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Abstract
Weformalize the concept of ParetoAdaptiveRobustOptimality (PARO) for linear two-
stage Adaptive Robust Optimization (ARO) problems, with fixed continuous recourse.
A worst-case optimal solution pair of here-and-now decisions and wait-and-see deci-
sions is PARO if it cannot be Pareto dominated by another solution, i.e., there does
not exist another worst-case optimal pair that performs at least as good in all scenarios
in the uncertainty set and strictly better in at least one scenario. We argue that, unlike
PARO, extant solution approaches—including those that adopt Pareto Robust Opti-
mality from static robust optimization—could fail in ARO and yield solutions that can
be Pareto dominated. The latter could lead to inefficiencies and suboptimal perfor-
mance in practice. We prove the existence of PARO solutions, and present approaches
for finding and approximating such solutions. Amongst others, we present a constraint
& column generation method that produces a PARO solution for the considered two-
stage ARO problems by iteratively improving upon a worst-case optimal solution. We
present numerical results for a facility location problem that demonstrate the practical
value of PARO solutions. Our analysis of PARO relies on an application of Fourier–
Motzkin Elimination as a proof technique. We demonstrate how this technique can be
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valuable in the analysis of ARO problems, besides PARO. In particular, we employ it
to devise more concise and more insightful proofs of known results on (worst-case)
optimality of decision rule structures.

Keywords Robust optimization · Adaptive robust optimization · Pareto optimality ·
Fourier–Motzkin elimination · Decision rules

Mathematics Subject Classification 90C05 · 90C46 · 90C47

1 Introduction

Robust Optimization (RO) is a widespread methodology for modeling decision-
making problems under uncertainty that seeks to optimize worst-case performance [7,
11, 12]. In practice, RO problems usually admit multiple worst-case optimal solutions,
the performance of which may differ substantially under non-worst-case uncertainty
scenarios. Consequently, the choice of an optimal solution often hasmaterial impact on
performance under real-world implementations. This important consideration, which
was first brought forth by Iancu and Trichakis [16], has been successfully tackled for
static, single-stage (linear) RO problems. For the increasingly popular and broad class
of dynamic, multi-stage Adaptive Robust Optimization (ARO) problems [2], however,
there is no successful approach for choosing an optimal solution, and the purpose of
this paper is to bridge this gap.

In particular, for static RO problems, Iancu and Trichakis [16] proposed the choice
of so-called Pareto Robustly Optimal (PRO) solutions. In general, PRO solutions
unarguably dominate non-PRO solutions, because, by definition, the former guarantee
that there do not exist other worst-case optimal solutions that perform at least as good
as the current solution for all scenarios in the uncertainty set, while performing strictly
better for at least one scenario. The PRO concept has been applied to several static
robust optimization settings, such as distributionally robust mechanism design [18].

Going beyond static ROproblems, it is well understood that the choice of an optimal
solution remains crucial for the broader class of multi-stage ARO problems. Similar to
RO solutions, by following a worst-case philosophy and not considering performance
across the entire spectrum of possible scenarios, ARO optimal solutions could lead
to substantial performance losses. For example, see the work by De Ruiter et al. [9],
who numerically demonstrate existence of multiple worst-case optimal solutions for
the classical multi-stage inventory-production model that was considered in Ben-Tal
et al. [2], and find them to differ considerably from each other in their non-worst-case
performance.

For ARO problems, however, a solution approach that unarguably chooses “good
solutions,” similar to PRO solutions for static RO problems, has proved to be elusive
thus far. Extant approaches have all attempted to simply apply the concept of PRO to
ARO problems. Specifically, they advocate restricting attention to adaptive variables
that depend affinely on the uncertain parameters; commonly referred to as Linear
Decision Rules (LDRs). Restricting to LDRs reduces the problem to static RO, and
enables the search for associated PRO solutions [8, 9, 16]. As we shall show, however,
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this indirect application of the PRO concept fails to produce solutions that cannot be
dominated.

Recently, the concept of Pareto Adaptive Robustly Optimal (PARO) solutions was
introduced for a specific ARO application [26], but no general treatment of the topic
was included. In this paper, we formalize and study the concept of PARO solutions for
linear ARO problems. Similar to PRO solutions for static RO problems, PARO solu-
tions yield worst-case optimal performance and are not dominated by any other such
solutions in non-worst-case scenarios. In other words, PARO solutions unarguably
dominate non-PARO solutions, leading to improved performance in non-worst-case
scenarios, while maintaining worst-case optimality. From a practical standpoint, this
means that implementing PARO solutions can only yield performance benefits, with-
out any associated drawbacks.

To introduce thePAROconcept andhighlight its practical importance,weprovide an
illustrative toy example. The example also serves two additional important purposes.
First, it enables us to show in a simple setting how PARO solutions can dominate
PRO solutions, as remarked above. Second, the example motivates the need for new
analysis techniques for studying PARO.

Example 1 In treatment planning for radiation therapy, the goal is to deliver a curative
amount of dose to the target volume (tumor tissue), while minimizing the dose to
healthy tissues. Consider a simplified case with two target subvolumes. For subvolume
i ∈ {1, 2}, the required dose level di depends on the radiation sensitivity of the tissue,
which is unknown. Assume that, prior to treatment, the doses lie in

U = {(d1, d2) | 50 ≤ di ≤ 60, i = 1, 2}.

Mid-treatment, the required doses are ascertained via biomarker measurements.
Treatment doses are administered in two stages. The dose administered in the first

stage, denoted by x , needs to be decided prior to treatment. The dose administered
in the second stage, denoted by y, can be decided after the required doses have been
ascertained, i.e., it can be adapted to uncertainty revelation. Both treatment doses
are delivered homogeneously over both volumes in each stage. Dose in each stage is
limited to the interval [20, 40]. The total dose administered is x + y, and the healthy
tissue receives a fraction δ > 0 of it. The Stage-1 dose x , and a decision rule y(·) for
the adaptive Stage-2 dose can be chosen by solving:

min
x,y(·) max

(d1,d2)∈U
δ(x + y(d1, d2)) (1a)

s.t. x + y(d1, d2) ≥ d1, ∀(d1, d2) ∈ U , (1b)

x + y(d1, d2) ≥ d2, ∀(d1, d2) ∈ U , (1c)

20 ≤ x ≤ 40, (1d)

20 ≤ y(d1, d2) ≤ 40, ∀(d1, d2) ∈ U . (1e)

Problem (1) is an ARO problem with constraintwise uncertainty, for which static
decision rules are worst-case optimal [2]. Plugging in y(d1, d2) = ŷ and solving the
resulting static ROmodel yields a worst-case optimal objective value of 60δ, achieved
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Table 1 Difference PARO and
PRO solutions for Example 1

Scenario (d1, d2) (x∗, y∗) (x̂, y∗) (x̂, ŷ)

(60, 60) 60δ 60δ 60δ

(50, 55) 55δ 55δ 60δ

(50, 50) 50δ 55δ 60δ

by all (x, ŷ) such that x + ŷ = 60. For any such solution, the objective value remains
60δ in not only the worst-case scenario but in all scenarios. Hence, all these solutions
are PRO, according to the definition of Iancu and Trichakis [16]. Consequently, the
Stage-1 decisions that are PRO lie in the set:

XPRO = {x | 20 ≤ x ≤ 40}.

Consider now the decision rule y∗(d1, d2) = max{20, d1 − x, d2 − x}, which is
feasible for all feasible x . Furthermore, this rule minimizes the objective for any fixed
x , d1 and d2. Plugging this in gives

min
20≤x≤40

max
(d1,d2)∈U

δmax{20 + x, d1, d2}.

For given (d1, d2) the objective value is at least δmax{d1, d2}, and this is achieved by
all x ≤ 30. Thus, it should be preferable to implement one of these solutions for the
Stage-1 decision. In fact, these solutions, which we call PARO, cannot be dominated
by other solutions. Notably, the set of PARO solutions

XPARO = {x | 20 ≤ x ≤ 30},

is a strict subset of XPRO. This implies that PARO solutions could dominate PRO
solutions that are non-PARO. To exemplify, compare the following three solutions: (i)
PARO solution x∗ = 25 with optimal decision rule y∗(d1, d2), (ii) PRO (non-PARO)
solution x̂ = 35 with optimal decision rule y∗(d1, d2), (iii) PRO solution x̂ = 35 with
static decision rule ŷ = 25.

Table 1 shows the performance for three scenarios. For worst-case scenario (60, 60)
all solutions perform equal. For scenario (50, 55) the solution (iii) is outperformed by
the other two solutions, for scenario (50, 50) both solutions (ii) and (iii)) are outper-
formed by PARO solution (i). There is no scenario where x̂ results in a strictly better
objective value than x∗, irrespective of the used decision rule. Thus, the PRO solution
x̂ is dominated by the PARO solution x∗.

Besides showing that PRO solutions could be dominated in ARO problems, Exam-
ple 1 also provides intuition into how. In particular, what unlocks extra performance in
ARO problems is the application of decision rules that are not merely worst-case opti-
mal, but rather “Pareto optimal,” i.e., they optimize performance over non-worst-case
scenarios as well. Note, however, that although for worst-case optimality linear deci-
sion rules might suffice under special circumstances, for Pareto optimality non-linear
rules appear to be more often necessary, as illustrated by the example.
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The application of non-linear decision rules to study PARO solutions invalidates the
techniques used in the analysis of Pareto efficiency in RO in the extant literature, which
is solely focused on linear formulations. In other words, analysis of Pareto efficiency
in ARO calls for a new line of attack, which brings us to another contribution wemake.
Specifically, to study PARO solutions, we rely heavily on Fourier–Motzkin Elimina-
tion (FME) as a proof technique. Through the lens of FME we consider optimality of
decision rule structures, which then enables us to study PARO. As a byproduct, we
illustrate how this proof technique can be applied in ARO more generally, by provid-
ing more general and more insightful proofs of known results (not related to Pareto
efficiency).

Findings and contributions

Before we begin our analysis, we summarize the findings and the contributions of this
paper. The treatment presented is restricted to two-stage ARO models that are linear
in both decision variables and uncertain parameters.

1. Concept of PARO Solutions In the context of linear ARO problems, we formal-
ize the concept of Pareto Adaptive Robustly Optimal (PARO) solutions. PARO
solutions have the property that no other solution and associated adaptive decision
rule exist that dominate them, i.e., perform at least as good under any scenario,
and perform strictly better under at least some scenario. As Example 1 above has
already shown, in the context of ARO problems, PARO solutions can dominate
other Pareto optimal solution concepts already proposed in the literature [16].
In practice, PARO solutions can only yield performance benefits compared with
non-PARO solutions, as the latter lead to efficiency losses.

2. Properties of PARO Solutions We derive several properties of PARO solutions.
The main results are that, for linear ARO problems with fixed and continuous
recourse, affine dependence onuncertain parameters and a compact feasible region,
there exists a first-stage PARO solution, and there exists a piecewise linear (PWL)
decision rule that is PARO. To arrive at these results, our analysis relies on FME.

3. Finding PARO Solutions and their Practical ValueWe present several approaches
to find and/or approximate PARO solutions in practice, amongst others using tech-
niques based on FME. We also conduct a numerical study for a facility location
example. The results reveal that (approximate) PARO solutions can yield substan-
tially better performance in non-worst-case scenarios than worst-case optimal and
PRO solutions, thus demonstrating the practical value of the proposed methodol-
ogy.

4. FME as a Proof Technique for PARO. Zhen et al. [30] introduce FME as both
a solution and proof technique for ARO. We apply and extend the latter idea,
and use FME to prove worst-case and Pareto optimality of various decision rule
structures.We extend and/or generalize known results inARO, not related to Pareto
optimality, and provide more insightful proofs; for example, one that uses FME to
establish the results by Bertsimas and Goyal [5] and Zhen et al. [30] on optimality
of LDRs under simplex uncertainty sets.
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Finally, to better position our contributions vis-à-vis the extant literature, we note
that, as mentioned earlier, PARO solutions were previously discussed in [26]. They
consider a specific 3-variable non-linear ARO problem arising in radiation therapy
planning; their approach for finding PARO solutions relies heavily on the specific
formulation. No general treatment of PARO was included, although this demonstrates
that PAROmay also be relevant for non-linear ARO problems. In the current paper, we
formalize the PARO concept, derive properties, such as existence of PARO solutions,
and also discuss constructive approaches towards finding them. With regards to FME,
Zhen et al. [30] were the first to recognize its applicability to linear ARO problems,
owing to its ability to eliminate adaptive variables. They use FMEas both a solution and
proof technique; for the latter the main obstacle is the exponential increase in number
of constraints after variable elimination. In the current paper, we apply and extend the
ideas of Zhen et al. [30], and use FME as a proof technique. Through the lens of FME
we first consider (worst-case) optimality of decision rule structures, and provide more
general and more insightful proofs of known results. Subsequently, we investigate
Pareto optimality using FME and present numerical results which demonstrate the
value of PARO solutions.

Notation and organization

Boldface characters represent matrices and vectors. All vectors are column vectors
and the vector ai is the i-th row of matrix A. The space of all measurable functions
from R

n to R
m that are bounded on compact sets is denoted by Rn,m . The vectors

ei , 1 and 0 are the standard unit basis vector, the vector of all-ones and the vector of
all-zeros, respectively. Matrix I is the identity matrix. The relative interior of a set S
is denoted by ri(S); its set of extreme points is denoted by ext(S).

The manuscript is organized as follows. First, Sect. 2 introduces the ARO setting
and the notion of PARO. Section3 investigates the existence of PARO solutions using
FME, and Sect. 4 presents some practical approaches for the construction of PARO
solutions. In Sect. 6 we present the results of our numerical experiments, and Sect. 7
concludes the manuscript. Appendix A uses FME to establish (worst-case) optimality
of decision rule structures.

2 Pareto optimality in (adaptive) robust optimization

We first generalize the definition of PRO of Iancu and Trichakis [16] to non-linear
static RO problems. The reason for this is that there turns out to be a relation between
Pareto efficiency for non-linear static RO problems and linear ARO problems. Let
x ∈ X ⊆ R

nx denote the decision variables and let z ∈ U ⊆ R
L denote the uncertain

parameters. Let f : Rnx × R
L �→ R and consider the static RO problem

min
x∈X

max
z∈U f (x, z). (2)
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Let XRO denote the set of robustly optimal (i.e., worst-case optimal) solutions. A
robustly optimal solution x is PRO if there does not exist another robustly optimal
solution x̄ that performs at least as good as x for all scenarios in the uncertainty set,
while performing strictly better for at least one scenario. If such a solution x̄ does exist,
it is said to dominate x. In practice, solution x̄ will always be preferred over x. If all
uncertainty in the objective is moved to constraints using an epigraph formulation,
Pareto robust optimality may also be defined in terms of slack variables [16, Section
4.1], but we do not use that definition here. We use the following formal definition:

Definition 1 (Pareto Robustly Optimal) A solution x ∈ XRO is PRO to (2) if there
does not exist another x̄ ∈ XRO such that

f (x̄, z) ≤ f (x, z), ∀z ∈ U ,

f (x̄, z̄) < f (x, z̄), for some z̄ ∈ U .

We aim to extend the concept of PRO to ARO problems. In particular, we consider
the following adaptive linear optimization problem:

min
x, y(·) max

z∈U c(z)
x + d
 y(z), (3a)

s.t. A(z)x + B y(z) ≤ r(z), ∀z ∈ U , (3b)

where z ∈ U ⊆ R
L is an uncertain parameter, with U a compact, convex uncertainty

set with nonempty relative interior. Variables x ∈ R
nx are the Stage-1 (here-and-now)

decisions. Usually we will assume x to be continuous variables, but we emphasize that
all results in the paper also hold if (part of) x is restricted to be integer-valued.Variables
y ∈ RL,ny are also continuous and capture the Stage-2 (wait-and-see) decisions, i.e.,
they are functions of z. The matrix B ∈ R

m×ny and vector d ∈ R
ny are assumed to

be constant (fixed recourse), and A(z), r(z) and c(z) depend affinely on z:

A(z) := A0 +
L∑

k=1

Ak zk, r(z) := r0 +
L∑

k=1

rk zk, c(z) := c0 +
L∑

k=1

ck zk,

with A0, . . . , AL ∈ R
m×nx , r0, . . . , rL ∈ R

m and c0, . . . , cL ∈ R
nx . Uncertainty

in the objective (3a) can be moved to the constraint using an epigraph formulation.
Nevertheless, it is explicitly stated in the objective to facilitate a convenient definition
of PARO. Let OPT denote the optimal (worst-case) objective value of (3).We continue
by stating several assumptions and definitions regarding adaptive robust feasibility and
optimality.

Definition 2 (Adaptive Robustly Feasible) A pair (x, y(·)) is Adaptive Robustly Fea-
sible (ARF) to (3) if A(z)x + B y(z) ≤ r(z), ∀z ∈ U .

Sometimes it is useful to consider properties of the first- and second-stage decisions
separately. Therefore,we also define adaptive robust feasibility for Stage-1 andStage-2
decisions individually.
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Definition 3 (Adaptive Robustly Feasible x and/or y(·))
(i) A Stage-1 decision x is ARF to (3) if there exists a y(·) such that (x, y(·)) is

ARF to (3).
(ii) A Stage-2 decision y(·) is ARF to (3) if there exists a x such that (x, y(·)) is

ARF to (3).

The set of all ARF solutions x is given by

X = {x ∈ R
nx | ∃ y ∈ RL,ny : A(z)x + B y(z) ≤ r(z), ∀z ∈ U }.

We assume set X is nonempty, i.e., there exists an x that is ARF, and we assume (3)
has a finite optimal objective value, i.e., OPT is a finite number. After feasibility, the
natural next step is to formally define optimality.

Definition 4 (Adaptive Robustly Optimal) A pair (x, y(·)) is adaptive robustly optimal
(ARO)1 to (3) if it is ARF and c(z)
x + d
 y(z) ≤ OPT, ∀z ∈ U .

We also define adaptive robust optimality for Stage-1 and Stage-2 decisions individ-
ually.

Definition 5 (Adaptive Robustly Optimal x and/or y(·))
(i) A Stage-1 decision x is ARO to (3) if there exists a y(·) such that (x, y(·)) is

ARO to (3).
(ii) A Stage-2 decision y(·) is ARO to (3) if there exists a x such that (x, y(·)) is

ARO to (3).

We are now in position to define Pareto Adaptive Robust Optimality for two-stage
ARO problems.

Definition 6 (Pareto Adaptive Robustly Optimal) A pair (x, y(·)) is Pareto Adaptive
Robustly Optimal (PARO) to (3) if it is ARO and there does not exist a pair (x̄, ȳ(·))
that is ARO and

c(z)
 x̄ + d
 ȳ(z) ≤ c(z)
x + d
 y(z), ∀z ∈ U ,

c( z̄)
 x̄ + d
 ȳ( z̄) < c( z̄)
x + d
 y( z̄), for some z̄ ∈ U .

As before, the definitions can be extended to Stage-1 and Stage-2 decisions individu-
ally.

Definition 7 (Pareto Adaptive Robustly Optimal x and/or y(·))
(i) A Stage-1 decision x is PARO to (3) if there exists a y(·) such that (x, y(·)) is

PARO to (3).
(ii) A Stage-2 decision y(·) is PARO to (3) if there exists a x such that (x, y(·)) is

PARO to (3).

1 To ease exposition, we overload and reuse certain acronyms, such as ARO for “Adaptive Robust Opti-
mization” and “Adaptive Robustly Optimal”, as long as they can be readily disambiguated from the context.
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Fig. 1 Illustration of PARO concept. Each graph represents the objective value of (3) for a given pair
(x, y(z)) as a function of uncertain parameter z. Solution (x̂, ŷ(z)) (solid line) is dominated by (x̂, ȳ(z))
(solid-dotted line). Thus, decision rule ȳ(z) may be a PARO extension of x̂, decision rule ŷ(z) is not.
Solution (x∗, y∗(z)) (dashed line) dominates both (x̂, ŷ(z)) and (x̂, ȳ(z)) and may be PARO. Solution x̂
may also be a PARO Stage-1 solution

Our main interest is in Definition 7(i). The reason for this is that the here-and-now
decision x is usually the only one that the decisionmaker has to commit to. In contrast,
instead of using decision rule y(·), one can often resort to re-solving the optimization
problem for the second stage once the value of the uncertain parameter has been
revealed. This is known as the folding horizon approach, and it is applicable as long
as there is time to re-solve between observing z and having to implement y(z). There
is no such alternative for x, however, and different decisions in Stage 1 may lead to
different adaptation possibilities in Stage 2.

Lastly, Pareto optimality can also be investigated for Stage-2 decisions if the Stage-1
decision x is fixed.

Definition 8 (Pareto Adaptive Robustly Optimal extension y(·)) A Stage-2 decision
y(·) is a PARO extension to x∗ for (3) if (x∗, y(·)) is ARO to (3) and there does not
exist another ȳ(·) such that (x∗, ȳ(·)) is ARO to (3) and

c(z)
x∗ + d
 ȳ(z) ≤ c(z)
x∗ + d
 y(z), ∀z ∈ U ,

c( z̄)
x∗ + d
 ȳ( z̄) < c( z̄)
x∗ + d
 y( z̄), for some z̄ ∈ U .

Figure 1 illustrates the PARO concept for a single uncertain parameter, and illus-
trates that care must be exercised when drawing conclusions related to PARO. In the
example, (x∗, y∗(z)) is possibly PARO, but this cannot be concluded from the figure.
Also, Stage-1 solution x̂ might still be PARO, but that cannot be concluded from the
figure either. The reason for the latter is that there may be yet another decision rule
ỹ(z) so that (x̂, ỹ(z)) is not dominated by (x∗, y∗(z)).
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We conclude this section by mentioning three ways that the PARO concept can
be generalized and relaxed, although we do not consider these any further. First,
Bertsimas et al. [8] define Pareto optimal adaptive solutions for general (non-linear)
two-stage ARO problems, which for linear problems is equivalent to our definition of
PARO. They subsequently define Pareto optimal affine adaptive solutions, which is
equivalent to the definition of PRO after using LDRs, and focus on finding the latter
type of solutions. In their numerical studies, Iancu and Trichakis [16] also consider
two-stage problems and find PRO solutions after plugging in LDRs.

Secondly, we can also solely relax the requirement that the solution is ARO. For
example, often LDRs do not guarantee an ARO solution but do exhibit good practical
performance [20]. Suppose these yield a worst-case objective value p (> OPT). Then
we can define p-PARO solutions as those solutions (x, y(·)) that yield an objective
value of atmost p in each scenario, and are not dominated by another solution (x̄, ȳ(·))
that yields an objective value of at most p in each scenario.

Thirdly, PARO may also be defined in terms of slack variables, analogous to the
extension of PRO to constraint slacks in Iancu and Trichakis [16, Section 4.1]. In that
paper, a slack value vector is introduced that quantifies the relative importance of slack
in each constraint. This scalarization allows the computation of the total slack value
of a solution in any scenario. Subsequently PRO (and also PARO) can be defined on
this total slack value instead of the objective value. This may be useful in applications
where ARO is mainly used for maintaining feasibility, such as immunizing against
uncertain renewable energy source output [17] and adjusting to disturbances in railway
timetabling [24].

3 Properties of PARO solutions

In this section, we prove existence of PARO solutions for two-stage ARO problems of
form (3). First, we use FME to prove that a PARO Stage-1 (here-and-now) solution is
equivalent to a PRO solution of a piecewise linear (PWL) convex static RO problem,
and use that to prove the existence of a PARO Stage-1 solution. Subsequently, we
prove that there exists a PWL decision rule that is PARO to (3).

3.1 Existence of a PARO Stage-1 solution

We prove existence of PARO Stage-1 solutions in three steps. First, we prove that (3)
is equivalent to a static RO problem with a convex PWL objective. Subsequently, we
prove that a PRO solution to this static RO problem is equivalent to a PARO solution
to (3). Lastly, we prove that PRO solutions to such problems always exist.

The proof that (3) is equivalent to a static RO problemwith a convex PWL objective
makes use of FME [10, 22], an algorithm for solving systems of linear inequalities.We
refer to Bertsimas and Tsitsiklis [6] for an introduction to FME in linear optimization.
Its usefulness in ARO is due to the fact that it can be used to eliminate adaptive
variables, as proposed by Zhen et al. [30]. FME leads to an exponential increase in the
number of constraints. Zhen et al. [30] introduce a redundant constraint identification

123



Pareto Adaptive Robust Optimality via a Fourier–Motzkin… 495

scheme, which helps to reduce the number of redundant constraints, although the
number of constraints remains exponential. Zhen et al. [30] also propose to use FME
to eliminate only part of the variables and usingLDRs for remaining adaptive variables.
Next to this, they use FME to prove (worst-case) optimality of PWL decision rules.
Furthermore, they consider optimal decision rules for the adaptive variables in the dual
problem: they prove (worst-case) optimality of LDRs in case of simplex uncertainty
and (two-)piecewise linear decision rules in case of box uncertainty. Zhen and den
Hertog [29] use a combination of FME and ARO techniques to compute the maximum
volume inscribed ellipsoid of a polytopic projection. The following example illustrates
the use of FME to eliminate an adaptive variable.

Example 2 We use FME to eliminate adaptive variable y from (1) in Example 1. We
move the uncertain objective to the constraints using an epigraph variable t ∈ R, and
rewrite the constraints to obtain:

min
x,t,y(d1,d2)

t, (4a)

s.t. 20 ≤ x ≤ 40, (4b)

y(d1, d2) ≤ t/δ − x, ∀(d1, d2) ∈ U , (4c)

d1 − x ≤ y(d1, d2), ∀(d1, d2) ∈ U , (4d)

d2 − x ≤ y(d1, d2), ∀(d1, d2) ∈ U , (4e)

20 ≤ y(d1, d2) ≤ 40, ∀(d1, d2) ∈ U . (4f)

For fixed (d1, d2), Constraints (4c)-(4f) specify lower and/or upper bounds on y. By
combining each pair of lower and upper bounds on y into a new constraint, we find
the following problem in terms of (x, t):

min
x,t

t, (5a)

s.t. 20 ≤ x ≤ 40, (5b)

d1 ≤ t/δ, ∀(d1, d2) ∈ U , (5c)

d2 ≤ t/δ, ∀(d1, d2) ∈ U , (5d)

20 ≤ t/δ − x, ∀(d1, d2) ∈ U , (5e)

d1 − x ≤ 40, ∀(d1, d2) ∈ U , (5f)

d2 − x ≤ 40, ∀(d1, d2) ∈ U , (5g)

where we have removed the trivial new constraint 20 ≤ 40. Any solution (x, t) sets
the following bounds on y:

max{d1 − x, d2 − x, 20} ≤ y(d1, d2) ≤ min{t/δ − x, 40}, ∀(d1, d2) ∈ U ,

and any decision rule satisfying these inequalities is ARO to (1). Thus, two-stage
problem (1) has been reduced to static linear RO problem (5). Auxiliary variable t can
be eliminated, transforming (5) into an RO problem with a PWL objective.
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We focus on applying FME as a proof technique. If FME is performed on Stage-1
feasible region X until all adaptive variables are eliminated, the feasible region can
be written as

XFME = {x ∈ R
nx | G(z)x ≤ f (z), ∀z ∈ U },

for some matrix G(z) and vector f (z) depending affinely on z. Zhen et al. [30] show
that X = XFME. The following lemma proves that (3) is equivalent to a static RO
problem with a convex PWL objective.

Lemma 1 If (x∗, y∗(·)) is ARO to (3), y∗(·) satisfies

d
 y∗(z) = max
(S,T )∈M{hS,T (x∗, z)}, ∀z ∈ U , (6)

and x∗ is optimal to

min
x∈XFME

max
z∈U c(z)
x + max

(S,T )∈M{hS,T (x, z)}, (7)

with

M =
{
(S, T ) | ∃k = 1, . . . , ny s.t. S ∈ C−

k , T ∈ C+
k ,

β(S, l) = β(T , l), ∀l > k, 0 ∈ S ∪ T
}
,

and linear functions

hS,T (x, z) =
∑

p∈S,p>0

α(S, p)

α(T , 0) − α(S, 0)
ϕp(x, z) −

∑

q∈T ,q>0

α(T , q)

α(T , 0) − α(S, 0)
ϕq (x, z),

and sets C−, C+, functions ϕ(·) and coefficients α and β defined as in Lemma B.1.
Conversely, if x∗ is optimal to (7), there exists a y∗(·) such that (x∗, y∗(·)) is ARO to
(3), and any such y∗(·) satisfies (6).
Proof See Appendix B.2. 
�

The result of Lemma 1 is also illustrated in Example 2, where if auxiliary variable
t is eliminated the resulting problem has a convex PWL objective. If the number of
adaptive variables in (3) is small enough that full FME can be performed (order of
magnitude: 20 adaptive variables [30]), one can solve (7) via an epigraph formulation
in order to obtain an ARO x to (3).

Lemma 2 A solution x∗ is PARO to (3) if and only if it is PRO to

min
x∈XFME

max
z∈U c(z)
x + max

(S,T )∈M{hS,T (x, z)}, (8)

where each element (S, T ) of set M is a pair of sets of original constraints of (3) and
each function hS,T (x, z) is bilinear in x and z.
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Proof See Appendix B.3. 
�
Thus, existence of a PARO solution to (3) is now reduced to existence of a PRO
solution to a static RO problem with a convex PWL objective in both x and z. For
problems without adaptive variables in the objective the following result immediately
follows.

Corollary 1 If d = 0, a solution x∗ is PARO to (3) if and only if it is PRO to

min
x∈XFME

max
z∈U c(z)
x.

Proof This directly follows from plugging in d = 0 in the proof of Lemma 2. 
�
We can now prove one of our main results: existence of a PARO x for any ARO

problem of form (3) with compact feasible region. Our proof uses Lemma 2 and
essentially proves existence of a PRO solution to (8).

Theorem 1 If X is compact, there exists a PARO x to (3).

Proof See Appendix B.4. 
�
Note that the theorem also holds if X restricts (some elements of) x to be integer-
valued. The boundedness assumption on X cannot be relaxed, because in that case
a PRO solution to (8) need not exist. For example, consider the static RO problem
maxx≥0 minz∈[0,1] xz. The worst-case scenario is z = 0, and any x ≥ 0 is worst-case
optimal. In any other scenario z > 0, higher x is better. Any x is dominated by x + ε

with ε > 0, and there is no PRO solution.

3.2 Existence of a PARO piecewise linear decision rule

Now that existence of a PARO x is established, we investigate the structure of decision
rule y(·). We illustrate via an example that for any ARF x there exists a PWL PARO
extension y(·).
Example 3 Consider the following ARO problem:

min
x,y(·) max

z∈[0,1] x − y1(z) + y2(z), (9a)

s.t. x − y2(z) ≤ −z − 1

2
, ∀z ∈ [0, 1], (9b)

− x + y1(z) + y2(z) ≤ z + 2, ∀z ∈ [0, 1], (9c)

1 ≤ y1(z) ≤ 2, ∀z ∈ [0, 1], (9d)

3

2
≤ y2(z) ≤ 2, ∀z ∈ [0, 1]. (9e)

Using FME, we first eliminate y1(z) and subsequently eliminate y2(z):

1 ≤ y1(z) ≤ min
{
2, x − y2(z) + z + 2

}
, (10a)

123



498 D. Bertsimas et al.

max

{
3

2
, x + z + 1

2

}
≤ y2(z) ≤ min

{
2, x + z + 1}. (10b)

From the bounds on y2, it can be concluded that the unique ARF (and hence ARO)
Stage-1 solution is x∗ = 1

2 . This leads to the following bounds on y1(z) and y2(z):

1 ≤y1(z) ≤ min

{
2, z − y2(z) + 5

2

}
, (11a)

max

{
3

2
, 1 + z

}
≤y2(z) ≤ min

{
2,

3

2
+ z

}
. (11b)

Variables y1(z) and y2(z) have not been eliminated in the objective. Therefore, any
decision rule satisfying (11) is ARF to (9) but need not be ARO or PARO.

Variable y1(z) does not appear in the bounds of y2(z), so we can consider its
individual contribution to the objective value. The objective coefficient of y1(z) is
negative, so for any z (including the worst-case) the best possible contribution of y1(z)
to the objective value is achieved if we set y1(z) equal to its upper bound. Therefore,
for the given x∗, we have the following PWL PARO extension as a function of y2(z):

y∗
1 (z) = min

{
2, z − y2(z) + 5

2

}
.

Now that y1(z) is eliminated in the objective, it remains to find the optimal decision
rule for y2(z). Variable y2(z) now appears directly in the objective (9a) and through
its occurence in the decision rule y∗

1 (z). For fixed z, the optimal y2(z) is determined
by solving

min
y2(z)

− min

{
2, z − y2(z) + 5

2

}
+ y2(z),

s.t. max

{
3

2
, 1 + z

}
≤ y2(z) ≤ min

{
2,

3

2
+ z

}
.

One can easily see that the objective is increasing in y2(z), so for any z the best possible
contribution of y2(z) to the objective value is achieved if we set y2(z) equal to its lower
bound. Thus, for the given x∗, we have the following PWL PARO extension:

y∗
2 (z) = max

{
3

2
, 1 + z

}
.

Note that plugging in a PWL argument in a PWL function retains the piecewise linear
structure. Therefore, we also obtain the following PWL PARO extension for y∗

1 (z):

y∗
1 (z) = min

{
2, z − max

{
3

2
, 1 + z

}
+ 5

2

}
.
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Note that we did not move adaptive variables in the objective to the constraints
using an epigraph variable, as was done in Example 2. Using an epigraph variable
for the objective ensures that each decision rule satisfying the bounds is worst-case
optimal, but prevents from comparing performance in other scenarios. Naturally, com-
putationally it has the major advantage that it remains a linear program. 
�

Bemporad et al. [1] show worst-case optimality of PWL decision rules for right-
hand polyhedral uncertainty, i.e., AROPWLdecision rules in our terminology. Zhen et
al. [30, Theorem 3] generalize this to problems of form (3) with particular assumptions
on the uncertainty set. These decision rules are general PWL in z for all variables y j ,
j �= l, where yl is the last eliminated variable in the FME procedure. The decision
rule is convex or concave PWL in yl . These results solely consider the performance of
PWL decision rules in the worst-case. Example 3 illustrates that for any ARF x there
exists a PWL PARO extension y(·). The lemma below formalizes this claim.

Lemma 3 For any x that is ARF to (3) there exists a PARO extension y(z) that is PWL
in z.

We present two proofs to Lemma 3; one via FME using the idea of Example 3, and
one via basic solutions in linear optimization.

Proof of Lemma 3 via FME See Appendix B.5. 
�
Proof of Lemma 3 via linear optimization See Appendix B.6. 
�
In both proofs the constructed decision rule is in fact optimal for all scenarios in
the uncertainty set. As long as x is fixed, this is necessary for PARO solutions. The
following theorem establishes the existence of PARO PWL decision rules.

Theorem 2 If X is compact, there exists a PARO y(·) for (3) such that y(z) is PWL
in z.

Proof According to Theorem 1 there exists a PARO x, and according to Lemma 3
there exists a PARO extension y(·) for this x that is PWL in z. It immediately follows
that y(·) is PARO. 
�

4 Constructing PARO solutions—special cases

The methods used in the existence proofs of Sect. 3 are not computationally tractable,
i.e., they provide little guidance for finding PARO solutions in practice. In this section,
we discuss several practical methods for finding PARO solutions for special cases of
problem (3). Several results assume that d = 0, i.e., Stage-2 variables do not appear in
the objective. This can be a limiting assumption, although it is satisfied in applications
where ARO is used for maintaining robust feasibility [17, 24]. In the next section, a
general methodology that does not rely on this assumption is presented.

First, we consider special cases of problem (3) where particular decision rule struc-
tures guarantee PARO solutions in case d = 0. Subsequently, we show how for fixed x
we can check whether y(·) is a PARO extension. After that, we consider an application
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of the finite subset approach of Hadjiyiannis et al. [15]. Lastly, we present a method
for finding a PARO solution if d = 0 and a convex hull description of the uncertainty
set is available.

4.1 Knownworst-case optimal decision rules

In Appendix A, using an FME lens, we analyze various decision rule structures,
considering special uncertainty set forms, including so-called constraintwise, hybrid
and block forms. This enables us to prove that an ARF decision rule with a particular
structure exists for every ARF x, instead of solely proving it is optimal for an ARO
x. For example, for ARO problems with hybrid uncertainty, for any ARF Stage-1
decision there exists an ARF decision that depends only on the non-constraintwise
uncertain parameter. It turns out that, in case there are no adaptive variables in the
objective, PRO solutions to the static problem obtained after plugging in that decision
rule structure are PARO solutions to the original ARO problem. To formalize this, let
y(z) = fw(z) be a decision rule with known form f (e.g., linear or quadratic) and
finite number of parameters w ∈ R

p, such that fw(z) ∈ RL,ny for any w.

Theorem 3 Let P denote an ARO problem of form (3) with d = 0 and where for any
ARF x there exists an ARF decision rule of form y∗(z) = fw(z) for some w. Then
any x∗ that is PRO to the static robust optimization problem obtained after plugging
in decision rule structure fw(z) is PARO to P.

Proof See Appendix B.7. 
�
Due to Lemmas A.1 to A.3, the following result immediately follows for hybrid,

block and simplex uncertainty.

Corollary 2 (i) Let Phybrid denote an ARO problem of form (3) with d = 0 and
hybrid uncertainty. Let Q denote the static robust optimization problem obtained
from Phybrid by plugging in a decision rule structure that depends only on the
non-constraintwise parameter. Any x∗ that is PRO to Q is PARO to Phybrid.

(ii) Let Pblock denote an ARO problem of form (3) with d = 0 and block uncertainty.
Let Q denote the static robust optimization problem obtained from Pblock by
plugging in a decision rule structure where adaptive variable y∗

(v)(·) depends
only on z(v) for all v = 1, . . . , V . Then any x∗ that is PRO to Q is PARO to
Pblock.

(iii) Let Psimplex denote an ARO problem of form (3) with d = 0 and a simplex uncer-
tainty set, i.e., U = Conv(z1, . . . , zL+1), with z j ∈ R

L such that z1, . . . , zL+1

are affinely independent. Let Q denote the static robust optimization problem
obtained from Psimplex by plugging in an LDR structure. Then any x∗ that is PRO
to Q is PARO to Psimplex.

Proof See Appendix B.8. 
�
The case with constraintwise uncertainty is a special case of Corollary 2(i). The case
with one uncertain parameter is a special case of Corollary 2(iii). Note that, unlike
for worst-case optimization in Appendix A, it is necessary that d = 0, because our
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definition of PRO involves the term d. If d �= 0, the results above do not hold. This is
also illustrated in Example 1 in Sect. 1.

The results of Corollary 2 can be combined. For example, for problems with
both simplex uncertainty and hybrid uncertainty, Corollary 2(i) and Corollary 2(iii)
together imply that one needs to consider only decision rules that are affine in the non-
constraintwise parameter, if there are no adaptive variables in the objective. Simplex
uncertainty sets arise in a variety of applications and can be used to approximate other
uncertainty sets [4].

4.2 Check whether a decision rule is a PARO extension

If the Stage-1 decision x is fixed, one can verify whether the decision rule y is a PARO
extension (Definition 8) as follows.

Lemma 4 Let (x∗, y∗(·)) be an ARO solution to (3). Consider the problem

max
z, y

d
( y∗(z) − y), (12a)

s.t. A(z)x∗ + B y ≤ r(z), (12b)

z ∈ U . (12c)

If the optimal objective value is zero, y∗(·) is a PARO extension of x∗. If the opti-
mal objective value is positive, then y∗(·) is not a PARO extension of x∗ and the
suboptimality of y∗(·) is bounded by the optimal objective value.

Proof See Appendix B.9. 
�
If the optimal value to (12) is positive and ( z̄, ȳ) denotes an optimal solution to (12),
then z̄ is a scenario where the suboptimality bound is attained, and ȳ is an optimal
decision for this scenario. Also, note that if the optimal value of (12) equals zero,
the pair (x∗, y∗(·)) need not be PARO; there may be a different pair (x̂, ŷ(·)) that
dominates the current pair.

4.3 Unique ARO solution on finite subset of scenarios is PARO

The finite subset approach of Hadjiyiannis et al. [15] can be used in a PARO setting
as well. If the lower bound problem has a unique optimal solution and this solution is
feasible to the original problem, it is a PARO solution to the original problem. This is
formalized in Lemma 5.

Lemma 5 Let S = {z1, . . . , zN } denote a finite set of scenarios, S ⊆ U. Let x∗
be the unique ARO Stage-1 solution for which there exist y1∗, . . . , yN∗ such that
(x∗, y1∗, . . . , yN∗) is an optimal solution to

min
x, y1,..., yN

max
i=1,...,N

{c(zi )
x + d
 yi }, (13a)

s.t. A(zi )x + B yi ≤ r(zi ), ∀i = 1, . . . , N . (13b)
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Then x∗ is PARO to (3).

Proof Let (x̄, ȳ(·)) be ARO to (3) with x̄ unequal to x∗. Then the solution
(x̄, ȳ(z1), . . . , ȳ(zN )) is feasible to (13). Because x∗ is the unique ARO Stage-1
solution that can be extended to an optimal solution of (13), it holds that

c(zi )
x∗ + d
 yi∗ < c(zi )
 x̄ + d
 ȳ(zi ) for some zi ∈ S.

That is, for each x̄ that is ARO to (3) and unequal to x∗ there is at least one scenario
zi in U for which x∗ outperforms x̄. This implies that x∗ is PARO to (3). 
�
Objective (13a) optimizes for the worst-case scenario zi in set S, and (13b) ensures
that x∗ is feasible for all scenarios in S. It should be noted that requiring x∗ to be both
ARO to (3) and a unique optimal solution to (13) is quite restrictive.

4.4 Convex hull description of scenario set

Next, consider the case where the uncertainty set is given by the convex hull of a
finite set of points, i.e., U = Conv(z1, . . . , zN ). Additionally assume that there are
no adaptive variables in the objective. Then (3) is equivalent to

min
x, y1,..., yN

max
i=1,...,N

c(zi )
x, (14a)

s.t. A(zi )x + B yi ≤ r(zi ), ∀i = 1, . . . , N . (14b)

Analogous to Iancu and Trichakis [16], after finding an ARO solution we can perform
an additional step by optimizing the set of ARO solutions over a scenario in the relative
interior (denoted by ri(·)) of the convex hull of our finite set of scenarios. This produces
a PARO Stage-1 solution to (3).

Lemma 6 Let d = 0. LetU = Conv(z1, . . . , zN ), z̄ ∈ ri(U )and let (x∗, y1∗, . . . , yN∗)
denote an optimal solution to

min
x, y1,..., yN

c( z̄)
x, (15a)

s.t. A(zi )x + B yi ≤ r(zi ), ∀i = 1, . . . , N , (15b)

c(zi )
x + d
 yi ≤ OPT, ∀i = 1, . . . , N , (15c)

where OPT denotes the optimal objective value of (14). Then x∗ is PARO to (3).

Proof See Appendix B.10. 
�

5 Constructing PARO solutions—general methodology

Adaptive robust optimization problems of form (3) are in general NP-hard [14], and
finding ARO solutions is still the focus of ongoing research [27]. Thus, finding a
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general methodology that, given an ARO solution to (3), can produce a PARO solution
is not an easy task either. In this section we present a general methodology for finding
PARO solutions to ARO problems of form (3), which involves solving a sequence of
bilinear optimization problems; by solving these heuristically, the method can be used
to find ‘approximate’ PARO solutions in practice. First we describe the methodology,
after that we discuss how to solve the bilinear optimization problems.

5.1 Constraint & column generation procedure for finding a PARO solution

The starting point is the constraint-and-column generation (C&CG) method of [28]
for finding ARO solutions; we first briefly describe this method. Let M ⊆ U denote a
finite set of scenarios, e.g., solely the nominal scenario. Consider the following LP:

(P1(M)) min
x, yi ,μ

μ, (16a)

s.t. μ ≥ c(zi )
x + d
 yi , ∀i = 1, . . . , |M |, (16b)

A(zi )x + B yi ≤ r(zi ), ∀i = 1, . . . , |M |. (16c)

The optimal Stage-1 solution x̂ to P1(M) is ARO for the set M , but not necessarily
ARO (or ARF) for the true uncertainty set U . Define the subproblem

(Q(x̂)) max
z∈U c(z)
 x̂ + min

y
{d
 y | A(z)x̂ + B y ≤ r(z)}, (17)

and let q(x̂) denote the optimal objective value. Either q(x̂) is finite with optimal
solution ẑ, or a scenario ẑ is identified where the inner minimization problem is
infeasible. In that case set q(x̂) to +∞ by convention. In either case, the solution ẑ is
a scenario inU where the Stage-1 solution x̂ to P1(M) performs worst. If the optimal
objective value of Q(x̂) is higher than the optimal objective value of P1(M), then M
did not contain the worst-case scenario, and x̂ is not ARO. That is, ẑ provides either
a feasibility or (worst-case) optimality cut. The scenario ẑ is added to M , and the
procedure is repeated until both objective values are sufficiently close. Algorithm 1
provides the pseudocode, see Zeng and Zhao [28] for more details.

The result of termination of Algorithm 1 after k iterations is an ARO solution
xARO := xk ; additionally let MARO := Mk denote the resulting set of scenarios and
let OPT := μk denote the worst-case optimal objective value.

A PARO solution can be found by appending another C&CG procedure to Algo-
rithm 1. In each iteration k of the secondC&CGprocedure, we find a candidate Stage-1
solution xc that satisfies three conditions:
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Algorithm 1: C&CG method of [28]

begin
Set k = 0, set ε > 0, choose an initial Mk ⊆ U and set boolean ARO to False;
while not ARO do

Solve problem P1(M
k ). Denote the optimal Stage-1 solution by xk and the optimal

objective value by μk ;

Solve the subproblem Q(xk );
Denote the optimal objective value by q(xk ), denote the optimal solution by zk ;
if q(xk ) ≤ μk + ε then

Set ARO to True;
else

Set Mk+1 = Mk ∪ {zk };
Set k ← k + 1;

end
end
Return xARO := xk ;

end

Condition 1 (i) xc is feasible for all scenarios zl ∈ Mk.
(ii) xc results in an objective value of at most vl(xk, zl) for all scenarios zl ∈ Mk,

with

v(xk, zl) =
{
OPT ∀zl ∈ MARO

c(zl)
xk + min y{d
 y|A(zl)xk + B y ≤ r(zl)} ∀zl ∈ Mk\MARO,

(18)

i.e., xc is feasible on the original scenario set MARO, and performs at least as
good as xk on any scenario subsequently added to Mk.

(iii) xc results in a strictly lower objective value than the current Stage 1 solution xk

on a new (to be determined) scenario zc.

This is achieved by solving the following optimization problem2

min
zc,xc, yc,

{ yl }|Mk |
l=1

max
yk :Axk+B yk≤r(zc)

(c(zc)
xc + d
 yc) − (c(zc)
xk + d
 yk),

(19a)

s.t. A(zc)xc + B yc ≤ r(zc), (19b)

(P2(xk, Mk)) A(zl)xc + B yl ≤ r(zl), ∀l = 1, . . . , |Mk |, (19c)

c(zl)
xc + d
 yl ≤ v(xk, zl), ∀l = 1, . . . , |Mk |, (19d)

zc ∈ U . (19e)

2 To limit notational burden, we overload the notation x :c and zc and use these for both the optimization
variables in (19) and their values in the optimal solution.
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Constraints (19c) and (19d) enforce Conditions 1(i) and 1(ii), respectively. The objec-
tive aims to find the scenario zc where the candidate solution xc most outperforms xk .
The inner maximization problem finds the optimal recourse decision yk for the current
solution xk at zc. Constraint (19b) ensures that xc is feasible for the new scenario zc.
Note that setting xc = xk is feasible and yields objective value 0, so P2(xk, Mk) is
always feasible and has a nonpositive optimal objective value.

If the optimal objective value of (19) is strictly negative, then candidate solution xc

satisfies Conditions 1(i) to 1(iii), i.e., it dominates xk on set Mk . However, because
Mk is only a subset of U , a candidate solution xc is not neccesarily ARO (or even
ARF). Thus, we again solve problem Q(xc); let q(xc) denote its objective value and
zq the optimizer. We distinguish two cases:

• q(xc) ≤ OPT. Candidate solution xc is an ARO solution that dominates xk on set
Mk ∪ {zc}. For the next iteration of the C&CG procedure we update the current
best solution: xk+1 = xc. The new set of scenarios is Mk+1 = Mk ∪ {zc}.
Further improvements over xc may be possible, so it is not neccesarily PARO. In
preparation of the next iteration, compute v(xk+1, zl) for all l = 1, . . . , Mk+1.

• q(xc) > OPT. Candidate solution xc is not ARO, so we set xk+1 = xk . For the
next iteration we set Mk+1 = Mk ∪ {zq}, to render solution xc infeasible in the
next iteration. In preparation of the next iteration, compute v(xk+1, zc).

The above procedure is repeated until the optimal objective value of (19) is nonnega-
tive. Algorithm 2 describes the resulting C&CG algorithm and Lemma 7 proves that
it yields a PARO Stage-1 solution.

Note that multiple PARO solutions may exist. Depending on the input solution
xARO, Algorithm 2 may potentially generate a different PARO solution.

Lemma 7 A solution xPARO obtained from Algorithm 2 is PARO to (3).

Proof See Appendix B.11. 
�
In the special case that the vertices ofU can be explicitly enumerated, the vertex set

can be used to initialize Mk . In this case, any candidate solution xc is feasible on all
vertices on U , so it is guaranteed to be ARO. Consequently, it is not needed to solve
subproblem Q(xc) in each iteration, and Algorithm 2 can be simplified. Note that this
special case is the same as the case discussed in Sect. 4.4, but with d �= 0.

5.2 Hints for solving the bilinear optimization problems

Algorithm 2 requires solving both problems P2 and Q in each iteration; Q is also
solved in each iteration of Algorithm 1. Unfortunately, both are intractable in general.
The reason is that for both problems the feasible region of the inner optimization
problem depend on the variables of the outer optimization problem. For Q, dualizing
the inner minimization problem results in the following bilinear problem:

max
z∈U , λ≤0

c(z)
x + λ
(
r(z) − A(z)x

)
(20a)

s.t. B
λ = d. (20b)
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Algorithm 2: C&CG method for finding a PARO solution

begin
Run Algorithm 1;

Initialize xk = xARO and Mk = MARO;

Set vl (xk , zl ) = OPT for all l = 1, . . . , |Mk |;
Set boolean PARO to False;
while not PARO do

Solve problem P2(xk , Mk ) and denote the optimal objective value pk2;

if pk2 ≥ 0 then
Set PARO to True;

else
Denote the optimal Stage-1 solution of P2(xk , Mk ) by xc and the new scenario by zc;
Solve subproblem Q(xc);
if q(xc) ≤ OPT then

Set Mk+1 ← Mk ∪ {zc};
Set xk+1 ← xc;
Compute v(xk+1, zl ) for all l = 1, . . . , |Mk+1|;

else
Denote the optimizer of Q(xc) by zq ;
Set Mk+1 = Mk ∪ {zq };
Set xk+1 ← xk ;
Compute v(xk+1, zc);

end
Set k ← k + 1;

end
end
Return xPARO := xk ;

end

Similarly, for P2 dualizing the inner maximization problem also results in a bilinear
optimization problem:

min
zc,xc, yc,λ

{ yl }|Mk |
l=1

(
c(zc)
xc + d
 yc

) −
(
c(zc)
xk + λ
(r(zc) − A(zc)xk)

)
, (21a)

s.t. A(zc)xc + B yc ≤ r(zc), (21b)

A(zc)xc + B yl ≤ r(zl), ∀l = 1, . . . , |Mk |, (21c)

c(zc)
xc + d
 yl ≤ v(xk, zl), ∀l = 1, . . . , |Mk |, (21d)

zc ∈ U , (21e)

B
λ = d, λ ≤ 0. (21f)

For both (20) and (21), we propose to use a simple alternating direction heuristic, also
known as mountain climbing, which guarantees a local optimum [19].

We describe this approach in more detail for (21). For some initial zc one can
determine the optimal {xc, yc, y1, . . . , y|Mk |} by solving an LP. Subsequently, we
alternate between optimizing for zc and {λ, xc, yc, y1, . . . , y|Mk |} while keeping the
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other set of variables at their current value. For either set of variables, the problem is
an LP. This is continued until two consecutive LP problems yield the same objective
value.

The solution quality of the mountain climbing procedure depends on the starting
value for zc. One option is to simply pick the nominal scenario, if it is defined. A better
starting solution can be obtained by plugging in an LDR for yk in P2, i.e., by solving

max
w,W

min
zc,xc, yc,

{ yl }|Mk |
l=1

(c(zc)
xc + d
 yc) − (c(zc)
xk + d
(w + Wzc)) (22a)

s.t. A(zc)xk + B(w + Wzc) ≤ r(zc), (22b)

additionally subject to (19b)–(19e). This is a static linear robust optimization prob-
lem.

This mountain climbing procedure can also be used to find a local optimum to
(20). A starting solution for z can be found by plugging in an LDR for y in (17), and
subsequently one can alternate between solving for z and λ in (20).

By using a heuristic approach to solving (19), it possible that at a certain iteration k
in Algorithm 2 we obtain an estimate p̂k ≥ 0, while the true pk < 0, so the algorithm
terminates without finding a PARO solution. Nevertheless, also solutions obtained
this way that are not proven to be PARO can improve upon the original ARO solution.
Similarly, if (20) is not solved to optimality, we might falsely conclude that a solution
is ARO. In the numerical experiments this risk is reduced by using multiple starting
points for zc.

There are many different approaches to (approximately) solving problems (20) and
(21), or equivalently, problems Q and P2; we conclude this section by providing some
examples and references. In case of RHS uncertainty, the following approach gives
an exact solution to (19). The inner minimization problem is an LP for which we can
write down the optimality conditions. Subsequently, the complementary slackness
conditions can be linearized using big-M constraints and auxiliary binary variables.
This results in an exact reformulation to a mixed binary convex reformulation (mixed
binary linear ifU is polyhedral). This reformulation was previously used in the C&CG
method of Zeng and Zhao [28] for ARO problems with a polyhedral uncertainty set,
and to solve bilinear optimization problems with a disjoint uncertainty set [32]. One
can verify that in case of RHS uncertainty, (21) indeed has disjoint polyhedral feasible
regions for λ and {zc, xc, yc, y1, . . . , y|Mk |}.

Another possible approach is the Reformulation-Perspectification-Technique pro-
posed by Zhen et al. [31]. The advantage of this approach is that one gets both an
upper and lower bound for the optimal objective value and this method can be easily
extended to a Branch & Bound framework to find the global optimal solution.

For alternative approaches to solving bilinear optimization problems, we refer to
Konno [19], Nahapetyan [23] and Zhen et al. [32]. Some bilinear formulations can be
solved directly by Gurobi 9.0 [13].
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6 Numerical experiments

To demonstrate the value of PARO solutions in practice, we focus on an example
problem in which (adaptive) robust optimization has been successfully applied: a
facility location problem.

6.1 Problem description

Consider a strategic decision-making problem where a number of facilities are to be
opened, in order to satisfy the demand of a number of customers. The goal is to choose
the locations for opening a facility such that the cost for opening the facilities plus the
transportation cost for satisfying demand is minimized. We consider this problem in a
two-stage setting with uncertain demand. Thus, facility opening decisions need to be
made in Stage 1, before Stage-2 demand is known.

Suppose there are n locations where a facility can be opened, and m demand loca-
tions. Let x ∈ {0, 1}n be a binary Stage-1 decision variable denoting the facility
opening decisions. Opening facility costs fi and yields a capacity si , i = 1, . . . , n.
Let y ∈ Rm,m×n be the Stage-2 decision variable denoting transport from facility i to
demand location j ; let ci j denote the associated costs, i = 1, . . . , n, j = 1, . . . ,m. Let
z j denote the uncertain demand in location j . The two-stage facility location model
reads

min
x, y(·) max

z∈U

n∑

i=1

m∑

j=1

ci j yi j (z) +
n∑

i=1

fi xi , (23a)

s.t.
n∑

i=1

yi j (z) ≥ z j , ∀z ∈ U , ∀ j = 1, . . . ,m, (23b)

m∑

j=1

yi j (z) ≤ si xi , ∀z ∈ U , ∀i = 1, . . . , n, (23c)

yi j (z) ≥ 0, ∀z ∈ U , ∀i = 1, . . . , n, j = 1, . . . ,m, (23d)

x ∈ {0, 1}n, (23e)

with uncertainty set

U =
⎧
⎨

⎩z :
m∑

j=1

z j ≤ Γ , l j ≤ z j ≤ u j , ∀ j = 1, . . . ,m

⎫
⎬

⎭ .

6.2 Setup

Model (23) can be written in form (3) with right-hand side uncertainty. In order to
find an (approximate) PARO solution xPARO, Algorithm 2 is used, including C&CG
Algorithm 1 to find an ARO solution. In order to improve the likelihood of finding an
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ARO solution, problem (20) is solved (with the mountain climbing approach) using
multiple starting points for z: the LDR-based starting point and 5 randomly sampled
starting points.

For comparison purposes, we also compute a PRO solution to (3) using the
methodology of Iancu and Trichakis [16, Theorem 1], which we repeat for conve-
nience. Specifically, we plug in LDR y(z) = w + Wz, and obtain optimal solution
(x∗

1,w
∗
1,W

∗
1). Subsequently, we optimize for the nominal scenario z̄ whilst ensuring

that performance in other scenarios does not deteriorate, and feasibility is maintained:

min
x,w,W

x2,w2,W2

c( z̄)
x2 + d
(w2 + W2 z̄), (24a)

s.t. c(z)
x2 + d
(w2 + W2z) ≤ 0, ∀z ∈ U , (24b)

A(z)x + B(w + Wz) ≤ r(z), ∀z ∈ U , (24c)

x = x∗
1 + x2,w = w∗

1 + w∗
2 ,W = W∗

1 + W2. (24d)

Constraint (24d) states that the new solution equals the original solution (variables
with subscript 1) plus an adaptation (variables with subscript 2). Constraint (24b)
ensures that the adaptation does not deteriorate performance in any scenario, and the
objective is to optimize performance in scenario z̄. According to Iancu and Trichakis
[16, Theorem 1], the optimal solution for (x,w,W) is PRO to (3). Let xPRO denote
the optimal solution for x.

We compare the performance of the Stage-1 (here-and-now) solutions xPARO, xARO
and xPRO. For solutions xPARO and xARO we use the optimal recourse decision. For
xPRO we report the results for two decision rules: (i) the optimal recourse decision, (ii)
the LDR. We refer to the four objective values as PARO, ARO, PRO and PRO(LDR).
We compute the relative improvement (in %) of PARO over the other three objective
values for two different cases:

Nominal: Relative improvement in nominal3 scenario z̄.
Maximum: Relative improvement in the scenario with the maximum performance

difference between xARO and xPARO. This scenario, which we denote by
z∗, is found by solving (19) with fixed xk = xARO and xc = xPARO.

All optimization problems are solved using Gurobi 9.0 [13] with the dual simplex
algorithm selected. We note that the influence of different solvers may also be inves-
tigated, but this is beyond the scope of this paper. All computations are performed on
a Intel-Core i7-8565U PC with 16GB RAM, using all 8 threads.

During our numerical studies we found examples where Algorithm 2 was not able
to improve upon the initial Stage-1 solution xARO. This could occur if the initial xARO
happens to be PARO. Or, it could occur if there is a unique ARO solution—after all,
not every ARO instance has multiple worst-case optimal Stage-1 solutions. The latter
has been reported before in literature. De Ruiter et al. [9] show that the multi-stage

3 In preliminary numerical experiments, average relative improvement over 10 uniform randomly sampled
scenarios has also been computed. Results are very similar to the relative improvement in the nominal
scenario, and are therefore omitted.
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production-inventorymodel of Ben-Tal et al. [2] has unique here-and-now decisions in
almost all time periods, if LDRs are used. In that example, the reported multiplicity of
solutions is mainly due to non-PRO decision rule coefficients.We find that multiplicity
of Stage-1 solutions appears in particular when problem data is integer.

6.3 Data

We solve the facility location problem for various combinations of demand locations
m, potential facility locations n and maximum total demand Γ . For (m, n), we con-
sider the pairs (10, 10), (10, 20), (20, 20), (20, 40), (50, 50), (50, 75), (100, 100) and
(100, 150). For each pair, we consider a low, medium and high value of Γ ; set at 8.5m,
10m and 11.5m, respectively.

For each combination, we generate 100 random instances. Facility capacity si is set
at 15 for each i . Other parameters are independently drawn from a discrete uniform
distribution. Construction costs f ∈ R

n are drawn between 4 and 22. Entries of
transportation cost matrix C ∈ R

n×m are drawn between 2 and 12.
We set lower and upper bound l j = 8 and u j = 12 for each demand location

j = 1, . . . ,m. The nominal demand scenario is z̄ j = 1
2 (8+Γ /m) for all j . Note that

z̄ ∈ ri(U ).
The models with LDRs cannot be solved for the instances with m ≥ 50, due

to memory limitations. Thus, for these instances the comparison to the PRO and
PRO(LDR) objective values is not possible. For the other instances, the computation
time for the LDR models is limited to 30min.4

6.4 Results

For the configurations withm = 100, none of the instances resulted in different Stage-
1 solutions xPARO and xARO. An ARO solution xARO that cannot be improved is a
PARO solution itself (up to suboptimality of the C&CG procedures), which may also
be a useful result.

For the other configurations, Table 2 reports the number of instances with differ-
ent Stage-1 solutions xPARO and xARO, along with the median required number of
iterations and median computation time for obtaining these solutions.5

The 	1-norm difference between Stage-1 solutions xPARO and xARO represents
the number of different facilities that are opened (out of n potential locations). For
example, an 	1 norm of 2 indicates that one solution opened facility i and another
solution opened facility j , or one solution opened both facilities i and j and the other
solution opened neither.

There is no clear trend visible as the instance size increases, in terms of number of
instances with differences in Stage-1 solutions or magnitude of differences (‖ · ‖1).
The median number of iterations also remains mostly constant, for both xARO and
xPARO. There is no clear effect of the Γ -parameter on the iteration count. Over all

4 Time limit solely for practical reasons. The resulting maximal optimality gap over all instances is 0.79%
5 PARO iteration count and solution time refer to Algorithm 2, i.e., they are additional to the required
number of iterations and solution time for obtaining the ARO solution.
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Table 2 Stage-1 solution differences, iteration count and computation time for the facility location problem

(m, n, Γ ) Instances with different xPARO and xARO Number of iterations Computation time (s)

Count Median ‖ · ‖1 Max ‖ · ‖1 ARO PARO ARO PARO

(10, 10, 85) 7 2 3 4 2 0.38 0.25

(10, 10, 100) 10 2 3 4 2 0.40 0.25

(10, 10, 115) 11 2 2 3 2 0.29 0.21

(10, 20, 85) 7 1 2 3 2 0.38 0.45

(10, 20, 100) 14 1.50 5 5 2 0.83 0.79

(10, 20, 115) 11 2 4 3 2 0.46 0.52

(20, 20, 170) 9 2 4 3 2 0.58 0.99

(20, 20, 200) 11 2 6 4 2 0.75 1.21

(20, 20, 230) 12 2 4 3 2 0.55 0.84

(20, 40, 170) 16 2.50 5 5 2 2.59 6.17

(20, 40, 200) 17 2 4 4 2 1.12 4.43

(20, 40, 230) 23 2 4 3 2 0.88 2.86

(50, 50, 425) 10 2 8 3 2 4.18 16.70

(50, 50, 500) 7 2 4 3 2 3.02 11.80

(50, 50, 575) 6 2 4 2 2 2.59 8.72

(50, 75, 425) 15 4 4 2 2 5.57 25.60

(50, 75, 500) 7 4 6 2 2 4.10 18.30

(50, 75, 575) 5 4 6 2 2 3.59 11.90

The number of instances for each configuration of (m, n, Γ ) is 100. Reported iteration count and compu-
tation time are the median over all instances with different Stage-1 solutions xPARO and xARO

Table 3 Difference in
worst-case objective value
between PRO and ARO, for the
facility location problem
instances with different Stage-1
solutions xPARO and xARO

(m, n) (10, 10) (10, 20) (20, 20) (20, 40)

Median (%) 0 0 0 0.24

Max (%) 0 0.33 1.10 2.20

instances in all configurations, the maximum number of iterations is 10 for xARO
and 4 for xPARO. Thus, the increase in computation time for the ARO and PARO
C&CG procedure in larger instances is predominantly due to the increased size of the
optimization problems in each iteration.

The LDR model (for obtaining the PRO and PRO(LDR) objective values) does not
necessarily find the worst-case optimal solution because (i) it is restricted to linear
recourse and thus an approximation of the true ARO model, and (ii) the 30-minute
time limit may be restrictive (this led to an optimality gap of at most 0.79% over all
instances). Thus, the LDR model may overestimate the worst-case cost. At the same
time, ARO does not necessarily find the worst-case scenario and may thus underesti-
mate the trueworst-case cost.Table 3 reports theworst-case differences. Particularly for
instances with (m, n) = (20, 40), differences in worst-case performance are observed.
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Fig. 2 Boxplots with relative improvement of PARO solution over alternative solutions, for the facility
location problem instances with different Stage-1 solutions xPARO and xARO
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Figure 2 shows boxplots of the relative objective value improvement of PARO over
ARO and (where applicable) over PRO and PRO(LDR) for the instances with different
Stage-1 solutions xPARO and xARO. Figure2a shows the improvement for nominal
scenario z̄ and Fig. 2b shows the improvement for maximum difference scenario z∗.

As expected, themagnitudeof differences is larger formaximumdifference scenario
z∗ than for the nominal scenario z̄. In most cases the maximum relative improvement
is substantial, but the median relative improvement is only minor in most cases. The
relative improvement of PARO over the other solutions decreases as the instance size
increases. This is best visible for the relative improvement of PARO over the ARO
(blue). For the instances with m = 50, also the maximum relative improvement is
minor. The reason for this is that the magnitude of (absolute) differences between
xPARO and xARO remains mostly constant (see Table 2), which leads to a decrease in
the relative objective value differences.

However, note that if the Stage-1 solution represents a decision that is to be imple-
mented in practice, even the possibility to get a small percentual improvementwarrants
the extra effort to obtain an (approximate) PARO solution. We note that for ARO we
use the first found ARO solution xARO; it is possible that there exists yet another ARO
solution, for which the improvement percentages of PARO over ARO are larger than
those reported in Fig. 2.

By construction, the relative improvement of PARO over ARO is positive for the
maximum difference scenario z∗. However, xPARO does not necessarily dominate6

xARO, thus, for specific scenarios xAROmay still performbetter. Indeed, althoughFig. 2
shows thatwhile for the largemajority of instances the relative improvement is positive,
sometimes it is negative. This may also be partially due to the fact that the obtained
solutions xARO and xPARO are approximate, due to the bilinear approximations. There
are also instances where the relative difference between PARO and ARO is zero, i.e.,
a different Stage-1 solution x does not always translate to a different performance on
the two reported measures.

The relative improvement of PARO over PRO is smaller than that of PARO over
PRO(LDR). Thus, reported differences are partially due to the different Stage-1 deci-
sion, and partially due to the Stage-2 decision rule.

7 Conclusion

In this paper, we dealt with Pareto efficiency in two-stage adaptive robust optimiza-
tion problems. Similar to static robust optimization, the large majority of solution
techniques focus only on worst-case optimality, and may yield solutions that are not
Pareto efficient. To alleviate this, the concept of Pareto Adaptive Robustly Optimal

6 By definition of PARO, the solution xPARO cannot be dominated, and the solution xARO is dominated
by at least one PARO solution (if it is not PARO). However, that is not necessarily the current PARO
solution. The current PARO solution is solely guaranteed to outperform xARO for all scenarios in set Mk

in Algorithm 2.
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(PARO) solutions has been introduced in the literature, and is formalized in a general
framework in this paper.7

Using FME as the predominant technique, we have analyzed the relation between
PRO and PARO and investigated optimality of various decision rule structures in
both worst-case and non-worst-case scenarios. We have shown the existence of PARO
here-and-now decisions and shown that there exists a PWL decision rule that is PARO.

Moreover, we have provided several practical approaches to generate or approx-
imate PARO solutions. Numerical experiments on a facility location example
demonstrate that PARO solutions can significantly improve performance in non-worst-
case scenarios over ARO and PRO solutions.

A potential direction for future research would be to further investigate constructive
approaches to find or approximate PARO solutions. In particular, it would be valu-
able to have tractable algorithms for larger instances and/or more general classes of
problems than the ones that can be tackled using the currently presented approaches.
Another interesting avenue for future (numerical) research would be understand more
precisely the circumstances under which multiplicity of ARO solutions occurs, and
when first-found ARO solutions are (un)-likely to be PARO.
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A Optimality of decision rule structures via an FME lens

As in Zhen et al. [30], we use FME as a proof technique for ARO, and we analyze
various decision rule structures. Moreover, the results in this section show that FME
not only provides more general results, but also leads to more concise (and perhaps
more intuitive) proofs to known results on optimal decision structures. Zhen et al.
[30] also use FME as a lens to derive certain optimality properties of decision rule
structures. However, the results obtained in this section are either new ormore general.

We consider several special cases of problem (3) for which particular decision
rule structures are known to be optimal. We use FME to prove generalizations of
these results for linear two-stage ARO problems. In particular, using FME as a proof
technique enables us to show that the particular decision rule structure is not only
ARO (i.e., worst-case optimal), but is ARF for each ARF Stage-1 decision x. These
results are used in analyzing PARO in Sect. 4.

We consider the cases where uncertainty appears (i) constraintwise, (ii) in a hybrid
structure (part constraintwise, part non-constraintwise), (iii) in a block structure, and
we consider (iv) the case with a simplex uncertainty set and the case with only one
uncertain parameter.

In the current section, if FME is applied, w.l.o.g. it is applied on the adaptive
variables in the order y1(z), . . . , yny (z), i.e., according to their index. For the analysis
of particular decision rule structures, it is crucial to keep track of the original constraints

7 For ARO problems, every non-PARO solution is dominated by a PARO solution, even if the former is
Pareto Robustly Optimal (PRO), as defined by Iancu and Trichakis [16].
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during the FME procedure. A frequently used technical result on this is provided in
Lemma B.1 in Appendix B.1.

(i) Constraintwise uncertainty

Constraintwise uncertainty is formally defined as follows.

Definition A.1 ARO problem (3) has constraintwise uncertainty if there is a partition

z = (z(0), z(1), . . . , z(m)),

such that z(0), . . . , z(m) are disjoint, the objective depends only on z(0) and constraint
i depends only on z(i), i = 1, . . . ,m. Additionally, U = {(z(0), . . . , z(m)) | z(i) ∈
Ui , i = 0, . . . ,m}, with Ui ⊆ R

|z(i)| for all i = 0, . . . ,m. 
�
Ben-Tal et al. [2] show that for constraintwise uncertainty,8 the optimal objective
values of the static and adaptive problem are equal, i.e., there exists an optimal static
decision rule. Using FME, a generalization of their result can be easily proved. We
first provide an example.

Example A.1 Consider the following ARO problem with constraintwise uncertainty:

min
x, y(·) x,

s.t. x − y2(z) ≤ −1

2
z1, ∀z1 ∈ [0, 1],

− x + y1(z) + y2(z) ≤ 1

2
z2 + 1

2
z3 + 2, ∀(z2, z3) ∈ [0, 1]2,

1 ≤ y1(z), ∀z ∈ U ,

3

2
≤ y2(z) ≤ 2, ∀z ∈ U

with U = [0, 1]3. Uncertain parameter z1 occurs only in the first constraint and
(z2, z3) occur only in the second constraint. Using FME, we first eliminate y1(z) and
subsequently eliminate y2(z):

1 ≤y1(z) ≤ −y2(z) + x + 2 + 1

2
z2 + 1

2
z3, ∀z ∈ U ,

max

{
3

2
, x + 1

2
z1

}
≤y2(z) ≤ min

{
2, x + 1 + 1

2
z2 + 1

2
z3

}
, ∀z ∈ U .

8 Note that constraintwise uncertainty inAROdiffers fromconstraintwise uncertainty in staticROproblems.
Whereas in the latter uncertainty can always be treated ‘constraintwise’ [3, p11] in ARO this is not the case
in general, due to the adaptive variables. Constraintwise uncertainty in ARO refers to problems that satisfy
the construction of Definition A.1.
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From the bounds on y2(z) four linear constraints can be derived, two of which depend
on x and are non-trivial:

x + 1

2
z1 ≤ 2, ∀z ∈ U .

3

2
≤ x + 1 + 1

2
z2 + 1

2
z3, ∀z ∈ U .

One can verify that the (unique) ARO solution is x∗ = 1
2 . Additionally, note that the

term 1
2 z2 + 1

2 z3 appears in both upper bounds with a positive sign. As this is the only
term that depends on (z2, z3), it can be replaced by its worst-case value 0. Similarly,
the term − 1

2 z1 appears in the lower bound on y2(z) with a negative sign, and can be
replaced by its worst-case value − 1

2 . This gives the following bounds on y1(z) and
y2(z):

1 ≤y1(z) ≤ −y2(z) + 5

2
, ∀z ∈ U ,

max

{
3

2
, 1

}
≤y2(z) ≤ min

{
2,

3

2

}
, ∀z ∈ U .

For y2(z), the only feasible (and hence ARO) decision rule is y2(z) = 3
2 . This implies

y1(z) = 1, and we find that for both adaptive variables the optimal decision rule is
static.

According to Lemma B.1, any term such as 1
2 z2 + 1

2 z3 in Example A.1 appears in all
upper bounds with a positive sign and all lower bounds with a negative sign, or vice
versa.Hence, if this is the only termdepending on z2 and z3, these uncertain parameters
can be eliminated by replacing themwith their worst-case value. The resulting bounds
on adaptive variables are independent of uncertain parameters.

Instead of directly providing a formal proof of the result for constraintwise uncer-
tainty, it follows as a corollary from our analysis of hybrid uncertainty, which is
considered next.

(ii) Hybrid uncertainty

Hybrid uncertainty is a generalization of constraintwise uncertainty, where part of the
uncertain parameters appear constraintwise, and part does not appear constraintwise.
This uncertainty structure has previously been considered in Marandi and den Hertog
[21]. Hybrid uncertainty is defined as follows.

Definition A.2 ARO problem (3) has hybrid uncertainty if there is a partition

z = ( ẑ, z(0), z(1), . . . , z(m)),

such that ẑ, z(0), . . . , z(m) are disjoint, the objective depends only on ẑ and z(0)
and constraint i depends only on ẑ and z(i), i = 1, . . . ,m. Additionally, U =
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{( ẑ, z(0), . . . , z(m)) | ẑ ∈ Û , z(i) ∈ Ui , i = 0, . . . ,m}, with Û ⊆ R
| ẑ| andUi ⊆ R

|z(i)|
for all i = 0, . . . ,m.

In case of hybrid uncertainty, there exist ARO decision rules that do not depend on
the constraintwise uncertain parameters. We illustrate this with a toy example.

Example A.2 We extend Example A.1 to a problem with hybrid uncertainty by intro-
ducing a non-constraintwise uncertain parameter ẑ:

min
x, y(·) x, (25a)

s.t. x − y2(z) ≤ −ẑ − 1

2
z1, ∀(ẑ, z1) ∈ [0, 1]2, (25b)

− x + y1(z) + y2(z) ≤ ẑ + 1

2
z2 + 1

2
z3 + 2, ∀(ẑ, z2, z3) ∈ [0, 1]3, (25c)

1 ≤ y1(z), ∀z ∈ U , (25d)

3

2
≤ y2(z) ≤ 2, ∀z ∈ U , (25e)

with U = [0, 1]4. Uncertain parameter ẑ occurs in both constraints, z1 occurs only in
the first constraint and (z2, z3) occur only in the second constraint. Using FME, we
again first eliminate y1(z) and subsequently eliminate y2(z):

1 ≤y1(z) ≤ ẑ − y2(z) + x + 2 + 1

2
z2 + 1

2
z3, ∀z ∈ U ,

max

{
3

2
, x + ẑ + 1

2
z1

}
≤y2(z) ≤ min

{
2, x + 1 + ẑ + 1

2
z2 + 1

2
z3

}
, ∀z ∈ U .

From the bounds on y2(z) again four linear constraints for x can be derived. The new
parameter ẑ does not break robustness of solution x∗ = 1

2 , so this is still the unique
ARO solution. Similar to Example A.1, we can replace both occurrences of the term
1
2 z2 + 1

2 z3 by its worst-case value 0, and − 1
2 z1 can be replaced by its worst-case value

− 1
2 . This yields the following bounds on y1(z) and y2(z):

1 ≤y1(z) ≤ ẑ − y2(z) + 5

2
, ∀z ∈ U ,

max

{
3

2
, 1 + ẑ

}
≤y2(z) ≤ min

{
2,

3

2
+ ẑ

}
, ∀z ∈ U .

For y2(z), the only feasible (and hence ARO) LDR is y2(ẑ) = 3
2 + 1

2 ẑ. This implies
1 ≤ y1(z) ≤ 1 + 1

2 ẑ, and any decision rule that satisfies these bounds is ARO. Note
that both decision rules do not depend on the constraintwise uncertain parameters.
One can also pick a PWL decision rule for y2(z), such as its lower or upper bound.
Also in this case the decision rules for y1 and y2 do not depend on z1, z2 or z3.

To formally prove our claim that there exist ARO decision rules that do not depend
on the constraintwise uncertain parameters, we first need a result on feasibility.
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Lemma A.1 Let Phybrid denote an ARO problem of form (3) with hybrid uncertainty
and let x∗ be ARF to Phybrid. Then, there exists a decision rule y∗(·) that depends only
on ẑ such that (x∗, y∗(·)) is ARF to Phybrid.

Proof See Appendix B.12. 
�
The following result is an immediate consequence of Lemma A.1 for ARO decisions.

Corollary A.1 Let Phybrid denote an ARO problem of form (3) with hybrid uncertainty.
For each x∗ that is ARO to Phybrid there exists a decision rule y∗(·) depending only
on ẑ such that the pair (x∗, y∗(·)) is ARO to Phybrid.

Proof See Appendix B.13. 
�
In case of pure constraintwise uncertainty (U 0 = ∅) Lemma A.1 shows that for each
ARF x there exists a static y such that (x, y) is ARF. Additionally, Corollary A.1
shows that for each ARO x∗ there exists a static y∗ such that (x∗, y∗) is ARO.

Marandi and den Hertog [21] prove a similar result to Corollary A.1 for non-
linear problems. More precisely, they prove that for problems with hybrid uncertainty
there exists an optimal decision rule that is a function of only the non-constraintwise
uncertain parameters if the problem is convex in the decision variables, concave in
uncertain parameters, has a convex compact uncertainty set and a convex compact
feasible region for the adaptive variables.

(iii) Block uncertainty

Supposewe can split the constraints into blocks,where eachblockhas its ownuncertain
parameters and adaptive variables, and the uncertainty set is a Cartesian product of
the block-wise uncertainty sets, then there exists an optimal decision rule for each
adaptive variable that depends only on the uncertain parameters in its own block.

The formal definition of block uncertainty is as follows. Recall that constraints are
indexed 1, . . . ,m. Let index 0 refer to the objective.

Definition A.3 ARO problem (3) has block uncertainty if there exist partitions z =
(z(1), . . . , z(V )), y(·) = ( y(1)(·), . . . , y(V )(·)) and {0, . . . ,m} = {K(1), . . . , K(V )}
such that

– U = {(z(1), . . . , z(V )) | z(v) ∈ U v, v = 1, . . . , V }, withU v ⊆ R
|z(v)| for all blocks

v = 1, . . . , V .
– A constraint or objective with index in set K(v) is independent of uncertain param-
eters z(w) and adaptive variables y(w) if block w �= v.

We first provide an example to develop some intuition for block uncertainty.

Example A.3 Consider again Example A.2. Add the following constraints to (25):

y3(z) + x ≤ −1

2
z4 + 3

2
, ∀z4 ∈ [0, 1], (26a)
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y3(z) + 2x ≥ 1

2
z5 + 1, ∀z5 ∈ [0, 1], (26b)

and let U = [0, 1]6 denote the new uncertainty set. Then the first block consists
of constraints (25b)-(25e), adaptive variables y1(z), y2(z) and uncertain parameters
z0, . . . , z3. The second block consists of constraints (26), adaptive variable y3(z) and
uncertain parameters z4 and z5. One can verify that the unique ARO solution remains
x∗ = 1

2 . The following bounds on y3(z) are obtained:

1

2
z5 ≤ y3(z) ≤ 1 − 1

2
z4, ∀z ∈ U .

One feasible (andhenceARO)decision rule is y3(z4, z5) = 1
2 (1+z5−z4). Thedecision

rules for y1 and y2 remain unchanged. It follows that for each adaptive variable the
optimal decision rule is a function of only the uncertain parameters in its own block.

In order to prove the claim that there exists an optimal decision rule for each adaptive
variable that depends only on the uncertain parameters in its own block, we again first
consider feasibility.

Lemma A.2 Let Pblock denote an ARO problem of form (3) with block uncertainty and
let x be ARF to Pblock. Then there exists a decision rule y(·) with y(v)(·) depending
only on z(v), for all v = 1, . . . , V , such that (x, y(·)) is ARF to Pblock.

Proof See Appendix B.14. 
�
Corollary A.2 Let Pblock denote an ARO problem of form (3) with block uncertainty.
For each x that is ARO to Pblock there exists a decision rule y(·)with y(v)(·) depending
only on z(v), for all v = 1, . . . , V , such that the pair (x, y(·)) is ARO to Pblock.

Proof Follows from Lemma A.2 analogous to the proof of Corollary A.1. 
�

(iv) Simplex uncertainty or one uncertain parameter

Bertsimas and Goyal [5] prove optimality of LDRs for right-hand side uncertainty and
a simplex uncertainty set. Zhen et al. [30] generalize this to both left- and right-hand
side uncertainty, their proof uses FME on the dual problem.We use FME on the primal
problem, which leads to a more intuitive proof; the following example illustrates the
main idea. We note that the case with one uncertain parameter is a special case of
simplex uncertainty, so the results of this section also hold for that case.

Example A.4 Consider the problem

min x,

s.t. x − y2 ≤ −z1 − 1

2
z2 − 1

2
, ∀z ∈ U ,

− x + y1 + y2 ≤ z1 + z3 + 2, ∀z ∈ U ,

0 ≤ y1(z), ∀z ∈ U ,
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3

2
≤ y2(z) ≤ 2, ∀z ∈ U ,

with standard simplex uncertainty setU = {(z1, z2, z3) : z1+z2+z3 ≤ 1, z1, z2, z3 ≥
0}. Similar to Example A.2, we first eliminate y1(z) and then y2(z). This results in the
following bounds on the adaptive variables:

0 ≤y1(z) ≤ z1 + z3 + 2 + x − y2(z), ∀z ∈ U ,

(27a)

max

{
3

2
,
1

2
+ x + z1 + 1

2
z2

}
≤y2(z) ≤ min {2, z1 + z3 + 1 + x} , ∀z ∈ U .

(27b)

Equivalently, these bounds have to be satisfied for each point in ext(U ). One can verify
that x∗ = 1

2 is an ARO solution. Plugging this in (27), we get the following bounds
for each extreme point:

(0, 0, 0) : 0 ≤ y1 ≤ 5

2
− y2,

3

2
≤ y2 ≤ 3

2
,

(1, 0, 0) : 0 ≤ y1 ≤ 7

2
− y2, 2 ≤ y2 ≤ 2,

(0, 1, 0) : 0 ≤ y1 ≤ 5

2
− y2,

3

2
≤ y2 ≤ 3

2
,

(0, 0, 1) : 0 ≤ y1 ≤ 7

2
− y2,

3

2
≤ y2 ≤ 2.

(28)

Because U is a simplex, the four extreme points are affinely independent. Therefore,
there is a unique LDR such that the upper bound on y2(·) holds with equality for each
extreme point. This is also the case for the lower bound, and any convex combination
of both decision rules also satisfies the bounds for y2 in (28). The LDR corresponding
with the upper bounds is y2(z1, z3) = 1

2 (3+ z1 + z3), and plugging this in the bounds
on y1 yields a similar system as (28) for y1. This guarantees existence of an LDR for
y1; for the upper bound we find y1(z1, z3) = 1

2 (2 + z1 + z3). Note that this does not
generalize to uncertainty sets described by more than L + 1 extreme points.

Similar to the cases for hybrid and block uncertainty, we first prove feasibility for each
ARF x, and subsequently prove optimality.

Lemma A.3 Let Psimplex denote an ARO problem of form (3) with a simplex uncertainty
set, i.e., U = Conv(z1, . . . , zL+1), with z j ∈ R

L such that z1, . . . , zL+1 are affinely
independent. Let x be ARF to Psimplex. Then there exists an LDR y(·) such that (x, y)
is ARF to Psimplex.

Proof See Appendix B.15. 
�
Similar to Corollary A.1, we have the following result for ARO decisions.
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Corollary A.3 Let Psimplex denote an ARO problem of form (3) with a simplex uncer-
tainty set, i.e., U = Conv(z1, . . . , zL+1), with z j ∈ R

L such that z1, . . . , zL+1 are
affinely independent. For each x that is ARO to Psimplex there exists an LDR y(·) such
that the pair (x, y(·)) is ARO to Psimplex.

Proof Follows from Lemma A.3 analogous to the proof of Corollary A.1. 
�

Because the case with one uncertain parameter is a special case of simplex uncertainty,
the results of Lemma A.3 and Corollary A.3 also hold for that case.

The results on PARO in Sect. 4.1 make use of the fact that an ARF decision rule
with a particular structure exists for every ARF x, i.e., Lemmas A.1 to A.3.

B Technical Lemmas and Proofs

In the proofs, if FME is applied, w.l.o.g. it is applied on the adaptive variables in the
order y1(z), . . . , yny (z), i.e., according to their index.

B.1 Bounds on eliminated adaptive variables

Lemma B.1 Let x be ARF to (3). Let ϕi (x, z) = r i (z) − ai (z)
x for each constraint
i = 1, . . . ,m of (3b). Consider the system of inequalities b


i y(z) ≤ ϕi (x, z), i =
1, . . . ,m and use FME to eliminate all variables. For all k = 1, . . . , ny we can write
the bounds after elimination of variable yk(z) as

max
Sk∈C−

k

{ ∑

p∈Sk
α(Sk, p)ϕp(x, z) −

ny∑

l=k+1

β(Sk, l)yl(z)
}

≤ yk(z)

≤ min
Tk∈C+

k

{ ∑

q∈T
α(Tk, q)ϕq(x, z) −

ny∑

l=k+1

β(Tk, l)yl(z)
}
, ∀z ∈ U ,

(29)

for some coefficients α and β independent of z, and C−
k ,C+

k ⊆ P({1, . . . ,m}), with
P({1, . . . ,m}) the power set of {1, . . . ,m}. Additionally, if Sk ∈ C−

k for some k, then
α(Sk, p) < 0 for all p ∈ Sk. If Tk ∈ C+

k for some k, then α(Tk, q) > 0 for all q ∈ Tk.

Proof Proof by induction.
Base case:
Elimination of variable y1(z) yields

max{p:bp,1<0}

{
ϕp(x, z)

bp,1
−

∑ny
l=2 bp,l yl(z)

bp,1

}

≤ y1(z) ≤ min{q:bq,1>0}

{
ϕq(x, z)

bq,1
−

∑ny
l=2 bq,l yl(z)

bq,1

}
. (30)
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Define

C−
1 = {p | bp,1 < 0}, C+

1 = {q | bq,1 > 0},

then each constraint in C−
1 defines a lower bound on y1(z) and each constraint in

C+
1 defines an upper bound on y1(z). Each element of C−

1 and C+
1 is an individual

‘original’ constraint index and not a set of constraints indices. For all S1 = {p} ∈ C−
1

set α(S, p) = b−1
p,1, and for all T1 = {q} ∈ C+

1 set α(T , q) = b−1
q,1. Furthermore,

set β(S1, l) = bp,l B
−1
p,1 for all S1 = {p} ∈ C−

1 ∪ C+
1 and all l = 2, . . . , ny . With

these definitions, (30) is reformulated in form (29). Additionally, by construction,
α(S1, p) < 0 if p ∈ S1, S1 ∈ C−

1 and α(T1, q) > 0 if q ∈ T1, T1 ∈ C+
1 .

Induction step
Suppose the result holds for some k−1 (i.e., after eliminationof variable yk−1(z)).Vari-
able yk(z) can occur in two types of constraints: (i) original constraints i = 1, . . . ,m
that do not depend on y1(z), . . . , yk−1(z)) and (ii) the new constraints acquired after
elimination of y1(z), . . . , yk−1(z)). For case (i), define

I−
k = {p | bp,k < 0, bp,l = 0, ∀l = 1, . . . , k − 1},
I+
k = {p | bp,k > 0, bp,l = 0, ∀l = 1, . . . , k − 1},

then each constraint in I−
k defines a lower bound on yk(z) and each constraint in I+

k
provides an upper bound on yk(z). Reformulation to form (29) is similar to the case
k = 1. Thus, α(Sk, p) < 0 if p ∈ Sk , Sk ∈ I−

k and α(Tk, p) > 0 if p ∈ Tk , Tk ∈ I+
k .

For case (ii), yk(z) can occur in constraints resulting from picking linear
lower and upper bounds on yl(z) from (29). If these bounds are independent of
yl+1(z), . . . , yk−1(z), for l = 1, . . . , k − 1, they are used directly to eliminate yk(z).
For any such pair of constraints Sl ∈ C−

l and Tl ∈ C+
l , FME yields the following

bound on yk(z) (due to the induction assumption):

∑

p∈Sl
α(Sl , p)ϕp(x, z) −

∑

q∈Tl
α(Tl , q)ϕq(x, z) −

ny∑

l=k+1

yl(z)
(
β(Sl , l) − β(Tl , l)

)

≤ yk(z)
(
β(Sl , k) − β(Tl , k)

)
.

(31)

We proceed by dividing by the coefficient of yk(z). If β(Sl , k) > β(Tl , k), inequality
(31) defines a lower bound for yk(z); if β(Sl , k) < β(Tl , k), inequality (31) defines
an upper bound for yk(z). Define

J−
k = {Sk | ∃l = 1, . . . , k − 1 s.t. Sk = Sl ∪ Tl , Sl ∈ C−

l , Tl ∈ C+
l ,

β(Sl , j) = β(Tl , j), ∀ j < l, β(Sl , k) > β(Tl , k)},
J+
k = {Tk | ∃l = 1, . . . , k − 1 s.t. Tk = Sl ∪ Tl , Sl ∈ C−

l , Tl ∈ C+
l ,

β(Sl , j) = β(Tl , j), ∀ j < l, β(Sl , k) < β(Tl , k)}
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so each element Sk in J−
k (or Tk in J+

k ) is a union of the indices of a lower bound
constraint (set Sl ) and an upper bound constraint (set Tl ) on yl(z). The condition
β(Sl , j) = β(Tl , j), ∀ j < l on the second line ensures that these lower and upper
bound constraints on yl(z) do not specify a constraint on yl+1(z), . . . , yk−1(z).

Set the coefficients for the not yet eliminated variables yk+1(z), . . . , yny (z) for
form (29) as

β(Sk, j) = β(Sl , j) − β(Tl , j)

β(Sl , k) − β(Tl , k)
, ∀ j = k + 1, . . . , ny .

If Sk ∈ J−
k , with Sk = Sl ∪ Tl for some Sl ∈ C−

l and Tl ∈ C+
l , l = 1, . . . , k − 1, then

set

α(Sk, p) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α(Sl , p)

β(Sl , k) − β(Tl , k)
if p ∈ Sl , p /∈ Tl ,

α(Sl , p) − α(Tl , p)

β(Sl , k) − β(Tl , k)
if p ∈ Sl ∩ Tl ,

−α(Tl , p)

β(Sl , k) − β(Tl , k)
if p /∈ Sl , p ∈ Tl .

(32)

Similarly, if Tk ∈ J+
k , with Tk = Sl ∪ Tl for some Sl ∈ C−

l and Tl ∈ C+
l for some

l = 1, . . . , k − 1, then set

α(Tk, p) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α(Sl , p)

β(Sl , k) − β(Tl , k)
if p ∈ Sl , p /∈ Tl ,

α(Sl , p) − α(Tl , p)

β(Sl , k) − β(Tl , k)
if p ∈ Sl ,∩Tl

−α(Tl , p)

β(Sl , k) − β(Tl , k)
if p /∈ Sl , p ∈ Tl .

(33)

Due to the induction hypothesis, α(Sl , p) < 0 if Sl ∈ C−
l and α(Tl , p) > 0 if Tl ∈ C+

l
for l < k. The denominator in both lines of (32) is positive, so in that caseα(Sk , p) < 0.
The denominator in both lines of (33) is negative, so in that case α(Tk, p) > 0. With
the new coefficients chosen as above, (31) provides a lower or upper bound on yk̂(z)
of the form inside the maximum or minimum operator in (29), respectively.

Finally, define C−
k = I−

k ∪ J−
k and C+

k = I+
k ∪ J+

k . Each constraint in C−
k

defines a lower bound on yk(z) and each constraint in C+
k defines an upper bound

on yk(z). Moreover, set Ck = C−
k ∪ C+

k contains all constraints after elimination of
y1(z), . . . , yk−1(z) that have yk(z) as lowest indexed adaptive variable. This completes
the induction step. 
�
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B.2 Proof Lemma 1

Consider problem (3), with the objective moved to the constraints using epigraph
variable t ∈ R:

min
t,x, y(·) t, (34a)

s.t. t ≥ c(z)
x + d
 y(z), ∀z ∈ U , (34b)

A(z)x + B y(z) ≤ r(z), ∀z ∈ U . (34c)

Eliminate all adaptive variables in (34b)–(34c) via FME. Let ϕ0(x, t, z) = t−c(z)
x.
In notation of Lemma B.1, FME is performed on

d
 y(z) ≤ ϕ0(x, t, z), (35a)

b

i y(z) ≤ ϕi (x, t, z), ∀i = 1, . . . ,m, (35b)

where the coefficient for t is zero in ϕi , i = 1, . . . ,m. According to Lemma B.1,
after elimination of variable k, inequalities (29) hold. Suppose for some Sk ∈ C−

k ,
Tk ∈ C+

k the upper and lower bounds on yk(z) do not depend on yk+1(z), . . . , yny (z).
Then the following constraint is derived for the static robust optimization problem
after completing the full FME procedure:

∑

p∈Sk
α(Sk, p)ϕp(x, t, z) ≤

∑

q∈Tk
α(Tk, q)ϕq(x, t, z), ∀z ∈ U , (36)

where ϕp(·) is a function of t only if p = 0. Constraints of the original system
(34c) that are independent of adaptive variables can also be represented in form (36).
Original constraints (34b) are part of a particular constraint in form (36) if and only
if 0 ∈ Sk ∪ Tk for some Sk ∈ C−

k , Tk ∈ C+
k , k = 1, . . . , ny . Thus, problem (34) after

FME can be written as

min
t,x

t, (37a)

s.t.
∑

p∈S
α(S, p)ϕp(x, t, z) ≤

∑

q∈T
α(T , q)ϕq (x, t, z), ∀(S, T ) ∈ M, ∀z ∈ U , (37b)

∑

p∈S
α(S, p)ϕp(x, t, z) ≤

∑

q∈T
α(T , q)ϕq (x, t, z), ∀(S, T ) ∈ N , ∀z ∈ U , (37c)

with

M = {(S, T ) | ∃k = 1, . . . , ny s.t. S ∈ C−
k , T ∈ C+

k , β(S, l) = β(T , l), ∀l > k, 0 ∈ S ∪ T },
(38a)

N = {(S, T ) | ∃k = 1, . . . , ny s.t. S ∈ C−
k , T ∈ C+

k , β(S, l) = β(T , l), ∀l > k, 0 /∈ S ∪ T }.
(38b)
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In other words, we separated the constraints depending on t from the constraints not
depending on t . From Lemma B.1 one can see that (37c) is the result of perform-
ing FME on the set of constraints (35b), which are the constraints defining set X .
Thus, (37c) describes set XFME. Furthermore, if we define α(S, 0) = 0 if 0 /∈ S and
γ (T , 0) = 0 if 0 /∈ T , constraint (37b) can be rewritten to

t ≥ c(z)
x +
∑

p∈S,p>0

α(S, p)

α(T , 0) − α(S, 0)
ϕp(x, t, z)

−
∑

q∈T ,q>0

α(T , q)

α(T , 0) − α(S, 0)
ϕq(x, t, z)

∀(S, T ) ∈ M, ∀z ∈ U ,

(39)

because α(T , 0) > α(S, 0) according to Lemma B.1. Note that the coefficient for t
is zero for all functions ϕ on the RHS. Thus, for fixed z ∈ U , constraint (39) defines
a lower bound on epigraph variable t that is convex PWL in x. Subsequently, we
eliminate t and define

hS,T (x, z) =
∑

p∈S,p>0

α(S, p)

α(T , 0) − α(S, 0)
ϕp(x, z)

−
∑

q∈T ,q>0

α(T , q)

α(T , 0) − α(S, 0)
ϕq(x, z). (40)

This yields the following problem equivalent to (37):

min
x∈XFME

max
z∈U c(z)
x + max

(S,T )∈M{hS,T (x, z)}. (41)

If (x∗, t∗, y∗(·)) is optimal to (34), x∗ is optimal to (41) with equal objective value.
This implies that y∗(·) satisfies

d
 y∗(z) = max
(S,T )∈M{hS,T (x∗, z)}, ∀z ∈ U . (42)

Conversely, if x∗ is optimal to (41), there exists a (t∗, y∗(·)) such that (x∗, t∗, y∗(·))
is optimal to (34) with equal objective value. This implies that any such y∗(·) satisfies
(42). Lastly, note that x∗ is optimal to (3) if and only if there exists a t∗ ∈ R such that
(t∗, x∗) is optimal to (34). This completes the proof.

B.3 Proof Lemma 2

By Definition 7(i) a solution x∗ is PARO to (3) if and only if
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– There exists a y∗ ∈ RL,ny such that (x∗, y∗(·)) is ARO to (3) and there does not
exist a pair (x̄, ȳ(·)) that is ARO to (3) and the following conditions hold:

c(z)
 x̄ + d
 ȳ(z) ≤ c(z)
x∗ + d
 y∗(z), ∀z ∈ U ,

c( z̄)
 x̄ + d
 ȳ( z̄) < c( z̄)
x∗ + d
 y∗( z̄), for some z̄ ∈ U .
(43)

By Lemma 1, this holds if and only if

– x∗ is optimal to (8) and there exists a y∗ ∈ RL,ny such that

d
 y∗(z) = max
(S,T )∈M{hS,T (x∗, z)} ∀z ∈ U , (44)

and there does not exist a (x̄, ȳ) such that x̄ is optimal to (8) and (x̄, ȳ(·)) satisfies
(44) and (43) holds.

Substituting (44) in (43) yields the following set of equivalent conditions:

– x∗ is optimal to (8) and there does not exist another x̄ optimal to (8) such that

c(z)
 x̄ + max
(S,T )∈M{hS,T (x̄, z)} ≤ c(z)
x∗ + max

(S,T )∈M{hS,T (x∗, z)}, ∀z ∈ U ,

c(z̄)
 x̄ + max
(S,T )∈M{hS,T (x̄, z̄)} < c(z̄)
x∗ + max

(S,T )∈M{hS,T (x∗, z̄)}, for some z̄ ∈ U .

This statement holds if and only if x∗ is PRO to (8), by Definition 1.

B.4 Proof Theorem 1

First, we prove the existence of PRO solutions to a general class of static RO problems,
with bounded feasible region X .

Lemma B.2 Let f : Rn ×R
L �→ R, with f (x, z) continuous in z. Consider the static

RO problem

min
x∈X

max
z∈U f (x, z). (45)

Let U ⊆ R
L be closed, convex with a nonempty relative interior. If (i) X is compact

and f (x, z) continuous in x and/or (ii) X is a finite set, and additionally there exists
an RO solution to (45), there also exists a PRO solution to (45).

Proof of Lemma B.2 Let (RL ,B(RL)) be a measurable space, with B(RL) the Borel
σ -algebra. For fixed x, function f (x, z) is continuous in z, so it is measurable on
closed subsets of RL , in particular set U . Define function g : Rn �→ R with

g(x) :=
∫

U
f (x, z)dP(z), (46)

123



Pareto Adaptive Robust Optimality via a Fourier–Motzkin… 527

where P denotes a strictly positive probability measure on R
L , such as the Gaussian

measure. Because 0 ≤ P(U ) ≤ P(RL) = 1, the Lebesgue integral (46) assumes
finite values for any x. Hence, f (x, z) is Lebesgue-integrable in its second argument
on measured space (RL ,B(RL), P) for any x and g is well-defined.

We proceed by showing that an optimal solution to the following optimization
problem is PRO to (45):

min
x∈XRO

g(x). (47)

The remainder of the proof consists of two parts. First, we show that an optimal solution
to (47) is always attained. Subsequently, we show that such an optimal solution is PRO
to (45).

Part 1 (The optimum is attained)
We treat the two cases for X separately.

Case (i): Set X is compact and f (x, z) continuous in x. We show that g is con-
tinuous. Consider a sequence {xn}n∈N converging to x. By continuity of f in x,
limn→∞ f (xn, z) = f (x, z). Thus,

g(x) =
∫

U
f (x, z)dP(z) =

∫

U
lim
n→∞ f (xn, z)dP(z). (48)

Let M > 0 be such that | f (x, z)| < M , and define h : RL �→ R with h(z) = M for
all z. Then h is Lebesgue-integrable, and we can apply the dominated convergence
theorem to switch the order of the limit and integration in (48) to obtain

g(x) = lim
n→∞

∫

U
f (xn, z)dP(z) = lim

n→∞ g(xn),

Hence, g(x) is continuous for each x ∈ R
n . LetXRO denote the set of robustly (worst-

case) optimal solutions to (45). Then XRO is compact if X is compact. Problem (47)
minimizes a continuous function over a compact domain, so, by the extreme value
theorem, a minimum is always attained.

Case (ii): Set X is a finite set. Problem (47) minimizes g(x) over a finite set, so the
minimum is attained.

Part 2 (An optimal solution is PRO)
Let x̂ denote an optimal solution to (47). We proceed by showing via proof by con-
tradiction that x̂ is PRO to (45). Suppose x̂ is not PRO to (45). Then there exists an
x̄ ∈ XRO such that

f (x̄, z) ≤ f (x̂, z), ∀z ∈ U ,

f (x̄, z̄) < f (x̂, z̄), for some z̄ ∈ U .

Weproceed by showing that theremust exist a ball contained inU with strictly positive
measure where strict inequality holds. Let B̄ denote the ball with radius δ centered at
z̄:
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B̄ = {z ∈ R
L : ‖z − z̄‖2 ≤ δ}.

By continuity of f (x̄, z)− f (x̂, z)w.r.t. z, there exists a δ > 0 such that for each z ∈ B̄
it holds that f (x̄, z) − f (x̂, z) < 0. Note that z̄ need not be in the relative interior of
U . Hence, the ball B̄ need not be contained in U . Let z̃ ∈ ri(U ). We construct a new
scenario z∗ = θ z̃+ (1−θ) z̄. BecauseU is convex, z∗ ∈ ri(U ) if 0 ≤ θ < 1 according
to Rockafellar [25, Theorem 6.1]. Choosing 1 − δ‖ z̃ − z̄‖−1

2 < θ < 1 ensures that
z∗ ∈ int(B̄) ∩ ri(U ) = ri(U ∩ B̄). Consider the ball B∗ with radius ε > 0 centered at
z∗:

B∗ = {z ∈ R
L : ‖z − z∗‖2 ≤ ε}.

For sufficiently small ε > 0, it holds that z ∈ B∗ ⇒ z ∈ U∩ B̄. In otherwords, for such
an ε, each point z ∈ B∗ is in the uncertainty setU and is such that f (x̄, z) < f (x̂, z).

Finally, we consider the difference between g(x̄) and g(x̂) onU . Note that |g(x)| <

∞ for all x. The following holds:

g(x̄) − g(x̂) =
∫

U\B∗
f (x̄, z) − f (x̂, z)dP(z) +

∫

B∗
f (x̄, z) − f (x̂, z)dP(z).

The first integral is nonpositive since f (x̄, z) ≤ f ( ẑ, z) for each z ∈ U\B∗. The
second integral is strictly negative since f (x̄, z) < f ( ẑ, z) for z ∈ B∗ and measure P
is strictly positive, i.e., P(B∗) > 0. Hence, g(x̄) < g(x̂), contradicting the fact that x̂
is optimal to (47). 
�

The result of Theorem 1 immediately follows.

Proof of Theorem 1 By Lemma 2, it suffices to prove existence of a PRO solution to
(8). Because X = XFME, set XFME is compact. By construction of (3), uncertainty
set U is assumed to be convex, compact with a nonempty relative interior. Lastly, the
objective function of (8) is continuous in x and z. Hence, all conditions of Lemma B.2
are satisfied, and existence of a PARO solution to (3) is guaranteed. 
�

B.5 Proof Lemma 3 via FME

Let x be ARF to (3). W.l.o.g., suppose in the FME procedure the adaptive vari-
ables are eliminated in the order y1, . . . , yny , i.e., according to their index. Let
Fk(yk+1(z), . . . , yny (z), z) denote the optimal decision rule for yk as a function of the
decision rules for the adaptive variables with higher index and the uncertain parameter
z. We prove by induction on k = 1, . . . , ny that Fk(yk+1(z), . . . , yny (z), z) is jointly
PWL in yk+1, . . . , yny and z.

According to Lemma B.1, we can write the bounds after elimination of variable
y1(z) as

max
S∈C−

1

⎧
⎨

⎩
∑

p∈S
α(S, p)ϕp(z) −

ny∑

l=2

β(S, l)yl(z)

⎫
⎬

⎭ ≤ y1(z)
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≤ min
T∈C+

1

⎧
⎨

⎩
∑

q∈T
α(T , q)ϕq(z) −

ny∑

l=2

β(T , l)yl(z)

⎫
⎬

⎭ , ∀z ∈ U ,

for some coefficients α and β independent of z. For fixed y2, . . . , yny , z and x, the
highest possible contribution of y1 to the objective value is achieved by setting y1
equal to its upper bound if d1 < 0, and equal to its lower bound if d1 > 0. Thus,
F1(y2(z), . . . , yny (z), z) is equal to either the upper or the lower bound on y1. Both
the upper and lower bound are jointly PWL in yi , i = 2, . . . , ny and z.

Now, suppose that for each i = 1, . . . , k−1, after elimination of variable yi (z) the
optimal decision rule Fi (yi+1(z), . . . , yny (z), z) is jointly PWL in yi+1, . . . , yny .

After elimination of yk(z) we can again write the bounds according to Lemma B.1.
For fixed yk+1, . . . , yny , z and x, the highest possible contribution of yk to the objective
value is achieved by minimizing d
 y, i.e., solving

min
yk

k−1∑

i=1

di Fi (Fi+1(. . . ), . . . , Fk−1(yk(z), . . . , yny (z), z), yk(z), . . . , yny (z), z)

+ dk yk(z) +
ny∑

i=k+1

di yi (z), (49a)

s.t. max
S∈C−

k

⎧
⎨

⎩
∑

p∈S
α(S, p)ϕp(z) −

ny∑

l=k+1

β(S, l)yl(z)

⎫
⎬

⎭ ≤ yk(z), (49b)

min
T∈C+

k

⎧
⎨

⎩
∑

q∈T
α(T , q)ϕq(z) −

ny∑

l=k+1

β(T , l)yl(z)

⎫
⎬

⎭ ≥ yk(z), (49c)

where the last term in the objective (the last summation) may be dropped because it
does not depend on yk . In the objective each decision rule Fi , i = 1, . . . , k − 1, is
a function of the decision rules Fi+1, . . . , Fk−1, variables yk(z), . . . , yny (z) and z.
Plugging in a PWL argument in a PWL function retains the piecewise linear structure.
Thus, (49) asks to minimize a univariate PWL function on a closed interval. The
optimum is attained at either an interior point or a boundary point; we consider these
cases separately.

– Problem (49) has a boundaryminimum.Theminimum is attained at either the lower
or upper bounds provided by (49b) and (49c). In this case, Fk(yk+1(z), . . . , yny
(z), z) is clearly jointly PWL in yk+1(z), . . . , yny (z) and z.

– Problem (49) has an interior minimum. The unrestricted minimum of (49a) is at
the intersection of two functions that are jointly linear in yk, . . . , yny and z. Any
intersection point can be expressed as

s0(z) +
ny∑

i=k

si yi (z) = t0(z) +
ny∑

i=k

ti yi (z),
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for some scalars s0(z) and t0(z) depending linearly on z and some vectors s, t ∈
R
ny−k . This is equivalent to

yk(z) = s0(z) − t0(z) + ∑ny
i=k+1(si − ti )yi (z)

tk − sk
,

and this is jointly linear in yk, . . . , yny and z. The pair {(s0(z), s), (t0(z), t)} that
defines the interior minimum intersection point depends on yk, . . . , yny and z.
Thus, the optimal decision rule Fk(yk+1(z), . . . , yny (z), z) is a PWL function of
yk+1, . . . , yny and z.

This completes the induction step. Lastly, note that Fny (z) is PWL in z and that plug-
ging in a PWLargument in a PWL function retains the piecewise linear structure. Thus,
going from k = ny to k = 1 and for each k plugging in Fk(yk+1(z), . . . , yny (z), z)
in Fk−1(yk(z), . . . , yny (z), z) yields decision rules that are PWL in z for all variables
y1, . . . , yny .

B.6 Proof Lemma 3 via linear optimization

Let x be ARF to (3). We make use of the concept of basic solutions in linear optimiza-
tion [6]. In standard form the remaining problem for y for fixed z, reads:

min
y+, y−,s

d
(
y+ − y−)

, (50a)

s.t. B
(
y+ − y−) + s = r(z) − A(z)x, (50b)

y+, y−, s ≥ 0, (50c)

where s is a slack variable and y is represented by the difference of two nonnegative
variables. Let v ∈ R

2ny+m , M ∈ R
m×(2ny+m) and f ∈ R

2ny+m denote the vector
of decision variables, the equality constraint matrix and the objective vector of (50),
respectively:

v = [ y+ y− s]
, M = [B −B I], f = [d −d 0]
. (51)

Each basis is represented by m linearly independent columns of M. Let W ∈ R
m×m

denote a basis matrix, and let vW and fW denote the components of v and f corre-
sponding to the basic variables. For any basic solution v it holds that

vW = W−1(r(z) − A(z)x
)
, (52)

and the remaining non-basic components of v are equal to zero. Denote the basic
solution by (vW , 0\W ); it is a basic feasible solution (BFS) to (50) if and only if
vW ≥ 0. For optimality of (vW , 0\W ) it is additionally required that the reduced costs
are nonnegative. Nonnegativity of the reduced costs (i.e., optimality of (vW , 0\W ))
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reads

f − f

WW−1M ≥ 0. (53)

We restrict ourselves to those basic solutions for which optimality condition (53)
holds, note that this condition is independent of z. It follows that for each basis matrix
W that satisfies (53), it associated basic solution (vW , 0\W ) is feasible (and optimal)
if and only if z is in the following subset of U :

UW (x) = {z ∈ U : W−1(r(z) − A(z)x
) ≥ 0}.

Let y(x, z,W) denote the basic solution corresponding to W in terms of the original
variables y. From (52) it follows that y(x, z,W) is linear in z.

Any basic solution to (50) corresponds with at least one basis, and each basis
is represented by m linearly independent columns of M. Thus, there are at most
β = (2ny+m

m

)
bases (i.e., matrices W ) to (50) that satisfy (53), independent of z.

Number the matrices W1, . . . ,Wβ . Each of these matrices W j has its own LDR
y(x, z,W j ) that is optimal for all z ∈ UW j (x).

Because x is ARF to (3) and (3) has a finite optimal objective value, problem (50)
is feasible and has a finite optimum for all z ∈ U . Therefore, there exists an optimal
basic feasible solution for all z ∈ U , and the union of all UW i equals U itself. This
implies that, for the given x, the following PWL decision rule is optimal for each
z ∈ U :

y(z) = y(x, z,W i∗) if i
∗ = min{i : z ∈ UW i (x)}.

Note that a different numbering of the matrices gives a (possibly) different optimal
PWL decision rule. In essence, the proof performs sensitivity analysis on the right-
hand side vectors of (50), which is the only term in (50) that depends on z.

B.7 Proof Theorem 3

Let OPT denote the optimal (worst-case) objective value of P . By Definition 7(i), and
using that d = 0, a solution x∗ is PARO to P if and only if the following statement
holds:

– There exists a y∗ ∈ RL,ny such that (x∗, y∗(·)) is ARO to P and there does not
exist a pair (x̄, ȳ(·)) that is ARO to P and

c(z)
 x̄ ≤ c(z)
x∗, ∀z ∈ U ,

c( z̄)
 x̄ < c( z̄)
x∗, for some z̄ ∈ U .
(54)

By definition of set X , this holds if and only if

– x∗ ∈ X , OPT = maxz∈U c(z)
x∗ and there does not exist an x̄ ∈ X such that
OPT = maxz∈U c(z)
 x̄ and (54) holds.
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Because for any ARF x there exists an ARF decision rule y(·) such that y(z) = fw(z)
for some w, it follows that X is equal to

X f = {x ∈ R
nx | ∃w ∈ R

p : A(z)x + B fw(z) ≤ r(z), ∀z ∈ U },

which is the set of feasible x when Stage-2 decision rules are restricted to be of form
fw(z). Hence, the previous set of conditions holds if and only if

– x∗ ∈ X f , OPT = maxz∈U c(z)
x∗ and there does not exist an x̄ ∈ X such that
OPT = maxz∈U c(z)
 x̄ and (54) holds.

Parametersw are nowStage-1 decision variables, soX f does not contain adaptive vari-
ables. The set of conditions describes a PRO solution to the static robust optimization
problem obtained after plugging in decision rule structure fw(·).

B.8 Proof Corollary 2

Corollary 2(i) For any vector of parameters w ∈ R
p, let fw( ẑ) denote a decision rule

that depends only on ẑ ∈ Û , the non-constraintwise component of uncertain parameter
z. From Lemma A.1 it follows that X is equal to

Xhybrid = {x ∈ R
nx | ∃w ∈ R

p : A(z)x + B fw( ẑ) ≤ r(z), ∀z ∈ U },

i.e., the feasible region for x remains unchanged if all adaptive variables are restricted
to depend only on the non-constraintwise component of z. Hence, setting X f = Xhybrid
in the proof of Theorem 3 yields the result.

Corollary 2(ii) For each block v = 1, . . . , V , let w(v) ∈ R
p(v) denote a vector of

parameters and let f v
w(v)(z(v)) denote a decision rule that depends only on z(v), the

uncertain parameters in block v. From Lemma A.2 it follows that X is equal to

Xblock = {
x ∈ R

nx | ∀v = 1, . . . , V , ∃w(v) ∈ R
p(v) : ai (z(v))


x + b

i f v

w(v)(z(v)) ≤ ri (z(v)),

∀z ∈ U v, ∀i ∈ K (v)
}
,

i.e., the feasible region for x remains unchanged if all adaptive variables are restricted
to depend only on uncertain parameters in their own block.Hence, setting X f = Xblock
in the proof of Theorem 3 yields the result.

Corollary 2(iii) From Lemma A.3 it follows that for simplex uncertainty X is equal
to

Xsimplex = {x ∈ R
nx | ∃u ∈ R

ny , V ∈ R
ny×L : A(z)x + B(u + V z) ≤ r(z), ∀z ∈ U },

i.e., the feasible region for x remains unchanged if all adaptive variables are restricted
to depend affinely on z. Hence, setting X f = Xsimplex in the proof of Theorem 3 yields
the result.
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B.9 Proof Lemma 4

The two cases are considered separately.

– Optimal objective value is zero: Proof by contradiction. Suppose y∗(·) is not a
PAROextension of x∗. Then, byDefinition 8, there exists a ỹ(·) such that (x∗, ỹ(·))
is ARO to (3) and for some z̃ ∈ U it holds that

c( z̃)
x∗ + d
 y∗( z̃) > c( z̃)
x∗ + d
 ỹ( z̃).

However, then (z, y) = ( z̃, ỹ( z̃)) is feasible to (12) with positive objective value.
This is a contradiction.

– Optimal objective value is positive: Let ( z̄, ȳ) denote the optimal solution to (12)
and let v̄ denote the optimal objective value. The decision rule

y(z) =
{
y∗(z) if z �= z̄

ȳ otherwise,

dominates the decision rule y∗(·), so the latter is not PARO. We prove the last part
of the lemma by contradiction. Suppose there exists a scenario z̃ and a decision ỹ
such that

(
c( z̃)
x∗ + d
 y∗( z̃)

)
−

(
c( z̃)
x∗ + d
 ỹ

)
> v̄,

A( z̃)x∗ + B ỹ ≤ r( z̃),

i.e., ỹ is a feasible wait-and-see decision for scenario z̃, and the resulting objective
value of y∗( z̃) exceeds that of ỹ by more than v̄. Then ( z̃, ỹ) is feasible to (12)
with a strictly better objective value than v̄. This is a contradiction.

B.10 Proof Lemma 6

Proof by contradiction, analogous to proof of Theorem 1 of Iancu and Trichakis [16].
BecauseU is the convex hull of z1, . . . , zN , (15b) and (15c) ensure that x∗ is ARO to
(3) (with d = 0). Suppose x∗ is not PARO to (3). According to Definition 7(i) there
exists an x̂ that is ARO to (3) and

c(z)
 x̂ ≤ c(z)
x∗, ∀z ∈ U ,

c( ẑ)
 x̂ < c( ẑ)
x∗, for some ẑ ∈ U .

Because x̂ is ARO to (3), there also exist ( ŷ1, . . . , ŷN ) that, together with x̂, are
feasible to (15).

The linear optimization problem minz∈U c(z)
(x̂ − x∗) attains the minimum in a
vertex solution, so without loss of generality we can assume ẑ ∈ ext(U ). Any point
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z̄ ∈ ri(U ) can be written as a strict convex combination of the extreme points of U
[25], so z̄ = ∑N

i=1 αi zi for some α ∈ R
N with

∑N
i=1 αi = 1, αi > 0 for all i . Then

c( z̄)
(x̂ − x∗) =
N∑

i=1
zi �= ẑ

αi c(zi )
(x̂ − x∗) + α̂c( ẑ)
(x̂ − x∗),

where the first term of the RHS is nonpositive and the second term is strictly negative.
This contradicts the fact that (x∗, y1∗, . . . , yN∗) is optimal to (15).

B.11 Proof Lemma 7

In iteration 0 of Algorithm 2, solution x0 is the ARO solution resulting from Algo-
rithm 1. In subsequent iterations, solution xk is only replaced by a candidate solution
xc if q(xc) ≤ OPT. Value q(xc) is the optimal objective value of Q(xc), i.e., it is
the worst-case objective value of (3) with fixed Stage-1 decision xc. Thus, xk is only
replaced by xc if xc is ARO, so in any iteration xk is ARO. It remains to show that
if the optimal objective value of problem P2(xk, Mk) is nonnegative, solution xk is
PARO. Proof by contradiction.

Suppose xk is not PARO. Then there exists another x∗ that is ARO to (3) that
additionally satisfies the following two conditions:

1. For each z ∈ U there exists a y such that for all yk with A(z)xk + B yk ≤ r(z)
we have

c(z)
x∗ + d
 y ≤ c(z)
xk + d
 yk,

A(z)x∗ + B y ≤ r(z).

2. There exists a z∗ ∈ U and a y∗ such that for all yk with A(z∗)xk + B yk ≤ r(z∗)
we have

c(z∗)
x∗ + d
 y∗ < c(z∗)
xk + d
 yk,

A(z∗)x∗ + B y∗ ≤ r(z∗).

Because Mk ⊆ U , the first condition implies that for each zl ∈ Mk there exists a
recourse decision yl∗ such that (x∗, yl∗) satisfies constraints (19c) and (19d). The
second condition is equivalent to the statement that there exists z∗ ∈ U and a y∗ such
that

max
yk :A(z∗)xk+B yk≤r(z∗)

(c(z∗)
x∗ + d
 y∗) − (c(z∗)
xk + d
 yk) < 0,

A(z∗)x∗ + B y∗ ≤ r(z∗).
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Put together, this implies that (z∗, x∗, y∗, y1∗, . . . , y|Mk |∗) is a feasible solution to
P2(xk, Mk) with strictly negative objective value. This contradicts with pk2 ≥ 0.
Thus, xk is PARO.

B.12 Proof Lemma A.1

We consider only adaptive robust feasibility and not optimality, so the objective
of Phybrid can be ignored. According to Lemma B.1, each adaptive variable yk(z),
k = 1, . . . , ny must satisfy bounds (29). For Phybrid term ϕi ( ẑ, z(i)) = ri ( ẑ, z(i)) −
ai ( ẑ, z(i))
x depends only on ẑ and z(i), for each i = 1, . . . ,m. Sets Û and Ui are
disjoint for each i = 1, . . . ,m so this is equivalent to

max
S∈C−

k

⎧
⎨

⎩
∑

p∈S
max

z(p)∈U p

(
α(S, p)ϕp( ẑ, z(p)) −

ny∑

l=k+1

β(S, l)yl(z)
)
⎫
⎬

⎭ ≤ yk(z)

≤ min
T∈C+

k

⎧
⎨

⎩
∑

q∈T
min

z(q)∈Uq

(
α(T , q)ϕq( ẑ, z(q)) −

ny∑

l=k+1

β(T , l)yl(z)
)
⎫
⎬

⎭ , ∀ẑ ∈ Û .

(55)

We proceed by backward induction. For k = ny , i.e., the last eliminated variable,
bounds (55) depend only on z and not on other adaptive variables. According to
Lemma B.1, each term ϕi (z(i)), i = 1, . . . ,m, appears in upper bounds with a pos-
itive coefficient and in lower bounds with a negative coefficient for all variables
y1(z), . . . , yny (z) (if it appears), or vice versa. Hence, the worst-case scenario for
z(i) ∈ Ui (in terms of feasibility) is equal for all linear terms in the lower and the
upper bound for all i = 1, . . . ,m. Plugging in this worst-case scenario yields lower
and upper bounds on yny (z) depending only on ẑ. Thus, there exists a decision rule
for yny (·) that is a function of only the non-constraintwise uncertain parameters ẑ.

Suppose that for some k the lower and upper bounds (55) for yk(z) depend only
on ẑ. Thus, there exists a decision rule for yk(·) that is a function of only ẑ. Plug
this decision rule in the lower and upper bounds (55) for yk−1(z). Then, according to
Lemma B.1, each term ϕi (z(i)), i = 1, . . . ,m, appears in upper bounds with a positive
coefficient and in lower bounds with a negative coefficient (if it appears), or vice versa.
Hence, the worst-case scenario for z(i) ∈ Ui (in terms of feasibility) is equal for all
linear terms in the lower and the upper bound, for all i = 1, . . . ,m. Plugging in this
worst-case scenario yields lower and upper bounds on yk−1(z) depending only on ẑ.
This completes the induction.

Let y( ẑ) be the decision rule resulting from the above procedure. Because x is ARF
to Phybrid, the resulting pair (x, y( ẑ)) is ARF to Phybrid.
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B.13 Proof Corollary A.1

We note that if (3) has hybrid uncertainty and the objective (3a) contains adaptive
variables, it can equivalently be written as

min
t,x, y(·) t, (56a)

s.t. c( ẑ, z(0))
x + d
 y(z) ≤ t ∀( ẑ, z(0)) ∈ Û ×U 0, (56b)

ai ( ẑ, z(i))
x + b

i y(z) ≤ ri ( ẑ, z(i)), ∀( ẑ, z(i)) ∈ Û ×Ui , ∀i = 1, . . . ,m,

(56c)

where t ∈ R is an auxiliary Stage-1 decision variable. Problem (56) also has hybrid
uncertainty, and a pair (x, y(·)) is ARO to (3) if and only if there exists a t ∈ R such
that (x, y(·), t) is ARO to (56). Thus, in the remainder of the proof we can assume
d = 0, i.e., the objective is independent of adaptive variables.

According to Lemma A.1, for any ARF x there exists a decision rule y(·) that
depends only on ẑ such that (x, y(·)) is ARF to Phybrid. Any x∗ that is ARO to Phybrid
is also ARF to Phybrid, so also for each ARO x∗ there exists such a decision rule y∗(·).
The objective is independent of adaptive variables, so (x∗, y(·)) is ARO for any ARF
y(·). Hence, (x∗, y∗(·)) is ARO to Phybrid.

B.14 Proof Lemma A.2

We consider only adaptive robust feasibility and not optimality, so the objective of
Pblock can be ignored. Remove index 0 from its constraint set K (v) (for some v). The
set of constraints can be written as

ai (z(v))

x + b


i y(v)(z) ≤ ri (z(v)), ∀z ∈ U , ∀i ∈ K (v), ∀v = 1, . . . , V .

Due to the block uncertainty structure, all adaptive variables can be eliminated by
performing FME on each block v separately. According to Lemma B.1, bounds on
each adaptive variable yk(z) can be represented by (29). If for some k = 1, . . . , ny ,
variable yk(z) is an element of y(v)(z) for some block v, any S ∈ C−

k or T ∈ C+
k

is a subset of K(v), the original set of constraints for block v. The following two
observations immediately follow for the given block v:

– For each l = 1, . . . , ny the coefficient of yl(z) is zero if yl(z) is not an element of
y(v), i.e., β(S, l) = 0 for all S ∈ C−

k ∪ C+
k .

– For any p in S or T it holds that ϕp(·) is a function of z(v) only.

For k = ny , i.e., the last eliminated variable, this implies the lower and upper bounds
on yny () are independent of z(w) for w �= v, and any feasible decision rule can be
written as a function of z(v) only. Plugging any such decision rule in the lower and
upper bounds for k = ny−1 yields the same result for yny−1(). The final result follows
from backward induction.

Let y(z) be the decision rule resulting from the above procedure. Because x is ARF
to Pblock, the resulting pair (x, y(z)) is ARF to Pblock.
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B.15 Proof Lemma A.3

We consider only adaptive robust feasibility and not optimality, so the objective of
Psimplex can be ignored. According to Lemma B.1, in the FME procedure the bounds
on variable yk(z) are given by (29). It is sufficient to satisfy the bounds on yk(z) for
all extreme points of uncertainty set U , so we can alternatively write:

max
Sk∈C−

k

⎧
⎨

⎩
∑

p∈Sk
α(Sk , p)ϕp(x, z j ) −

ny∑

l=k+1

β(Sk , l)yl(z j )

⎫
⎬

⎭ ≤ yk(z j )

≤ min
Tk∈C+

k

⎧
⎨

⎩
∑

q∈T
α(Tk , q)ϕq (x, z j ) −

ny∑

l=k+1

β(Tk , l)yl (z j )

⎫
⎬

⎭ , ∀z j , j = 1, . . . , L + 1.

(57)

For each j = 1, . . . , L+1, let lk(z j ) and uk(z j ) denote the lower resp. upper bound on
yk(z j ) from (57). Affine independence of z1, . . . , zL+1 implies linear independence
of (1, z1), . . . , (1, zL+1). Hence, by basic linear algebra, there exists exactly one
(a0, a) ∈ R × R

L such that a0 + a
z j = l(z j ) for all j = 1, . . . , L + 1. Consider
the LDR yk(z) = a0 + a
z. Then l(z j ) = yk(z j ) ≤ u(z j ) for all j = 1, . . . , L + 1.
Hence, yk(z) is an LDR that satisfies bounds (57). Alternatively, one can construct an
LDR that passes through points (z j , u(z j )) for all j = 1, . . . , L + 1, or any LDR that
is a convex combination of the previous two LDRs.

Thus, we can construct a decision rule for yk(z) that is linear in z. For all k =
1, . . . , ny − 1, this decision rule depends on yk+1(z), . . . , yny (z). For variable yny (·),
the constructed decision rule is independent of other adaptive variables. Plugging this
in the decision rule for yny−1(·) yields a decision rule that is again independent of other
adaptive variables, and still linear in z because the coefficient for yny (z) in lny−1(z)
and uny−1(z) does not depend on z (fixed recourse). Continuing this procedure yields
LDRs for all adaptive variables y1(·), . . . , yny (·).

Let y(z) be the decision rule resulting from the above procedure. Because x is ARF
to Psimplex, the resulting pair (x, y(z)) is ARF to Psimplex.
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