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Abstract
We study a class of chance-constrained two-stage stochastic optimization problems
where the second-stage recourse decisions belong tomixed-integer convex sets. Due to
the nonconvexity of the second-stage feasible sets, standard decomposition approaches
cannot be applied.We develop a provably convergent branch-and-cut scheme that iter-
atively generates valid inequalities for the convex hull of the second-stage feasible sets,
resorting to spatial branching when cutting no longer suffices. We show that this algo-
rithm attains an approximate notion of convergence, whereby the feasible sets are
relaxed by some positive tolerance ε. Computational results on chance-constrained
resource planning problems indicate that our implementation of the proposed algo-
rithm is highly effective in solving this class of problems, compared to a state-of-the-art
MIP solver and to a naive decomposition scheme.
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1 Introduction

We study two-stage chance-constrained mathematical optimization problems formu-
lated as

min{cx : Pr(x ∈ Cx (ω)) ≥ 1 − α, x ∈ X}, (CCP)

where ω is a random variable with sample space Ω , α ∈ [0, 1], X ⊆ R
nx is com-

pact, and Cx (ω) = ProjxCx,y(ω) ⊆ R
nx is the projection onto the x-space of a

higher-dimensional set Cx,y(ω) ⊆ R
nx+ny(ω), whose dimension might depend on the

realization ω. An algorithmic approach for optimizing over this problem class is a
powerful tool for decision making under uncertainty: the problem class models sit-
uations where we want to make decisions that are feasible with high probability, as
determined by 1− α, and depending on the realization of uncertainty, we are allowed
to take recourse actions (the y variables) to amend the initial decision x . Unlike two-
stage stochastic programs [4], problem (CCP) does not require the first-stage solution
to be feasible for all second-stage problems, but only for enough realizations to satisfy
the chance constraint.

Chance-constrained problems are difficult to solve in general due to nonconvexity of
the feasible region, and additional assumptions are often imposed in order to make the
problem tractable. The importance of establishing conditions that guarantee existence
of an equivalent deterministic problem has been identified since the early days of
stochastic programming [7, 31]. In this paper we make a few assumptions that are
common in the literature and guarantee the existence of a deterministic equivalent
formulation; the most notable assumptions are that X is a bounded set and ω is a
discrete random variable with finite support. The realizations ofω are called scenarios.
Formore general randomvariables, sample-average approximation provides a possible
way to reduce to the case studied in this paper [28].

There aremanyways to construct deterministic equivalent problems, under suitable
conditions. A recent survey on reformulations of chance-constrained mixed-integer
linear programs that arise from finite discrete distribution optimization can be found
in [20]. The approach used in this paper leads to a mixed-integer program with one
binary variable for each scenario, and big-M inequalities to describe the sets Cx (ω).
The drawback of this approach is that the big-M inequalities could lead to poor bounds
for the continuous relaxation. Strong valid inequalities for similar formulations under
right-hand side uncertainty are discussed in [19, 29] and combine inequalities that are
valid for single scenarios into so-called mixing inequalities. The idea is extended in
[18], where aggregated mixing inequalities, incorporating lower bounds on the contin-
uous variables in the original inequalities, are introduced. An alternative reformulation
for the same class of problems can be constructed using the concept of (1−α)-efficient
points, see [3, 8, 32, 34]. Problem-specific algorithms can also be devised, e.g., the
algorithm for chance-constrained packing problems developed in [39] using proba-
bilistic covers.
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For problems of the form (CCP) that admit a deterministic equivalent formula-
tion including all scenarios, the direct solution of the deterministic equivalent quickly
becomes intractable as the size of the problem and number of scenarios increase.
Decomposition strategies that deal with each scenario separately have been shown to
be very effective in this context and in multi-stage programming general, but their
applicability depends on the structure of the problem at hand. If the second-stage
feasible sets Cx,y(ω) are polyhedra with an explicitly known description (i.e., lin-
ear programs), we can apply Benders decomposition [2] or the L-shaped method
[42]; Benders decomposition is at the heart of effective branch-and-cut algorithms for
chance-constrained two-stage problems [1, 25, 27, 40, 43]. This approach cannot be
applied, in general, if the second-stage setsCx,y(ω) are not polyhedra, because finding
an appropriate outer approximation of these sets is no longer as simple as applying
linear programming duality. If the second-stage sets are convex, generalized Benders
decomposition provides a possible solution strategy [16, 23, 24, 41], and so does outer
approximation [10, 11], see, e.g., [26]. The convexification of second-stage problems
containing binary variables only is studied in [35], using disjunctive programming and
the facial property of 0–1 programs. Along the same lines, [36, 38] describe conver-
gent Benders decomposition approaches if the second stage is mixed-binary, relying
on sequential convexification. For the linear case in which the first-stage problem
contains binary variables only and the second stage includes integer variables, [12]
proposes a decomposition algorithm that relies on parametric Gomory cuts, while
[44] extends the approach to deal with first-stage general integer variables. The case
with mixed-integer first and second-stage variables is considered in [33], where the
solution algorithm combines branch-and-bound, interval partitioning and polyhedral
approximations; see also the tutorial [21]. The L-shaped method has been extended to
accommodate for integer variables with linear constraints in the second stage, when
the first-stage problem is a pure binary problem [22], or, more in general, by incorpo-
rating dual cuts based on integer programming duality [6]. A very general approach,
that can in principle deal with mixed-integer as well as nonlinear problems, is the
stochastic branch-and-bound algorithm presented in [30]; the main obstacle to its
implementation is the design of efficient upper and lower bounding procedures for the
subproblems created by branching, and this ultimately determines the effectiveness of
the algorithm.

In this paper we address the solution of problem (CCP) when the first-stage prob-
lem is a (potentially mixed-integer) linear program, and the second-stage problems
are convex mixed-integer nonlinear programs (i.e., the sets Cx,y(ω) are described by
convex constraints and integrality requirements on some or all of the variables). This
very general class of problems encompasses all the ones discussed in the previous
paragraph and is considered to be very difficult to solve in practice. The main ingre-
dient of our algorithm is a sequential convexification procedure that generates valid
inequalities for the convex hull of the second-stage problems. To generate an inequal-
ity, we use a conditional gradient (Frank–Wolfe) algorithm that requires the solution
of several (small) mixed-integer programs. These inequalities are integrated within a
branch-and-cut framework that acts in the space of the x variables, as well as additional
binary variables used to determine which scenarios are feasible to satisfy the chance
constraint. Branching is undertaken to ensure integrality of the x variables, if any,
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and feasibility for the second-stage problems, which may require spatial branching,
in general.

We show that the proposed algorithm converges in finite time to a point that is
optimal for a relaxation of the original problem, where the relaxation amount can
be chosen arbitrarily close to zero. Proving convergence in finite time requires a
careful analysis of the different steps of the algorithm. We first analyze our sequential
convexification procedure based on generating feasible points for the second-stage
problems.While the analysis is straightforward in the linear case, in the nonlinear case
the proceduremay fail to produce a valid cut in finite time, aswe showwith an example.
To overcome this obstacle, we show that introducing a relaxation step for the inequality
suffices to guarantee a valid cut with any desired precision in finite time even in the
nonlinear case. Second, we show that the convexification procedure, combined with
a spatial branch-and-bound framework where branching occurs on the x variables, is
sufficient for convergence in finite time. We remark that our spatial branch-and-bound
algorithm creates children nodes with branching constraints x j ≤ b, x j ≥ b for some
index j and value b; that is, we do not eliminate any region by branching, in contrast to
the simplest scheme that eliminates a strip of width ε > 0 at each branching to ensure
finiteness when the feasible set is compact. Therefore, convergence of our algorithm is
not based on subdivision of the feasible region into a finite number of hyperrectangles:
rather, it is based on the ability of the convexification procedure to eventually separate
every infeasible point while making “sufficient progress”. A key step of our proof is
to generalize the convergence of Kelley’s cutting plane algorithm [17] to inequalities
that may not be supporting for the epigraph of the constraints at the points in the usual
cut-then-reoptimize sequence.

From a computational point of view, we propose several practical enhancements of
the algorithm to increase its numerical performance: primal heuristics, warm-starts of
the convexification procedure, and solution of the deterministic equivalent of partially-
fixed branch-and-bound nodes to close them immediately. We show that all these
components contribute to the effectiveness of our implementation, and allow us to
solve instances of a mixed-integer two-stage chance-constrained resource allocation
problem, with hundreds of scenarios, that are out of reach for a commercial solver
applied to the deterministic equivalent formulation.

The rest of this paper is organized as follows. In Sect. 2 we formally introduce the
considered problem, present the general scheme of our decomposition approach, and
give results about its finite convergence. Section3 gives some algorithmic details and
enhancements, while Sect. 4 presents the outcome of a comprehensive computational
analysis of the performance of the algorithm on two stochastic problems. Finally, we
draw some conclusions in Sect. 5.

2 Decomposition algorithm for (CCP)

Recall that our goal is to solve problem (CCP), restated here for convenience:

min{cx : Pr(x ∈ Cx (ω)) ≥ 1 − α, x ∈ X}. (CCP)
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Wedenote by Projx the projection of a set onto the space of the x variables, by Conv the
convex hull, and by Cont the continuous relaxation (i.e., the set obtained by relaxing
any integrality requirements on the variables defining the set). Given S ⊂ R

n and
ε ≥ 0, we denote S + ε := {x ∈ R

n : ‖x − y‖ ≤ ε for some y ∈ S}, where we use
‖ · ‖ to indicate �2-norm. If S is the feasible set of a problem, we denote any point
in S + ε as ε-feasible for that problem. To obtain a deterministic reformulation for
(CCP), we make the following assumptions:

1. The sample space Ω is discrete and finite, and in particular Ω = {ωk : k =
1, . . . , h};

2. Cx (ω
k) = Projx (Cx,y(ω

k)) �= ∅, where Cx,y(ω
k) = {(x, y) : x ∈ R

nx , y ∈
R
ny(ωk ), gk(x, y) ≤ 0, y ∈ Y k}, Y k = {y ∈ R

ny(ωk) : y j ∈ Z ∀ j ∈ Ik}, and
gk(x, y) is a vector of convex functions (gk1, . . . , g

k
m);

3. X is closed and X ⊆ [−U ,U ]nx for some constant U .

We discussed the first assumption in the introduction. The second assumption states
that the feasible set for each scenario is a non-empty mixed-integer convex set. The
motivation for the third assumptionwill be apparent shortly.Using the first assumption,
and denoting pk = Pr(ω = ωk), we introduce a set of indicator variables zk and rewrite
the problem as

min cx
s.t.: x ∈ X

k = 1, . . . , h zk = 0 ⇒ x ∈ Cx (ω
k)

∑h
k=1 pkzk ≤ α

k = 1, . . . , h zk ∈ {0, 1}.

(CCP-R)

Using the second and third assumption, the problem can be modeled as the mixed-
integer nonlinear program (MINLP)

min cx
s.t.: Ax ≥ b

g1(x, y1) ≤ M1z1
...

. . .
...

gh(x, yh) ≤ Mhzh
p1z1 + . . . + phzh ≤ α

y1 ∈ Y 1

. . .

yh ∈ Y h

z1, . . . zh ∈ {0, 1}

(CCP-MINLP)

In this formulation, we assume that Mk are vectors of constants large enough to
deactivate the corresponding constraints if zk = 1. Such constants exist thanks to
the third assumption. Since there is no objective function contribution associated with
variables y, the second stage problems are feasibility problems; alternativemodelswith
second-stage objective function contributions can be considered, e.g., by enlarging
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the vector of first-stage variables, developing specialized optimality cuts, or even
introducing a “recovery mode” for violated scenarios, see [25]. One motivation for the
third assumption can now be properly explained: it ensures that the recession cone of
(CCP-MINLP) and the one of (CCP-R) are the same, as they coincide with the set {0}.
The assumption that the recession cones are the same is necessary for mixed-integer
representability [15]. A further motivation is technical: we need the third assumption
for our convergence proof.We remark that, although we discuss the case in which all x
variables are continuous, our approach is based on a branch-and-cut framework in the
x-space, therefore from a theoretical point of view it can be easily extended to handle
integrality requirements on some x variables. The implementation of the algorithm
would however be more complex, therefore we do not explicitly consider this case.

Formulation (CCP-MINLP) is the deterministic equivalent of (CCP), under the three
assumptions stated above. It can be solved with a convex MINLP solver, or, in case
the constraints g1, . . . , gh are linear, with a MILP solver. However, such formulation
has two main drawbacks: its size, and its weak continuous relaxation. The size is an
issue because (CCP-MINLP) includes all variables and constraints for the second-
stage problems: since the problem is then solved via branch and cut, increasing the
size linearly with the number of scenarios generally leads to exponential growth of
the running time in practice. The weak continuous relaxation is due to the presence of
many big-M constraints, which can lead to large gaps between the original problem
and its relaxation.

Several decomposition algorithms for problems with a structure similar to
(CCP-MINLP) have been proposed, see also the discussion in Sect. 1. The algorithm
that we propose is inspired, most notably, by [26, 27], both of which employ a similar
branch-and-bound scheme, and generate valid inequalities for second-stage feasible
sets Cx,y(ω) that are linear and nonlinear convex, respectively. We follow a decom-
position approach whereby we define a master problem with first-stage variables x
only, and h subproblems, one for each scenario, involving the respective scenario-
dependent constraints. The master problem is a relaxation of the original problem, as
all the constraints depending on second-stage variables have been eliminated. There-
fore, whenever the solution of the master problem does not satisfy the constraints of
some active scenario (zk = 0), we want to generate cuts for the corresponding set
Cx,y(ω

k), and add them to the master problem. This scheme, originally proposed by
[37], has been later used in [26, 27], but the task in this paper is complicated by the
integrality restrictions on the second-stage variables y1, . . . , yh , so that the genera-
tion of valid inequalities for Cx,y(ω

k) is considerably more involved. Although we
add these cuts as big-M constraints, they only involve x variables, therefore we need
smaller values of the big-M coefficients than in CCP-MINLP.

To develop intuition, let us consider the case in which we want all scenarios to
be satisfied, i.e., (CCP-MINLP) with α = 1. At a high level, the problem that we
need to solve can then be stated in terms of the following simpler question: given a
point x̂ from the master problem and a scenario index k, is x̂ feasible for scenario
ωk , i.e., does there exist ŷ such that (x̂, ŷ) ∈ Cx,y(ω

k), and if not, can we somehow
exclude x̂ from the master? A systematic procedure for this task can be used to solve
the original problem: the master is a relaxation of the original problem, and with the
above procedure we could exclude every candidate solution until we find one that is
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feasible for allCx,y(ω
k), k = 1, . . . , h (if we do not require all scenarios to be satisfied,

i.e., α < 1, then the algorithm must be modified to eliminate only those x̂ that are not
feasible for a number of scenarios sufficient to satisfy the chance constraint). Notice
that if x̂ is infeasible for scenarioωk , the nonconvexity ofCx,y(ω

k) (due to integrality)
may prevent us from deriving a valid linear inequality that cuts off x̂ , so cutting may
not be sufficient by itself. We now discuss in more detail how to eliminate x̂ when it
is not feasible for a scenario ωk .

By definition of the second-stage feasible sets Cx,y(ω
k), a point x̂ is feasible for

Cx,y(ω
k) if and only if x̂ ∈ Projx (Cx,y(ω

k)). For simplicity, we consider a fixed
scenario and therefore temporarily drop the symbol ωk : the discussion applies in the
same way to all scenarios. There are three notable cases in which x̂ is not feasible and
wewant to exclude it, leading to three different procedures of increasing computational
cost:

1. x̂ /∈ ProjxCont(Cx,y);
2. x̂ ∈ ProjxCont(Cx,y) and x̂ /∈ ProjxConv(Cx,y);
3. x̂ ∈ ProjxConv(Cx,y).

In the first case, it is sufficient to find an inequality valid for the projection of the con-
tinuous relaxation ofCx,y ; this can be done with standard techniques, such as Benders
or generalized Benders [13] cuts for linear and nonlinear convex sets, respectively. We
use the outer approximation procedure of [26]. In the second case, we need a valid
inequality for ProjxConv(Cx,y), which in turn requires knowledge of Conv(Cx,y);
note that such an inequality exists, because we are separating from a convex set. We
will generate a valid inequality with a sequential convexification procedure described
subsequently. In both cases, the derived cuts can be interpreted as so-called “Fenchel
cuts” (see [5]), i.e., deep cuts that separate a point x̂ from a given set (ProjxCont(Cx,y)

in the first case, ProjxConv(Cx,y) in the second case) by exploiting the equivalence
between separation and optimization over this set. Finally, in the third case, a separat-
ing inequality does not exist, therefore to separate x̂ we perform spatial branching.

The pseudo-code of our decomposition approach is provided in Algorithm 2.0.1.
Since the master problem involves the x variables only, the separation routines must
find a cut in the x space. In the remainder of this section, we provide the separation
algorithms for cases 1 and 2 and we specify how branching is performed when case 3
occurs.
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Algorithm 2.0.1 Decomposition Algorithm

1: Define a master problem P0 as

min cx
s.t.: Ax ≥ b

∑h
k=1 pk zk ≤ α

z ∈ {0, 1}h;
(MASTER)

2: Initialize the list Q of active nodes with MASTER;
3: repeat
4: Select a subproblem from Q;
5: Solve the continuous relaxation and let (x̂, ẑ) be an optimal solution;
6: if subproblem is infeasible or pruned by bound then
7: goto 3;
8: end if
9: if ∃k ∈ {1, . . . , h} such that 0 < ẑk < 1 then
10: branch on variable zk : define two subproblems and add them to Q;
11: goto 3;
12: end if
13: for each k ∈ {1, . . . , h} : ẑk = 0 do
14: if �x ∈ ProjxConv(Cx,y(ω

k )) : ‖x − x̂‖ ≤ ε then  Case 2
15: Separate x̂ from ProjxConv(Cx,y(ω

k )) with an inequality γ x ≤ β;
16: Add inequality γ x ≤ β + Mzk to MASTER;
17: goto 5;
18: end if
19: end for
20: if x̂ is not feasible for some active scenario then  Case 3
21: branch on a variable x j : define two subproblems and insert them into Q;
22: goto 3;
23: end if
24: update the incumbent;
25: until list Q is empty

2.1 Case 1: separation when x̂ /∈ ProjxCont(Cx,y)

In order to check whether x̂ ∈ ProjxCont(Cx,y) and, when this is not the case, deter-
mine a cut to separate x̂ , let us define the problem

min
x∈ProjxCont(Cx,y)

1

2
‖x − x̂‖2. (PROJ1)

It it clear that the optimal solution value of (PROJ1) is strictly positive if and only
if x̂ /∈ ProjxCont(Cx,y). In this case, Theorem 1 of [26], adapted to our case, allows
us to compute a valid cut to separate x̂ :

Theorem 1 Let Cont(Cx,y) be a closed set such that ProjxCont(Cx,y) is convex, and
x̂ /∈ ProjxCont(Cx,y). Let x̄∗ be the optimal solution to (PROJ1)with positive objective
function value. Then, the hyperplane

(x̂ − x̄∗)T (x − x̄∗) ≤ 0
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separates x̂ from ProjxCont(Cx,y). This hyperplane is the deepest valid cut that sep-
arates x̂ from ProjxCont(Cx,y), if depth is computed in �2-norm.

We refer to [26] for a proof of this result.

2.2 Case 2: separation when x̂ /∈ ProjxConv(Cx,y)

Let us assume that x̂ ∈ ProjxCont(Cx,y), because otherwise we would fall under Case
1. Our approach for Case 2 is (i) to check if x̂ lies in ProjxConv(Cx,y) and, if not, (ii)
to define a supporting hyperplane for ProjxConv(Cx,y) separating x̂ . To this aim, we
solve the following problem:

min
x∈ProjxConv(Cx,y)

1

2
‖x − x̂‖2, (PROJ2)

by using an adaptation of the conditional gradient (also known as Frank–Wolfe) algo-
rithm, in its fully corrective variant. The finite convergence of such a procedure is
well established in the linear case [14]. In the nonlinear convex case, only asymp-
totic convergence is guaranteed [14], but we show that with the introduction of proper
numerical tolerances we can obtain convergence in finite time with any desired level
of accuracy.

The procedure is initialized with the feasible point in Cx,y closest to x̂ , obtained by
solving the following convex MINLP:

x1 ← argx min
(x,y)∈Cx,y

‖x̂ − x‖. (FINDX1)

If the distance between this point and x̂ is 0 (or lower than a fixed tolerance ε, see
the discussion surrounding Algorithm 2.2.2), x̂ is feasible (or we consider it feasible
within the tolerance) and the procedure stops; no cut is generated. Otherwise, an
iterative process starts, where at each iteration we solve two problems: a (continuous)
nonlinear problem, and an MINLP with convex continuous relaxation, with the aim
of finding a new point in Cx,y that decreases the distance from x̂ .

Let S be a set of points in ProjxCx,y ; initially, S = {x1}. The first problemminimizes
the distance from the convex combination of the points in the current set S to x̂ , and
is defined as follows:

min ‖x̂ − ∑|S|
i=1 λi x i‖

s.t.:
∑|S|

i=1 λi = 1
i = 1, . . . , |S| λi ≥ 0.

(MINDIST)

In this model, a continuous variable λi is associated with each point xi ∈ S; note
that the xi here are data. Given an optimal solution λ̄i of (MINDIST), let us define
x̄ = ∑|S|

i=1 λ̄i x i . If the distance between x̂ and x̄ is 0, then x̂ ∈ ProjxConv(Cx,y), and
the procedure stops. Otherwise, we define a second problem to determine a new point
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x |S|+1 to be added to S, with the goal of decreasing the objective function value of
(MINDIST). This is equivalent to identifying a descent direction from x̄ that decreases
the distance to x̂ , as follows:

max (x̂ − x̄)T (x |S|+1 − x̄)
s.t.: (x |S|+1, y) ∈ Cx,y .

(NEWPOINT)

Here, the only (vector-valued) decision variable is the point x |S|+1. As shown below,
if the optimal solution value of this problem is larger than zero, adding the new point
x |S|+1 to S decreases the objective function value of (MINDIST). Otherwise, the
iterative procedure stops, returning the point x̄∗. If the distance between x̂ and x̄∗ is
still strictly positive, we can conclude that x̂ /∈ ProjxConv(Cx,y), finding an inequality

to separate x̂ . The inequality is the hyperplane orthogonal to x̂ at x̄∗ = ∑|S|
i=1 λi x i .

The entire procedure is described in Algorithm 2.2.1. For now, let us assume that we
are working with infinite precision, i.e., all calculations can be carried out exactly.

Algorithm 2.2.1 ProjectAndCut(x̂,Cx,y)

1: x1 ← argx min(x,y)∈Cx,y ‖x − x̂‖
2: if ‖x̂ − x1‖ = 0 then
3: return “x̂ is feasible for Cx,y”
4: end if
5: S ← {x1}
6: d1 ← ‖x̂ − x1‖
7: x̄ ← x1

8: repeat
9: Solve (NEWPOINT); let x |S|+1 be its optimal solution
10: S ← S ∪ {x |S|+1}
11: Solve (MINDIST); let d|S| be its optimal value and λ̄ the optimal solution

12: x̄ ← ∑|S|
i=1 λ̄i x

i

13: until (d|S| = 0 or d|S| = d|S|−1)
14: x̄∗ ← x̄
15: if d|S| = 0 then
16: return “x̂ ∈ ProjxConv(Cx,y)”
17: else
18: return valid inequality (x̂ − x̄∗)�(x − x̄∗) ≤ 0
19: end if

The result below follows from the convergenceproperties of the conditional gradient
algorithm when applied to our setting.

Proposition 1 The sequence x̄ of points generated by Algorithm 2.2.1 as solutions
to the problem (MINDIST) converges to x̂ or to a point x̄∗ = ∑|S|

i=1 λ∗
i x

i ∈
ProjxConv(Cx,y) that has minimum distance from x̂, i.e., to an optimal solution of
(PROJ2).

Because Algorithm 2.2.1 is equivalent to fully corrective Frank–Wolfe, it exhibits
linear convergence rate on problem (PROJ2) for which the objective function is
strongly convex; the exact rate of convergence depends on geometric properties of
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Fig. 1 Two-dimensional example showing that Algorithm 2.2.1 may not converge in a finite number of
steps

the underlying set [14, Thm. 1]. Although Proposition 1 shows that Algorithm 2.2.1
converges to an optimal solution for problem (PROJ2), it is known that convergence
maybe obtained only asymptotically in caseCx,y is amixed-integer nonlinear (convex)
set, as can be seen from the following example.

Example 1 Let us consider the example depicted in Fig. 1, where the two circles
represent the feasible set, and the (sub)sequence of feasible points x1, x2, x3 and x4

returned by (NEWPOINT) is reported. At every iteration, the facet of the convex hull
of S generated by Algorithm 2.2.1 is not perfectly horizontal; as a consequence, the
vector from the solution x̄ of (MINDIST) to x̂ is not vertical. Hence, at every iteration
the next feasible point generated by (NEWPOINT) lies on the outer arc of one of the
two circles (outside the dashed lines), and the sequence of generated points does not
reach the top of the circles in finite time. However, the optimal solution to (PROJ2)
can only be obtained when both points at the top of the two circles belong to S.

In the above nonlinear example, the algorithm is unable to generate the (exact)
convex hull in finite time. This behavior cannot occur when Cx,y is a mixed-integer
linear set: in that case, convergence is ensured in finite time, although the algorithm
may explore all the (exponentially-many) extreme points of the convex hull.

We now show how to guarantee finite convergence of Algorithm 2.2.1 in the nonlin-
ear case, by introducing numerical tolerances. The resulting approximate procedure,
detailed in Algorithm 2.2.2, returns a point x̄ that is close (although possibly not the
closest) to x̂ . Note that, as opposed toAlgorithm2.2.1, for conveniencewe now assume
that the initial point x1 is given as an input.

Proposition 2 Given two values of tolerance ε > 0 and ζ > 0, Algorithm 2.2.2
terminates in a finite number of iterations.

Proof At each iteration of Algorithm 2.2.2, either the distance of x̄ from x̂ is reduced
by a value larger than ζ , or it is not. The former case can only happen a finite number
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Algorithm 2.2.2 ProjectAndCutWithTolerance(x̂, x1,Cx,y, ε, ζ )

1: x̄ ← x1

2: S ← {x1}
3: d1 ← ‖x̂ − x1‖
4: repeat
5: Solve (NEWPOINT); let x |S|+1 be its optimal solution
6: S ← S ∪ {x |S|+1}
7: Solve (MINDIST); let d|S| be its optimal value and λ̄ the optimal solution

8: x̄ ← ∑|S|
i=1 λ̄i x

i

9: until (d|S| ≤ ε or d|S|−1 − d|S| ≤ ζ )
10: return x̄

Fig. 2 Early termination of Algorithm 2.2.3 produces an invalid cut, whose relaxation is unable to cut x̂
(left). Reducing tolerance ζ yields a relaxed cut that separates x̂ (right)

of times, because the distance between x̂ and ProjxConv(Cx,y) is finite; in the latter
case, the algorithm stops. Thus, the algorithm runs for a finite number of steps. ��

WhenAlgorithm 2.2.2 stops with d|S| > ε, not only the computed point x̄ may be in
the strict interior of ProjxConv(Cx,y), but we also have no upper bound on the distance
of x̄ from the boundary of ProjxConv(Cx,y). Hence, the inequality (x̂− x̄)�(x− x̄) ≤ 0
may not be valid (i.e., it may cut some feasible solution), and needs to be relaxed before
it can be added to (MASTER) (line 14 of Algorithm 2.0.1). We relax the inequality
by increasing its r.h.s. to a value that makes it supporting to Conv(Cx,y). However, if
the tolerances ε and ζ are large, the relaxed cut may not cut x̂ off, as shown in the left
part of Fig. 2, where the dashed line represents the “ideal” cut (associated with x̄∗),
the dotted line is the invalid cut (through x̄), and the solid line corresponds to its valid
relaxed counterpart. The right part of the figure shows that reducing the numerical
tolerances, which leads to performing additional iterations of the repeat-until loop of
Algorithm 2.2.2, allows convergence to a point closer to x̄∗ than in the previous case:
this yields a relaxed cut that now separates x̂ .

Hence, in case the relaxed cut does not separate x̂ , our approach is to reduce the
tolerance ζ (that controls the repeat-until loop), and execute Algorithm 2.2.2 with
the new tolerance. The resulting scheme, described in Algorithm 2.2.3, generates a
sequence of points x̄ j , untilwe get to a point that allows us to compute a valid inequality
to separate x̂ , or to conclude that x̂ is optimal within an ε tolerance, provided that the
sequence of the ζ values is such that lim j→∞ ζ j → 0. The next proposition shows
that Algorithm 2.2.3 always terminates in a finite number of iterations.
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Algorithm 2.2.3 RelaxAndIterate(x̂,Cx,y, ε, ζ
0)

1: x1 ← argmin(x,y)∈Cx,y ‖x − x̂‖
2: if ‖x̂ − x1‖ ≤ ε then
3: return “x̂ is ε-feasible for Cx,y”
4: end if
5: j ← 0
6: repeat
7: x̄ j ← ProjectAndCutWithTolerance(x̂, x1,Cx,y , ε, ζ

j )
8: if ‖x̂ − x̄ j‖ ≤ ε then
9: return “x̂ ∈ ProjxConv(Cx,y) + ε”
10: end if
11: H ← relax((x̂ − x̄ j )�(x − x̄ j ) ≤ 0)
12: choose ζ j+1 < ζ j

13: j ← j + 1
14: until H separates x̂
15: return H

Proposition 3 Given a value of tolerance ε > 0 and an initial value ζ 0 > 0,
Algorithm 2.2.3 (with a sequence ζ j such that lim j→∞ ζ j → 0) terminates in a
finite number of iterations by either returning a valid inequality to separate x̂ , or
“x̂ ∈ ProjxConv(Cx,y) + ε”, or “x̂ is ε-feasible for Cx,y”.

Proof First, observe that in lines 1–4 of the algorithm we check if a feasible point x1

whose distance from x̂ is not larger than ε exists. In this case, the algorithm immediately
returns “x̂ is ε-feasible for Cx,y”.
When this is not the case, we know from Proposition 1 that, if tolerances ε and ζ were
set to 0, the sequence x̄ j generated at step 7 of Algorithm 2.2.3 would converge to
either (i) x̂ , when x̂ ∈ ProjxConv(Cx,y), or (ii) a point, say x̄∗, on the boundary of
ProjxConv(Cx,y).

Assume now that the tolerances are set to strictly positive values. Note that the main
loop of Algorithm 2.2.1 is the same as in Algorithm 2.2.2, except that Algorithm 2.2.2
terminates early whenever it reaches the desired convergence criterion ε, or if the
most recent iteration improved the distance from x̂ only by a small amount ζ , and
this amount ζ is progressively decreased in Algorithm 2.2.3. In case (i) we have that
for each ε > 0 there is a finite index j̄ such that ‖x̂ − x̄ j‖ < ε for j ≥ j̄ ; the
exact algorithm would reach j̄ in a finite number of iterations, therefore so does the
approximate algorithm when executed with tolerance ε and a small enough value ζ ,
and then returns “x̂ ∈ ProjxConv(Cx,y)+ε”. In case (ii), when x̂ /∈ ProjxConv(Cx,y),
we have that for every δ > 0, there exists a finite index j̄ such that ‖x̄∗ − x̄ j‖ < δ

for j ≥ j̄ . Now, we distinguish two sub-cases of (ii): when 0 < ‖x̂ − x̄∗‖ < ε, for
small enough δ > 0, we have ‖x̂ − x̄ j‖ < ε for j ≥ j̄ , and the algorithm returns
“x̂ ∈ ProjxConv(Cx,y) + ε”. When ‖x̂ − x̄∗‖ > ε, we claim (see Prop. 4) that there
exists a small enough δ > 0 such that if ‖x̄∗ − x̄ j‖ < δ, a (not valid) inequality
(x̂ − x̄ j )�(x − x̄ j ) ≤ 0 can be relaxed to a valid inequality that separates x̂ . This
inequality is obtained infinite time, i.e.,we can compute it at iteration j̄ . This concludes
the proof. ��
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It still remains to show that for x̄ j close enough to x̄∗, we can relax the inequality
returned by Algorithm 2.2.3 and separate x̂ . This is our next result.

Proposition 4 For every ε > 0 and x̂ /∈ ProjxConv(Cx,y) + ε, there exists δ > 0 such
that if ‖x̄ j̄ − x̄∗‖ < δ, the inequality (x̂ − x̄ j̄ )�(x − x̄ j̄ ) ≤ 0 can be relaxed to be valid
for ProjxConv(Cx,y) while still cutting off x̂ . The relaxation amount is upper bounded
by ε2.

Proof Notice that by convexity and the fact that x̄∗ ∈ ProjxConv(Cx,y), we have

max
x∈ProjxConv(Cx,y)

(x̂ − x̄∗)�(x − x̄∗) = 0. (1)

To find the tightest relaxation that makes the inequality (x̂ − x̄ j̄ )�(x − x̄ j̄ ) ≤ 0 valid,
we compute

b := max
x∈ProjxConv(Cx,y)

(x̂ − x̄ j̄ )�(x − x̄ j̄ ) = max
(x,y)∈Cx,y

(x̂ − x̄ j̄ )�(x − x̄ j̄ ), (2)

where the second equality follows from the fact that optimizing a linear function over
a bounded set or over its convex hull yields the same value because there is at least
one optimal extreme point. Thus, we obtain the inequality (x̂ − x̄ j̄ )�(x − x̄ j̄ ) ≤ b.
Now, let us expand (2) as

max
(x,y)∈Cx,y

(x̂ − x̄ j̄ )�(x − x̄ j̄ ) = max
(x,y)∈Cx,y

(x̂ − x̄∗ + x̄∗ − x̄ j̄ )�(x − x̄∗ + x̄∗ − x̄ j̄ )

≤ max
(x,y)∈Cx,y

(x̂ − x̄∗)�(x̄∗ − x̄ j̄ ) + (x̄∗ − x̄ j̄ )�(x − x̄ j̄ ),

wherewe used (1). Since ‖(x̂− x̄∗)‖ ≤ 2U and ‖(x− x̄ j̄ )‖ ≤ 2U , and ‖(x̄∗− x̄ j̄ )‖ < δ

by assumption, we can upper bound the above expression by 4Uδ. Thus, as long as
δ ≤ ε2

4U , b < ε2, we have

(x̂ − x̄ j̄ )�(x̂ − x̄ j̄ ) = ‖x̂ − x̄ j̄‖2 ≥ ε2 > b,

showing that the relaxed inequality cuts off x̂ . ��

2.3 Case 3: spatial branching on variable x

When x̂ ∈ ProjxConv(Cx,y) there is no way to separate this point through a valid
cut expressed in terms of the first-stage variables x only. Hence, in this case we
perform spatial branching on (MASTER), by selecting a variable x j that is neither
at its lower nor at its upper bound in x̂ , and splitting the feasible set by imposing
x j ≤ x̂ j and x j ≥ x̂ j , respectively. As discussed in the proof of Theorem 2, whenever
x̂ ∈ ProjxConv(Cx,y), such a variable exists.
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2.4 Convergence of the decomposition Algorithm 2.0.1

We are now ready to state the main theoretical result of our paper, namely, the finite
convergence of the Decomposition Algorithm 2.0.1 for any tolerance ε > 0.

Theorem 2 Consider a problem of the form (CCP) satisfying Assumptions A1-A3. Let
ε > 0. Let C be the cut generation procedure of Algorithm 2.2.3. Assume that the
branching procedure is such that we always branch on a fractional variable z, if any,
and on a first-stage variable x j whose current value x̂ j is neither at its lower nor at
its upper bound, otherwise.

Then, the algorithm terminates after a finite number of nodes and a finite number
of calls to C with the following outcome: if (CCP) is feasible, Algorithm 2.0.1 returns
a point (x̂∗, ẑ∗) that is feasible for

min cx
s.t.: x ∈ X

k = 1, . . . , h zk = 0 ⇒ x ∈ Cx (ω
k) + ε

∑h
k=1 pkzk ≤ α

k = 1, . . . , h zk ∈ {0, 1},

(3)

i.e., a version of (CCP) where each second-stage feasible set is relaxed by ε, and
that has objective value at least as good as an optimal solution to (CCP). If model
(3) does not admit a feasible solution, Algorithm 2.0.1 returns “infeasible”. Finally,
when (CCP) is infeasible while its relaxation (3) is feasible, Algorithm 2.0.1 can either
return a feasible point for (3), or return “infeasible”.

Proof Since z ∈ {0, 1}h and branching decisions (i.e., binary variables fixed at some
value) are never relaxed in children nodes, we can branch on a z variable at most
O(2h) times. Therefore, we now discuss the convergence of the algorithm assuming
a fixed vector ẑ. If we can show that when (CCP) is feasible the algorithm returns
a point feasible for (3), the fact that this point has objective value at least as good
as an optimal solution to (CCP) immediately follows because the returned point is a
minimizer of the objective function of (CCP) over a relaxation of its feasible set.

The proof is in two steps: first, we prove finite convergence of the cutting plane
procedure at a given node; second, we show that the number of nodes generated by
spatial branching is finite for the given ẑ.

Finite cutting plane convergence. Let B be the set defined by the branching decisions
accumulated at node N and let KB be the set of scenarios k such that ẑk = 0.
We claim that, if ∩k∈KBConv(Cx (ω

k) ∩ B) + ε �= ∅, after a finite number of calls
to C with tolerance

√
ε, we have x̂ ∈ Conv(Cx (ω

k) ∩ B) + ε for every k ∈ KB .
Then, for any fixed k ∈ KB , we generalize the proof of [17] to allow for the cut
relaxation step described in Algorithm 2.2.3; this requires some modifications in the
proof. Define G(x) := minx ′∈Conv(Cx (ωk )∩B) ‖x − x ′‖, i.e., the distance between x and
the set that we aim to converge to. Notice that with the cutting plane method, with the
goal of separating a solution x̂ from Conv(Cx (ω

k)∩ B), we are solving a sequence of
problems of the form minx∈X ,x∈R cx , where R is a relaxation of Conv(Cx (ω

k) ∩ B),
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and we iteratively add inequalities to R. Let ti be the sequence of points generated by
this algorithm, and assume that the i-th inequality is of the form

G(ti ) + ∇G(ti )
�(x − ti ) ≤ 0, (4)

where∇G(ti ) is a subgradient ofG at ti . By convexity of functionG, this inequality is
valid for the set {x : G(x) ≤ 0}. Let x̄ρ := argminx ′∈Conv(Cx (ωk )∩B) ‖ti − x ′‖. Then,
G(ti ) = ‖ti − x̄ρ‖, and a subgradient of G at ti is given by

ti−x̄ρ

‖ti−x̄ρ‖ . Writing x − ti as
x − x̄ρ + x̄ρ − ti and carrying out algebraic manipulations, (4) can be rewritten as

(ti − x̄ρ)�(x − x̄ρ) ≤ 0,

which is precisely the type of inequality generated by our exact cut generation algo-
rithm, Algorithm 2.2.1. As discussed in the previous section, because the exact cut
generation algorithm is not guaranteed to converge, we instead use inequalities

(ti − x̄ j̄ )�(x − x̄ j̄ ) ≤ b,

where ‖x̄ j̄ − x̄ρ‖ ≤ δ. With algebraic manipulations, we rewrite this as

‖ti − x̄ j̄‖ + (ti − x̄ j̄ )�

‖ti − x̄ j̄‖ (x − ti ) ≤ b,

showing that the inequalities generated by Algorithm 2.2.3 can be written as

G(ti ) + L(ti )
�(x − ti ) ≤ b + ‖ti − x̄ρ‖ − ‖ti − x̄ j̄‖,

where L(ti ) := (ti−x̄ j̄ )�
‖ti−x̄ j̄ ‖ is a function of ti . We now show that the sequence {ti }i=1,...,∞

converges to a point xc such that G(xc) ≤ ε. Suppose not. At any iteration r , by
construction the point tk must satisfy all previous inequalities

G(ti ) + L(ti )
�(tr − ti ) ≤ b + ‖ti − x̄ρ‖ − ‖ti − x̄ j̄‖, for all 1 ≤ i < r .

Then, there must exist some ε′ > 0, independent of r , such that

ε + ε′ ≤ G(ti ) ≤ b + ‖ti − x̄ρ‖ − ‖ti − x̄ j̄‖ + L(ti )
�(ti − tr )

≤ b + δ + L(ti )
�(ti − tr ) < ε + δ + L(ti )

�(ti − tr ),

where we used the triangle inequality and the fact that b <
√

ε
2 if Algorithm 2.2.3

is executed using tolerance
√

ε. Assume that in Algorithm 2.0.1 we reduce ζ (and
hence, as a by-product, δ) every fixed number of iterations of Algorithm 2.2.3 at the
same node.1 If we are generating many cuts at a node without converging to a point

1 For clarity of presentation, this instruction is not explicitly given inAlgorithm2.0.1 but it is straightforward
to include it.
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xc such that G(xc) ≤ ε, the iteration index r grows until we have δ < ε′. Therefore,
the above equation shows

ε′ − δ < L(ti )
�(ti − tr ) ≤ ‖L(ti )‖‖ti − tr‖ = ‖ti − tr‖,

because ‖L(ti )‖ = 1 by definition of L . In the above equation, for large r we have
that ε′ − δ is strictly positive because δ gets progressively reduced. This implies that
{ti }i=1,...,∞ does not contain a Cauchy subsequence, which is impossible because X
is compact. It follows that {ti }i=1,...,∞ converges to a point xc such that G(xc) ≤ ε,
i.e., xc ∈ Conv(Cx (ω

k) ∩ B) + ε, as desired.
The above discussion shows that for fixed ε, the number of calls to the cutting plane

routine is finite before x̂ ∈ Conv(Cx (ω
k) ∩ B) + ε for every k : ẑk = 0.

Finite number of spatial branchings. We now show that the number of nodes in the
branch-and-bound tree before the algorithm returns “infeasible”, or a solution (x̂∗, ẑ∗),
is also finite. Note that whenever a candidate solution, say (x̂, ẑ), is found such that
x̂ ∈ Conv(Cx (ω

k) ∩ B) + ε for every selected scenario (i.e., such that ẑk = 0), ε-
feasibility for x̂ is checked for all such scenarios. Hence, only ε-feasible solutions are
accepted as incumbents.We now need to prove that the branching process is finite. Our
argument is as follows. First, we show that only a finite number of branching steps can
take place between two consecutive calls to the cutting plane procedure that generate
a valid cut. Then, we show that we cannot alternate between cutting and branching an
infinite number of times. Since we already know that after a finite number of cutting
planes, we have x̂ ∈ Conv(Cx (ω

k) ∩ B) + ε for every k : ẑk = 0, this implies that the
entire process terminates in a finite number of steps. We now prove these claims.

If x̂ is ε-feasible, it is accepted and because we are solving a relaxation, it is optimal
for the corresponding node. Suppose now that x̂ is ε-infeasible; then Algorithm 2.0.1
branches on some component of x̂ . Let us analyze how many branching steps can take
place before a valid inequality cutting off x̂ is generated. Recall that we do not allow
branching on components of x̂ that are at one of their bounds, by assumption; thus,
after at most O(nx ) branches (along each branching path) the point x̂ will be a corner
point of the hyperrectangle defined by the branching decisions B. When this happens,
there are only two possibilities:

– if x̂ ∈ Conv(Cx (ω
k)∩ B)+ ε for all the selected scenarios, then x̂ is an ε-feasible

solution for these scenarios. Indeed, otherwise x̂ would be the combination of at
least two points in (Cx (ω

k) ∩ B) + ε, which contradicts the fact that x̂ is extreme
for B;

– if x̂ /∈ Conv(Cx (ω
k) ∩ B) + ε for some scenario k that has ẑk = 0, we are able to

generate a separating inequality (by assumption).

This shows that there is only a finite number of branching steps that can occur between
the generation of cutting planes. We still need to show that we cannot switch between
cutting and branching an infinite number of times; for this, we show that if we perform
spatial branching at some node N1, when a cutting plane is generated at a child node
N2 for a scenario k with ẑk = 0, we made “sufficient progress” with respect to N1.
Suppose that after solving the relaxation of node N1, with branching decisions B1,
and obtaining the candidate solution x̂ , C does not return a cut and we are forced to
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branch. Because C fails to return a cut, ‖x̂ − x̄‖ ≤ ε, where x̄ = ∑
i λ̄i x

i for some
xi ∈ Cx (ω

k) ∩ B1, i.e., a nontrivial convex combination of feasible points. Since x̂ is
ε-infeasible, ‖x̂ − xi‖ > ε for all i . At node N2, associated with branching decisions
B2, we are able to separate x̂ . Thus, there exists a point xi /∈ Cx (ω

k) ∩ B2, i.e.,
the point is no longer feasible for N2, since otherwise x̄ ∈ Conv(Cx (ω

k) ∩ B2), a
contradiction as a cut through x̄ was unable to separate x̂ at node N1. This shows that,
after reconvexification, we have removed at least a ball of diameter ε. Since all sets
are compact, this shrinking process can only occur a finite number of times (upper
bounded by the number of balls with diameter ε necessary to cover the set). Thus,
along each branching path, our algorithm can switch between branching and cutting
only a finite number of times. This, together with standard arguments regarding the
correctness of branch-and-bound, concludes the proof for the case where (CCP) is
feasible.

When (3) is infeasible, then (CCP) is also infeasible and Algorithm 2.0.1 returns
“infeasible” by standard branch-and-bound arguments. Finally, if (CCP) is infeasible
but (3) is feasible, the value returned by the algorithm is undetermined: the cutting
planes that we generate are only guaranteed to distinguish ε-approximate feasibility,
therefore they may or may not be able to prove that the feasible region of (CCP) is
empty (the algorithm still terminates in a finite number of nodes). ��

3 Algorithmic details and enhancements

In this section we complete the description of Algorithm 2.0.1 providing some addi-
tional details on the method, in particular concerning the branching strategy, cutting
planes acceleration, and heuristics. The computational effectiveness of all these ele-
ments will be evaluated in Sect. 4.

3.1 Branching strategy

Our branching strategy is based on the observation that the problem reduces to a
deterministic one (i.e., without the chance constraint) whenever all z variables attain an
integer value. For this reason, we first perform a standard branching on these variables,
if some of them are not integer. Otherwise, we execute the separation procedure for
the current point x̂ and resort to spatial branching on an x j variable only in Case
3, i.e., there is at least one active scenario for which x̂ is infeasible though x̂ ∈
ProjxConv(Cx,y). In this case, let � j and u j denote the lower and upper bounds,
respectively, for eachvariable x j in the current subproblem.For branching,we consider
as candidates all those variables such that � j < x̂ j < u j . For each candidate variable
and for each violated active scenario, we execute the separation procedure for the two
nodes that would be generated by branching on that variable. All violated inequalities
associated with a candidate variable are stored in a pool, and possibly added to the
corresponding node subproblems whenever that variable is used for branching. The
procedure selects for branching the first variable (if any) that would allow separation
of x̂ in both the generated nodes. If such a variable does not exist, the procedure
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arbitrary selects a branching variable that allows separation of x̂ in at least one of the
two descendant nodes. If such a variable does not exist either, the procedure selects
an arbitrary branching variable among the candidates.

3.2 Cut generation

Recall that cut generation is possibly executed only in case all the z variables are
integer. In this case, we check whether a master solution x̂ can be separated from the
continuous relaxation of some active scenario (Case 1), or from its convex hull (Case
2). Notice that explicitly handling the former case (Sect. 2.1) is not necessary for the
correctness of the decomposition algorithm.Nevertheless,we include the generation of
the corresponding inequalities because their separation typically requires a negligible
effort compared with separation from the convex hull.

When some scenario k produces a valid separating cut, there are two natural alter-
natives to add it to the master problem. The first option is to directly add inequality
γ x ≤ βk + Mkzk to the master problem, where the coefficient Mk can be computed
as Mk = ∑

j :γ j>0 γ j u j − βk , and u j is the upper bound associated with non-negative
variable x j . The second option, as suggested by [27], is to compute, for each scenario
i , the minimum value βi that makes inequality γ x ≤ βi valid for that scenario. By
sorting scenarios according to non-decreasing values of the associated βi coefficients,
one can derive the p = �αh� inequalities

γ x + (βi − βp+1)zi ≤ βi i = 1, . . . , p (5)

to be added to themaster problem. Instead of directly adding (5) to themaster problem,
one could consider mixing these inequalities so as to obtain an exponentially large
family of stronger inequalities, each one possibly including more than one z variable
(see [27] for details). However, when separating points with an integer-valued z vector,
the inequality (5) with the smallest i such that zi = 0 already has the maximum
violation among the class of mixing inequalities (as the corresponding right-hand
side is the smallest value for which the inequality is valid). Additional inequalities
might be obtained, at the cost of a larger computational effort, by using a separation
procedure that does not return only one most violated inequality, or by separating
solutions that are fractional in the z variables, and then applying the mixing procedure
(as done, e.g., in [27]). Those inequalities could dominate inequalities (5). In this
paper, we use a simpler approach in which separation is carried out only when z
is integral, and all inequalities (5) are added to the master problem. It is possible
that a more sophisticated and computationally-intensive approach would improve the
performance of our branch-and-cut scheme.

It is worth mentioning that any cut that is generated at a node of the branching tree
whose feasible region has not been affected by spatial branching is globally valid.
Conversely, in case some branching on x variables has been imposed, the resulting
cut is only locally valid. After an initial round of experiments, we observed that the
effort required to compute (5) leads to a performance improvement only when these
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cuts are added as global cuts. If instead the cuts are only locally valid, directly adding
an inequality with coefficient Mk (first option) is empirically more effective.

As the cut generation process may be time consuming, we halt it as soon as a valid
inequality separating x̂ is found for some active scenario. Thus, the order in which
the active scenarios are processed may affect the overall performance of Algorithm
2.0.1. We apply the same strategy as in [27], i.e., we give a priority to each scenario
according to the number of violated inequalities it produced in the previous iterations
(the higher, the better).

3.3 Storing feasible points

At each execution, Algorithm 2.0.1 produces a collection of feasible points, whose
convex combination includes x̂ or defines a point minimizing the distance from x̂ .
The procedure can be sped up by storing, for each scenario, a list of feasible points
computed at any iteration. In addition, we use these points to check the feasibility of
x̂ for the active scenarios: if, for some scenario, the associated list contains a feasible
point whose distance from x̂ is smaller than ε, then x̂ is feasible for that scenario;
this approach avoids solving an optimization problem to check feasibility. In our
implementation, we store up to 10,000 points per scenario.

4 Application and computational experiments

In this section, we evaluate the computational performance of our base algorithm and
of the computational enhancements described in Sect. 3 on two problems derived from
the literature. Specifically, we extend the linear problem addressed in [27], in which all
variables are continuous, to define two new problems with binary and general integer
variables, respectively. In both cases the objective function and the constraints are
linear. Although our method applies to sets whose continuous relaxation is defined
by general (not necessarily linear) convex constraints, we mainly focus on the linear
case. Indeed, solving nonlinear problems with our algorithm requires the use of non-
linear convex MINLP solvers that are typically less stable than MILP solvers from a
numerical point of view, making the computational analysis less reliable. Thus, most
of our computational experiments focus on the linear case. However, we provide a
short analysis of the performance for the nonlinear case in Sect. 4.7.

The scope of our computational experiments is twofold: first, we are interested in
assessing the effectiveness of the proposed computational enhancements, and to under-
stand what is the limit of the methodology we propose. Second, we want to compare
the performance of the proposed methodology with an alternative solution approach
consisting in the direct application of a general-purpose solver to the formulation
(CCP-MINLP).

All algorithms are implemented in C++ and use the CPLEX 12.7.1 framework
to implement our branch-and-cut algorithm. The experiments are performed on a
computer equipped with an AMD 3960X processor clocked at 3.8 GHz, 128 GB
RAM, running Linux. The master problem and each scenario subproblem are solved
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in single-threaded mode, imposing, for the master problem, a tree-size limit to 16 GB
and disabling its heuristic procedures; heuristics are disabled because in a preliminary
computational evaluation they were found ineffective, leading to an overall slowdown
of the proof of optimality. All the remaining CPLEX parameters, including tolerances,
are left to their default values.

4.1 Application: resource planning

In [27], the author considers a continuous resource planning problem inspired by a
call center staffing application. The input consists of a set of resources used to meet
demands for a set of customer types, and the objective is to determine the quantity
of each resource to activate to satisfy the demands. We consider two variants of this
application that have binary and integer variables. Both problems consider a set I =
{1, . . . , n} of resources and a set J := {1, . . . ,m} of customer types. Given the unit
cost ci of each resource i , the demand λ j of each customer type j , and the service
rate μi j of resource i for customer type j , the first problem is to decide the activation
level of each resource and the assignment of customers to resources, in such a way
that the demand of the customers is satisfied at minimum cost. In the first problem
(denoted as INT), we introduce variables xi , i ∈ I , and yi j , i ∈ I , j ∈ J to define
the activation level of resource i and the amount of resource i allocated to customer
type j , respectively. The y variables are imposed to be integer, i.e., resources must be
assigned to customers in integer multiples, producing the following formulation:

min
∑

i∈I
ci xi

s.t.:
∑

i∈I
μi j yi j ≥ λ j j = 1, . . . ,m
∑

j∈J
yi j ≤ xi i = 1, . . . , n

xi ≥ 0 i = 1, . . . , n
yi j ∈ N i = 1 . . . n, j = 1, . . . ,m

(INT)

In the second problem (denoted as BIN), the y variables are imposed to be binary,
so that each customer type is assigned exactly one resource. The continuous variables
xi , i ∈ I denote the activation level of each resource i as in the first problem. For each
customer type j and resource i , the amount of resource used by the customer type if

the assignment is performed is given by
⌈

λ j
μi j

⌉
. The formulation reads as

min
∑

i∈I
ci xi

s.t.:
∑

i∈I
yi j = 1 j = 1, . . . ,m

∑

j∈J :μi j>0

⌈
λ j
μi j

⌉
yi j ≤ xi i = 1, . . . , n

xi ≥ 0 i = 1, . . . , n
yi j ∈ {0, 1} i = 1 . . . n, j = 1, . . . ,m

(BIN)
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In the stochastic version of the two problems, we assume the demand of each customer
type to be a random parameter with discrete probability distribution over a set K =
{1, . . . , h} of scenarios. Hence, we denote by λ jk the demand of customer type j in
case scenario k ∈ K materializes. The problems are approached in two stages; in
the first one, the activation of the resources is decided, before the actual demands
are revealed, whereas in the second stage customer types are assigned to activated
resources. Both problems have a chance-constraint as in (CCP-MINLP), and feasibility
of each scenario k ∈ K is achieved if it is possible to assign all demands (in problem
INT) or all customer types (in problem BIN) to the resources activated in the first
stage.

4.2 Test instances

We define our benchmark for problems INT and BIN starting from the original
instances introduced in [27] together with a large set of distinct scenarios. Given
an original instance and a number h of scenarios, we use the cost coefficients ci from
the original data, whereas demands are derived by considering the first h scenarios,
dividing each entry by 10 and rounding down the resulting values. Accordingly, for
the service rates, we replace each non-zero entry in the base instance with a random
value between 1 and 10.

We evaluate each of the five original instances with n = 20 resources and
m = 30 customer types with different values for the number h of scenarios (h ∈
{10, 20, 50, 100, 200} for INT and h ∈ {10, 20, 50, 100} for BIN) and for the risk
level (α ∈ {0.05, 0.10, 0.20}). Observe that there are no instances with h = 10 and
α = 0.05 as this would correspond to the deterministic case in which no scenario
can be violated. Thus, our benchmark includes 70 instances for problem INT and 55
instances for problem BIN.2

4.3 Problem-specific primal heuristics

We design a problem-specific primal heuristic, referred to as Fast, to compute an
initial feasible solution. The heuristic works as follows. Initially, it solves each sce-
nario, one at a time, and sorts the scenarios according to non-increasing values of their
optimal solution. Then, it processes the scenarios in the same order, and solves each
of them while, iteratively, the lower bound of each first stage variable x j is set to the
optimal value attained by that variable in the solution of the previous scenario. Since
in the application we consider, the x variables represent resources that do not have an
upper bound, the Fast heuristic defines a feasible solution.

4.4 Algorithm tuning

In the first set of experiments, we investigate the effectiveness of the components
embedded in our branch-and-cut algorithm that we will denote as DEC. The algorithm

2 Instances are publicly available at https://github.com/paoloparonuzzi/CCP-INT-problems-instances.
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includes all the enhancements described in Sect. 3, and the problem-specific heuristic
Fast, applied at the root node.

In the following, we deactivate each component of algorithm DEC, one at a time, in
order to assess its contribution to the algorithm performance. In particular, we consider
the following variants:

– NoPoint corresponds to the version in which feasible points are not stored for
later use;

– BigM is obtained by disabling the use of inequalities (5) and directly adding a
single inequality γ x ≤ βk + Mkzk for each scenario k;

– RandSB replaces the spatial branching selection strategy with a random selection
of the variable used for spatial branching;

– Basic is the version of the algorithm in which all the features above are deacti-
vated at the same time.

We execute each variant of the algorithm on the instances of problems INT and BIN
with 50 scenarios, with a time limit of 5h for each run. Table 1 reports, for each
problem and set of 5 instances with the same value of α, the number of proven optimal
solutions and the average computing time (over instances solved to optimality) of each
algorithm tested.

The results show that algorithmDEC is able to solve all instances for problem INT in
less than 20 mins, on average. For problem BIN, it solves to optimality four instances
for each value of α, outperforming all the remaining algorithms when solving this
problem. Algorithm NoPoint fails in solving one instance of problem INT and, for
problemBIN, its performance getsworsewhenα increases: forα = 0.20 it only solves
one instance in more than 4h. Algorithm BigM solves all the instances of problem
INT and it is faster than DEC for α = 0.05, while it requires a larger computing
time for α = 0.10 and α = 0.20. Furthermore, BigM solves to optimality only 9
instances of problem BIN. The role of our refined strategy in spatial branching is clear
comparing algorithms DEC and RandSB. Indeed, the latter solves all instances of
problem INT, though being slower than DEC, and is able to solve only 7 instances (out
of 15) of problem BIN. The last considered variant, obtained by disabling all features
of DEC, displays very weak performance: algorithm Basic is up to one order of
magnitude slower than DEC for problem INT, for which it fails to solve 2 instances.
For problemBIN thismethod solves to optimality only 5 instances out of 15. Summing
up, the results reported in Table 1 show that each component of algorithm DEC gives
a valuable contribution to the computational performance of the method. In addition,
the table shows that a naive implementation of Algorithm 2.0.1, similar to our Basic
variant, is far from being effective on these problems.

4.5 Performance of spatial branching

As already mentioned, a careful spatial branching strategy contributes significantly
to the effectiveness of our algorithm DEC. Here, we present some additional results
aimed at evaluating the relevance of spatial branching in more detail, by comparing
with a version of the algorithm in which spatial branching is not implemented at all.
In this scheme, denoted as NoSB in the following, a node of the branching tree is
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fathomed if the solution of the continuous relaxation of the node is infeasible after
the separation on the continuous relaxation and on the convex hull. In this case, the
incumbent is updated, i.e., this scheme returns the value of the lower bound, say L ,
obtained optimizing over the intersection of the convex hulls of the selected scenarios.
Comparing this lower bound with the optimal solution value provides a measure of
the gap that has to be closed by spatial branching.

Table 2 reports the results for algorithms NoSB and DEC on the instances of our
benchmark. Each row of the table addresses the 5 instances of the same problem
defined by the same values for h and α. For both algorithms, columns “Cont” and
“Conv” report the number of cuts generated on the continuous relaxation and on
the convex hull, respectively. In addition, for NoSB we report the corresponding gap
percentage, computed as gap = 100× (z∗ − L)/L , where z∗ is the optimal (or the best
known) solution value. For algorithm DEC, we also report the number of times that
spatial branching is performed (“# Bra”) and the total number of branch-and-bound
nodes explored (“#Nodes”). All entries report averages (rounded to the closest integer)
computed over all the instances solved to optimality by algorithm DEC.

The results confirm that problem INT is easier to solve than BIN. Indeed, even
without spatial branching, a few thousand cuts in total are sufficient to obtain very
small gaps. Algorithm DEC rarely has to resort to spatial branching: it takes place, on
average, only 63 times on the most difficult instances (h = 200 and α = 0.20). For
this group of instances, the average number of generated branch-and-bound nodes is
below one thousand.

Concerning problem BIN, without spatial branching we still attain fairly small
residual percentage gaps for instances with h ≤ 50, the largest average gap being
0.61. The residual percentage gap slightly increases when h = 100, and it is equal
to 2.21 in the worst case. Observe that the number of cuts that are generated on
the continuous relaxation is relatively small, and that no cuts are generated on the
convex hull. Indeed, the continuous relaxation of problem BIN always admits an
optimal solution that is integral, corresponding to the assignment of each customer

type j to the resource i for which ci
⌈

λ j
μi j

⌉
is a minimum. Hence, extreme points of

the continuous relaxation are integer, and the continuous relaxation coincides with
the convex hull of the integer solutions; this is the case at the root node, before any
spatial branching takes place. When active, spatial branching changes the bounds of
the x variables; as a consequence, the continuous relaxation of the problem does not
necessarily admit optimal integer solutions after branching. In this setting, the number
of spatial branchings and the generation of cuts increase considerably (up to one order
of magnitude) when considering the largest instances.

4.6 Computational comparison with a CPLEX-heavy variant

In this section,we study the possibility to further enhance the performance of algorithm
DEC. To this end, we implement a hybrid strategy, denoted DEC+, that combines DEC
with the use of a MIP solver for computing the initial feasible solution at the root
node and for solving deterministic subproblems at the subsequent nodes. We call
Complete the heuristic procedure that algorithm DEC+ executes for computing the
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Table 2 Computational details of algorithm DEC

NoSB DEC

h α Cont Conv Gap Cont Conv # Bra # Nodes

INT 10 0.10 205 53 0.01 202 122 16 25

0.20 438 120 0.00 407 133 3 7

20 0.05 231 63 0.00 228 61 0 1

0.10 469 150 0.00 460 166 2 5

0.20 862 246 0.03 873 278 5 19

50 0.05 460 132 0.02 463 467 59 101

0.10 1203 434 0.02 1258 508 9 32

0.20 2066 1080 0.03 2294 1571 55 145

100 0.05 1301 485 0.06 1255 924 39 85

0.10 2470 1184 0.02 2444 1072 7 68

0.20 4604 2684 0.02 4740 2747 24 219

200 0.05 2680 1166 0.02 2292 1442 21 91

0.10 4860 2524 0.03 4312 3393 29 353

0.20 9592 8208 0.02 9864 8781 63 932

BIN 10 0.10 54 0 0.11 143 416 90 156

0.20 146 0 0.38 950 5568 754 1443

20 0.05 69 0 0.40 1052 5773 881 1605

0.10 133 0 0.44 905 2268 408 735

0.20 338 0 0.33 706 1102 196 354

50 0.05 130 0 0.52 1546 5390 828 1233

0.10 379 0 0.61 2699 8582 1104 1918

0.20 924 0 0.61 3323 9973 1185 1918

100 0.05 432 0 2.21 5054 15, 715 1407 1826

0.10 974 0 1.52 4601 12, 028 1388 2119

0.20 2608 0 1.25 7226 10, 095 1177 2068

initial solution. This procedure: (i) orders the scenarios with the same rule used by the
heuristic Fast (see Sect. 4.3); (ii) defines a deterministic problem by selecting the
scenarios (i.e., fixing the associated z variables) in the given order, until the chance
constraint is satisfied; and (iii) solves this deterministic problem using aMIP solver as
a black box. Notice that procedureComplete can be applied to any problem instance,
but it can be quite slow in practice, as the deterministic problemmust enforce feasibility
for all the selected scenarios and may thus include a very large number of variables
and constraints. In addition, algorithmDEC+ fully solves (defining a sub-MIP) branch-
and-bound nodes in which all the z variables are fixed because of branching. Indeed,
each such node induces a deterministic problem, and we can immediately close the
node if the deterministic problem is solved, after possibly updating the incumbent.

We compare the performance ofDEC andDEC+with the direct application of aMIP
solver (the same solver that is used by our algorithm, i.e., IBM-ILOG CPLEX 12.7.1)
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on formulation (CCP-MINLP). The solver, denoted as CPLEX in the reminder of this
section, is executed in single-thread mode with all the remaining parameters to their
default values.

Table 3 reports the outcome of our experiments on all instances introduced in
Sect. 4.2 for problems INT and BIN. As in previous experiments, we use a time limit
of 5h per run. Each row of the table refers to 5 instances of the same problem, having
the same number h of scenarios and the same risk parameter α. For each solution
method, the table reports the number of optimal solutions, the average computing
time (with respect to instances solved to optimality only) and the average percentage
optimality gap, computed as gap = 100 × (U − L)/L . In 5 of the 15 instances of
problem BIN with h = 100, DEC+ reaches the time limit during the execution of the
heuristic procedure Complete. Because the method is unable to compute a lower
bound in these cases, we calculated the average optimality gap with respect to the
remaining instances only (and put the number of instances used to calculate the gap
in brackets).

Both DEC and DEC+ are able to solve all the instances of problem INT. Solving
the deterministic subproblems proved to be effective, as DEC+ is always, on average,
faster that DEC. Not surprisingly, CPLEX is the fastest method for small instances
(h ∈ {10, 20}) whose associated (CCP-MINLP) MIP formulation is manageable.
Increasing the number h of scenarios produces larger number of variables in the model
that make the direct use of the solver impractical. Indeed, CPLEX is not able to solve
to optimality all the instances with h = 50, 100, and no instance is solved for h = 200
and α = 0.20.

Problem BIN is more challenging for all solution methods. Comparing DEC and
DEC+, the latter seems to have a better performance: it solves to optimality all the
instances with h ≤ 50, whereas DEC is unable to solve 3 of these instances for
h = 50. As for the computing time when h ≤ 50, DEC+ is in general much faster
than DEC, but there is a single instance with h = 10 and α = 0.10, for which it
takes more than 6000s. In addition, DEC+ also solves 1 instance more than DEC with
h = 100. However, for this latter group of instances, algorithm DEC is always able to
compute a feasible solution, with corresponding percentage optimality gaps ranging
from 1.06 to 1.93. Instead, there are 5 instances for which algorithm DEC+ hits the
time limit during the search for an initial solution, and no feasible solution is available.
Concerning CPLEX, it is very fast for h = 10, as it requires, on average, less than 20s
to solve all instances.Moreover, it solves all but one instancewith h ∈ {20, 50}, though
being one order of magnitude slower than DEC+. Results get worse for h = 100, as
no instance is solved in this case: the corresponding percentage optimality gap ranges
from 3.63 to 8.92, confirming that the direct application of the solver to formulation
CCP-MINLP leads to gaps that can be unsatisfactory when the number of scenarios
is large.

Onemaywonder if the solution of nodeswith fixed z variables is themainworkhorse
of the DEC+ algorithm, or in other words, if the cutting planes valid for the convex
hull of the scenario subproblems are still beneficial in the setting of DEC+. We exper-
imentally verified that, on problem INT, where these cuts are used starting from the
root node, disabling the cut generation procedure on the convex hull leads to a signif-
icant worsening of the algorithm’s performance. Indeed, in this setting, the resulting
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algorithm is able to solve, within the time limit, only 5 instances with h = 50 and no
instance with h = 100, indicating that the cuts are very impactful even in the setting
of DEC+.

We also executed DEC and CPLEX with a looser value of the optimality tolerance
(equal to 1%) on the subset of instances considered in Table 1. For both INT and BIN,
CPLEX solves one additional instance in class h = 50 and α = 0.20. Regarding the
other instances solved to optimality, the computing times are similar. Conversely, DEC
solves one additional instance only (problem BIN with h = 50 and α = 0.20) though
its computing time for solved instances is halved on average. This shows that the value
of the optimality tolerance is not a critical issue in determining the performance of
both methods.

4.7 Experiments with nonlinear constraints

In this section, we consider a variant of problem INT to analyze the performance of our
solution method in the nonlinear setting. Specifically, we model a congested situation
in which, for each resource i , the activation level is lower bounded by a quadratic
function of the overall demand (as, for example, in [9]), i.e.,

⎛

⎝
∑

j∈J

yi j

⎞

⎠

2

≤ xi i = 1 . . . n.

The resulting mixed-integer quadratically-constrained problem can be handled by
CPLEX and therefore allows us a direct comparison with our implementation. For this
nonlinear setting, we reduced the scenario size to n = 8 and m = 12, and we used
a tolerance ε = 10−4 for all the tested algorithms. Table 4 has the same structure as
Table 3. The results show that our branch-and-cut algorithmDEC performs remarkably
well as the problem size increases. For small instances (h ≤ 20), all methods solve all
instances and CPLEX is on average the fastest solution method. For h ≥ 50, DEC is
on average the fastest and the best performing algorithm: it solves all instances with
h = 200 except one for which the execution prematurely stops due to a numerical
error occurring while solving problem (NEWPOINT). In addition, DEC is the only
method solving all the instances with h = 100. Finally, the “tailored” version of our
algorithm DEC+ has worse performance than DEC. Letting CPLEX do more work on
some subproblems does not seem to pay off in the nonlinear setting.

5 Conclusions and future work

In this work, we considered chance constrained mathematical problems in which the
second-stage variables are integer and uncertainty is modeled via a discrete set of sce-
narios. The feasible regions of the second-stage problems are not convex sets, as they
are defined by convex constraints and by the integrality of the second-stage variables.
To the best of our knowledge, this is the first attempt to solve this class of problemswith
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general integer second-stage variables, which are known to be difficult in practice and
tend to complicate the solution algorithm. We introduced a decomposition approach
based on a branch-and-cut framework. In this framework, we possibly generate cutting
planes based on outer approximation of the convex hull of the integer points, and resort
to spatial branching when the current infeasible solution cannot be separated using
a linear cut. We analyzed the theoretical convergence of the algorithm both in case
of infinite precision and when some numerical tolerances are used. Finally, we per-
formed an extensive computational analysis on two problems derived from a test-case
addressed in the recent literature, showing that our algorithm is able to solve medium-
sized instances in a reasonable amount of time, and much more effectively than a
state-of-the-art solver applied to the deterministic equivalent of the chance-constrained
problem. To achieve this performance we used many computational enhancements,
all of which were empirically shown to be beneficial in improving the performance of
the algorithm.
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