ η1,

(8.2)

where fi (x) is a smooth loss function associated with the i th sample, ψ1(x) is
the difference between �1-penalty and a convex smooth function g(x). Employing
a difference-of-convex constraint is seen as a tighter relaxation of the cardinality
constraint ‖x‖0 ≤ κ than the �1 relaxation. The appealing properties of difference-of-
convex penalties have been demonstrated in various studies [5, 14, 16, 17, 36, 37].

In view of the concave structure of −g(x), there is a strong asymmetry between
the lower and upper curvature of −g(x), namely, the following

− Lg
2 ‖y− x‖2 −∇g(y)T (x − y)−g(y) ≤ −g(x) ≤ −g(y)−∇g(y)T (x − y) (8.3)

holds for certain Lg > 0. Note that this is much stronger than the Lg smoothness

condition which adds an extra Lg
2 ‖y − x‖2 on the right-hand side of (8.3). Due to this

feature, one can impose a tighter piece-wise linear surrogate function constraint

β‖x‖1 − g(xk) − ∇g(xk)(x − xk) ≤ ηk1

in the LCPG subproblem. It should be noted that our analysis is readily adaptable
to accommodate this scenario since it is the smoothness, as opposed to concav-
ity/convexity, that plays a central role in our convergence analysis and that remains
valid. An empirical advantage of this approach is that we now have a tractable sub-
problem solvable in nearly linear time. See more discussion in [5].

Our experiment considers the task of binary classificationwith logistic loss, denoted
by fi (x) = log(1 + exp(−bi (aTi x)), where ai ∈ R

d , bi ∈ {1,−1}, 1 ≤ i ≤ n. We

use the SCAD penalty g(x) = ∑d
j=1 hβ,θ (x j ) where hβ,θ (·) is defined in (3.22).

We use the real-sim dataset from the LibSVM repository [10] and the covtype data
from the UCI repository [19]. For the latter, we formulate a binary classification
task by distinguishing class “3” from the other classes. We set β = 2, θ = 5, and
η1 = σd, with σ ∈ {0.4, 0.6} for covtype and σ ∈ {0.1, 0.2} for real-sim dataset. For
each algorithm, we use its theoretically suggested batch size and stepsize. for a fair
comparison, we count n evaluations of the stochastic gradient as an effective pass over
the dataset and plot the objective value over the number of effective passes. Figure3
plots the convergence result of the compared algorithms. It can be readily seen that
LCSPG performs better than LCPG in terms of the number of gradient samples, and
LCSVRG achieves the best performance among the three algorithms. The empirical
findings further confirm our theoretical complexity analysis.
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9 Conclusion

In this work, we presented a new LCPG method for nonconvex function constrained
optimization which can achieve gradient complexity of the same order as that of
unconstrained nonconvex problems. The key ingredient in our algorithm design is
the use of constraint levels to ensure the subproblem feasibility, which allows us
to overcome a well-known difficulty in bounding the Lagrange multipliers in the
presence of nonsmooth constraints.Moreover, amerit of our convergence analysis is its
striking similarity with that of gradient descent methods for unconstrained problems.
Therefore, we can easily extend our method to minimizing stochastic, finite-sum, and
structured nonsmooth functions with nonconvex function constraints; many of the
complexity results were not known before. Another important feature of our work
is that the method can deal with complex scenarios where the subproblems are not
exactly solvable. To the best of our knowledge, existing work on sequential convex
optimization (SQP, MBA) only assumes the subproblems to be exactly solved. We
provided a detailed complexity analysis of LCPGwhen the subproblems are inexactly
solved by customized interior point method and first-order method. Finally, we clearly
distinguished the notion of gradient complexity from that of computational complexity.
In terms of gradient complexity, all of our proposed methods are state-of-the-art and
easy to implement. Whether the computational complexity can be further improved
for composite cases remains an open problem that we leave as a future direction.
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A Proof of Lemma 7

Let {δn}n≥1 be a functionofC∞-smooth, real-valuedmollifier functions overRd where,
for every n ≥ 1, we have: (i) δn ≥ 0, (ii)

∫
δn(τ )dτ = 1, and (iii) and δn(τ ) = 0 for

τ satisfying ‖τ‖ ≥ 1
n . Moreover, we define pn = δn ∗ p. It now follows that

pn(x) − pn(y) − 〈∇ pn(y), x − y〉
=δn ∗ [p(x) − p(y)] − 〈δn ∗ ∇ p(y), x − y〉
=∫

τ
δn(τ )[p(x − τ) − p(y − τ)]dτ − 〈∫

τ
δn(τ )∇ p(y − τ)dτ, x − y〉

=∫
τ
δn(τ )[p(x − τ) − p(y − τ) − 〈∇ p(y − τ), x − y〉]dτ
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Using (5.2) along with the above relation, noting that δn ≥ 0 and the fact∫
δn(τ )dτ = 1, we have

− μ
2 ‖x − y‖2 ≤ pn(x) − pn(y) − 〈∇ pn(y), x − y〉 ≤ L

2 ‖x − y‖2, (A.1)

for all x, y. Note that pn is C∞-smooth. Hence, using Taylor’s theorem, there exist
ξ ∈ [x, y] such that pn(x) − pn(y) − 〈∇ pn(y), x − y〉 = 1

2 〈x − y,∇2 pn(ξ)(x −
y)〉 + o(‖x − y‖2). Using this relation along with (A.1) and denoting v := y − x , we
have

− μ
2 ‖v‖2 ≤ 1

2 〈v,∇2 pn(ξ)v〉 + o(‖v‖2) ≤ L
2 ‖v‖2 (A.2)

Now, diving both sides of the above relation by ‖v‖2, taking y → x which implies
ξ → x and ∇2 pn(ξ) → ∇2 pn(x), we have

−μ ≤ 〈 v
‖v‖ ,∇2 pn(x)

v
‖v‖ 〉 ≤ L,

for all v and x . The above relation is equivalent to the fact that ‖∇2 pn(x)‖ ≤
max{L, μ} for all x . From here, for any x, y, we have

‖∇ pn(x) − ∇ pn(y)‖ = ‖∫ 1t=0 ∇2 p(y + t(x − y))(x − y)dt‖
≤ ∫ 1

t=0‖∇2 p(y + t(x − y))(x − y)‖dt
≤ ∫ 1

t=0‖∇2 p(y + t(x − y))‖‖x − y‖dt
≤ max{L, μ}‖x − y‖.

Now, taking n → ∞ and noting that ∇ pn(x) → ∇ p(x) for all x , we have (5.3).
Hence, we conclude the proof.

B Proof of Theorem 7

First of all, using the definition of εk and the fact that ψk
i (xk+1) ≤ ηki + εk for all

i ∈ [m], we have

ψk
i (xk)=ψi (x

k)≤ψk−1
i (xk)≤ηk−1

i + εk−1 < ηk−1
i + δk−1

i =ηki , i = 1, 2, . . . ,m.

Hence xk is strictly feasible solution of (3.1). Due to Slater condition, there exists a
pair of optimal primal and dual solutions, which we denote by x̃ k+1 and λk+1. We first
prove the following lemma. Our argument will be based on the following key result.

Lemma 10
lim
k→∞‖x̃ k+1 − xk‖ = 0, lim

k→∞‖xk+1 − xk‖ = 0 (B.1)
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Proof Using optimality of x̃ k+1, strong convexity of ψk
0 , feasibility of xk for the

subproblem (3.1) and ψk
0 (xk+1) ≤ ψk

0 (̃xk+1) + εk , we have,

ψ0(x
k+1) ≤ ψk

0 (xk+1)

≤ ψk
0 (̃xk+1) + εk

≤ ψk
0 (xk) − L0

2 ‖xk − x̃ k+1‖2 + εk

= ψ0(x
k) − L0

2 ‖xk − x̃ k+1‖2 + εk .

Since εk is summable, we have that ‖xk − x̃ k+1‖2 is summable. This implies ‖xk −
x̃ k+1‖ → 0. Since εk → 0 and x̃ k+1 is a unique optimal solution of (3.1), we have
‖xk+1− x̃ k+1‖ → 0. Then, usingCauchy-Schwarz inequality, we have ‖xk+1−xk‖ ≤
‖xk+1 − x̃ k+1‖ + ‖x̃ k+1 − xk‖ and hence, ‖xk+1 − xk‖ → 0. Hence, we conclude
the proof. ��
Now, we show boundedness of λ̃k+1. Assume, for the sake of contradiction, that λ̃k+1

is unbounded. Let x̄ be a limit point of {xk}. Passing to a subsequence if necessary, we
have xk → x̄ . Using Lemma 10, we have x̃ k+1 → x̄ and xk+1 → x̄ . Then, we have

ψk
0 (xk+1) + 〈λ̃k+1, ψk(xk+1)〉 ≤ ψk

0 (̃xk+1) + 〈λ̃k+1, ψk (̃xk+1)〉 + εk

≤ ψk
0 (x) + 〈λ̃k+1, ψk(x)〉 + εk

Note that the above relation is comparable to (3.10) up to an error term of εk . Following
the arguments in the proof of Theorem 1 (Part 1, (3.10) onwards) and noting that εk
is summable, we conclude that {λ̃k+1} is bounded.

Now, we prove limit point of {xk} is a KKT point. Since Lk(xk+1, λ̃k+1) ≤
Lk (̃xk+1, λ̃k+1) + εk , we rewrite (3.18) as

〈∇ f0(x
k) +∑m

i=1λ̃
k+1
i ∇ fi (x

k), xk+1 − x
〉+ χ0(x

k+1) − χ0(x)

+ 〈λ̃k+1, χ(xk+1) − χ(x)
〉

≤ 〈∇ f0(x
k) +∑m

i=1λ̃
k+1
i ∇ fi (x

k), x̃ k+1 − x
〉

+ χ0(̃x
k+1) − χ0(x) + 〈λ̃k+1, χ (̃xk+1) − χ(x)

〉+ εk

≤ L0+〈λ̃k+1,L〉
2

[‖x − xk‖2 − ‖x̃ k+1 − xk‖2 − ‖x − x̃ k+1‖2]+ εk . (B.2)

Let x̄ be a limit point of sequence {xk}. Since λ̃k+1 is bounded, we assume limit
point λ̄. Without loss of generality, we have xk → x̄ and λ̃k+1 → λ̄. Then, in view
of Lemma 10, we have limk→∞ xk+1 → x̄ and limk→∞ x̃ k+1 → x̄ . Taking limit
k → ∞ in (B.2), we have

〈∇ f0(x̄) +∑m
i=1λ̄i∇ fi (x̄), x̄ − x

〉+ χ0(x̄) − χ0(x) + 〈λ̄, χ(x̄) − χ(x)
〉 ≤ 0.

Note that the above equation matches with (3.19) exactly. From here, we follow the
proof of Theorem 1 (Part 2, (3.19) onwards) to conclude first-order stationarity of
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(x̄, λ̄). A similar argument can show complimentary slackness. Hence, we have that
(x̄, λ̄) is KKT-solution and we conclude the proof.
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