
Mathematical Programming (2024) 205:773–812
https://doi.org/10.1007/s10107-023-01995-9

FULL LENGTH PAPER

Series A

A new extension of Chubanov’s method to symmetric cones

Shin-ichi Kanoh1,2 · Akiko Yoshise3

Received: 31 October 2021 / Accepted: 14 June 2023 / Published online: 18 July 2023
© The Author(s) 2023

Abstract
We propose a new variant of Chubanov’s method for solving the feasibility prob-
lem over the symmetric cone by extending Roos’s method (Optim Methods Softw
33(1):26–44, 2018) of solving the feasibility problem over the nonnegative orthant.
The proposed method considers a feasibility problem associated with a norm induced
by the maximum eigenvalue of an element and uses a rescaling focusing on the upper
bound for the sum of eigenvalues of any feasible solution to the problem. Its compu-
tational bound is (1) equivalent to that of Roos’s original method (2018) and superior
to that of Lourenço et al.’s method (Math Program 173(1–2):117–149, 2019) when
the symmetric cone is the nonnegative orthant, (2) superior to that of Lourenço et
al.’s method (2019) when the symmetric cone is a Cartesian product of second-order
cones, (3) equivalent to that of Lourenço et al.’s method (2019) when the symmetric
cone is the simple positive semidefinite cone, and (4) superior to that of Pena and
Soheili’s method (Math Program 166(1–2):87–111, 2017) for any simple symmetric
cones under the feasibility assumption of the problem imposed in Pena and Soheili’s
method (2017).We also conduct numerical experiments that compare the performance
of our method with existing methods by generating strongly (but ill-conditioned) fea-
sible instances. For any of these instances, the proposedmethod is rather more efficient
than the existing methods in terms of accuracy and execution time.

Mathematics Subject Classification 3MAH30100 · 3MAH16000 · 3ITB15000 ·
3MAA70000 · 3MAA76000

B Akiko Yoshise
yoshise@sk.tsukuba.ac.jp

Shin-ichi Kanoh
s2130104@s.tsukuba.ac.jp

1 Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8573,
Japan

2 Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083,
Japan

3 Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki
305-8573, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-01995-9&domain=pdf
http://orcid.org/0000-0001-6000-2671

774 S. Kanoh, A. Yoshise

1 Introduction

Recently, Chubanov [2, 3] proposed a new polynomial-time algorithm for solving the
problem (P(A)),

P(A) find x > 0 s.t. Ax = 0,

where A is a given integer (or rational) matrix and rank(A) = m and 0 is an n-
dimensional vector of 0s. Themethod explores the feasibility of the following problem
PS1(A), which is equivalent to P(A) and given by

PS1(A) find x > 0 s.t. Ax = 0, 0 < x ≤ 1,

where 1 is an n-dimensional vector of 1s. Chubanov’s method consists of two ingre-
dients, the “main algorithm” and the “basic procedure.” Note that the alternative
problem D(A) of P(A) is given by

D(A) find y ≥ 0 s.t. y ∈ rangeA�, y �= 0,

where rangeA� is the orthogonal complement of kerA. The structure of the method is
as follows: In the outer iteration, the main algorithm calls the basic procedure, which
generates a sequence in R

n using projection to the set kerA := {x ∈ R
n | Ax = 0}.

The basic procedure terminates in a finite number of iterations returning one of the
following: (i). a solution of problem P(A), (ii). a solution of problem D(A), or (iii).
a cut of P(A), i.e., an index j ∈ {1, 2, . . . , n} for which 0 < x j ≤ 1

2 holds for any
feasible solution of problem PS1(A).

If result (i) or (ii) is returned by the basic procedure, then the feasibility of problem
P(A) can be determined and the main procedure stops. If result (iii) is returned, then
the main procedure generates a diagonal matrix D ∈ R

n×n with a (j, j) element of 2
and all other diagonal elements of 1 and rescales the matrix as AD−1. Then, it calls the
basic procedure with the rescaled matrix. Chubanov’s method checks the feasibility
of P(A) by repeating the above procedures.

For problem P(A), [15] proposed a tighter cut criterion of the basic procedure

than the one used in [3]. [3] used the fact that x j ≤
√
n‖z‖2
y j

holds for any y ∈ R
n

satisfying
∑n

i=1 yi = 1, y ≥ 0 and y /∈ rangeAT , z ∈ R
n obtained by projecting this

y onto kerA, and any feasible solution x ∈ R
n of PS1(A), and the basic procedure is

terminated if a y is found for which
√
n‖z‖2
y j

≤ 1
2 holds for some index j . On the other

hand, [15] showed that for v = y − z, x j ≤ min(1, 1T
[−v/v j

]+
) ≤

√
n‖z‖2
y j

holds

if v j �= 0, where
[−v/v j

]+ is the projection of −v/v j ∈ R
n onto the nonnegative

orthant and 1 is the vector of ones, and the basic procedure is terminated if a y is found
for which 1T

[−v/v j
]+ ≤ 1

2 holds.
Chubanov’s method has also been extended to include the feasibility problem over

the second-order cone [9] and the symmetric cone [10, 13]. The feasibility problem

123

A new extension of Chubanov’s method to symmetric cones 775

over the symmetric cone is of the form,

P(A) find x ∈ intK s.t. A(x) = 0,

whereA is a linear operator, K is a symmetric cone, and intK is the interior of the set
K. As proposed in [10, 13], for problem P(A), the structure of Chubanov’s method
remains the same; i.e., the main algorithm calls the basic procedure, and the basic
procedure returns one of the following in a finite number of iterations: (i). a solution
of problem P(A), or (ii). a solution of the alternative problem of problem P(A), or
(iii). a recommendation of scaling problem P(A). If result (i) or (ii) is returned by the
basic procedure, then the feasibility of the problem P(A) can be determined and the
main procedure stops. If result (iii) is returned, the problem is scaled appropriately
and the basic procedure is called again.

It should be noted that the purpose of rescaling differs between [10] and [13]. In
[13], the authors devised a rescaling method so that the following value becomes
larger:

δ(kerA ∩ K) := max
x

{
det(x) | x ∈ kerA ∩ K, ‖x‖2J = r

}
,

where kerA := {x | A(x) = 0} and ‖x‖J is the norm induced by the inner product
〈x, y〉 = trace(x ◦ y) defined in Sect. 2.3. They proposed four updating schemes to
be employed in the basic procedure and conducted numerical experiments to compare
the effect of these schemes when the symmetric cone is the nonnegative orthant [14].

In [10], the authors assumed that the symmetric cone K is given by the Cartesian
product of p simple symmetric conesK1, . . . ,Kp, and they investigated the feasibility
of the problem (PS1,∞(A)),

PS1,∞(A) find x ∈ intK s.t. A(x) = 0, ‖x‖1,∞ ≤ 1,

where for each x = (x1, . . . , xp) ∈ K = K1×· · ·Kp, ‖x‖1,∞ is defined by ‖x‖1,∞ :=
max{‖x1‖1, . . . , ‖xp‖1}, and ‖x‖1 is the sum of the absolute values of all eigenvalues
of x . Note that if p = 1, then problem PS1,∞(A) turns out to be PS1(A), which is
equivalent to P(A):

PS1(A) find x ∈ intK s.t. A(x) = 0, ‖x‖1 ≤ 1.

The authors focused on the volume of the feasible region of PS1,∞(A) and devised
a rescaling method so that the volume becomes smaller. Their method will stop when
the feasibility of problem PS1,∞(A) or the fact that the minimum eigenvalue of any
feasible solution of problem PS1,∞(A) is less than ε is determined.

The aim of this paper is to devise a new variant of Chubanov’s method for solving
P(A) by extending Roos’s method [15] to the following feasibility problem (PS∞(A))
over the symmetric cone K:

PS∞(A) find x ∈ intK s.t. A(x) = 0, ‖x‖∞ ≤ 1,

123

776 S. Kanoh, A. Yoshise

where ‖x‖∞ is the maximum absolute eigenvalue of x . Throughout this paper, we
will assume thatK is the Cartesian product of p simple symmetric conesK1, . . . ,Kp,
i.e., K = K1 × · · · × Kp. Here, we should mention an important issue about Lemma
4.2 in [15], which is one of the main results of [15]. The proof of Lemma 4.2 given
in the paper [15] is incorrect and a correct proof is provided in the paper [19], while
this study derives theoretical results without referring to the lemma. Our method has a
feature that the main algorithm works while keeping information about the minimum
eigenvalue of any feasible solution of PS∞(A) and, in this sense, it is closely related
to Lourenço et al.’s method [10]. Using the norm ‖ · ‖∞ in problem PS∞(A) makes it
possible to

• calculate the upper bound for the minimum eigenvalue of any feasible solution of
PS∞(A),

• quantify the feasible region of P(A), and hence,
• determine whether there exists a feasible solution of P(A)whose minimum eigen-
value is greater than ε as in [10].

Note that the symmetric cone optimization includes several types of problems
(linear, second-order cone, and semi-definite optimization problems) with various
settings and the computational bound of an algorithm depends on these settings. As
we will describe in Sect. 6, the theoretical computational bound of our method is

• equivalent to that of Roos’s original method [15] and superior to that of Lourenço
et al.’s method [10] when the symmetric cone is the nonnegative orthant,

• superior to that of Lourenço et al.’s methodwhen the symmetric cone is a Cartesian
product of second-order cones, and

• equivalent to that of Lourenço et al.’s method when the symmetric cone is the
simple positive semidefinite cone, under the assumption that the costs of computing
the spectral decomposition and of the minimum eigenvalue are of the same order
for any given symmetric matrix.

• superior to that of Pena and Soheili’s method [13] for any simple symmetric cones
under the feasibility assumption of the problem imposed in [13].

Another aim of this paper is to give comprehensive numerical comparisons of the
existing algorithms and our method. As described in Sect. 7, we generate strongly
feasible ill-conditioned instances, i.e., kerA ∩ intK �= ∅ and x ∈ kerA ∩ intK has
positive but small eigenvalues, for the simple positive semidefinite coneK, and conduct
numerical experiments.

The paper is organized as follows: Sect. 2 contains a brief description of Euclidean
Jordan algebras and their basic properties. Section 3 gives a collection of propositions
which are necessary to extend Roos’s method to problem PS∞(A) over the symmetric
cone. In Sects. 4 and 5, we explain the basic procedure and the main algorithm of
our variant of Chubanov’s method. Section 6 compares the theoretical computational
bounds of Lourenço et al.’s method [10], Pena and Soheili’s method [13] and our
method. In Sect. 7, we conduct numerical experiments comparing our variant with the
existing methods. The conclusions are summarized in Sect. 8.

123

A new extension of Chubanov’s method to symmetric cones 777

2 Euclidean Jordan algebras and their basic properties

In this section, we briefly introduce Euclidean Jordan algebras and symmetric cones.
For more details, see [5]. In particular, the relation between symmetry cones and
Euclidean Jordan algebras is given in Chapter III (Koecher and Vinberg theorem) of
[5].

2.1 Euclidean Jordan algebras

Let E be a real-valued vector space equipped with an inner product 〈·, ·〉 and a bilinear
operation ◦ : E × E → E, and e be the identity element, i.e.,x ◦ e = e ◦ x = x holds
for any x ∈ E. (E, ◦) is called a Euclidean Jordan algebra if it satisfies

x ◦ y = y ◦ x, x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), 〈x ◦ y, z〉 = 〈y, x ◦ z〉

for all x, y, z ∈ E and x2 := x ◦ x . We denote y ∈ E as x−1 if y satisfies x ◦ y = e.
c ∈ E is called an idempotent if it satisfies c ◦ c = c, and an idempotent c is called
primitive if it can not be written as a sum of two or more nonzero idempotents. A set
of primitive idempotents c1, c2, . . . ck is called a Jordan frame if c1, . . . ck satisfy

ci ◦ c j = 0 (i �= j), ci ◦ ci = ci (i = 1, . . . , k),
k∑

i=1

ci = e.

For x ∈ E, the degree of x is the smallest integer d such that the set {e, x, x2, . . . , xd}
is linearly independent. The rank of E is the maximum integer r of the degree of x
over all x ∈ E. The following properties are known.

Proposition 2.1 (Spectral theorem (cf. Theorem III.1.2 of [5])) Let (E, ◦) be a
Euclidean Jordan algebra having rank r. For any x ∈ E, there exist real numbers
λ1, . . . , λr and a Jordan frame c1, . . . , cr for which the following holds:

x =
r∑

i=1

λi ci .

The numbers λ1, . . . , λr are uniquely determined eigenvalues of x (with their multi-
plicities). Furthermore, trace(x) := ∑r

i=1 λi , det(x) := ∏r
i=1 λi .

2.2 Symmetric cone

A proper cone is symmetric if it is self-dual and homogeneous. It is known that the
set of squares K = {x2 : x ∈ E} is the symmetric cone of E (cf. Theorems III.2.1 and
III.3.1 of [5]). The following properties can be derived from the results in [5], as in
Corollary 2.3 of [21]:

123

778 S. Kanoh, A. Yoshise

Proposition 2.2 Let x ∈ E and let
∑r

j=1 λ j c j be a decomposition of x given by
Propositoin 2.1. Then

(i) x ∈ K if and only if λ j ≥ 0 (j = 1, 2, . . . , r),
(ii) x ∈ intK if and only if λ j > 0 (j = 1, 2, . . . , r).

From Propositions 2.1 and 2.2 for any x ∈ E, its projection PK(x) onto K can
be written as an operation to round all negative eigenvalues of x to 0, i.e., PK(x) =∑r

i=1[λi]+ci , where [·]+ denotes the projection onto the nonnegative orthant. Using
PK, we can decompose any x ∈ E as follows.

Lemma 2.3 Let x ∈ E, andK be the symmetric cone corresponding to E. Then, x can
be decomposed into x = PK(x) − PK(−x).

Proof From Propositoin 2.1, let x be given as x = ∑r
i=1 λi ci . Let I1 be the set of

indices such that λi ≥ 0 and I2 be the set of indices such that λi < 0. Then, we
have PK(x) = ∑

i∈I1 λi ci and PK(−x) = ∑
i∈I2 −λi ci , which implies that x =∑

i∈I1 λi ci + ∑
i∈I2 λi ci = PK(x) − PK(−x). ��

A Euclidean Jordan algebra (E, ◦) is called simple if it cannot be written as any
Cartesian product of non-zero Euclidean Jordan algebras. If the Euclidean Jordan
algebra (E, ◦) associated with a symmetric cone K is simple, then we say that K is
simple. In this paper, we will consider that K is given by a Cartesian product of p
simple symmetric cones K�, K := K1 × · · · × Kp, whose rank and identity element
are r� and e� (� = 1, . . . , p). The rank r and the identity element of K are given by

r =
p∑

�=1

r�, e = (e1, . . . , ep). (1)

Inwhat follows, x� stands for the �-th block element of x ∈ K, i.e., x = (x1, . . . , xp) ∈
K1×· · ·×Kp. For each � = 1, . . . , p, we define λmin(x�) := min{λ1, . . . , λr�}where
λ1, . . . , λr� are eigenvalues of x�. The minimum eigenvalue λmin(x) of x ∈ K is given
by λmin(x) = min{λmin(x1), . . . , λmin(xp)}.

Next, we consider the quadratic representation Qv(x) defined by Qv(x) := 2v ◦
(v ◦ x)− v2 ◦ x . For the coneK = K1 ×· · ·×Kp, the quadratic representation Qv(x)
of x ∈ K is denoted by Qv(x) = (

Qv1(x1), . . . , Qvp (xp)
)
. Letting I� be the identity

operator of the Euclidean Jordan algebra (E�, ◦�) associated with the cone K�, we
have Qe� = I� for � = 1, . . . , p. The following properties can also be retrieved from
the results in [5] as in Proposition 3 of [10]:

Proposition 2.4 For any v ∈ intK, Qv(K) = K.

It is also known that the following relations hold for the quadratic representation
Qv and det(·) [5].
Proposition 2.5 (cf. Proposition II.3.3 and III.4.2-(i), [5]) For any v, x ∈ E,

1. det Qv(x) = det(v)2 det(x),

123

A new extension of Chubanov’s method to symmetric cones 779

2. QQv(x) = QvQx Qv (i.e., if x = e then Qv2 = QvQv) .

More detailed descriptions, including concrete examples of symmetric cone opti-
mization, can be found in, e.g., [1, 5, 6, 16]. Here, we will use concrete examples
of symmetric cones to explain the biliniear operation, the identity element, the inner
product, the eigenvalues, the primitive idempotents, the projection on the symmetric
cone and the quadratic representation on the cone.

Example 2.6 (K is the semidefinite cone Sn+). Let Sn be the set of symmetric matrices
of n × n.The semidefinite cone S

n+ is given by S
n+ = {X ∈ S

n : X � O}. For any
symmetricmatrices X ,Y ∈ S

n , define the bilinear operation ◦ and inner product as X ◦
Y = XY+Y X

2 and 〈X ,Y 〉 = tr(XY) = ∑n
i=1

∑n
j=1 Xi jYi j , respectively. For any X ∈

S
n , perform the eigenvalue decomposition and let u1, . . . , un be the corresponding

normalized eigenvectors for the eigenvalues λ1, . . . , λn : X = ∑n
i=1 λi ui uTi . The

eigenvalues of X in the Jordan algebra are λ1, . . . , λn and the primitive idempotents
are c1 = u1uT1 , . . . , cn = unuTn , which implies that the rank of the semidefinite cone
S
n+ is r = n. The identity element is the identity matrix I and the projection onto S

n+
is given by PSn+(X) = ∑n

i=1[λi]+uiuTi . The quadratic representation of V ∈ S
n is

given by QV (X) = V XV .

Example 2.7 (K is the second-order cone Ln). The second order cone is given by
Ln = {(x1, x̄�)� ∈ R

n : x1 ≥ ‖x̄‖2}. For any x, y ∈ R
n , define the bilinear operation

◦ and the inner product as x ◦ y = (x�y, (x1 ȳ + y1 x̄)�)� and 〈x, y〉 = 2
∑n

i=1 xi yi ,
respectively. For any x ∈ R

n , by the decomposition

x = (x1 + ‖x̄‖2)
(

1/2
x̄

2‖x̄‖2

)

+ (x1 − ‖x̄‖2)
(

1/2
− x̄

2‖x̄‖2

)

,

we obtain the eigenvalues and the primitive idempotents as follows:

λ1 = x1 + ‖x̄‖2 , λ2 = x1 − ‖x̄‖2,

c1 =

⎧
⎪⎨

⎪⎩

1
2 (1,

x̄�
‖x̄‖2)

� ‖x̄‖2 �= 0

1
2 (1, z

�)� ‖x̄‖2 = 0

, c2 =

⎧
⎪⎨

⎪⎩

1
2 (1,− x̄�

‖x̄‖2)
� ‖x̄‖2 �= 0

1
2 (1,−z�)� ‖x̄‖2 = 0

.

where z ∈ R
n−1 is an arbitrary vector satisfying ‖z‖2 = 1. The above implies that

the rank of the second-order cone Ln is r = 2. The identity element is given by
e = (1, 0�)� ∈ R

n . The projection PLn (x) onto Ln is given by

PLn (x) = [x1 + ‖x̄‖2]+
(

1/2
x̄

2‖x̄‖2

)

+ [x1 − ‖x̄‖2]+
(

1/2
− x̄

2‖x̄‖2

)

.

Letting In−1 be the identity matrix of order n − 1, the quadratic representation Qv(·)
of v ∈ R

n is as follows:

Qv(x) =
(‖v‖22 2v1v̄

T

2v1v̄ detv In−1 + 2v̄v̄T

)

x .

123

780 S. Kanoh, A. Yoshise

2.3 Notation

This subsection summarizes the notations used in this paper. For any x, y ∈ E,
we define the inner product 〈·, ·〉 and the norm ‖ · ‖J as 〈x, y〉 := trace(x ◦ y)
and ‖x‖J := √〈x, x〉, respectively. For any x ∈ E having decomposition x =∑r

i=1 λi ci as in Proposition 2.1, we also define ‖x‖1 := |λ1| + · · · + |λr |, ‖x‖∞ :=
max{|λ1|, . . . , |λr |}. For x ∈ K, we obtain the following equivalent representations:
‖x‖1 = 〈e, x〉, ‖x‖∞ = λmax(x). The following is a list of other definitions and
frequently used symbols in the paper.

• d: the dimension of the Euclidean space E corresponding to K,
• FPS∞ (A): the feasible region of PS∞(A),
• PA(·): the projection map onto kerA,
• PK(·): the projection map onto K,
• λ(x) ∈ R

r : an r -dimensional vector composed of the eigenvalues of x ∈ K,
• λ(x�) ∈ R

r� : an r�-dimensional vector composed of the eigenvalues of x� ∈ K�

(� = 1, . . . , p),
• c(x�)i ∈ K�: the i-th primitive idempotent of x� ∈ E�. When K is simple, it is
abbreviated as ci .

• [·]+: the projection map onto the nonnegative orthant, and
• A∗(·): the adjoint operator of the linear operatorA(·), i.e., 〈A(x), y〉 = 〈x,A∗(y)〉
for all x ∈ K and y ∈ R

m .

3 Extension of Roos’s method to the symmetric cone problem

3.1 Outline of the extendedmethod

We focus on the feasibility of the following problem PS∞(A), which is equivalent to
P(A):

PS∞(A) find x ∈ intK s.t. A(x) = 0, ‖x‖∞ ≤ 1.

The alternative problem D(A) of P(A) is

D(A) find y ∈ K s.t. y ∈ rangeA∗, y �= 0,

where rangeA∗ is the orthogonal complement of kerA. As we mentioned in Sect. 2.2,
we assume that K is given by a Cartesian product of p simple symmetric cones
K�(� = 1, . . . , p), i.e., K = K1 × · · · × Kp. In our method, the upper bound for
the sum of eigenvalues of a feasible solution of PS∞(A) plays a key role, whereas
the existing work focuses on the volume of the set of the feasible region [10] or the
condition number of a feasible solution [13]. Before describing the theoretical results,
let us outline the proposed algorithm when K is simple. The algorithm repeats two
steps: (i). find a cut for PS∞(A), (ii) scale the problem to an isomorphic problem
equivalent to PS∞(A) such that the region narrowed by the cut is efficiently explored.

123

A new extension of Chubanov’s method to symmetric cones 781

Given a feasible solution x of PS∞(A) and a constant 0 < ξ < 1, our method first
searches for a Jordan frame {c1, . . . , cr } such that the following is satisfied:

〈ci , x〉 ≤ ξ (i ∈ H), 〈ci , x〉 ≤ 1 (i /∈ H),

where H ⊆ {1, . . . , r} and |H | > 0. In this case, instead of PS∞(A), we may consider
PCutS∞ (A) as follows:

PCutS∞ (A) find x ∈ int K s.t. 〈ci , x〉 ≤ ξ (i ∈ H), 〈ci , x〉 ≤ 1 (i /∈ H),

A(x) = 0, ‖x‖∞ ≤ 1.

Here, we define the set SRCut = {x ∈ E : x ∈ in K, ‖x‖∞ ≤ 1, 〈ci , x〉 ≤ ξ (i ∈
H), 〈ci , x〉 ≤ 1 i /∈ H)} as the search range for the solutions of the problem PCutS∞ (A).
The proposed method then creates a problem equivalent and isomorphic to PS∞(A)

such that SRCut, the region narrowed by the cut, can be searched efficiently. Such a
problem is obtained as follows:

PS∞(AQg) find x̄ ∈ intK s.t. AQg(x̄) = 0, ‖x̄‖∞ ≤ 1,

where g is given by g = √
ξ
∑

i∈H ci +∑
i /∈H ci ∈ inK for which e = Qg−1(u) holds

for u = ∑
i∈H ξci + ∑

i /∈H ci .
In the succeeding sections, we explain how the cut for PS∞(A) is obtained from

some v ∈ rangeA∗; we also explain the scaling method for the problem in detail. To
simplify our discussion, we will assume that K is simple, i.e., p = 1, in Sect. 3.2.
Then, in Sect. 3.3, we will generalize our discussion to the case of p ≥ 2.

3.2 Simple symmetric cone case

Let us consider the case whereK is simple. It is obvious that, for any feasible solution
x of PS∞(A), the constraint ‖x‖∞ ≤ 1 implies that 〈e, x〉 ≤ r , since x ∈ K. In
Proposition 3.3, we show that this bound may be improved as 〈e, x〉 < r by using a
point v ∈ rangeA∗ \ {0}. To prove Proposition 3.3, we need the following Lemma 3.1
and Proposition 3.2.

Lemma 3.1 Let (E, ◦) be a Euclidean Jordan algebra with the associated symmetric
cone K. For any y ∈ E, the following equation holds:

max
0≤λ(x)≤1

〈y, x〉 = 〈PK (y) , e〉 .

Proof Using the decomposition y = ∑r
i=1 λi ci obtained by Proposition 2.1, we see

that

max
0≤λ(x)≤1

〈y, x〉 = max
0≤λ(x)≤1

〈
r∑

i=1

λi ci , x

〉

= max
0≤λ(x)≤1

r∑

i=1

λi 〈ci , x〉 . (2)

123

782 S. Kanoh, A. Yoshise

Noting that x ∈ K, e−x ∈ K from0 ≤ λ(x) ≤ 1, since ci ∈ K is primitive idempotent,
we find that 〈ci , x〉 ≥ 0 and 〈ci , e− x〉 ≥ 0, which implies that 0 ≤ 〈ci , x〉 ≤ 1. Thus,
letting I1 be the set of indices for which λi ≤ 0 and I2 be the set of indices for which
λi > 0, if there exists an x satisfying

〈ci , x〉 =
{
0 i ∈ I1
1 i ∈ I2

, (3)

then such an x is an optimal solution of (2). In fact, if we define x∗ = ∑
i∈I2 ci , then

by the dedfinition of the Jordan frame, x∗ satisfies (3) and 0 ≤ λ(x) ≤ 1 and becomes
an optimal solution of (2). In this case, the optimal value of (2) turns out to be

max
0≤λ(x)≤1

r∑

i=1

λi 〈ci , x〉 =
r∑

i=1

λi
〈
ci , x

∗〉 =
∑

i∈I2
λi =

r∑

i=1

[λi]+ = 〈PK(y), e〉.

��
Proposition 3.2 Let (E, ◦) be a Euclidean Jordan Algebra with the corresponding
symmetric cone K. For a given c ∈ E, consider the problem

max 〈c, x〉 s.t A(x) = 0, 0 ≤ λ(x) ≤ 1.

The dual problem of the above is

min 〈PK (c − u) , e〉 s.t u ∈ rangeA∗.

Proof Define the Lagrangian function L(x, w) as L(x, w) := 〈c, x〉 − w�A(x)
where w ∈ R

m is the Lagrange multiplier. Supoose that x∗ is an optimal sotu-
tion of the primal problem. Then, for any w ∈ R

m , we have 〈c, x∗〉 = L(w, x∗) ≤
max0≤λ(x)≤1 L(w, x), and hence,

〈c, x∗〉 ≤ min
w

max
0≤λ(x)≤1

L(x, w) = min
w

max
0≤λ(x)≤1

{〈c, x〉 − 〈A∗(w), x〉}
= min

w
max

0≤λ(x)≤1
{〈c − A∗(w), x〉}

= min
w

〈PK
(
c − A∗(w)

)
, e

〉
(by lemma 3.1)

= min
u∈ rangeA∗〈PK (c − u) , e〉.

��
Proposition 3.3 Suppose that v ∈ rangeA∗ is given by v = ∑r

i=1 λi ci as in Propo-
sition 2.1. For each i ∈ {1, . . . , r} and α ∈ R, define qi (α) := [1 − αλi]+ +
∑r

j �=i

[−αλ j
]+

. Then, the following relations hold for any x ∈ FPS∞ (A) and

123

A new extension of Chubanov’s method to symmetric cones 783

i ∈ {1, . . . , r}:

〈ci , x〉 ≤ min
α∈R qi (α) =

{
min

{
1,

〈
e,PK

(
− 1

λi
v
)〉}

if λi �= 0,

1 if λi = 0.
(4)

Proof For each i ∈ {1, 2, . . . , r}, we have

PK (ci − αv) = PK

⎛

⎝ci − α

r∑

j=1

λ j c j

⎞

⎠ = PK

⎛

⎝(1 − αλi)ci −
r∑

j �=i

αλ j c j

⎞

⎠ ,

and hence,

〈PK (ci − αv) , e〉 =
〈

PK

⎛

⎝(1 − αλi)ci −
r∑

j �=i

αλ j c j

⎞

⎠ ,

r∑

i=1

ci

〉

= [1 − αλi]
+

+
r∑

j �=i

[−αλ j
]+ = qi (α). (5)

Note that, since qi (α) is a piece-wise linear convex function, if λi = 0, it attains
the minimum at α = 0 with qi (0) = 1, and if λi �= 0, it attains the minimum at α = 0
with qi (0) = 1 or at α = 1

λi
with

q

(
1

λi

)

=
r∑

j �=i

[

−λ j

λi

]+
=

r∑

j=1

[

−λ j

λi

]+
=

〈

e,PK
(

− 1

λi
v

)〉

.

Thus, we obtain equivalence in (4). Since αv ∈ rangeA∗ for all α ∈ R, for each i ∈
{1, . . . , r}, Proposition 3.2 and (5) ensure that 〈ci , x〉 ≤ 〈PK (ci − αv) , e〉 = qi (α)

for all α ∈ R, which implies the inequality in (4). ��
Since

∑r
i=1 ci = e holds, Proposition 3.3 allows us to compute upper bounds for

the sum of eigenvalues of x . The following proposition gives us information about
indices whose upper bound for 〈ci , x〉 in Proposition 3.3 is less than 1.

Proposition 3.4 Suppose that v ∈ rangeA∗ is given by v = ∑r
i=1 λi ci as in Propo-

sition 2.1. If v satisfies
〈
e,PK

(
− 1

λi
v
)〉

= ξ < 1 for some ξ < 1 and for some

i ∈ {1, . . . , r} for which λi �= 0 holds, then λi has the same sign as 〈e, v〉.
Proof First, we consider the case where λi > 0. Since the assumption implies that
〈e,PK(−v)〉 = λiξ , we have

〈e, v〉 = 〈e,PK(v)〉 − 〈e,PK(−v)〉
= 〈e,PK(v)〉 − λiξ

≥ λi (1 − ξ) > 0,

123

784 S. Kanoh, A. Yoshise

where the first equality comes from Lemma 2.3.
For the case where λi < 0, since the assumption also implies that 〈e,PK(v)〉 =

−λiξ , we have

〈e, v〉 = 〈e,PK(v)〉 − 〈e,PK(−v)〉
= −λiξ − 〈e,PK(−v)〉
≤ −λiξ − (−λi)

= (1 − ξ)λi < 0.

This completes the proof. ��
The above two propositions imply that, for any v ∈ rangeA∗ with v = ∑r

i=1 λi ci ,
if we compute 〈ci , x〉 according to Proposition 3.3 for i ∈ {1, . . . , r} having the same
sign as the one of 〈e, v〉, we obtain an upper bound for the sum of eigenvalues of x over
the set FPS∞ (A). The following proposition concerns the scaling method of problem
PS∞(A) when we find such a v ∈ rangeA∗.

Proposition 3.5 Let H ⊆ {1, . . . r} be a nonempty set, c1, . . . , cr be a Jordan frame,
and ξ be a real number satisfying 0 < ξ < 1. Let us define g ∈ int K as

g := √
ξ
∑

h∈H
ch +

∑

h /∈H
ch i.e., g−1 = 1√

ξ

∑

h∈H
ch +

∑

h /∈H
ch . (6)

For the two sets SRCut = {x ∈ E : x ∈ intK, ‖x‖∞ ≤ 1, 〈ci , x〉 ≤ ξ (i ∈
H), 〈ci , x〉 ≤ 1 (i /∈ H)} and, SRScaled = {x̄ ∈ E : x̄ ∈ intK, ‖x̄‖∞ ≤ 1},
Qg(SRScaled) ⊆ SRCut holds.

Proof Let x̄ be an arbitrary point of SRScaled. It suffices to show that (i) Qg(x̄) ∈ int K,
(ii) ‖Qg(x̄)‖∞ ≤ 1, (iii) 〈ci , Qg(x̄)〉 ≤ ξ (i ∈ H) and (iv) 〈ci , Qg(x̄)〉 ≤ 1 (i /∈ H)

hold.
(i): Let us show that Qg(x̄) ∈ int K. Since g and x̄ lie in the set int K, from Proposi-
tions 2.4 and 2.5, we see that

Qg(x̄) ∈ K, det Qg(x̄) = det(g)2 det(x̄) > 0,

which implies that Qg(x̄) ∈ intK.
(ii): Next let us show that ‖Qg(x̄)‖∞ ≤ 1. Since x̄ ∈ SRScaled, we see that x̄ ∈ intK,
‖x̄‖∞ ≤ 1 and hence e − x̄ ∈ K. Since g ∈ intK, Proposition 2.4 guarantees that

Qg(e − x̄) ∈ K. (7)

By the definition (6) of g, the following equations hold for c1, . . . , cr :

For any i ∈ H , Qg(ci) = 2g ◦ (g ◦ ci) − (g ◦ g) ◦ ci

123

A new extension of Chubanov’s method to symmetric cones 785

= 2g ◦ √
ξci −

(

ξ
∑

h∈H
ch +

∑

h /∈H
ch

)

◦ ci

= 2ξci − ξci = ξci .

For any i /∈ H , Qg(ci) = 2g ◦ (g ◦ ci) − (g ◦ g) ◦ ci

= 2g ◦ ci −
(

ξ
∑

h∈H
ch +

∑

h /∈H
ch

)

◦ ci

= 2ci − ci = ci .

Thus, we obtain Qg(e) = ξ
∑

i∈H ci +∑
i /∈H ci . Combining this with the facts ci ∈ K

and (1 − ξ) > 0 and (7), we have

K � (1 − ξ)
∑

i∈H
ci + Qg(e − x̄) = (1 − ξ)

∑

i∈H
ci + Qg(e) − Qg(x̄)

= (1 − ξ)
∑

i∈H
ci +

(

ξ
∑

i∈H
ci +

∑

i /∈H
ci

)

− Qg(x̄)

= e − Qg(x̄).

Since we have shown that Qg(x̄) ∈ intK, we can conclude that ‖Qg(x̄)‖∞ ≤ 1.
(iii) and (iv): Finally, we compute an upper bound for the value 〈Qg(x̄), ci 〉 over the set
SRScaled. It follows from ci ∈ K and (7) that 〈Qg(e − x̄), ci 〉 ≥ 0, i.e., 〈Qg(e), ci 〉 ≥
〈Qg(x̄), ci 〉 holds. Since we have shown that Qg(e) = ξ

∑
i∈H ci + ∑

i /∈H ci , this
implies 〈Qg(x̄), ci 〉 ≤ ξ holds if i ∈ H and 〈Qg(x̄), ci 〉 ≤ 1 holds if i /∈ H . ��

Note that Proposition 3.5 implies that if a cut is obtained for PS∞(A)based onPropo-
sition 3.3, we can expect a more efficient search for solutions to problem PS∞(AQg)

rather than trying to solve problem PS∞(A).

3.3 Non-simple symmetric cone case

In this section, we consider the case where the symmetric cone is not simple. Propo-
sitions 3.6 and 3.7 are extensions of Proposition 3.3 and 3.4, respectively.

Proposition 3.6 Suppose that, for any v ∈ rangeA∗, the �-th block element v� of
v ∈ E is decomposed into v� = ∑r�

i=1 λ(v�)i c(v�)i as in Proposition 2.1. For each
� ∈ {1, . . . , p} and i ∈ {1, . . . , rp}, define

q�,i (α) := [
1 − αλ(v�)i

]+ +
r�∑

k �=i

[−αλ(v�)k
]+ +

p∑

j �=�

r j∑

k=1

[−αλ(v j)k

]+
. (8)

123

786 S. Kanoh, A. Yoshise

Then, the following relations hold for any feasible solution x ofPS∞(A), � ∈ {1, . . . , p}
and i ∈ {1, . . . , rp}.

〈c(v�)i , x�〉 ≤ min
α∈R q�,i (α) =

{
min

{
1,

〈
e,PK

(
− 1

λ(v�)i
v
)〉}

if λ(v�)i �= 0,

1 if λ(v�)i = 0
. (9)

Proof Let c ∈ E be an element whose �-th block element is c� = c(v�)i and other
block elements take 0. For any real number α ∈ R, Proposition 3.2 ensures that

〈c(v�)i , x�〉 = 〈c, x〉 ≤ 〈PK (c − αv) , e〉

= 〈PK�
(c(v�)i − αv�) , e�

〉 +
p∑

j �=�

〈
PK j

(−αv j
)
, e j

〉

= [
1 − αλ(v�)i

]+ +
r�∑

k �=i

[−αλ(v�)k
]+

+
p∑

j �=�

r j∑

k=1

[−αλ(v j)k

]+ = q�,i (α). (10)

We obtain (9) by following a similar argument to the one used in the proof of Propo-
sition 3.3. ��

Thenext proposition follows similarly toProposition3.4, bynoting that 〈e,PK(−v)〉
= λ(v�)iξ holds if λ(v�)i > 0 and that 〈e,PK(v)〉 = −λ(v�)iξ if λ(v�)i < 0.

Proposition 3.7 Suppose that, for any v ∈ rangeA∗, each �-th block element v� of v

is decomposed into v� = ∑r�
i=1 λ(v�)i c(v�)i as in Proposition 2.1. If v satisfies

λ(v�)i �= 0 and
〈
e,PK

(
− 1

λ(v�)i
v
)〉

= ξ� < 1 (11)

for some ξ < 1, � ∈ {1, . . . , p} and i ∈ {1, . . . , r�}, then λ(v�)i has the same sign as
〈e, v〉.

From Proposition 3.6, if we obtain v ∈ rangeA∗ satisfying (11) for a block � ∈
{1, . . . , p} with an index i ∈ {1, . . . r�}, then the upper bound for the sum of the
eigenvalues of any feasible solution x of PS∞(A) is reduced by 〈e, x〉 ≤ r − 1 +
ξ� < r . In this case, as described below, we can find a scaling such that the sum
of eigenvalues of any feasible solution of PS∞(A) is bounded by r . Let H� be the
set of indices i satisfying (11) for each block �. According to Proposition 3.5, set
g� = √

ξ�

∑
h∈H�

c(v�)h +∑
h /∈H�

c(v�)h and define the linear operator Q as follows:

Q� :=
{
Qg�

if |H�| �= 0,

I� otherwise,

123

A new extension of Chubanov’s method to symmetric cones 787

Q(E1, . . . ,Ep) := (
Q1(E1), . . . , Qp(Ep)

)
,

where I� is the identity operator of the Euclidean Jordan algebra E� associated with
the symmetric cone K�. From Proposition 3.5 and its proof, we can easily see that

Qg−1
�

(ci) = 1

ξ
ci (i ∈ H�), Qg−1

�
(ci) = ci (i /∈ H�), (12)

and the sum of eigenvalues of any feasible solution of the scaled problem PS∞(AQ)

is bounded by 〈e, e〉 = r = ∑p
�=1 r�.

4 Basic procedure of the extendedmethod

4.1 Outline of the basic procedure

In this section, we describe the details of our basic procedure. First, we introduce our
stopping criteria and explain how to update yk when the the stopping criteria is not
satisfied. Next, we show that the stopping criteria is satisfied within a finite number
of iterations. Our stopping criteria is new and different from the ones used in [10,
13], while the method of updating yk is similar to the one used in [10] or in the von
Neumann scheme of [13]. Algorithm 1 is a full description of our basic procedure.

4.2 Termination conditions of the basic procedure

For zk = PA(yk), vk = yk − zk and a given ξ ∈ (0, 1), our basic procedure terminates
when any of the following four cases occurs:

1. zk ∈ intK meaning that zk is a solution of P(A),
2. zk = 0 meaning that yk is feasible for D(A),
3. yk − zk ∈ K and yk − zk �= 0 meaning that yk − zk is feasible for D(A), or
4. there exist � ∈ {1, . . . , p} and i ∈ {1, . . . , r�} for which

λ(vk�)i �= 0 and

〈

e,PK
(

− 1
λ(vk�)i

vk
)〉

= ξ� ≤ ξ < 1, (13)

meaning that 〈e, x〉 < r holds for any feasible solution x of PS∞(A) (see Proposi-
tion 3.6).

Cases 1 and 2 are direct extensions of the cases in [3], while case 3 was proposed in
[9, 10]. Case 3 helps us to determine the feasibility of P(A) efficiently, while we have
to decompose yk − zk for checking it. If the basic procedure ends with case 1, 2, or 3,
the basic procedure returns a solution of P(A) or D(A) to the main algorithm. If the
basic procedure ends with case 4, the basic procedure returns to the main algorithm p
index sets H1, . . . , Hp each of which consists of indices i satisfying (13) and the set
of primitive idempotents C� = {c(vk�)1, . . . , c(vk�)r�} of vk� for each �.

123

788 S. Kanoh, A. Yoshise

4.3 Update of the basic procedure

The basic procedure updates yk ∈ intK with 〈yk, e〉 = 1 so as to reduce the value of
‖zk‖J . The following proposition is essentially the same as Proposition 13 in [10], so
we will omit its proof.

Proposition 4.1 (cf. Proposition 13, [10]). For yk ∈ int K satisfying 〈yk, e〉 = 1, let
zk = PA(yk). If zk /∈ intK and zk �= 0, then the following hold.

1. There exists c ∈ K such that 〈c, zk〉 = λmin(zk) ≤ 0, 〈e, c〉 = 1 and c ∈ K.
2. For the above c, suppose that PA(c) �= 0 and define

α = 〈PA(c), PA(c) − zk〉‖zk − PA(c)‖−2
J . (14)

Then, yk+1 := αyk + (1 − α)c satisfies yk+1 ∈ int K, ‖yk+1‖1,∞ ≥ 1/p,
〈yk+1, e〉 = 1, and zk+1 := PA(yk+1) satisfies ‖zk+1‖−2

J ≥ ‖zk‖−2
J + 1.

Amethod of accelerating the update of yk is provided in [15]. For � ∈ {1, 2, . . . , p},
let I� := {i ∈ {1, 2, . . . , r�} | λi (zk�) ≤ 0} and set N = ∑p

�=1 |I�|. Define the �-th
block element of c ∈ K as c� = 1

N

∑
i∈I� c(z

k
�)i . Using PA (c), the acceleration

method computes α by (14) so as to minimize the norm of zk+1 and update y by
yk+1 = αyk + (1 − α)c. We incorporate this method in the basic procedure of our
computational experiment.As described in [13],we can also use the smooth perceptron
scheme [17, 18] to update yk in the basic procedure. As explained in the next section,
using the smooth perceptron scheme significantly reduces the maximum number of
iterations of the basic procedure. A detailed description of our basic procedure is given
in Appendix A.

4.4 Finite termination of the basic procedure

In this section, we show that the basic procedure terminates in a finite number of
iterations. To do so, we need to prove Lemma 4.2 and Proposition 4.3.

Lemma 4.2 Let (E, ◦) be a Euclidean Jordan algebra with the corresponding sym-
metric cone K given by the Cartesian product of p simple symmetric cones. For any
x ∈ E and y ∈ K, [〈x, y〉]+ ≤ 〈PK(x), y〉 holds.
Proof Let x ∈ E and suppose that each �-th block element x� of x is given by x� =∑r�

i=1 λ(x�)i c(x�)i as in Proposition 2.1. Then, we can see that

[〈x, y〉]+ =
[p∑

�=1

〈 r�∑

i=1

λ(x�)i c(x�)i , y�

〉]+

=
[p∑

�=1

(r�∑

i=1

λ(x�)i 〈c(x�)i , y�〉
)]+

123

A new extension of Chubanov’s method to symmetric cones 789

≤
p∑

�=1

r�∑

i=1

[
λ(x�)i 〈c(x�)i , y�〉

]+

=
p∑

�=1

r�∑

i=1

[
λ(x�)i

]+ 〈c(x�)i , y�〉

=
p∑

�=1

〈 r�∑

i=1

[
λ(x�)i

]+
c(x�)i , y�

〉

= 〈PK(x), y〉 .

where the inequality follows from the fact that c(x�)1, . . . , c(x�)r� , and y� lie inK�. ��
Proposition 4.3 For a given y ∈ K, define z = PA(y) and v = y − z. Suppose
that v �= 0 and each �-th element v� is given by v� = ∑r�

i=1 λ(v�)i c(v�)i , as in
Proposition 2.1. Then, for any x ∈ FPS∞ (A), � ∈ {1, . . . , p} and i ∈ {1, . . . , r�},

〈c(v�)i , x�〉 ≤ min
α

q�,i (α) ≤ 1

〈y�, c(v�)i 〉‖z‖J (15)

hold where q�,i (α) is defined in (8).

Proof The first inequality of (15) follows from (10) in the proof of Proposition 3.6.
The second inequality is obtained by evaluating q�,i (α) at α = 1

〈y�,c(v�)i 〉 , as follows:

q�,i

(
1

〈y�, c(v�)i 〉
)

=
[

1 − 1

〈y�, c(v�)i 〉λ(v�)i

]+
+

r�∑

k �=i

[

− 1

〈y�, c(v�)i 〉λ(v�)k

]+

+
p∑

j �=�

r j∑

k=1

[

− 1

〈y�, c(v�)i 〉λ(v j)k

]+

=
[

1 − 〈y� − z�, c(v�)i 〉
〈y�, c(v�)i 〉

]+
+

r�∑

k �=i

[

−〈y� − z�, c(v�)k〉
〈y�, c(v�)i 〉

]+

+
p∑

j �=�

r j∑

k=1

[

−〈y j − z j , c(v j)k〉
〈y�, c(v�)i 〉

]+

(since λ(v�)i = 〈v�, c(v�)i 〉 and v� = y� − z�)

=
[〈z�, c(v�)i 〉
〈y�, c(v�)i 〉

]+

+
r�∑

k �=i

[〈z�, c(v�)k〉 − 〈y�, c(v�)k〉
〈y�, c(v�)i 〉

]+

+
p∑

j �=�

r j∑

k=1

[〈z j , c(v j)k〉 − 〈y j , c(v j)k〉
〈y�, c(v�)i 〉

]+

123

790 S. Kanoh, A. Yoshise

≤
[〈z�, c(v�)i 〉
〈y�, c(v�)i 〉

]+

+
r�∑

k �=i

[〈z�, c(v�)k〉
〈y�, c(v�)i 〉

]+
+

p∑

j �=�

r j∑

k=1

[〈z j , c(v j)k〉
〈y�, c(v�)i 〉

]+

(since y�, c(v�)i ∈ K� and then 〈y�, c(v�)i 〉 ≥ 0)

= 1

〈y�, c(v�)i 〉

(r�∑

k=1

[〈z�, c(v�)k〉
]+

+
p∑

j �=�

r j∑

k=1

[〈z j , c(v j)k〉
]+

⎞

⎠

≤ 1

〈y�, c(v�)i 〉

(r�∑

k=1

〈PK�
(z�) , c(v�)k〉

+
p∑

j �=�

r j∑

k=1

〈PK j

(
z j

)
, c(v j)k〉

⎞

⎠ (by Lemma 4.2)

= 1

〈y�, c(v�)i 〉

⎛

⎝〈PK�
(z�) , e�〉

+
p∑

j �=�

〈PK j

(
z j

)
, e j 〉

⎞

⎠

= 〈PK (z) , e〉
〈y�, c(v�)i 〉 = ‖PK (z) ‖1

〈y�, c(v�)i 〉 ≤ ‖PK (z) ‖J

〈y�, c(v�)i 〉 ≤ ‖z‖J

〈y�, c(v�)i 〉 .

��
Proposition 4.4 Let rmax = max{r1, . . . , rp}. The basic procedure (Algorithm 1) ter-

minates in at most p2r2max
ξ2

iterations.

Proof Suppose that yk is obtained at the k-th iteration of Algorithm 1. Proposition 4.1
implies that ‖yk‖1,∞ ≥ 1

p and an �-th block element exists for which 〈y�, e�〉 ≥ 1
p

holds. Thus, by letting vk = yk − zk and the �-th block element vk� of vk be vk� =
∑r�

i=1 λ(vk�)i c(v
k
�)i as in Proposition 2.1, we have

max
i=1,...,r�

〈
yk� , c(vk�)i

〉
≥ (pr�)

−1. (16)

Since Proposition 4.1 ensures that 1
‖zk‖2J

≥ k holds at the k-th iteration, by setting

k = p2r2max
ξ2

, we see that ξ ≥ prmax‖zk‖J , and combining this with (16), we have

ξ ≥ prmax‖zk‖J ≥ pr�‖zk‖J ≥ 1

maxi=1,...,r�

〈
yk� , c(v�)i

〉‖zk‖J .

123

A new extension of Chubanov’s method to symmetric cones 791

The above inequality and Proposition 4.3 imply that for any � ∈ {1, . . . , p} and
i ∈ {1, . . . , rp},

〈c(vk�)i , x�〉 ≤ min
α

q�,i (α) ≤ 1

〈yk� , c(vk�)i 〉
‖zk‖J ≤ ξ.

From the equivalence in (9) and the setting ξ ∈ (0, 1), we conclude that Algorithm 1

terminates in at most p2r2max
ξ2

iterations by satisfying (13) in the fourth termination
condition at an �-th block and an index i . ��

An upper bound for the number of iterations of Algorithm 5 using smooth percep-
toron scheme can be found as follows.

Proposition 4.5 Let rmax = max{r1, . . . , rp}. The basic procedure (Algorithm 5) ter-

minates in at most 2
√
2prmax
ξ

iterations.

Proof From Proposition 6 in [13], after k ≥ 1 iterations, we obtain the inequality
‖zk‖2J ≤ 8

(k+1)2
. Similarly to the previous proof of Proposition 4.4, if ξ ≥ prmax‖zk‖J

holds, then Algorithm 5 terminates. Thus, k ≤ 2
√
2prmax
ξ

holds for a given k satisfying
(

ξ
prmax

)2 ≤ 8
(k+1)2

. ��

Here, we discuss the computational cost per iteration of Algorithm 1. At each
iteration, the twomost expensive operations are computing the spectral decomposition
on line 5 and computing PA(·) on lines 24 and 26. LetCsd

� be the computational cost of
the spectral decomposition of an element ofK�. For example,Csd

� = O(r3�) ifK� = S
r�+

and Csd
� = O(r�) if K� = Lr� , where Lr� denotes the r�-dimensional second-order

cone. Then, the cost Csd of computing the spectral decomposition of an element of K
is Csd = ∑p

�=1 C
sd
� . Next, let us consider the computational cost of PA(·). Recall that

d is the dimension of the Euclidean space E corresponding toK. As discussed in [10],
we can compute PA = I − A∗(AA∗)−1A by using the Cholesky decomposition of
(AA∗)−1. Suppose that (AA∗)−1 = LL∗, where L is an m × m matrix and we store
L∗A in the main algorithm. Then, we can compute PA(·) on lines 24 and 26, which
costsO(md). The operation uμ(·) : E → {u ∈ K | 〈u, e〉 = 1} in Algorithm 1 can be
performedwithin the costCsd [13, 18]. From the above discussion andProposition 4.4,

the total costs of Algorithm 1 and Algorithm 5 are given byO
(
p2r2max

ξ2
max(Csd,md)

)

and O
(
prmax

ξ
max(Csd,md)

)
, respectively.

123

792 S. Kanoh, A. Yoshise

5 Main algorithm of the extendedmethod

5.1 Outline of themain algorithm

In what follows, for a given accuracy ε > 0, we call a feasible solution of PS∞(A)

whoseminimumeigenvalue is ε ormore an ε-feasible solution of PS∞(A). This section
describes the main algorithm. To set the upper bound for the minimum eigenvalue of
any feasible solution x of PS∞(A), Algorithm 2 focuses on the product det(x̄) of the
eigenvalues of the arbitrary feasible solution x̄ of the scaled problem PS∞(Ak Qk).
Algorithm 2 works as follows. First, we calculate the corresponding projection PA
onto kerA and generate an initial point as input to the basic procedure. Next, we call
the basic procedure and determine whether to end the algorithm with an ε-feasible
solution or to perform problem scaling according to the returned result, as follows:

123

A new extension of Chubanov’s method to symmetric cones 793

1. If a feasible solution of P(A) or D(A) is returned from the basic procedure, the
feasibility of P(A) can be determined, and we stop the main algorithm.

2. If the basic procedure returns the sets of indices H1, . . . , Hp and the sets of primitive
idempotents C1, . . . ,Cp that construct the corresponding Jordan frames, then for
the total number of cuts obtaibed in the �-th block num�,

(a) if num� ≥ r�
log ε
log ξ

holds for some � ∈ {1, . . . p}, we determine that PS∞(A) has
no ε-feasible solution according to Proposition 5.1 and stop themain algorithm,

(b) if num� < r�
log ε
log ξ

holds for any � ∈ {1, . . . p}, we rescale the problem and call
the basic procedure again.

Note that our main algorithm is similar to Lourenço et al.’s method in the sense
that it keeps information about the possible minimum eigenvalue of any feasible solu-
tion of the problem. In contrast, Pena and Soheili’s method [13] does not keep such
information. Algorithm 2 terminates after no more than − r

log ξ
log

(1
ε

) − p + 1 itera-
tions, so our main algorithm can be said to be a polynomial-time algorithm. We will
give this proof in Sect. 5.2. We should also mention that step 24 in Algorithm 2 is
not a reachable output theoretically. We have added this step in order to consider the
influence of the numerical error in practice.

123

794 S. Kanoh, A. Yoshise

5.2 Finite termination of themain algorithm

Here, we discuss how many iterations are required until we can determine that the
minimum eigenvalue λmin(x) is less than ε for any x ∈ FPS∞ (A). Before going into
the proof, we explain the Algorithm 2 in more detail than in Sect. 5.1. At each iteration
of Algorithm 2, it accumulates the number of cuts |Hk

� | obtained in the �-th block and
stores the value in num�. Using num�, we can compute an upper bound for λmin(x)
(Proposition 5.1). On line 18, Q̄� is updated to Q̄� ← Qg−1

�
Q̄�, where Q̄� plays the

role of an operator that gives the relation x̄� = Q̄�(x�) for the solution x of the original
problem and the solution x̄ of the scaled problem. For example, if |H1

� | > 0 for k = 1
(suppose that the cut was obtained in the �-th block), then the proposed method scales
A1

�Q
1
� and the problem to yield x̄� = Qg−1

�
(x�) for the feasible solution x of the

original problem. And if |H2
� | > 0 even for k = 2, then the proposed method scales x̄

again, so that ¯̄x� = Qg−1
�

(x̄�) = Q̄�(x�) holds. Note that Q̄� is used only for a concise

proof of Proposition 5.1, so it is not essential.
Now, let us derive an upper bound for the minimum eigenvalue λmin(x�) of each

�-th block of x obtained after the k-th iteration of Algorithm 2. Proposition 5.2 gives
an upper bound for the number of iterations of Algorithm 2.

Proposition 5.1 After k iterations of Algorithm2, for any feasible solution x ofPS∞(A)

and � ∈ {1, . . . , p}, the �-th block element x� of x satisfies

r� log (λmin(x�)) ≤ num� log ξ. (17)

Proof At the end of the k-th iteration, any feasible solution x̄ of the scaled problem
PS∞(Ak+1) = PS∞(Ak Qk) obviously satisfies

det x̄� ≤ det e� (� = 1, 2, . . . , p). (18)

Note that det x̄� can be expressed in terms of det x�. For example, if |H1
� | > 0 when

k = 1, then using Proposition 2.5, for any feasible solution x̄ of PS∞(A2), we find
that

det x̄� = det Qg−1
�

(x�) = det(g−1
�)2 det x� =

(
1√
ξ

)2|H1
� |
det x� =

(
1

ξ

)|H1
� |
det x�.

This means that det x̄� can be determined from det x� and the number of cuts obtained
so far in the �-th block. In Algorithm 2, the value of num� is updated only when
|Hk

� | > 0. Since x̄ satisfies x̄� = Q̄�(x�) (� = 1, 2, . . . , p) for each feasible solution
x of PS∞(A), we can see that

det x̄� = det Q̄�(x�) =
(
1

ξ

)|Hk
� |

×
(
1

ξ

)|Hk−1
� |

· · · ×
(
1

ξ

)|H1
� |

× det x� =
(
1

ξ

)num�

det x�.

123

A new extension of Chubanov’s method to symmetric cones 795

Therefore, (18) implies det x� ≤ ξnum� det e� = ξnum� and the fact (λmin(x�))
r� ≤

det x� implies (λmin(x�))
r� ≤ ξnum� . By taking the logarithm of both sides of this

inequality, we obtain (17). ��
Proposition 5.2 Algorithm 2 terminates after no more than − r

log ξ
log

(1
ε

) − p + 1
iterations.

Proof Let us call iteration k of Algorithm 2 good if |Hk
� | > 0 for some � ∈

{1, 2, . . . , p} at that iteration. Suppose that at least − r�
log ξ

log
(1

ε

)
good iterations are

observed for a cone K�. Then, by substituting − r�
log ξ

log
(1

ε

)
into num� of inequality

(17) in Proposition 5.1, we have log (λmin(x�)) ≤ log ε and hence, λmin(x�) ≤ ε. This
implies that Algorithm 2 terminates after no more than

p∑

�=1

(

− r�
log ξ

log

(
1

ε

)

− 1

)

+ 1 = − r

log ξ
log

(
1

ε

)

− p + 1

iterations. ��

6 Computational costs of the algorithms

This section compares the computational costs of Algorithm 2, Lourenço et al.’s
method [10] and Pena and Soheili’s method [13]. Section 6.1 compares the computa-
tional costs of Algorithm 2 and Lourenço et al.’s method, and Sect. 6.2 compares
those of Algorithm 2 and Pena and Soheili’s method under the assumption that
kerA ∩ intK �= ∅.

Both the proposed method and the method of Lourenço et al. guarantee finite
termination of the main algorithm by termination criteria indicating the nonexistence
of an ε-feasible solution, so that it is possible to compare the computational costs of
the methods without making any special assumptions. This is because both methods
proceed by making cuts to the feasible region using the results obtained from the basic
procedure. On the other hand, Pena and Soheili’s method cannot be simply compared
because the upper bound of the number of iterations of their main algorithm includes
an unknownvalue of δ(kerA∩intK) := maxx

{
det(x) | x ∈ kerA ∩ intK, ‖x‖2J = r

}
.

However, by making the assumption kerA∩ intK �= ∅ and deriving a lower bound for
δ(kerA∩ intK), we make it possible to compare Algorithm 2 with Pena and Soheili’s
method without knowing the specific values of δ(kerA ∩ intK).

6.1 Comparison of Algorithm 2 and Lourenço et al.’s method

Let us consider the computational cost of Algorithm 2. At each iteration, the most
expensive operation is computing PA on line 4. Recall that d is the dimension of the
Euclidean space E corresponding to K. As discussed in [10], by considering PA to
be an m × d matrix, we find that the computational cost of PA is O(m3 + m2d).
Therefore, by taking the computational cost of the basic procedure (Algorithm 1) and

123

796 S. Kanoh, A. Yoshise

Proposition 5.2 into consideration, the cost of Algorithm 2 turns out to be

O
(

− r

log ξ
log

(
1

ε

)(

m3 + m2d + 1

ξ2
p2r2max

(
max

(
Csd,md

))))

(19)

where Csd is the computational cost of the spectral decomposition of x ∈ E.
Note that, in [10], the authors showed that the cost of their algorithm is

O
((

r

ϕ(ρ)
log

(
1

ε

)

−
p∑

i=1

ri log(ri)

ϕ(ρ)

)
(
m3 + m2d + ρ2 p3r2max

(
max

(
Cmin,md

)))
)

(20)

where Cmin is the cost of computing the minimum eigenvalue of x ∈ E with the
corresponding idempotent,ρ is an input parameter used in their basic procedure (like
ξ in the proposed algorithm) and ϕ(ρ) = 2 − 1/ρ − √

3 − 2/ρ.
When the symmetric cone is simple, by setting ξ = 1/2 and ρ = 2, the maximum

number of iterations of the basic procedure is bounded by the same value in both
algorithms. Accordingly, we will compare the two computational costs (19) and (20)
by supposing ξ = 1/2 and ρ = 2 (hence, − log ξ � 0.69 and ϕ(ρ) � 0.09). As we
can see below, the cost (19) of our method is smaller than (20) in the cases of linear
programming and second-order cone problems and is equivalent to (20) in the case
of semidefinite problems. First, let us consider the case where K is the n-dimensional
nonnegative orthantRn+. Here,we see that r = p = d = n, r1 = · · · = rp = rmax = 1,
and max

(
Csd,md

) = max
(
Cmin,md

) = md hold. By substituting these values, the
bounds (19) and (20) turn out to be

O
(

n

0.69
log

(
1

ε

)(
m3 + m2n + 4mn3

))

and

O
(

n

0.09
log

(
1

ε

)(
m3 + m2n + 4mn4

))

.

This implies that for the linear programming case, our method (which is equivalent to
Roos’s original method [15]) is superior to Lourenço et al.’s method [10] in terms of
bounds (19) and (20) .

Next, let us consider the case whereK is composed of p simple second-order cones
L
ni (i = 1, . . . , p). In this case, we see that d = ∑p

i=1 ni , r1 = · · · = rp = rmax = 2
and max

(
Csd,md

) = max
(
Cmin,md

) = md hold. By substituting these values, the
bounds (19) and (20) turn out to be

O
(

2p

0.69
log

(
1

ε

)(
m3 + m2d + 16p2md

))

123

A new extension of Chubanov’s method to symmetric cones 797

and

O
(

2p

0.09

(

log

(
1

ε

)

− log 2

)(
m3 + m2d + 16p3md

))

.

Note that ε is expected to be very small (10−6 or even 10−12 in practice) and
1

0.69 log
(1

ε

) ≤ 1
0.09

(
log

(1
ε

) − log 2
)
if ε ≤ 0.451. Thus, even in this case, we may

conclude that ourmethod is superior to Lourenço et al.’s method in terms of the bounds
(19) and (20) .

Finally, let us consider the case where K is a simple n × n positive semidefinite
cone. We see that p = 1, r = n, and d = n(n+1)

2 hold, and upon substituting these
values, the bounds (19) and (20) turn out to be

O
(

n

0.69
log

(
1

ε

)(
m3 + m2n2 + 4n2 max

(
Csd,mn2

)))

and

O
(

n

0.09
log

(
1

ε

)(
m3 + m2n2 + 4n2 max(Cmin,mn2)

))

.

From the discussion in Sect. 6.3, we can assume O (
Csd

) = O (
Cmin

)
, and the com-

putational bounds of two methods are equivalent.

6.2 Comparison of Algorithm 2 and Pena and Soheili’s method

In this section, we assume that K is simple since [13] has presented an algorithm for
the simple form. We also assume that kerA ∩ intK �= ∅, because Pena and Soheili’s
method does not terminate if kerA∩ intK = ∅ and rangeA∗ ∩ intK = ∅. Furthermore,
for the sake of simplicity, we assume that the main algorithm of Pena and Soheili’s
method applies only to kerA∩intK. (Their original method applies themain algorithm
to rangeA∗ ∩ intK as well.)

First, we will briefly explain the idea of deriving an upper bound for the
number of iterations required to find x ∈ kerA ∩ intK in Pena and Soheili’s
method. Pena and Soheili derive it by focusing on the indicator δ(kerA ∩ intK) :=
maxx

{
det(x) | x ∈ kerA ∩ intK, ‖x‖2J = r

}
. If kerA ∩ intK �= ∅, then δ(kerA ∩

intK) ∈ (0, 1] holds, and if e ∈ kerA ∩ intK, then δ(kerA ∩ intK) = 1 holds. If
e ∈ kerA ∩ intK, then the basic procedure terminates immediately and returns 1

r e as
a feasible solution. Then, they prove that δ(Qv (kerA)∩ intK) ≥ 1.5 · δ(kerA∩ intK)

holds if the parameters are appropriately set, and derive an upper bound on the number
of scaling steps, i.e., the number of iterations, required to obtain δ(Qv (kerA)∩intK) =
1.

In the following, we obtain an upper bound for the number of iterations of Algo-
rithm 2 using the index δsupposed (kerA ∩ intK)

:= maxx
{
det(x) | x ∈ kerA ∩ intK, ‖x‖2J = 1

}
. Note that δ (kerA ∩ intK) = r

r
2 ·

δsupposed (kerA ∩ intK). In fact, if x∗ is the point giving the maximum value of

123

798 S. Kanoh, A. Yoshise

δsupposed (kerA ∩ intK), then the point giving the maximum value of δ (kerA ∩ intK)

is
√
r x∗. Also, if kerA ∩ intK �= ∅, then δsupposed(kerA ∩ intK) ∈ (0, 1/r

r
2], and if

1√
r
e ∈ kerA ∩ intK, then δsupposed(kerA ∩ intK) = 1/r

r
2 .

The outline of this section is as follows: First, we show that a lower bound for
δsupposed (kerA ∩ intK) can be derived using the index value
δsupposed

(
Qg−1 (kerA) ∩ intK)

for the problem after scaling (Proposition 6.5). Then,
using this result, we derive an upper bound for the number of operations required to
obtain δsupposed

(
Qg−1 (kerA) ∩ intK) = 1/r

r
2 (Proposition 6.6). Finally, we compare

the proposed method with Pena and Soheili’s method. To prove Proposition 6.3 used
in the proof of Proposition 6.5, we use the following propositions from [8].

Proposition 6.1 (Theorem 3 of [8]). Let c ∈ E be an idempotent and Nλ(c) be the set
such that Nλ(c) = {x ∈ E | c ◦ x = λx}. Then Nλ(c) is a linear maniforld, but if
λ �= 0, 1

2 , and 1, then Nλ(c) consists of zero alone. Each x ∈ E can be represented in
the form

x = u + v + w, u ∈ N0(c), v ∈ N 1
2
(c), w ∈ N1(c),

in one and only one way.

Proposition 6.2 (Theorem 11 of [8].) c ∈ E is a primitive idempotent if and only if
N1(c) = {x ∈ E | c ◦ x = x} = Rc.

Proposition 6.3 Let c ∈ E be a primitive idempotent. Then, for any x ∈ E,
〈x, Qc(x)〉 = 〈x, c〉2 holds.
Proof From Propositions 6.1 and 6.2, for any x ∈ E, there exist a real number λ ∈ R

and elements u ∈ N0(c) and v ∈ N 1
2
(c) such that x = u + v + λc.

First, we show that 〈x, c〉 = λ. For v ∈ N 1
2
(c), we see that 〈v, c〉 = 〈v, c ◦ c〉 =

〈v ◦ c, c〉 = 〈c ◦ v, c〉 = 1
2 〈v, c〉, which implies that 〈v, c〉 = 0. Thus, since u ∈ N0(c)

and u ◦ c = 0, 〈x, c〉 is given by

〈x, c〉 = 〈u + v + λc, c〉 = 〈u, c〉 + 〈v, c〉 = λ〈c, c〉 = 0 + 0 + λ.

On the other hand, by using the facts x = u+v+λc, c2 = c, c◦u = 0 and c◦v = 1
2v

repeatedly, we have

〈x, Qc(x)〉 = 〈x, 2c ◦ (c ◦ x) − c2 ◦ x〉
= 〈x, 2c ◦ (c ◦ (u + v + λc)) − c ◦ (u + v + λc)〉
= 〈x, 2c ◦ (

1

2
v + λc) − (

1

2
v + λc)〉

= 〈x, (1
2
v + 2λc) − (

1

2
v + λc)〉 = 〈x, λc〉 = λ2.

Thus, we have shown that 〈x, Qc(x)〉 = 〈x, c〉2 holds. ��

123

A new extension of Chubanov’s method to symmetric cones 799

Remark 6.4 It should be noted that the proof of Proposition 3 in [13] is not correct
since equation (14) does not necessarily hold. The above Proposition 6.3 also gives a
correct proof of Proposition 3 in [13]. See the computation 〈y, Qg−2(y)〉 in the proof
of Proposition 6.5.

Proposition 6.5 Suppose that kerA ∩ intK �= ∅ and that, for a given nonempty index
set H ⊆ {1, . . . r}, Jordan frame c1, . . . , cr , and 0 < ξ < 1,

〈ci , x〉 ≤ ξ (i ∈ H), 〈ci , x〉 ≤ 1 (i /∈ H)

holds for any x ∈ FPS∞ (A). Define g ∈ intK as g := √
ξ
∑

h∈H ch +∑
h /∈H ch. Then,

the following inequality holds:

δsupposed (kerA ∩ intK) > ξ · δsupposed
(
Qg−1 (kerA) ∩ intK)

.

Proof For simplicity of discussion, let |H | = 1, i.e., H = {i}. Let us define the points
x∗, y∗, and x̄∗ as follows:

x∗ = arg max
{
det(x) | x ∈ kerA ∩ intK, ‖x‖2J = 1

}
,

y∗ = arg max
{
det(y) | y ∈ kerA ∩ intK, ‖Qg−1(y)‖2J = 1

}
,

x̄∗ = arg max
{
det(x̄) | x̄ ∈ Qg−1 (kerA) ∩ intK, ‖x̄‖2J = 1

}
.

Note that the feasible region with respect to y is the set of solutions whose norm is
1 after scaling. First, we show that ‖y‖2J < 1, and then det(x∗) > det(y∗). Proposi-
tion 2.5 ensures that ‖Qg−1(y)‖2J = 〈Qg−1(y), Qg−1(y)〉 = 〈y, Qg−2(y)〉. To expand
Qg−2(y), we expand the following equations by letting a = 1√

ξ
− 1:

g−2 = e + (2a + a2)ci ,

g−4 = e +
(
2(2a + a2) + (2a + a2)2

)
ci

g−2 ◦ y = y + (2a + a2)ci ◦ y,

g−2 ◦ (g−2 ◦ y) = y + 2(2a + a2)ci ◦ y + (2a + a2)2ci ◦ (ci ◦ y),

g−4 ◦ y = y +
(
2(2a + a2) + (2a + a2)2

)
ci ◦ y.

Thus, Qg−2(y) turns out to be

Qg−2(y) = 2g−2 ◦ (g−2 ◦ y) − g−4 ◦ y

= y + 2(2a + a2)ci ◦ y + 2(2a + a2)2ci ◦ (ci ◦ y) − (2a + a2)2ci ◦ y

= y + 2(2a + a2)ci ◦ y + (2a + a2)2Qci (y),

123

800 S. Kanoh, A. Yoshise

and hence, we obtain ‖Qg−1(y)‖2J as

〈y, Qg−2(y)〉 = ‖y‖2J + 2(2a + a2)〈y, ci ◦ y〉 + (2a + a2)2〈y, Qci (y)〉
= ‖y‖2J + 2(2a + a2)〈y ◦ y, ci 〉 + (2a + a2)2 (〈y, ci 〉)2

where the second equality follows from Proposition 6.3. Here, y ∈ intK and ci ∈
Kimply that 〈y, ci 〉 > 0, and y ◦ y = y2 ∈ intK implies 〈y ◦ y, ci 〉 > 0. Noting
that a > 0 and ‖Qg−1(y)‖2J = 1, ‖y‖2J < 1 should hold and hence, 1

‖y∗‖J > 1,

which implies that det
(

1
‖y∗‖J y

∗
)

> det(y∗). Since
∥
∥
∥ 1

‖y∗‖J y
∗
∥
∥
∥
2

J
= 1 holds, we find

that det(x∗) > det(y∗). Next, we describe the lower bound for det(y∗) using det(x̄∗).
Since the largest eigenvalue of x̄ satisfying ‖x̄‖2J = 1 is less than 1, by Proposition 3.5,
we have:

{
Qg(x̄) ∈ E | x̄ ∈ Qg−1 (kerA) ∩ K, ‖x̄‖2J = 1

}
⊆ kerA ∩ K.

This implies det(y∗) ≥ det
(
Qg(x̄∗)

)
, and by Proposition 2.5, we have det(y∗) ≥

det(g)2 det(x̄∗) = ξ |H | det(x̄∗) = ξ det(x̄∗). Thus, det(x∗) > det(y∗) ≥ ξ det(x̄∗)
holds, and we can conclude that δsupposed (kerA ∩ intK) > ξ · δsupposed (Qg−1 (kerA)

∩intK). ��
Next, using Proposition 6.5, we derive the maximum number of iterations until the
proposed method finds x ∈ kerA ∩ int K by using δ (kerA ∩ int K) as in Pena and
Soheili’s method.

Proposition 6.6 Suppose that kerA ∩ int K �= ∅ holds. Algorithm 2 returns x ∈
kerA ∩ intK after at most logξ δ (kerA ∩ intK) iterations.

Proof Let kerĀ be the linear subspace at the start of k iterations of Algorithm 2 and
suppose that δsupposed

(
kerĀ ∩ intK) = 1/r

r
2 holds. Then, from Proposition 6.5, we

find that δsupposed (kerA ∩ intK) > ξ k/r
r
2 . This implies that δ (kerA ∩ intK) > ξ k

since δ (kerA ∩ intK) = r
r
2 · δsupposed (kerA ∩ intK) holds. By taking the logarithm

base ξ , we obtain logξ δ (kerA ∩ intK) > k. ��
From here on, using the above results, we will compare the computational com-

plexities of the methods in the case that K is simple and kerA ∩ intK �= ∅ holds.
Table 1 summarizes the upper bounds on the number of iterations of the main algo-
rithm (UB#iter) of the two methods and the computational costs required per iteration
(CC/iter). As in the previous section, the main algortihm requires O(m3 + m2d) to
compute the projection PA. Here, BP shows the computational cost of the basic pro-
cedure in each method.

The upper bound on the number of iterations of Algorithm 2 is given by
logξ δ (kerA ∩ intK) = log1.5 δ (kerA ∩ intK) / log1.5 ξ , where we should note that

0 < ξ < 1. Since 0 < 1
− log1.5 ξ

≤ 1 when ξ ≤ 2/3, if ξ ≤ 2/3, then the upper bound
on the number of iterations of Algorithm 2 is smaller than that of the main algorithm
of Pena and Soheili’s method.

123

A new extension of Chubanov’s method to symmetric cones 801

Table 1 Comparison of our method and Pena and Soheili’s method in the main algorithm

Method UB#iter CC/iter

Proposed method logξ δ (kerA ∩ intK) m3 + m2d+ BP

Pena and Soheili’s method − log1.5 δ (kerA ∩ intK) m3 + m2d+ BP

Table 2 Comparison of our method and Pena and Soheili’s method in the basic procedure

von Neumann scheme Smooth perceptron
Method UB#iter CC/iter UB#iter CC/iter

Proposed method r2

ξ2
max(Csd,md) 2

√
2r

ξ − 1 max(Csd,md)

Pena and Soheili’s method 16r4 max(Cmin,md) 8
√
2r2 − 1 max(Csd,md)

Next, Table 2 summarizes upper bounds on the number of iterations of basic pro-
cedures in the proposed method (UB#iter) and Pena and Soheili’s method and the
computational cost required per iteration (CC/iter). It shows cases of using the von
Neumann scheme and the smooth perceptron in each method (corresponding to Algo-
rithm 1 and Algorithm 5 in the proposed method). As in the previous section, Csd

denotes the computational cost required for spectral decomposition, andCmin denotes
the computational cost required to compute only the minimum eigenvalue and the
corresponding primitive idempotent.

Note that by setting ξ = (4r)−1, the upper bounds on the number of itera-
tions of the basic procedure of the two methods are the same. If ξ = (4r)−1, then

1
− log1.5 ξ

= 1
log1.5 4r

≤ 1
log1.5 4

= 0.292, and the upper bound of the number of iterations
of Algorithm 2 is less than 0.3 times the upper bound of the number of iterations of
the main algorithm of Pena and Soheili’s method, which implies that the larger the
value of r is, the smaller the ratio of those bounds becomes. From the discussion in
Sect. 6.3, we can assumeO(Csd = Cmin), and Table 2 shows that the proposedmethod
is superior for finding a point x ∈ kerA ∩ int K.

6.3 Computational costs of Csd and Cmin

This section discusses the computational cost required for spectral decompositionCsd

and the computational cost required to compute only the minimum eigenvalue and the
corresponding primitive idempotent Cmin.

There are so-called direct and iterative methods for eigenvalue calculation algo-
rithms, briefly described on pp.139-140 of [4]. (Note that it is also written that there is
no direct method in the strict sense of an eigenvalue calculation since finding eigen-
values is mathematically equivalent to finding zeros of polynomials).

In general, when using the direct method of O(n3), we see that Csd = O(n3) and
Cmin = O(n3). The Lanczos algorithm is a typical iterative algorithm used for sparse
matrices. Its cost per iteration of computing the product of a matrix and a vector once
isO(n2). Suppose the number of iterations at which we obtain a sufficiently accurate

123

802 S. Kanoh, A. Yoshise

solution is constant with respect to the matrix size. In that case, the overall computa-
tional cost of the algorithm is O(n2). Corollary 10.1.3 in [7] discusses the number of
iterations that yields sufficient accuracy. It shows that we can expect fewer iterations
if the value of "the difference between the smallest and second smallest eigenvalues /
the difference between the second smallest and largest eigenvalue" is larger. However,
it is generally difficult to assume that the above value does not depend on the matrix
size and is sufficiently large. Thus, even in this case, we cannot take advantage of
the condition that we only need the minimum eigenvalue, and we conclude that it is
reasonable to consider that O(Csd) = O(Cmin).

7 Numerical experiments

7.1 Outline of numerical implementation

Numerical experiments were performed using the authors’ implementations of the
algorithms on a positive semidefinite optimization problemwith one positive semidef-
inite cone K = S

n+ of the form

P(A) find X ∈ S
n++ s.t. A(X) = 0 ∈ R

m

where S
n++ denotes the interior of K = S

n+. We created strongly feasible ill-
conditioned instances, i.e., kerA ∩ S

n++ �= ∅ and X ∈ kerA ∩ S
n++ has positive

but small eigenvalues. We will explain how to make a such instance in Sect. 7.2.
In what follows, we refer to Lourenço et al.’s method [10] as Lourenço (2019), and
Pena and Soheili’s method [13] as Pena (2017). We set the termination parameter as
ξ = 1/4 in our basic procedure. The reason for setting ξ = 1/4 is to prevent the
square root of ξ from becoming an infinite decimal, and to prevent the upper bound
on the number of iterations of the basic procedure from becoming too large. We also
set the accuracy parameter as ε = 1e-12, both in our main algorithm and in Lourenço
(2019) and determined whether PS∞(A) or PS1(A) has a solution whose minimum
eigenvalue is greater than or equal to ε. Note that [13] proposed various update meth-
ods for the basic procedure. In our numerical experiments, all methods employed the
modified von Neumann scheme (Algorithm 4) with the identity matrix as the initial
point and the smooth perceptron scheme (Algorithm 5). This implies that the basic
procedures used in the three methods differ only in the termination conditions for
moving to the main algorithm and that all other steps are the same. All executions
were performed using MATLAB R2022a on an Intel (R) Core (TM) i7-6700 CPU
@ 3.40GHz machine with 16GB of RAM. Note that we computed the projection PA
using theMATLAB function for the singular value decomposition. The projectionPA
was given by PA = I − A�(AA�)−1A using the matrix A ∈ R

m×d which represents
the linear operator A(·) and the identity matrix I . Here, suppose that the singular
value decomposition of a matrix A is given by A = U
V� = U (
m O)V� where
U ∈ R

m×m and V ∈ R
d×d are orthogonal matrices, and
m ∈ R

m×m is a diagonal
matrix with m singular values on the diagonal. Substituting this decomposition into

123

A new extension of Chubanov’s method to symmetric cones 803

A�(AA�)−1A, we have

A�(AA�)−1A = A�(U

�U�)−1A

= A�U−�(
2
m)−1U−1A

= V
�
−2
m
V� = V

(
Im O
O O

)

V� = V:,1:mV�:,1:m,

where V:,1:m represents the submatrix from column 1 to columnm of V . Thus, for any
x ∈ E, we can compute PA(x) = x − V:,1:mV�:,1:mx .

In what follows, X̄ ∈ S
n denotes the output obtained from the main algorithm and

X∗ the result scaled as the solution of the original problem P(A) multiplied by a real
number such that λmax (X∗) = 1. When X∗ was obtained, we defined the residual of
the constraints as the value of ‖A(X∗)‖2.

We also solved the following problem with a commercial code, Mosek [12], and
compared it with the output of Chubanov’s methods:

(P) min 0 s.t A(X) = 0, X ∈ S
n+,

(D) max 0�y s.t −A∗y ∈ S
n+.

Here,Mosek solves the self-dual embeddingmodel by using a path-following interior-
point method, so if we obtain a solution (X∗, y∗), then X∗ and −A∗y∗ lie in the
(approximate) relative interior of the primal feasible region and the dual feasible
region, respectively [20]. That is, X∗ obtained by solving a strongly feasible problem
withMosek is inSn++, X∗ obtained by solving aweakly feasible problem is inSn+\Sn++,
and X∗ obtained by solving an infeasible problem is X∗ = O (i.e., −A∗y∗ ∈ S

n++).
As well as for Chubanov’s methods, we computed ‖A(X∗)‖2 for the solution obtained
by Mosek after scaling so that λmax (X∗) would be 1. Note that (P) and (D) do not
simultaneously have feasible interior points. In general, it is difficult to solve such
problems stably by using interior point methods, but since strong complementarity
exists between (P) and (D), they can be expected to be stably solved. By applying
Lemma 3.4 of [11], we can generate a problem in which both the primal and dual
problems have feasible interior points in which it can be determined whether (P) has a
feasible interior point. However, since therewas no big difference between the solution
obtained by solving the problem generated by applying Lemma 3.4 of [11] and the
solution obtained by solving the above (P) and (D), we showed only the results of
solving (P) and (D) above.

7.2 How to generate instances

Here, we describe how the strongly feasible ill-conditioned instances were gener-
ated. In what follows, for any natural numbers m, n, rand(n) is a function that returns
n-dimensional real vectors whose elements are uniformly distributed in the open seg-
ment (0, 1), and rand(m, n) is a function that returns an m × n real matrix whose
elements are uniformly distributed in the open segment (0, 1). Furthermore, for any
x ∈ R

n and X ∈ R
m×n , diag(x) ∈ R

n×n is a function that returns a diagonal matrix

123

804 S. Kanoh, A. Yoshise

whose diagonal elements are the elements of x , and vec(X) ∈ R
mn is a function that

returns a vector obtained by stacking the n column vectors of X . The strongly feasi-
ble ill-conditioned instances were generated by extending the method of generating
ill-conditioned strongly feasible instances proposed in [14] to the symmetric cone
case.

Proposition 7.1 Suppose that x̄ ∈ intK, ‖x̄‖∞ ≤ 1 and ū ∈ K, ‖ū‖1 = r
satisfy 〈x̄, ū〉 = r . Define the linear operator A : E → R

m as A(x) =
(〈a1, x〉, 〈a2, x〉, . . . , 〈am, x〉)T for which a1 = ū − x̄−1 and 〈a j , x̄〉 = 0 hold for
any j = 2, . . . ,m. Then,

x̄ = arg max
x

{det(x) : x ∈ K ∩ kerA, ‖x‖∞ = 1} . (21)

Proof First, note that the assertion (21) is equivalent to

x̄ = arg max
x∈F

{log det(x)} where F := {x ∈ K ∩ kerA : ‖x‖∞ ≤ 1} . (22)

From the assumptions, we see that x̄ ∈ K, ‖x̄‖∞ ≤ 1 and 〈a1, x̄〉 = 〈ū − x̄−1, x̄〉 =
r − r = 0; thus, A(x̄) = 0 and x̄ ∈ F . Since ∇ log det(x) = x−1, if x̄ satisfies

〈x − x̄, x̄−1〉 ≤ 0 for any x ∈ F (23)

we can conclude that (22) holds. In what follows, we show that (23) holds.
For any x ∈ F , x ∈ kerA and hence, 〈a1, x〉 = 〈ū − x̄−1, x〉 = 〈ū − x̄−1, x〉 = 0,

i.e., 〈ū, x〉 = 〈x̄−1, x〉. Thus, we obtain

〈x − x̄, x̄−1〉 = 〈ū, x〉 − r

≤ 〈ū, x〉 − ‖ū‖1‖x‖∞ (by ‖ū‖1 = r and ‖x‖∞ ≤ 1)

≤ 0 (by 〈ū, x〉 ≤ ‖ū‖1‖x‖∞)

which completes the proof. ��
Proposition 7.1 guarantees that we can generate a linear operator A satisfying

kerA ∩ S
n++ �= ∅ by determining an appropriate value μ = max

X∈F
det(X), where

F = {X ∈ S
n : X ∈ S

n++ ∩ kerA, ‖X‖∞ = 1}. The details on how to generate the
strongly feasible instances are in Algorithm 3. The input consists of the rank of the
semidefinite cone n, the number of constraints m, an arbitrary orthogonal matrix P ,
and the parameter τ ∈ R++ which determines the value of μ. We made instances for
which the value of μ satisfies 1e − τ ≤ μ ≤ 1e − (τ − 1). In the experiments, we
set τ ∈ {50, 100, 150, 200, 250} so that μ would vary around 1e-50, 1e-100, 1e-150,
1e-200, and 1e-250.

Note that Algorithm 3 generates instances using x̄ that has a natural eigenvalue dis-
tribution. For example, let n−1 = 3 and consider two Xs where one has 3 eigenvalues
of about 1e-2, and the others have 1 each of 1e-1, 1e-2, and 1e-3. det(X) �1e-6 is

123

A new extension of Chubanov’s method to symmetric cones 805

Table 3 Frequency distribution table of eigenvalues of X generated byAlgorithm 3when n = 13 or n = 14,
τ = 30

Class Class width of eigenvalues of x̄ Frequency(num)
Lower bound Upper bound n = 13 n = 14

1 l
1

n−1 · 102 u
1

n−1 · 102 2 2

2 l
1

n−1 · 101 u
1

n−1 · 101 3 3

3 l
1

n−1 u
1

n−1 2 3

4 l
1

n−1 · 10−1 u
1

n−1 · 10−1 3 3

5 l
1

n−1 · 10−2 u
1

n−1 · 10−2 2 2

obtained for both Xs, but the latter is more natural for the distribution of eigenvalues.
In our experiment, we generated ill-conditioned instances by using X having a natural
eigenvalue distribution as follows:

1. Find an integer s that satisfies 1e-s ≤ l
1

n−1 ≤ u
1

n−1 ≤ 1e-(s − 1).
2. Generate t = 2s − 1 eigenvalue classes.
3. Decide how many eigenvalues to generate for each class.

For example, when n = 13 and τ = 30, Algorithm 3 yields s = 3, t = 5, a = 2
and b = 2, and since b is even, we have num = (2, 3, 2, 3, 2)�. The classes of t = 5

eigenvalues are shown in Table 3 below. Note that (l
1

n−1 ·10s−i)·(l 1
n−1 ·10s−(t−i+1)) =

l
2

n−1 and (u
1

n−1 · 10s−i) · (u 1
n−1 · 10s−(t−i+1)) = u

2
n−1 hold for the i-th and t − i + 1-th

classes. This implies that we obtain 1e− τ ≤ μ = det(X) ≤ 1e− (τ − 1) both when
generating n − 1 eigenvalues in the sth class and when generating n − 1 eigenvalues
of X according to num. When n = 14, τ = 30, Algorithm 3 gives s = 3, t = 5,
a = 2, and b = 3, and since b is an odd number, we have num = (2, 3, 3, 3, 2)�.
Thus, Algorithm 3 generates the instances by controlling the frequency so that the
geometric mean of the n − 1 eigenvalues of X falls within the s-th class width.

7.3 Numerical results and observations

We set the size of the positive semidefinite matrix to n = 50, so that the computational
experiments could be performed in a reasonable period of time. To eliminate bias in the
experimental results, we generated instances in which the number of constraintsm was
controlled using the parameter ν for the number n(n+1)

2 of variables in the symmetric
matrix of order n. Specifically, the number of constraintsm on an integer was obtained
by rounding the value of n(n+1)

2 ν, where ν ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. For each ν ∈
{0.1, 0.3, 0.5, 0.7, 0.9}, we generated five instances, i.e., 25 instances for each of five
strongly feasible cases (corresponding to five patterns ofμ � 1e-50, . . . , μ � 1e-250,
see Sect. 7.2 for details). Thus, we generated 125 strongly feasible instances. We set
the upper limit of the execution time to 2 hours and compared the performance of our
method with those of Lourenço (2019), Pena (2017) and Mosek. When using Mosek,
we set the primal feasibility tolerance to 1e-12.

123

806 S. Kanoh, A. Yoshise

Algorithm 3 Strongly feasible instance
1: Input: n,m, τ, P
2: Output: A
3: l ← 1e − τ , u ← 1e − (τ − 1), s ← � τ

n−1 � and t ← 2s − 1

4: b ← (n − 1) mod t , a ← (n−1)−b
t and num ← a · 1 ∈ R

t

5: if b is odd then
6: b̄ ← b−1

2 and numi ← numi + 1 such that s − b̄ ≤ i ≤ s + b̄
7: else
8: b̄ ← b

2 and numi ← numi + 1 such that s − b̄ ≤ i < s or s < i ≤ s + b̄
9: end if
10: d1 ← 1 and k ← 2
11: for i = 1 to t do
12: for j = 1 to numi do

13: dl ← l
1

n−1 · 10s−i and du ← u
1

n−1 · 10s−i

14: dk ← dl + (du − dl) rand (1)
15: k ← k + 1
16: end for
17: end for
18: D′ ← diag(d) and then compute C ← PD′PT and c ← vec(C)

19: u ← (n, 0Tn−1)
T where 0n−1 denotes the n − 1-dimensional vector of zeros

20: U ← P(diag(u) − D′−1
)PT , A′ ← vec(U) and R ← I − 1

‖c‖22
ccT

21: for i = 1 to m − 1 do
22: A′

i ← rand(n, n) and Ai ←
(
A′
i + (A′

i)
T
)

/2

23: A′ ←
(

A′
vec(Ai)

T

)

24: end for
25: Ā ← A′R
26: A ←

(
vec(U)T

Ā

)

Tables 4 and 5 list the results for the (ill-conditioned) strongly feasible case. The
“CO-ratio” column shows the ratio of |N2|/|N1| where N1 is the set of problems
for which the algorithm terminated within 2 hours, the upper limit of the execution
time, and N2 ⊆ N1 is the set of problems for which a correct output is obtained, the
“times(s)” column shows the average CPU time of the method, the “M-iter” column
shows the average iteration number of each main algorithm, the ‖A(X∗)‖2 column
shows the residual of the constraints, and the λmin(X∗) column shows the minimum
eigenvalue of X∗. The “BP” column shows which scheme (the modified von Neumann
(MVN) or the smooth perceptron (SP)) was used in the basic procedure. The values
in parentheses () in row μ ≈ 1e-100 are the average values excluding instances for
which the method ended up running out of time.

First, we compare the results when using MVN or SP as the basic procedure in
each method. From Table 4, we can see that for strongly-feasible problems, using SP
as the basic procedure has a shorter average execution time than using MVN. Next,
we compare the results of each method. For μ � 1e-50, there was no significant
difference in performance among the three methods. For μ ≤ 1e-100, the results
in the rows BP=MVN show that our method and Lourenço (2019) obtained interior
feasible solutions for all problems, while Pena (2017) ended up running out of time

123

A new extension of Chubanov’s method to symmetric cones 807

for 99 instances. This is because Pena (2017) needs to call its basic procedure to find a
solution of rangeA∗∩S

n++. Comparing our method with Lourenço (2019), we see that
Algorithm 2 is superior in terms of CPU time. Finally, we compare the results for each
value of μ. As μ becomes smaller, i.e., as the problem becomes more ill-conditioned,
the number of scaling times and the execution time increase, and the accuracy of the
obtained solution gets worse.

Table 6 summarizes the results of our experiments using Mosek to solve strongly
feasible ill-conditioned instances. Mosek sometimes returned the error message
“rescode = 10006” for theμ ≤ 1e−200 instances. This error message means that "the
optimizer is terminated due to slow progress." In this case, the obtained solution is not
guaranteed to be optimal, but it may have sufficient accuracy as a feasible solution.
Therefore, we took the CO-ratio when the residual ‖A(X∗)‖2 is less than or equal
to 1e-5 to be the correct output. The reason why we set the threshold to 1e-5 is that
the maximum value of ‖A(X∗)‖2 was less than 1e-5 among the X∗ values obtained
for the strongly feasible ill-conditioned instances by the three methods, Algorithm 2,
Lourenço (2019) and Pena (2017). On the other hand, for the μ ≤ 1e−200 instances,
the Chubanov methods had higher CO-ratios. That is, when the problem was quite
ill-conditioned, the solution obtained by each of the Chubanov methods had a smaller
value of ‖A(X∗)‖2 compared with the solution obtained byMosek, which implies that
the accuracy of the solution obtained by each of the Chubanov methods was higher
than that of Mosek.

8 Concluding remarks

In this study, we proposed a new version of Chubanov’s method for solving the fea-
sibility problem over the symmetric cone by extending Roos’s method [15] for the
feasible problem over the nonnegative orthant. Our method has the following features:

• Using the norm ‖ · ‖∞ in problem PS∞(A) makes it possible to (i) calculate the
upper bound for the minimum eigenvalue of any feasible solution of PS∞(A), (ii)
quantify the feasible region of P(A), and hence (iii) determine whether there exists
a feasible solution of P(A)whose minimum eigenvalue is greater than ε as in [10].

• In terms of the computational bound, ourmethod is (i) equivalent toRoos’s original
method [15] and superior toLourenço et al.’smethod [10]when the symmetric cone
is the nonnegative orthant, (ii) superior to Lourenço et al.’s when the symmetric
cone is a Cartesian product of second-order cones, (iii) equivalent to Lourenço
et al.’s when the symmetric cone is the simple positive semidefinite cone, under
the assumption that the costs of computing the spectral decomposition and the
minimum eigenvalue are of the same order for any given symmetric matrix, and
(iv) superior to Pena and Soheili’s method [13] for any simple symmetric cones
under the assumption that P(A) is feasible.

We also conducted comprehensive numerical experiments comaring our method
with the existing mtehods of Chubanov [10, 13] and Mosek. Our numerical results
showed that

123

808 S. Kanoh, A. Yoshise

Ta
bl
e
4

R
es
ul
ts
fo
r
st
ro
ng

ly
fe
as
ib
le
in
st
an
ce
s
(C

or
re
ct
ou

tp
ut

(C
O
-)
ra
tio

,C
PU

tim
e
an
d
an
d
M
-i
te
r)

A
lg
or
ith

m
2

L
ou

re
nç
o
(2
01

9)
Pe

na
(2
01

7)
In
st
an
ce

B
P

C
O
-r
at
io

T
im

e
(s
)

M
-i
te
r

C
O
-r
at
io

T
im

e
(s
)

M
-i
te
r

C
O
-r
at
io

T
im

e
(s
)

M
-i
te
r

μ
�

1e
-5
0

M
V
N

25
/2
5

7.
81

3.
28

25
/2
5

25
.9
4

14
.4
8

25
/2
5

3.
60

1.
00

SP
25

/2
5

0.
75

1.
00

25
/2
5

10
.1
2

14
.0
8

25
/2
5

0.
80

1.
00

μ
�

1e
-1
00

M
V
N

25
/2
5

51
.6
2

53
.1
2

25
/2
5

44
8.
05

32
9.
04

1/
1

(4
51

3.
59

)
(2
.0
0)

SP
25

/2
5

32
.1
1

36
.0
4

25
/2
5

25
6.
24

36
5.
76

25
/2
5

12
3.
65

23
.3
2

μ
�

1e
-1
50

M
V
N

25
/2
5

99
.3
9

11
8.
12

25
/2
5

88
8.
25

72
8.
68

–
–

–

SP
25

/2
5

76
.9
8

91
.9
6

25
/2
5

52
0.
73

75
6.
36

25
/2
5

78
1.
88

11
7.
32

μ
�

1e
-2
00

M
V
N

25
/2
5

14
4.
48

18
5.
40

25
/2
5

13
28

.6
8

11
45

.4
0

–
–

–

SP
25

/2
5

11
8.
06

15
1.
44

25
/2
5

78
9.
29

11
50

.2
0

25
/2
5

18
74

.2
0

23
6.
44

μ
�

1e
-2
50

M
V
N

25
/2
5

18
8.
11

25
1.
44

25
/2
5

18
27

.2
4

16
01

.2
0

–
–

–

SP
25

/2
5

16
2.
67

21
5.
12

25
/2
5

10
74

.0
7

15
64

.8
0

25
/2
5

33
08

.3
5

37
6.
24

123

A new extension of Chubanov’s method to symmetric cones 809

Ta
bl
e
5

R
es
ul
ts
fo
r
ill
-c
on
di
tio

ne
d
st
ro
ng
ly

fe
as
ib
le
in
st
an
ce
s
(‖A

(
X

∗)
‖ 2

an
d

λ
m
in

(
X

∗)
)

A
lg
or
ith

m
2

L
ou

re
nç
o
(2
01

9)
Pe

na
(2
01

7)
In
st
an
ce

B
P

‖A
(
X

∗)
‖ 2

λ
m
in

(
X

∗)
‖A

(
X

∗)
‖ 2

λ
m
in

(
X

∗)
‖A

(
X

∗)
‖ 2

λ
m
in

(
X

∗)

μ
�

1e
-5
0

M
V
N

1.
24

e-
11

4.
42

e-
4

7.
64

e-
12

3.
60

e-
4

1.
27

e-
11

3.
95

e-
4

SP
1.
23

e-
11

8.
48

e-
4

8.
22

e-
12

8.
10

e-
4

1.
23

e-
11

8.
48

e-
4

μ
�

1e
-1
00

M
V
N

9.
98

e-
12

2.
73

e-
6

1.
26

e-
11

3.
01

e-
6

(1
.0
7e
-8
)

(3
.3
4e
-6
)

SP
4.
18

e-
11

3.
19

e-
5

1.
10

e-
11

3.
75

e-
5

5.
38

e-
9

3.
39

e-
6

μ
�

1e
-1
50

M
V
N

1.
96

e-
10

5.
24

e-
8

4.
29

e-
10

4.
10

e-
8

–
–

SP
2.
21

e-
10

3.
98

e-
7

5.
60

e-
10

5.
54

e-
7

6.
31

e-
9

3.
78

e-
7

μ
�

1e
-2
00

M
V
N

1.
51

e-
8

7.
86

e-
10

4.
76

e-
8

1.
18

e-
9

–
–

SP
1.
09

e-
8

4.
87

e-
9

3.
81

e-
8

5.
93

e-
9

1.
72

e-
8

5.
06

e-
9

μ
�

1e
-2
50

M
V
N

9.
51

e-
7

8.
43

e-
12

2.
58

e-
6

2.
52

e-
11

–
–

SP
1.
72

e-
6

5.
14

e-
11

3.
35

e-
6

7.
05

e-
11

1.
73

e-
6

5.
40

e-
11

123

810 S. Kanoh, A. Yoshise

Table 6 Results for
ill-conditioned strongly feasible
instances with Mosek

Instance CO-ratio Time (s) ‖A(X∗)‖2 λmin(X
∗)

μ � 1e-50 25/25 1.96 8.73e-13 7.99e-3

μ � 1e-100 25/25 3.18 1.87e-12 4.51e-5

μ � 1e-150 25/25 3.72 2.48e-10 4.45e-7

μ � 1e-200 21/25 6.56 2.58e-7 4.35e-9

μ � 1e-250 1/25 6.88 2.57e-7 5.37e-11

• It is considerably faster than the existing methods on ill-conditioned strongly fea-
sible instances.

• Mosek was the better than Chubanov’s methods in terms of execution time. On the
other hand, in terms of the accuracy of the solution (the value of ‖A(X∗)‖2), we
found that all of Chubanov’s methods are better thanMosek. In particular, we have
seen such results for strongly-feasible (terribly) ill-conditioned (μ � 1e − 250)
instances.

In this paper, we performed computer experiments by setting ξ = 1/4 in the basic
procedure to avoid inducements for calculation errors, but there is room for further
study on how to choose the value of ξ . For example, if the problem size is large, the
computation of the projection PA is expected to take much more time. In this case,
rather than setting ξ = 1/4, running the algorithm as ξ < 1/4 may reduce the number
of scaling steps to be performed before completion. As a result, the algorithm’s run
time may be shorter than when we set ξ = 1/4. More desirable approach may be to
choose an appropriate value of ξ at each iteration along to the algorithm’s progress.

Acknowledgements We would like to express our deep gratitude to the reviewers and editors for their
many valuable comments. Their comments significantly enriched the content of this paper, especially
Sects. 3, 5, 6, and 7. We also would like to sincerely thank Daisuke Sagaki for essential ideas on the proof
of Proposition 6.3, and Yasunori Futamura for helpful information about the computational cost of the
eigenvalue calculation in Sect. 6.3. We could not complete this paper without their support. This work was
supported by JSPS KAKENHI Grant Numbers (B)19H02373 and JP 21J20875.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

A new extension of Chubanov’s method to symmetric cones 811

A Basic procedure

Algorithm 4 Basic procedure (Modified von Neumann scheme)
1: Same as lines 1-3 of Algorithm 1

2: while k ≤ p2r2max
ξ2

do

3: Same as lines 5-23 of Algorithm 1
4: for � ∈ {1, . . . , p} do
5: S� ← {i | λ(zk

�
)i ≤ 0} and then u� ← ∑

i∈S� c(z
k
�
)i

6: end for

7: u ← 1∑p
�=1 |S�|

u and yk+1 ← αyk + (1 − α)u, where α = 〈PA(u),PA(u)−zk 〉
‖zk−PA(u)‖2J

8: k ← k + 1 , zk ← PA(yk) and vk ← yk − zk

9: end while

Below, we describe the results of updating yk with the smooth perceptron scheme as
described in [13]. Given μ > 0, we define operator uμ(·) : E → {u ∈ K | 〈u, e〉 = 1}
as uμ(v) := arg min

u∈K,〈u,e〉=1

{〈u, v〉 + μ
2 ‖u − ū‖2J

}
.

Algorithm 5 Basic procedure (Smooth perceptron scheme)
1: Input: PA and ξ such that a constant 0 < ξ < 1
2: Output: (i) a solution to P(A) or (ii) D(A) or (iii) a certificate that, for any feasible solution x to

PS∞ (A), 〈e, x〉 < r

3: initialization : ū ← 1
r e, μ

0 ← 2, u0 ← ū, k ← 0, H1, . . . , Hp = ∅.
4: compute y0 ← uμ0

(
PA(u0)

)
, z0 ← PA(y0), v0 ← y0 − z0.

5: while k ≤ 2
√
2prmax
ξ

− 1 do
6: Same as lines 5-23 of Algorithm 1

7: θk ← 2
k+3 and uk+1 ← (1 − θk)(uk + θk yk) + (θk)2u

μk

(
PA(uk)

)

8: μk+1 ← (1 − θk)μk and yk+1 ← (1 − θk)yk + θkuμk+1

(
PA(uk+1)

)

9: k ← k + 1 , zk ← PA(yk) and vk ← yk − zk

10: end while

References

1. Alizadeh F.: An introduction to formally real Jordan algebras and their applications in optimization.
In: Anjos, M., Lasserre, J. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization.
International Series in Operations Research & Management Science, vol 166. Springer, Boston, MA
(2012)

2. Chubanov, S.: A strongly polynomial algorithm for linear systems having a binary solution. Math.
Program. 134(2), 533–570 (2012)

3. Chubanov, S.: A polynomial projection algorithm for linear feasibility problems. Math. Program.
153(2), 687–713 (2015)

4. Demmel, J.W.: Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics
(1997)

123

812 S. Kanoh, A. Yoshise

5. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford University Press, Oxford (1994)
6. Faybusovich, L.: Euclidean Jordan algebras and interior-point algorithms. Positivity 1, 331–357 (1997)
7. Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU Press (2013)
8. Jordan, P., Neumann, J., v., Wigner, E.: On an Algebraic Generalization of the Quantum Mechanical

Formalism. Ann. Math. 35(1), 29–64 (1934)
9. Kitahara, T., Tsuchiya, T.: An extension of Chubanov’s polynomial-time linear programming algorithm

to second-order cone programming. Optim. Methods Softw. 33(1), 1–25 (2018)
10. Lourenço, B.F., Kitahara, T., Muramatsu, M., Tsuchiya, T.: An extension of Chubanov’s algorithm to

symmetric cones. Math. Program. 173(1–2), 117–149 (2019)
11. Lourenço, B.F., Muramatsu, M., Tsuchiya, T.: Solving SDP completely with an interior point oracle.

Optim. Methods Softw. 36(2–3), 425–471 (2021)
12. Mosek, A.: Moset optimization toolbox for MATLAB. Release, 9, 98 (2019)
13. Pena, J., Soheili, N.: Solving conic systems via projection and rescaling. Math. Program. 166(1–2),

87–111 (2017)
14. Pena, J., Soheili, N.: Computational performance of a projection and rescaling algorithm. Optim.

Methods Softw., 1–18 (2019)
15. Roos, K.: An improved version of Chubanov’s method for solving a homogeneous feasibility problem.

Optim. Methods Softw. 33(1), 26–44 (2018)
16. Schmieta, S., Alizadeh, F.: Extension of primal-dual interior point algorithms to symmetric cones.

Math. Program. Ser. A 96, 409–438 (2003)
17. Soheili, N., Pena, J.: A smooth perceptron algorithm. SIAM J. Optim. 22(2), 728–737 (2012)
18. Soheili, N., Pena, J.: A primal-dual smooth perceptron-vonNeumann algorithm. In: Discrete Geometry

and Optimization (pp. 303-320). Springer, Heidelberg (2013)
19. Wei, Z., Roos, K.: Using Nemirovski’s Mirror-Prox method as Basic Procedure in Chubanov’s

method for solving homogeneous feasibility problems. Manuscript. http://www.optimization-online.
org/DBHTML/2018/04/6559.html (2019)

20. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algo-
rithms, and Applications, vol. 27. Springer, Berlin (2012)

21. Yoshise, A.: Interior point trajectories and a homogeneous model for nonlinear complementarity prob-
lems over symmetric cones. SIAM J. Optim. 17(4), 1129–1153 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www.optimization-online.org/DBHTML/2018/04/6559.html
http://www.optimization-online.org/DBHTML/2018/04/6559.html

	A new extension of Chubanov's method to symmetric cones
	Abstract
	1 Introduction
	2 Euclidean Jordan algebras and their basic properties
	2.1 Euclidean Jordan algebras
	2.2 Symmetric cone
	2.3 Notation

	3 Extension of Roos's method to the symmetric cone problem
	3.1 Outline of the extended method
	3.2 Simple symmetric cone case
	3.3 Non-simple symmetric cone case

	4 Basic procedure of the extended method
	4.1 Outline of the basic procedure
	4.2 Termination conditions of the basic procedure
	4.3 Update of the basic procedure
	4.4 Finite termination of the basic procedure

	5 Main algorithm of the extended method
	5.1 Outline of the main algorithm
	5.2 Finite termination of the main algorithm

	6 Computational costs of the algorithms
	6.1 Comparison of Algorithm 2 and Lourenço et al.'s method
	6.2 Comparison of Algorithm 2 and Pena and Soheili's method
	6.3 Computational costs of Csd and Cmin

	7 Numerical experiments
	7.1 Outline of numerical implementation
	7.2 How to generate instances
	7.3 Numerical results and observations

	8 Concluding remarks
	Acknowledgements
	A Basic procedure
	References

