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Abstract
In this article we present new results on neural networks with linear threshold activa-
tion functions x �→ 1{x>0}. We precisely characterize the class of functions that are
representable by such neural networks and show that 2 hidden layers are necessary
and sufficient to represent any function representable in the class. This is a surprising
result in the light of recent exact representability investigations for neural networks
using other popular activation functions like rectified linear units (ReLU). We also
give upper and lower bounds on the sizes of the neural networks required to represent
any function in the class. Finally, we design an algorithm to solve the empirical risk
minimization (ERM) problem to global optimality for these neural networks with a
fixed architecture. The algorithm’s running time is polynomial in the size of the data
sample, if the input dimension and the size of the network architecture are considered
fixed constants. The algorithm is unique in the sense that it works for any architec-
ture with any number of layers, whereas previous polynomial time globally optimal
algorithms work only for restricted classes of architectures. Using these insights, we
propose a new class of neural networks that we call shortcut linear threshold neural
networks. To the best of our knowledge, this way of designing neural networks has
not been explored before in the literature. We show that these neural networks have
several desirable theoretical properties.
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1 Introduction

A basic question in a rigorous study of neural networks is a precise characterization
of the class of functions representable by neural networks with a certain activation
function. The question is of fundamental importance because neural network functions
are a popular hypothesis class in machine learning and artificial intelligence. Every
aspect of learning using neural networks benefits from a better understanding of the
function class: from the statistical aspect of understanding the bias introduced in the
learning procedure by using a particular neural hypothesis class, to the algorithmic
question of training, i.e., finding the “best" function in the class that extrapolates the
given sample of data points.

It may seem that the universal approximation theorems for neural networks render
this question less relevant, especially since these results apply to a broad class of
activation functions [2, 10, 23]. We wish to argue otherwise. Knowledge of the finer
structure of the function class obtained by using a particular activation function can be
exploited advantageously. For example, the choice of a certain activation functionmay
lead to much smaller networks that achieve the same bias compared to the hypothesis
class given by another activation function, even though the universal approximation
theorems guarantee that asymptotically both activation functions achieve arbitrarily
small bias. As another example, one can design targeted training algorithms for neural
networks with a particular activation function if the structure of the function class
is better understood, as opposed to using a generic algorithm like some variant of
(stochastic) gradient descent. This has recently led to globally optimal empirical risk
minimization algorithms for rectified linear units (ReLU) neural networkswith specific
architecture [3, 7, 11] that are very different in nature from conventional approaches
like (stochastic) gradient descent; see also [13, 15–19, 26].

Recent results of this nature have been obtained with ReLU neural networks. Any
neural network with ReLU activations clearly gives a piecewise linear function. Con-
versely, any piecewise linear functionR

n → R can be exactly representedwith at most
�log2(n + 1)� hidden layers [3], thus characterizing the function class representable
using ReLU activations. However, it remains an open question if �log2(n + 1)� are
indeed needed. It is conceivable that all piecewise linear functions can be represented
by 2 or 3 hidden layers. It is believed this is not the case and there is a strict hierarchy
starting from 1 hidden layer, all the way to �log2(n + 1)� hidden layers. It is known
that there are functions representable using 2 hidden layers that cannot be represented
with a single hidden layer, but even the 2 versus 3 hidden layer question remains open.
Some partial progress on this question can be found in [21].

In this paper, we study the class of functions representable using threshold activa-
tions (also known as theHeaviside activation, unit step activation, andMcCulloch-Pitts
neurons). It is easy to see that any function represented by such a neural network is
a piecewise constant function. We show that any piecewise constant function can be
represented by such a neural network, and surprisingly – contrary to what is believed
to be true for ReLU activations – there is always a neural network with at most 2 hid-
den layers that does the job. We also establish that there are functions that cannot be
represented by a single hidden layer and thus one cannot do better than 2 hidden layers
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Neural networks with linear... 335

Fig. 1 Illustration of a R
w0 → R shortcut linear threshold neural networks with k hidden layers, where

x∈ R
w0 is the input to the network, x(k)∈ R

wk is the output of the k-th hidden layer

in general. Our constructions also show that the size of the neural network is polyno-
mial in the number of “pieces" of the function, in the case of fixed input dimension,
similar to recent results for ReLU activations which give a polynomial size network
[21]. However, the degree of the polynomial in our results is linear in the dimension,
compared to a quadratic dependence in the ReLU results. We also have tighter lower
bounds on the size, compared to known results for ReLU networks. Moreover, we
show that if we are allowed to ignore zero measure sets, the size bounds are only
quadratic in the number of “pieces", even for varying input dimension. Finally, we
use these insights to design an algorithm to solve the empirical risk minimization
(training) problem for these neural networks to global optimality whose running time
is polynomial in the size of the data sample, assuming the input dimension and the
network architecture are fixed. To the best of our knowledge, this is the first globally
optimal training algorithm for any family of neural networks that works for arbitrary
architectures and has computational complexity that is polynomial in the number of
data points, that does not involve a discretization of parameter space or the input space.

Linear threshold activations only retain the sign from the input (after applying an
affine linear function). We now show a way to reintegrate additional input information
to enhance the expressivity of the linear threshold neural networks, while maintaining
similar network sizes. For this purpose, we introduce a novel type of neural network
named shortcut linear threshold neural networks. These networks are distinguished by
a shortcut connection that performs a linear transform on the input, and takes the inner
product with the output of the last hidden layer (see Fig. 1). This structure enables
a shift from piecewise constant to piecewise linear functions, without necessitating
a change in the network’s size. The novelty resides in the coupling of the network’s
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336 S. Khalife et al.

input with the output of the last hidden layer through an inner product operation. This
could be a potentially new way to design and apply neural networks which does not
seem to have been explored in the literature before, to the best of our knowledge.

These shortcut linear threshold networks can represent piecewise linear functions
that are possibly discontinuous. This is a strict superset of the family of functions
representable by ReLU neural networks that give continuous piecewise linear func-
tions. Nevertheless, we show that the model complexity of this new network is not
significantly larger than ReLU networks and these new neural networks can be trained
provably to global optimality using the ERMalgorithmwe develop for linear threshold
activations. For a more comprehensive discussion on this topic, we direct readers to
Sect. 6.2. These results provide some evidence that shortcut linear threshold networks
could be a superior class compared to ReLU networks. While the results we present
are all theoretical in nature, we believe they provide reasonable motivation to explore
the potential of this new class of neural networks in applications. We leave this avenue
open for future work.

2 Formal statement of results

We first introduce necessary definitions and notation, followed by a precise statement
of our results.

2.1 Definitions and notations

2.1.1 Polyhedral theory

Definition 1 A polyhedral complexP is a collection of polyhedra having the following
properties:

(A) For every P, P ′ ∈ P, P ∩ P ′ is a common face of P and P ′.
(B) every face of a polyhedron in P belongs to P .

We denote by dim(P) the dimension of a polyhedron and by P̊ the relative interior
of P . |P|will denote the number of polyhedra in a polyhedral complexP and is called
the size of P . The set of full-dimensional polyhedra in P is denoted by full(P), and
thus, | full(P)| corresponds to the number of full-dimensional polyhedra in P .

Definition 2 (Piecewise linear and piecewise constant functions) We say that a func-
tion f : R

n → R is piecewise linear if there exists a finite polyhedral complex that
covers R

n and f is affine linear in the relative interior of each polyhedron in the com-
plex. If each of the affine functions are constant functions, i.e., f is constant in the
relative interior of each polyhedron, then we call such a function piecewise constant.
We use PWLn and PWCn to denote the class of all piecewise linear functions and
piecewise constant functions (respectively) from R

n to R; thus, PWCn ⊆ PWLn . We
will also use CPWLn to denote subclass of piecewise linear functions from R

n to R

that are also continuous.
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Definition 3 Let f ∈ PWLn . We say that x ∈ R
n is a regular point for f if there exists

ε > 0 such that f is affine linear on the ball centered at x and radius ε. A point that
is not regular is called a breakpoint for f .

Note that there may be multiple polyhedral complexes that correspond to a given
piecewise linear or constant function, with possibly different sizes. For example, the
indicator function of the nonnegative orthant R

n+ is a piecewise constant function but
there are many different ways to break up the complement of the nonnegative orthant
into polyhedral regions. This motivates the following definitions.

Definition 4 We say that a polyhedral complexP is compatible with a piecewise linear
or constant function f if f is linear or constant (respectively) in the relative interior
of every polyedron in P . Moreover, for any function f ∈ PWLn , comp( f ) refers to
the set of all polyhedral complexes compatible with f . We denote P∗

f as a polyhedral
complexwith the smallest cardinality in comp( f ), that is,P∗

f ∈ argminP∈comp( f ) |P|.
Consequently, the number of pieces of f , denoted as | f |, is defined as | full(P∗

f )|, which
corresponds to the number of full-dimensional polyhedra in P∗

f .

2.1.2 Neural network terminology

Definition 5 (Neural networks (NN)) Fix an activation function σ : R → R. For
any number of hidden layers k ∈ N, input and output dimensions w0, wk+1 ∈ N,
a R

w0 → R
wk+1 neural network (NN) with σ activation is given by specifying a

sequence of k natural numbers w1, w2, · · · , wk representing widths of the hidden
layers and a set of k + 1 affine transformations Ti : R

wi−1 → R
wi , i = 1, . . . , k + 1.

Such a NN is called a (k + 1)-layer NN, and is said to have k hidden layers. The
function f : R

w0 → R
wk+1 computed or represented by this NN is:

f = Tk+1 ◦ σ ◦ Tk ◦ · · · T2 ◦ σ ◦ T1.

If Ti is represented by the matrix Ai ∈ R
wi×wi−1 and vector bi ∈ R

wi , i.e., Ti (x) =
Ai x +bi , then the weights of neuron j ∈ {1, . . . , wi } in the i-th hidden layer are given
by the entries of the j-th row of Ai and the bias of this neuron is given by the j-th
coordinate of bi . The set of all weights and biases of all neurons is called the set of
learning parameters of the NN, and the size of the NN, or the number of neurons in
the NN, is w1 + · · · + wk .

Definition 6 The threshold activation function is a map from R to {0, 1} given by the
indicator of the positive reals, i.e., x > 0. By extending this to apply coordinatewise,
we get a function σ : R

d → {0, 1}d for any d ≥ 1, i.e., σ(x)i is 1 if and only if xi > 0
for i = 1, . . . , d. For any subset X ⊆ R

n , 1X will denote its indicator function, i.e.,
1X (y) = 1 if y ∈ X and 0 otherwise.

Definition 7 (Threshold and ReLU activations) Linear threshold neural networks are
those NNs where σ is the threshold activation function defined above. For natu-
ral numbers n, k and a tuple w = (w1, . . . , wk), we use LTw

n (k) to denote the

123



338 S. Khalife et al.

family of all possible linear threshold NNs with input dimension w0 = n, k hid-
den layers with widths w1, . . . , wk and output dimension wk+1 = 1. LTn(k) :=⋃

w=(w1,...,wk )
LTw

n (k) will denote the family of all linear threshold activation neural
networks with k hidden layers.

ReLU neural networks are those NNs where σ(x) = max{0, x}, which is called
the Rectified Linear Unit (ReLU) activation function. Analogous to the notation for
linear threshold functions, we introduce ReLUw

n (k) and ReLUn(k) for ReLU neural
networks.

We rigorously define Shortcut Linear Threshold Neural Networks (SLT NNs) as
follows: Given a R

w0 → R linear threshold NN with k ∈ N hidden layers and
input x ∈ R

w0 , the network’s output is constructed as a linear combination of the
outputs of the neurons in the final hidden layer. Specifically, the output equals 〈b, x (k)〉,
where x (k) = [1X1(x), . . . ,1Xwk

(x)]� represents the output of the k−th layer, and
b ∈ R

wk . Distinctively, instead of employing a constant vector b for the ultimate linear
combination, we utilize an affine linear transformation of the original input x as the
linear coefficients. Hence, the output of the shortcut linear threshold NN is defined as
〈A�x + b, x (k)〉, where A ∈ R

w0×wk and b ∈ R
wk . Notably, by setting A = 0, we

revert to linear threshold NNs as defined in Definition 7.
Analogously to linear threshold and ReLU NNs, we denote the class of functions

represented by shortcut linear threshold NNs with w0 = n, wk+1 = 1, k hidden
layers, and w = (w1, . . . , wk) signifying the widths of the hidden layers as SLTw

n (k)
and SLTn(k).

Definition 8 (Shortcut linear threshold NNs) We define shortcut linear threshold NNs
as a type of linear threshold NNs with a shortcut connection. More formally, consider
a linear threshold NN with k ∈ N hidden layers, an input vector x ∈ R

w0 , and an
output of the k-th hidden layer, denoted as x (k) ∈ R

wk . For a shortcut linear threshold
NN based on this linear threshold NN, the output is defined as 〈A�x +b, x (k)〉, where
A ∈ R

w0×wk and b ∈ R
wk . It is worth noting that choosing A = 0 recovers linear

threshold NNs as defined in Definition 7.
Analogous to linear threshold and ReLU NNs, we use SLTw

n (k) and SLTn(k) to
denote the class of functions represented by shortcut linear thresholdNNswithw0 = n,
wk+1 = 1, k hidden layers, and w = (w1, . . . , wk) representing the widths of the
hidden layers.

Note that the novelty in the above definition is in how the output is derived from the
output of the final hidden layer and the original input. To the best of our knowledge,
such a modification in the definition of neural representations of functions is new. We
present some results that we feel give evidence for the usefulness of this definition.

To better present our results regarding the size bounds of neural networks that
are capable of computing a specific function, we introduce the notation N (H , f ) to
represent the set of all neural networks in H that can compute a given function f .
For instance, N (LTn(k), f ) represents the set of all linear threshold neural networks
with an input dimension of n and k hidden layers that can compute the function f . We
further use Nμ(H , f ) to denote the set of all neural networks in H that can compute
a function g satisfying μ({x : f (x) �= g(x)}) = 0, where μ(·) denotes the Lebesgue
measure. The size of a neural network N is denoted by |N |.
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2.2 Our contributions

2.2.1 Results for linear threshold NNs

Any function expressed by a linear threshold neural network is a constant piecewise
function (i.e. LTn(k) ⊆ PWCn for all natural numbers k), because a composition of
piecewise constant functions is piecewise constant. In this work we show that linear
threshold neural networks with 2 hidden layers can compute any constant piecewise
function, i.e. LTn(2) = PWCn . We also prove that this is optimal, in the sense that
a single hidden layer does not suffice to represent all piecewise constant functions.
More formally,

Theorem 1 LT1(1) = PWC1, and for all natural numbers n, k ≥ 2,

LTn(1) � LTn(2) = LTn(k) = PWCn .

Equivalently, any piecewise constant function f : R
n → R can be computed by a

linear threshold NN with at most 2 hidden layers. Moreover,

min
N∈N (LTn(2), f )

|N | ≤ 3|P∗
f |.

Next, we show that the bound on the size of the neural network in Theorem 1 is in
a sense best possible, up to constant factors.

Proposition 1 There exists a family of functions fn ∈ PWCn such that

min
N∈N (LTn(2), fn)

|N | ≥ |P∗
fn |, ∀n ∈ N+.

Notwithstanding Proposition 1, there still remains the possibility that the construc-
tion we give to prove the equalities in Theorem 1 is suboptimal in terms of the size of
the networks produced by our construction. Going beyond our specific construction,
it is a priori possible that there are families of piecewise constant functions that can
be represented with polynomial size circuits if one uses more than 2 hidden layers,
while any linear threshold NN with 2 hidden layers has super polynomial size. Such
results have been established for NNs involving ReLU and other activation functions;
see, e.g., [3, 9, 12, 30] for a representative sample.

Building upon our previous discussion and results that also consider polyhedra of
lower dimensions, it is important to highlight that the main focus in practical appli-
cations is full-dimensional polyhedra. This arises from the fact that for any countable
set of data points, there is zero probability of them being contained within lower-
dimensional polyhedra. Furthermore, this approach provides an equitable basis for
comparing against size results for ReLU NNs, which represent continuous functions
whose values on lower-dimensional polyhedra are determined by the values on full-
dimensional polyhedra. Thus, we formulate the ensuing theorem related to the smallest
linear threshold NN size expressing a given function, placing our focus solely on
full-dimensional polyhedra.
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Theorem 2 Let f ∈ PWCn with p ≥ 2 pieces. Then,

min
N∈Nμ(LTn(2), f )

|N | ≤ p(p + 1)

2
+ 1.

The applicability and significance of this theorem will become more evident in
Sect. 2.2.3, specifically in the context of our proposed network structure. When
expressing a given continuous piecewise linear function, this theorem provides an
upper bound for the minimum neural network size that is significantly smaller com-
pared to existing ReLU NN results. However, Theorem 2 ignores sets of measure
zero to derive an upper bound quadratic in p. If we seek to precisely express a given
function f ∈ PWCn with p pieces, the bound increases to O(pn+1) as shown in the
following proposition.

Proposition 2 Let f ∈ PWCn with p ≥ n + 1 pieces. Then,

min
N∈N (LTn(2), f )

|N | ≤ 3

(
ep

n + 1

)n+1

.

2.2.2 Algorithm for exact empirical risk minimization

In addition to our structural results, we present a new algorithm to perform exact
empirical risk minimization (ERM) for linear threshold neural networks with fixed
architecture, i.e., fixed k and w = (w1, . . . , wk). Given D data points (xi , yi ) ∈
R
n × R, i = 1, · · · , D, the ERM problem with hypothesis class LTw

n (k) is

min
f ∈LTw

n (k)

1

D

D∑

i=1

�( f (xi ), yi ), (1)

where � is a convex loss function.

Theorem 3 For natural numbers n, k and tuple w = (w1, . . . , wk), there exists an
algorithm that computes the global optimum (1), up to ε-accuracy, with running time

O(Dw1n · 2
∑k−1

i=1 w2
i wi+1 · poly(D, w1, . . . , wk, log

( 1
ε

)
)). If � is the absolute value

difference, then the global optimum can be computed exactly.

Thus, the algorithm is polynomial in the size of the data sample, if n, k, w1, . . ., wk

are considered fixed constants.

2.2.3 Shortcut linear threshold NNs

Theorem 4 ReLUn(�log2(n + 1)�) = CPWLn � PWLn = SLTn(2).

Moreover, for a given function f ∈ PWLn , we can derive the same upper bound on the
size of shortcut linear threshold neural networks as in Proposition 2 and Theorem 2,
using analogous arguments. Furthermore, for representing continuous piecewise linear
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functions, the continuity of the function allows us to modify our construction to elim-
inate the need to ignore sets of zero measure while asserting an upper bound quadratic
in p. This particular insight contributes to the subsequent corollary of Theorem 2.

Corollary 1 Let f ∈ CPWLn with p ≥ 2 pieces. Then,

min
N∈N (SLTn(2), f )

|N | ≤ p2 + 1.

We can compare Corollary 1 with known bounds on the sizes of ReLU NNs. For a
fixed CPWLn function f with p pieces, Theorem 2.1 in [3] establishes that a ReLU
NN needs no more than �log2(n + 1)� hidden layers to compute f . In contrast, our
SLTn construction described in Theorem 4 requires only 2 hidden layers. Additionally,
Theorem 4.4 in [21] states that the ReLU NN, with �log2(n + 1)� hidden layers to
compute f , will havewidth bounded byO(p2n

2+3n+1). In comparison, ourCorollary 1
implies a significantly tighter bound for the size of the SLTn network to compute a
same function f , namely O(p2).

It is also straightforward to modify the ERM algorithm presented in Theorem 3 to
apply to shortcut linear threshold NNs with the same architecture. We direct readers
to Sect. 5.2 for details.

The rest of the article is organized as follows. Sect. 3 collects some general structural
results on neutral networks that use threshold activations and introduces some concepts
useful for this analysis thatwill be used throughout the paper. Section 4 gives the proofs
of the results stated above for linear threshold NNs. Section 5 provides the proofs of
the results involving shortcut linear threshold NNs discussed above. Section 6 closes
the paper with a discussion of some open questions.

3 Preliminary results for threshold activations

In this section, we will collect some structural results for neural networks with linear
threshold activations. These will be useful for the proofs of our main results.

Definition 9 Let m ≥ 1 be any natural number. We say that a collection A of subsets
of {1, . . . ,m} is linearly separable if there exist α1, . . . , αm, β ∈ R such that any
subset A ⊆ {1, . . . ,m} is in A if and only if

∑
s∈A αs + β > 0. Lm refers to the set

of all linearly separable collections of subsets of {1, . . . ,m}.

Remark 1 We note that given a collectionA of subsets of {1, · · · ,m} one can test ifA
is linearly separable by checking if the optimum value of the following linear program
is strictly positive:

max
t∈R,α∈Rm ,β∈R t

s.t.
∑

s∈A

αs + β ≥ t ∀A ∈ A and
∑

s∈A

αs + β ≤ 0 ∀A /∈ A
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Fig. 2 Two linearly separable collections of 2{1,2,3} in R
3. The subsets of {1, 2, 3} are represented by

the vertices of {0, 1}3. The blue hyperplanes represent a possible separation of the corresponding vertices,
giving two different linearly separable collections

In Algorithm 1 below, we will enumerate through all possible collections in Lm (for
different values of m). We assume this has been done a priori using the linear pro-
grams above and this enumeration can be done in time |Lm | during the execution of
Algorithm 1.

Example 1 In R
2,A = {∅, {1}, {2}} is linearly separable, but {∅, {1, 2}} is not linearly

separable because the set of inequalities β > 0, α1 + α2 + β > 0, α1 + β ≤ 0 and
α2 + β ≤ 0 have no solution. Two examples of linearly separable collections in R

3

are given in Fig. 2.

Lemma 1 Let k ≥ 2 and w = (w1, . . . , wk), and consider a NN of LTw
n (k) or

SLTw
n (k). The output of each neuron in this neural network is the indicator function

of a specific subset of R
n. Suppose we fix the weights of the neural network up to the

(k − 1)-st hidden layer. This fixes the sets Y1, . . . ,Ywk−1 ⊆ R
n computed by the wk−1

neurons in this layer.
Then the output of a neuron in the k-th layer is the indicator function of X ⊆ R

n

(by adjusting the weights and bias of this neuron) if and only if there exists a linearly
separable collection A of subsets of {1, . . . , wk−1} such that:

X =
⋃

A∈A

[(
⋂

s∈A

Ys

)

∩
(
⋂

s /∈A

Y c
s

)]

.

Proof Let α ∈ R
wk−1 , β ∈ R be the weights and bias of the neuron in the k-th layer.

By definition, the set represented by this neuron is

Sα,β = {x ∈ R
n : α11Y1(x) + · · · + αwk−11Ywk−1

(x) + β > 0}.

We can suppose without loss of generality that Sα,β is non empty, otherwise the
output of the neuron is always 0 and the property is true by taking A = ∅. Therefore,
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we define the collection A := {A ⊆ {1, · · · , wk−1} :∑i∈A αi + β > 0}. Since Sα,β

is non empty, A is non empty, and by definition, is a linearly separable collection.
Now consider the set:

O :=
⋃

A∈A

[(
⋂

s∈A

Ys

)

∩
(
⋂

s /∈A

Y c
s

)]

.

We will prove now O = Sα,β . We first show O ⊆ Sα,β . If O = ∅, this is trivial.
Else, let x ∈ O . Then there exists A ∈ A, A ⊆ {1, · · · , wk−1} such that x ∈
(
⋂

s∈A Ys ) ∩ (
⋂

s /∈A Y
c
s ), and by definition of A
∑

s∈A

αs1Ys (x) + β > 0.

The previous inequality implies that:

wk−1∑

i=1

αk1Yk (x) + β =
∑

s∈A

αs1Ys (x) +
∑

s /∈A

αs1Ys (x) + β

=
∑

s∈A

αs1Ys (x) + β > 0.

The first equality holds because x /∈ Ys if and only if s /∈ A. This means that x ∈ Sα,β ,
hence O ⊆ Sα,β .

To show the reverse inclusion, let x ∈ Sα,β . Thenα11Y1(x)+· · ·+αwk−11Ywk−1
(x)+

β > 0. Let A := {s : x ∈ Ys}. Then:

∑

s∈A

αs + β =
wk−1∑

i=1

αk1Yk (x) + β > 0,

hence A ∈ A, and by construction x ∈ (
⋂

s∈A Ys) ∩ (
⋂

s /∈A Y
c
s ), hence x ∈ O ,

and Sα,β ⊆ O .
Conversely, letA be a linearly separable collection of subsets of {1, · · · , wk−1}. By

definition there existsα ∈ R
n andβ ∈ R such that A ∈ A if and only if

∑
s∈A αs+β >

0. α and β can be chosen as the weights of the neuron in the k-th hidden layer and its
output is the function 1{x∈Rn :∑wk−1

i=1 αi1Yi (x)+β>0}. ��

The following is a corollary of Lemma 1, which indicates that breakpoints are
non-increasing as we proceed through the hidden layers.

Corollary 2 Let k ≥ 2 and w = (w1, . . . , wk), and consider a NN of LTw
n (k) or

SLTw
n (k). Then the breakpoints of the output of any neuron in the j-th layer are

included in the union of the breakpoints of the neurons of the ( j − 1)-st layer, where
2 ≤ j ≤ k.
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Proof Let1Y1 , . . . ,1Yw j−1
be the functions computed by neurons in the ( j−1)-st layer,

where 2 ≤ j ≤ k. Consider any neuron in the j-th layer, suppose it computes 1X . By
Lemma 1, there exists a linearly separable collection A of subsets of {1, . . . , w j−1}
such that

X =
⋃

A∈A

[(
⋂

s∈A

Ys

)

∩
(
⋂

s /∈A

Y c
s

)]

,

then we have

∂X ⊆
⋃

A∈A
∂

[(
⋂

s∈A

Ys

)

∩
(
⋂

s /∈A

Y c
s

)]

⊆
⋃

A∈A

[

∂

(
⋂

s∈A

Ys

)

∪ ∂

(
⋂

s /∈A

Y c
s

)]

⊆
⋃

A∈A

[(
⋃

s∈A

∂Ys

)

∪
(
⋃

s /∈A

∂Y c
s

)]

=
⋃

A∈A

[(
⋃

s∈A

∂Ys

)

∪
(
⋃

s /∈A

∂Ys

)]

=
w j−1⋃

i=1

∂Yi .

For any nonempty set A ⊆ R
n , the set of breakpoints of 1A is ∂A, so the above

inclusion ends the proof. ��
Definition 10 For any single neuron with a linear threshold activation with k inputs,
the output is the indicator of an open halfspace, i.e., 1{x∈Rk :〈a,x〉+b>0} for some a ∈ R

k

and b ∈ R. We say that {x ∈ R
k : 〈a, x〉 + b = 0} is the hyperplane associated with

this neuron.

4 Main proofs (Linear Threshold DNNs)

Proof of Theorem 1

Proposition 3 LT1(1) = PWC1, i.e., linear threshold neural networks with a single
hidden layer can compute any piecewise constant function R → R. Furthermore,
given that f ∈ PWC1, it follows that

min
N∈N (LT1(1), f )

|N | ≤ 3|P∗
f | + 1.
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Proof Let f : R → R a piecewise constant function. By definition, the union of
polyhedra in P∗

f is R and such that f is constant on the relative interior of each of
the polyhedra. In R, non empty polyhedra are either reduced to a point, or they are
the intervals of the form [a, b], ] − ∞, a] , [a,+∞[ with a ≤ b ∈ R, or R itself.
We first show that we can compute the indicator function on each of the interior of
those intervals with at most two neurons. The interior of [a,+∞[, ] − ∞, b] or R

can obviously be computed by one neuron (e.g. x �→ 1{ax<0} with a = 0 for R). The
last cases (singletons and polyhedron of the form [a, b]) requires a more elaborate
construction. To compute the function 1{x∈]a,b[}, it is sufficient to implement a Dirac
function, since 1{x∈]a,b[} = 1{x<b} − 1{x<a} − δa(x) where δa is the Dirac in a ∈ R,
i.e, δa : R → R, x �→ 1{x=a}. δa can be computed by a linear combination of three
neurons, since ga : R → R, x �→ 1R − (1{x<a} + 1{x>a}) is equal to δa . Using
a linear combination of the basis functions (polyhedra and faces), we can compute
exactly f . To show that 3|P∗

f | + 1 neurons suffice, 1R is computed with one shared
neuron, and then 3 other neurons are needed at most for one polyhedron using our
construction. ��

We next show that starting with two dimensions, linear threshold NNs with a single
hidden layer cannot compute every possible piecewise constant function.

Proposition 4 Let C2 := {(x1, x2) ∈ R
2 | 0 ≤ x1, x2 ≤ 1}. Then 1C2 cannot be

represented by any linear threshold neural network with one hidden layer.

Proof Consider any piecewise constant function on R
2 represented by a single hidden

layer neural network. Let g := x �→∑m
i=1 αi1{x∈R2 : 〈ai ,x〉+bi<0} with α1, · · · , αm ∈

R, a1, . . . , am ∈ R
2 and b1, . . . , bm ∈ R, be a single hidden layer neural network

with the smallest size. This implies that if i �= j then the halfspace {x ∈ R
2 :

〈ai , x〉 + bi > 0} is different from the halfspace {x ∈ R
2 : 〈a j , x〉 + b j > 0}.

Otherwise, we may either replace the two corresponding neurons with a single neuron
with weight α = αi +α j and we would obtain a smaller neural network. This implies
that the set of breakpoints for g is a union of lines inR

2. However, the set of breakpoints
1C2 is formed by the sides of the cube, which is a union of finite length line segments.
This shows that 1C2 cannot be represented by a single hidden layer linear threshold
NN. ��

In the two following Lemmata, we assemble the last pieces towards a complete
proof of Theorem 1 which states that 2 hidden layers actually suffice to represent any
piecewise constant function in PWCn .

Lemma 2 Let P be a polyhedron in R
n given by the intersection of m halfspaces.

Then, 1P ∈ LTn(2) and

min
N∈N (LTn(2),1P )

|N | ≤ m + 1.

Proof Let P a polyhedron, i.e. P = {x ∈ R
n | Ax ≤ b} with A = (a1, · · · , am)� ∈

R
m×n and b = (b1, · · · , bm) ∈ R

m . Let us consider the m neurons (φi : x �→
1{x∈Rn : 〈ai ,x〉>bi })1≤i≤m , and φ : x �→ ∑i φi (x). Then for all x ∈ R

n , φ(x) < 1 if

123



346 S. Khalife et al.

and only if x ∈ P . Now, defining ψ : y �→ 1{y∈R: y<1} yields ψ ◦ φ = 1P . ψ can
obviously be computed with a neuron. Therefore, one can compute 1P withm neurons
in the first hidden layer and one neuron in the second, which provides a construction
of 1P with m + 1 neurons in total, and proves the result. ��
Lemma 3 Let P be a polyhedron in R

n. Then 1P̊ can be computed with a two hidden
layer linear threshold NN, using the indicator of P and the indicators of its faces.

Proof Let P be a polyhedron. First, we always have 1P̊ = 1P − 1Union of facets of P.
Therefore it is sufficient to prove that we can implement 1Union of facets of P for any P .
Using the inclusion exclusion principle on indicator functions, suppose that the facets
of P are f1, · · · , fl , then:

1⋃l
j=1 f j

=
l∑

j=1

(−1) j+1
∑

1≤i1<···<i j≤l

1 fi1∩···∩ fi j
.

It should be noted that for any j ∈ {1, · · · , l}, F = fi1 ∩· · ·∩ fi j is either empty, or
a face of P , hence a polyhedron of dimension lower or equal to dim(P)−1. Therefore,
using Lemma 2, we can implement F with a two hidden neural network with at most
m + 1 neurons, where m is the number of halfspaces in an inequality description of
P . If s is the number of faces of P , then there are at most s polyhedra to compute. ��
Proof of Theorem 1 By definition, in order to represent f ∈ PWCn it suffices to com-
pute the indicator function of the relative interior of each polyhedron in one of its
smallest polyhedral complex P∗

f . This can be achieved with just two hidden layers
using Lemma 3. This establishes the equalities in the statement of the theorem. The
strict containment LTn(1) � LTn(2) is given by Proposition 4.

Let m be the total number of halfspaces used in an inequality description of all the
polyhedra in the polyhedral complexP∗

f . Since all faces are included in the polyhedral
complex, there exists an inequality description with m ≤ 2|P∗

f |. The factor 2 appears
because for each facet of a full-dimensional polyhedron in P∗

f , one may need both
directions of the inequality that describes this facet. Then the construction in the proofs
of Lemmas 2 and 3 show that one needs at mostm ≤ 2|P∗

f | neurons in the first hidden
layer and at most |P∗

f | neurons in the second hidden layer. ��
Proof of Proposition 1

Proof of Proposition 1 Consider the sets P1 := {x ∈ R
n : x1 ≤ 0}, Pi := {x ∈ R

n :
(i − 2) < x1 ≤ i − 1} for i ∈ {2, · · · ,m − 1}, and Pm := {x ∈ R

n : x1 > m − 2}.
Note that

⋃m
i=1 Pi = R

n . Let f ∈ PWCn be such that f (x) = i for all x ∈ Pi , where
i ∈ {1, . . . ,m}. It is easy to see that P∗

f = {P1, . . . , Pm}, and that the breakpoints of
f is a set of m − 1 hyperplanes, with empty pairwise intersections.
By Theorem 1, f ∈ LTn(2), and according to Corollary 2, any neural network

N ∈ N (LTn(2), f ) must have these hyperplanes associated with neurons in the first
hidden layer, necessitating at least m − 1 neurons in this layer. Taking into account
the neurons in the subsequent layer, we establish that |N | ≥ m = |P∗

f |. ��
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The proofs of Proposition 2 and Theorem 2 rely on some facts from polyhedral
geometry, which are incorporated into the subsequent lemma.

Lemma 4 Let P be a finite polyhedral complex in R
n with full(P) = {P1, . . . , Pm},

where m ∈ N+. If the union of all polyhedra in P equals R
n, then the following

statements are all true.

1.
⋃m

i=1 Pi = R
n.

2. For any k dimensional polyhedron F ∈ P with 0 ≤ k ≤ n, there exist n − k + 1
distinct full-dimensional polyhedra in the complex whose common intersection
equals F.

3. m ≤ |P| <
(

em
n+1

)n+1
, where e ≈ 2.71828 is Euler’s number.

Proof Suppose
⋃m

i=1 Pi �= R
n , and consider x ∈ R

n\ (⋃m
i=1 Pi
)
, then there exists

some ε > 0 such that B(x, ε) ⊆ R
n\ (⋃m

i=1 Pi
)
since
⋃m

i=1 Pi is closed as it is a finite
union of polyhedra. This leads to a contradiction since P covers R

n but a finite union
of polyhedra with dimension at most n − 1 cannot cover B(x, ε). This proves part 1.

For part 2., we first observe that F ∈ P if and only if F is a face of some full-
dimensional polyhedra inP . One direction follows from the definition of a polyhedral
complex. For the other direction, consider any F ∈ P . Using part 1.,

F = R
n ∩ F =

(
m⋃

i=1

Pi

)

∩ F =
m⋃

i=1

(Pi ∩ F) .

By definition of a polyhedral complex, Pi ∩ F is a face of F , ∀i ∈ {1, . . . ,m}. The
above equality thus implies that F is a finite union of some faces of F . This implies
that one of these faces must be F itself, i.e., there exists i ∈ {1, . . . ,m} such that
Pi ∩ F = F . Also, by definition F = Pi ∩ F is a face of Pi , which proves that F is a
face of some full-dimensional polyhedra in P .

Next consider any k dimensional polyhedron F ∈ P . By the argument above, there
exists i ∈ {1, . . . ,m} such that F is a face of Pi . When k = n, the result is trivial with
F = Pi . We now show the result for k = n − 1. Let 〈a, x〉 ≤ b be a facet defining
inequality for Pi corresponding to F . Let x0 be a point in the relative interior of F .
Consider the sequence x0 + 1

n a and observe that no point in this sequence is contained
in Pi . Since this is an infinite sequence, there must exist j ∈ {1, . . . ,m} with j �= i
such that Pj contains infinitely many points from this sequence. Taking limits over
this subsequence and using the fact that Pj is closed, we obtain that x0 ∈ Pj . Thus,
x0 ∈ Pi ∩ Pj and Pi ∩ Pj is a common face of Pi and Pj . However, since x0 is in
the relative interior of the facet F , this common face must be F . Thus we are done
for the case k = n − 1. For any k ≤ n − 2, the face F must be the intersection of
n − k distinct facets of Pi . By the argument above, each of these n − k facets is given
by the intersection of Pi with another full-dimensional polyhedron in the complex.
Since these are distinct facets, the corresponding full-dimensional polyhedra must
be distinct. Including Pi , the intersection of these n − k + 1 polyhedra equals the
intersection of these n − k facets of Pi , which is precisely F . This finishes the proof
of part 2.
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The first inequality of 3. follows from the fact that P1, . . . , Pm ∈ P . From 2., every
polyhedron in the complex of dimension k must be the intersection of n−k+1 distinct
full-dimensional polyhedra. Therefore,

( m
n−k+1

)
gives an upper bound for the number

of all the k dimensional polyhedra in P . Now we can give an upper bound for |P|:

|P| ≤
n∑

k=0

(
m

n − k + 1

)

<

(
em

n + 1

)n+1

,

where the second inequality comes from using Stirling’s approximation. ��
Proofs of Proposition 2 and Theorem 2

Proof of Proposition 2 By definition, the smallest polyhedra complex compatible with
f ,P∗

f , has p full-dimensional polyhedra. Then the construction in Theorem 1 implies

f can be computed by a linear threshold NN with size at most 3|P∗
f | ≤ 3

(
ep
n+1

)n+1
,

where the inequality holds by part 3 of Lemma 4. ��
Proof of Theorem 2 Let full(P∗

f ) = {P1, . . . , Pp}. Define αi as the value of f within
the interior of Pi for i ∈ {1, . . . , p}. Part 2 of Lemma 4 implies that there are at
most
(p
2

)
polyhedra of dimension n − 1 in P∗

f . Consequently, the first hidden layer

requires no more than
(p
2

)
neurons to associate the corresponding hyperplanes, along

with an additional neuron for computing 1Rn to reverse the halfspaces. In the second
hidden layer, we employ p neurons to compute the functions 1P̃1

, . . . ,1P̃p
, satisfying

μ({x : 1P̃i
(x) �= 1Pi (x)}) = 0 for i ∈ {1, . . . , p}, and the corresponding weights

after the second hidden layer are set to α1, . . . , αp. This construction yields a linear

threshold NN of size no more than
(p
2

)+ 1 + p = p(p+1)
2 + 1, computing a function

that is consistent with f within the interior of each Pi , and thus equals to f almost
everywhere. ��
Proof of Theorem 3
Consider a neural network with k hidden layers and widths w = (w1, . . . , wk) that
implements a function in LTw

n (k). The output of any neuron on these data points is
in {0, 1} and thus each neuron can be thought of as picking out a subset of the set
X := {x1, . . . , xD}. Lemma 1 provides a way to enumerate these subsets of X in a
systematic manner.

Definition 11 For any finite subset F ⊆ R
n , a subset F ′ of F is said to be linearly

separable if there exists a ∈ R
n , b ∈ R such that F ′ = {x ∈ F : 〈a, x〉 + b > 0}.

The following is a well-known result in combinatorial geometry [27].

Theorem 5 For any finite subset F ⊆ R
n, there are at most 2

(|F |
n

)
linearly separable

subsets.

By considering the natural mapping between subsets of {1, . . . ,m} and {0, 1}m , we
also obtain the following corollary.
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Algorithm 1 Algorithm to solve (1) for linear threshold NNs with n inputs, k hidden
layers and widths w = (w1, . . . , wk).

1: Input Dimension n, Dataset (xi , yi )
D
i=1, Integers w1, . . . , wk

2: Output Solution of Problem 1
3: Define X = (x1, . . . , xD) ⊆ R

n . Let H be the collection of linearly separable subsets of X .
4: Initialize OPT = +∞, SOL = ∅.
5: for each choice of H1, . . . , Hw1 ∈ H, Ai

1, . . . ,Ai
wi

∈ Lwi−1 for i = 2, . . . , k do

6: Define Y 1
j to be any halfspace of R

n such that X ∩ Y 1
j = Hj for j = 1, . . . , w1.

7: Set the weights of the neurons in the first layer to compute Y 1
j for j = 1, . . . , w1.

8: for i = 2 to k do
9: for j=1 to wi do

10: Define Y i
j =⋃A∈Ai

j

[
(
⋂

s∈A Y i−1
s ) ∩ (

⋂
s /∈A(Y i−1

s )c )
]
.

11: Set the weights of neuron j of layer i in accordance with Ai
j to compute Y i

j .
12: end for
13: end for
14: For each i = 1, . . . , D and j = 1, . . . , wk , compute δi j ← 1Yk

j
(xi ), using the neural network

constructed so far.
15: Solve the convex minimization problem in the decision variables γ1, . . . , γwk ∈ R:

temp = min
γ∈Rwk

D∑

i=1

�

⎛

⎝
wk∑

j=1

γ j δi j , yi

⎞

⎠ .

16: If temp < OPT , then update OPT = temp and SOL to be the current neural network with weights
computed in the previous steps.

17: end for

Corollary 3 For any m ≥ 1, there are at most 2
(2m
m

)
linearly separable collections of

subsets of {1, . . . ,m}. In other words, |Lm | ≤ 2
(2m
m

)
.

Proof of Theorem 3 Algorithm 1 solves (1). The correctness comes from the observa-
tion that a recursive application of Lemma 1 shows that the sets Y k

1 , . . . ,Y k
wk

computed
by the algorithm, intersected with X are all possible subsets of X computed by the
neurons in the last hidden layer. The γ1, . . . , γwk are simply the weights of the last
layer that combine the indicator functions of these subsets to yield the function value
of the neural network on each data point. The convex minimization problem in line 13
finds the optimal γ j values, for this particular choice of subsets Y k

1 , . . . ,Y k
wk
. Selecting

the minimum over all these choices solves the problem.

The outermost for loop iterates at most O(Dw1n · 2
∑k−1

i=1 w2
i wi+1) times using The-

orem 5 and Corollary 3. The computation of the δi j values in Step 14 can be done in
time poly(D, w1, . . . , wk). The convex minimization problem in wk variables and D
terms in the sum can be solved in poly(D, wk) time. Putting these together gives the
overall running time. ��

We now show that the exponential dependence on the dimension n in Theorem 3
is actually necessary unless P=NP. We consider the version of (1) with single neuron
and show that it is NP-hard with a direct reduction.
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Theorem 6 (NP-hardness). The One-Node-Linear-Threshold problem, i.e., Problem 1
with k = 1 and w1 = 1, is NP-hard when the dimension n is considered part of the
input. This implies in particular that Problem 1 is NP-hard when n is part of the input.

Proof We here use a result of [22, Theorem 3.1], which showed that the following
decision problem is NP-complete.

MinDis(Halfspaces): Given disjoint sets of positive and negative examples of Z
n and

a bound k ≥ 1, does there exist a separating hyperplane which leads to at most k
misclassifications?

MinDis(Halfspaces) is a special case of (1) with a single neuron: given data points
x1, · · · , xD ∈ R

n and y1, · · · , yD ∈ {0, 1}, compute α ∈ R
n, β ∈ R that minimizes

1
D

∑D
i=1(1{〈α,xi 〉+β>0} − yi )2. ��

5 Shortcut linear threshold NNs

5.1 Representability of shortcut linear threshold NNs

Proof of Theorem 4 Arora et al. [3] proved that ReLUn = CPWLn , and it’s clear that
CPWLn ⊆ PWLn and SLTn(2) ⊆ PWLn , so it remains to prove that PWLn ⊆
SLTn(2). Let f ∈ PWLn be an arbitrary piecewise linear function, and let P∗

f =
{P1, . . . , Pm}. By definition, f (x) =∑m

i=1(a
�
i x + ci )1P̊i

(x) for some ai ∈ R
n, ci ∈

R, where i ∈ {1, . . . ,m}. By the proof of Lemma 3, we are able to compute 1P̊i
by a

linear combination of the outputs of some neurons in the second hidden layer. In other
words, let x (2) = [1X1

1
(x), . . . ,1X1

�1
(x), . . . ,1Xm

�m
(x)]� be the output of the second

hidden layer such that for every i ∈ {1, . . . ,m}, we have 1P̊i
(x) =∑�i

j=1 α
(i)
j 1Xi

j
(x),

where �i ∈ N+, α
(i)
j ∈ R, and 1Xi

j
are computed by the individual neurons in the

second hidden layer. Note that the number of neurons in the second hidden layer is
w2 =∑m

k=1 �k .
Now consider introducing a shortcut connection with

A = [α(1)
1 a1, . . . , α

(1)
�1

a1, . . . , α
(m)
�m

am] ∈ R
n×w2

and b = [α(1)
1 c1, . . . , α

(1)
�1

c1, . . . , α
(m)
�m

cm]� ∈ R
w2 , then the output of this shortcut

NN is given by:

〈A�x + b, x (2)〉 =
〈

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α
(1)
1 (a�

1 x + c1)
...

α
(1)
�1

(a�
1 x + c1)
...

α
(m)
�m

(a�
m x + cm)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1X1
1
(x)
...

1X1
�1

(x)

...

1Xm
�m

(x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

〉
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=
m∑

i=1

li∑

j=1

(a�
i x + ci )α

(i)
j 1Xi

j
(x)

=
m∑

i=1

(a�
i x + ci )

li∑

j=1

α
(i)
j 1Xi

j
(x)

=
m∑

i=1

(
a�
i x + ci

)
· 1P̊i

(x)

= f (x).

This establishes that PWLn ⊆ SLTn(2), completing the proof. ��

5.2 Adapting the ERM algorithm for shortcut linear threshold NNs

We now consider solving the ERM problem for a R
n → R shortcut LT NN with k

hidden layers, and w = (w1, . . . , wk). Upon comparing with Algorithm 1, we note
that the difference between our shortcut linear threshold NNs and the linear threshold
NNs solely resides in the presence of a shortcut connection in the former across the
piecewise regions. Except for the output layer, all other layers in the two networks can
be analogously compared. Consequently, the algorithmic process concerning linear
threshold NNs can be seamlessly incorporated, except for those steps involving the
output layer. Hence, in the global optimization algorithm, the only difference arises
in Step 15:

temp = min
γ∈Rwk ,a j∈Rn ∀ j∈[wk ]

D∑

i=1

�

⎛

⎝
wk∑

j=1

(a�
j xi + γ j )δi j , yi

⎞

⎠ ,

which can be resolved in poly(D, (n + 1)wk) time.

6 Discussions and open questions

6.1 Linear threshold NNs

Results from Boolean circuit complexity can be used to show that our general con-
struction in Theorem 1 may produce 2 hidden layer networks that are exponentially
larger than networks that use 3 hidden layers.

Example 2 Consider the piecewise constant function pn(x) : R
n → R defined as

pn(x) = σ

(
n∏

i=1

xi

)

,
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where σ is the threshold activation function. pn has (2n) pieces implying that the
construction from Theorem 1 has size (2n). However, pn can be represented by a
linear threshold NN with 3 hidden layers and O(n) size.

Example 3 (Braid arrangement [31]) Consider a R
n → R function

Bn(x) = σ

⎛

⎝
∏

1≤i< j≤n

(x j − xi )

⎞

⎠ ,

where σ is the threshold activation function. Bn has (n!) pieces implying that the
construction from Theorem 1 has size (n!). However, Bn can be represented by a
linear threshold NN with 3 hidden layers and O(n2) size.

The parity function is defined as the function par : {0, 1}n → {0, 1} as par(x) =∑n
i=1 xi (mod 2). It is well-known that the parity function can be implemented by a

linear threshold NNwith 2 hidden layers andO(n) nodes, when restricted to 0/1 inputs
[28, 29]. Observe that pn(x) = par(σ (x)) where we apply the threshold activation σ

component wise on x ∈ R
n . This proves that pn can be computed by a linear threshold

NN with 3 hidden layers andO(n) size. Each orthant of R
n is a piece of pn since any

adjacent orthant has a different value. Similarly, if we define diff(x) ∈ R
n(n−1)/2 by

diff(x)i j = xi − x j for 1 ≤ i < j ≤ n, then Bn(x) = par(σ (diff(x))). The fact that
Bn has n! pieces comes from results on the so-called Braid arrangement [31].

Lower bounds for the number ofwires used in a linear threshold NN have also been
studied in the Boolean circuit complexity literature [24, 25, 29]. The number of wires
is the number of connections between neurons when the neural network is viewed as a
directed acyclic graph. This amounts to the number of nonzero entries of the matrices
involved in the affine transformations in Definition 5. Tight bounds that are superlinear
but subquadratic in n are known for the wire complexity of any constant depth linear
threshold NN implementing the parity function. These results also imply that there
is a O(log log n) depth NN that implements the parity function with O(n) wires. See
[24, 29] for details. These constructions can be used to implement pn and Bn .

It is not clear if the functions in Example 2 and Example 3 can be implemented by
2 hidden layers networks of polynomial size, or whether there exist superpolynomial
lower bounds on the size of such networks. In the first case, we will know that our
construction in this paper is suboptimal. In the second case, we will have our gap result
for 2 versus 3 hidden layers.

6.2 Shortcut linear threshold NNs

Shortcut linear thresholdNNs (SLTNNs)may bear a superficial resemblance to Resid-
ual Neural Networks (ResNet), mainly due to the incorporation of shortcut or skip
connections in both architectures. However, ResNet, a significant advancement in deep
learning pioneered by He et al. [20], employs skip connections to enable a straight-
forward addition of skipped layers. This design strategy aims to combat issues such
as the vanishing gradient problem prevalent in deep networks. In contrast, SLT NNs
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use a similar shortcut concept but apply it differently, producing output through the
dot product of the input layer (after linear transformation) and the final hidden layer.
This distinction signifies a shift from ResNet’s engineering focus to a more theoretical
perspective in SLT NNs, aiming to augment the representability of neural networks
by transitioning from piecewise constant to piecewise linear function representation.

In the realm ofmachine learning, the concept of VC-dimension, named after Vapnik
and Chervonenkis, acts as a measure of the capacity, or complexity, of a hypothe-
sis class, essentially characterizing the sample complexity needed to learn from that
hypothesis class. This makes it a fundamental tool in learning theory. As part of our
motivation for this novel type of shortcut connections, we aim to compare the complex-
ity of SLT NNs and ReLU NNs using this dimensionality measure. This comparison
aids in gauging the ability of the networks to learn and generalize from data when
using SLT NNs. A fundamental result on the VC-dimension of parametrized classes
of functions [2, Theorem 8.4] can be used to show that the VC-dimension of a SLTNN
with n inputs and k hidden layers is O ((W + nwk)

2
)
, where W corresponds to the

number of learning parameters not including the shortcut connection,wk represents the
neurons in the last hidden layer; nwk designates the additional parameters associated
with the linear transformation A in the shortcut connections (note that the parameters
corresponding to the shift b are already included in W because they are present in the
original linear threshold NN without the shortcut). For a similarly structured ReLU
NN devoid of the shortcut connection, the VC-dimension is �(Wk logW ) (see [4]).
Therefore, the discrepancy in the VC-dimension between comparable architectures is
not dramatic, and the ability of shortcut linear threshold functions to represent discon-
tinuous piecewise linear functions can potentially give them a competitive edge over
ReLU NNs.

Furthermore,we can construct a globally optimal ERMalgorithm for shortcut linear
threshold NNs across all architectures, an accomplishment not yet attained for ReLU
networks beyond specific restricted structures [3, 8, 11, 14, 15, 17–19].

6.3 Complexity of neural network training

There has been a recent strand of work around the computational complexity of train-
ing neural networks provably to global optimality. It has been known for decades that
the complexity of neural network training with classical activation functions is hard,
and recently this insight has been extended to ReLU activations as well; see [1, 5, 11,
14, 16]. On the positive side, fixed-parameter tractable algorithms and approximation
algorithms have been designed [3, 8, 14, 15, 17, 18]. However, these algorithms are
restricted to architectures with a single hidden layer, or with very similar architectures
to single hidden layers. As mentioned in the Introduction of this paper, our train-
ing algorithm for Linear Threshold NNs and Shortcut Linear Threshold NNs works
for any architecture and has running time polynomial in the number of data points,
assuming the size of the network and the data dimension are constants. To the best
of our knowledge, a training algorithm with global optimality guarantees for general
architectures that has fixed parameter tractability has not appeared in the literature,
except for an interesting study by Bienstock, Munoz and Pokutta [6]. They formulate
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the training problem as a linear programming problem which solves the problem to
ε-accuracy in time that is linear in the number of data points and polynomial in 1

ε
,

assuming the input dimension and the network architecture are fixed. This is done via
a discretization of the neural network parameter space and input space. For a general
convex loss, our algorithm will also have to be content with ε-approximate solutions,
since this is the best one can do for minimizing general convex functions. However,
our running time is polynomial in log(1/ε), in contrast to 1

ε
. Moreover, for certain loss

functions like the �1 or �∞, our algorithm will indeed be exact, because the convex
optimization problem becomes a linear programming problem, but the algorithm in
[6] will still need to rely on discretizations, leading to an approximation. On the other
hand, the linear dependence of the algorithm in [6] on the number of data points is
much better than our algorithm. It should be noted that their analysis does not formally
apply to the linear threshold activation functions, since x �→ 1{x>0} is not Lipschitz
continuous, which is an assumption needed in their work.

6.4 Open questions

On the structural side, we need a better understanding of the depth and size tradeoff for
(shortcut) linear threshold NNs. In particular, can we show it is possible to represent
certain functions with 3 more hidden layers using an exponentially smaller number of
neurons compared to what is needed with 2 hidden layers? For instance, in the case
of ReLU activations, there exist functions such that going from 2 to 3 hidden layers
brings an exponential (in the dimension n) gain in the size of the neural network [12].
We think it is an interesting open question to determine if such families of functions
exist for linear threshold networks.

We also suspect that one does not need to go beyond 3 hidden layers to improve
on the size bounds, if one is prepared to ignore zero measure sets. This conjecture is
formulated based on our empirical observations with these neural networks.

Conjecture 1 For every natural number n ∈ N, there exists C(n) ∈ R+ such that for
any f ∈ PWCn ,

min
N∈Nμ(LTn(3), f )

|N | ≤ C(n) · min
k∈N+

min
Nk∈Nμ(LTn(k), f )

|Nk |.

A similar conjecture regarding representing the continuous functions for shortcut
linear threshold neural networks can be naturally extended in an analogous manner.

Conjecture 2 For every natural number n ∈ N, there exists C(n) ∈ R+ such that for
any f ∈ CPWLn ,

min
N∈N (SLTn(3), f )

|N | ≤ C(n) · min
k∈N+

min
Nk∈N (SLTn(k), f )

|Nk |.

On the algorithmic side, we solve the empirical riskminimization problem to global
optimalitywith running time that is polynomial in the size of the data sample, assuming
that the input dimension and the architecture size are fixed constants. The running time

123



Neural networks with linear... 355

is exponential in terms of these parameters (see Theorem 3). While the exponential
dependence on the input dimension cannot be avoided unless P = N P (see Theo-
rem 6), another interesting open question is to determine if the exponential dependence
on the architectural parameters is really needed, or if an algorithm can be designed
that has complexity which is polynomial in both the data sample and the architecture
parameters. A similar question is also open in the case of ReLU neural networks [3].
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