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Abstract
Let G be a family of subsets of an n-element set. The family G is called non-trivial
3-wise intersecting if the intersection of any three subsets in G is non-empty, but
the intersection of all subsets is empty. For a real number p ∈ (0, 1) we define the
measure of the family by the sum of p|G|(1 − p)n−|G| over all G ∈ G. We determine
the maximum measure of non-trivial 3-wise intersecting families. We also discuss
the uniqueness and stability of the corresponding optimal structure. These results are
obtained by solving linear programming problems.

Keywords Intersecting family · Product measure · Linear programming · Weak
duality

Mathematics Subject Classification 05D05 · 90C05

1 Introduction

We determine the maximum measure of non-trivial 3-wise intersecting families, and
discuss the stability of the optimal structure. To make the statement precise let us start
with some definitions.

Let n ≥ t ≥ 1 and r ≥ 2 be integers. For a finite set X let 2X denote the power set of
X .We say that a family of subsetsG ⊂ 2X is r -wise t-intersecting if |G1∩· · ·∩Gr | ≥ t
for all G1, . . . ,Gr ∈ G. If t = 1 then we omit t and say an r -wise intersecting family
to mean an r -wise 1-intersecting family.
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Let 0 < p < 1 be a real number and let q = 1 − p. For G ⊂ 2X we define its
measure (or p-measure) μp(G : X) by

μp(G : X) :=
∑

G∈G
p|G|q |X |−|G|.

Wemainly consider the case X = [n], where [n] := {1, 2, . . . , n}. In this case we just
write μp(G) to mean μp(G : [n]).

We say that an r -wise t-intersecting family G ⊂ 2[n] is non-trivial if |⋂G| < t ,
where

⋂G := ⋂
G∈G G. Let us denote the maximum p-measure of such families by

Mt
r (n, p), that is,

Mt
r (n, p) := max{μp(G) : G ⊂ 2[n] is non-trivialr -wise t-intersecting}.

If a family G ⊂ 2[n] is non-trivial r -wise t-intersecting, then so is

G′ := G � {G � {n + 1} : G ∈ G} ⊂ 2[n+1].

Since G and G′ have the same p-measure, the function Mt
r (n, p) is non-decreasing in

n for fixed r , t, p, and we can define

Mt
r (p) := lim

n→∞ Mt
r (n, p).

For simplicity if t = 1 then we just write Mr (n, p) and Mr (p).
What is generally known about Mr (n, p) and Mr (p)? For the case r = 2 we have

the following.

M2(p) =
{
p if 0 < p ≤ 1

2 ,

1 if 1
2 < p < 1.

Indeed it is easy to see that M2(n, 1
2 ) = 1

2 , and it is known from [1] that M2(n, p) < p
for p < 1

2 . Thus M2(p) ≤ p for p ≤ 1
2 . On the other hand we construct a non-

trivial r -wise intersecting family by F := ({F ∈ 2[n] : 1 ∈ F}\{{1}}) ∪ {[2, n]},
where [i, j] := [ j]\[i − 1]. Then we have μp(F) = p − pqn−1 + qpn−1 → p as
n → ∞. Thus M2(p) = p for p ≤ 1

2 . For the case p > 1
2 we construct a non-

trivial r -wise intersecting family G := {F ∈ 2[n] : |F | > n/2}. Then μp(G) =∑
k>n/2

(n
k

)
pkqn−k → 1 as n → ∞, and so M2(p) = 1 for p > 1

2 .

The case p = 1
2 (and arbitrary r ≥ 2) is also known. Brace and Daykin [5]

determined the maximum size of non-trivial r -wise intersecting families. In other
words, they determined Mr (n, 1

2 ). To state their results we define a non-trivial r -wise
intersecting family BDr (n) by

BDr (n) := {F ∈ 2[n] : |F ∩ [r + 1]| ≥ r}.

Then μp(BDr (n)) = (r + 1)prq + pr+1.
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Fig. 1 The graph of M3(p)

Theorem 1 (Brace and Daykin [5]) For r ≥ 2 we have Mr (n, 1
2 ) = μ 1

2
(BDr (n)). If

r ≥ 3 then BDr (n) is the only optimal family (up to isomorphism) whose measure
attains Mr (n, 1

2 ).

Here two families F ,G ⊂ 2[n] are isomorphic if there is a permutation τ on [n] such
that F = {{τ(g) : g ∈ G} : G ∈ G}. In this case we write F ∼= G.

The other thing we know is about the case p close to 1
2 . In this case we can extend

Theorem 1 if r ≥ 8 as follows.

Theorem 2 [20] Let r ≥ 8. Then there exists ε = ε(r) > 0 such that Mr (n, p) =
μp(BDr (n)) for |p − 1

2 | < ε, and BDr (n) is the only optimal family (up to
isomorphism).

In [20] it is conjectured the same holds for r = 6 and 7 as well. On the other hand
there is a construction showing that if r ≤ 5 then Mr (n, p) > μp(BDr (n)) for p close
to 1/2.

In this paper we focus on the case r = 3. We determine M3(p) for all p.

Theorem 3 For non-trivial 3-wise intersecting families we have

M3(p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p2 if p ≤ 1
3 ,

4p3q + p4 if 1
3 ≤ p ≤ 1

2 ,

p if 1
2 < p ≤ 2

3 ,

1 if 2
3 < p < 1.

In case M2(p) there is a jump at p = 1
2 . In case M3(p) there are two jumps at p = 1

2
and p = 2

3 as in Fig. 1, and M3(p) is continuous at p = 1
3 but not differentiable at

this point. We also note that μp(BD3(n)) = 4p3q + p4.
Themost interesting part is the case 1

3 ≤ p ≤ 1
2 . In this casewe determineM3(n, p)

and the corresponding optimal structure.
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Theorem 4 Let 1
3 ≤ p ≤ 1

2 . Then we have M3(n, p) = μp(BD3(n)). Moreover,
BD3(n) is the only optimal family (up to isomorphism), that is, if F ⊂ 2[n] is a
non-trivial 3-wise intersecting family with μp(F) = M3(n, p) then F ∼= BD3(n).

We also consider the stability of the optimal family for 1
3 ≤ p ≤ 1

2 . Roughly
speaking we will claim that if a non-trivial 3-wise intersecting family has measure
close to M3(n, p) then the family is close to BD3(n) in structure. A similar result is
known for 2-wise t-intersecting families. For comparison with our case let 13 < p < 2

5
and t = 2. Note that BD3(n) is a 2-wise 2-intersecting family. If F ⊂ 2[n] is a 2-wise
2-intersecting family, then it follows from the Ahlswede–Khachatrian theorem (see
Theorem 11) thatμp(F) ≤ μp(BD3(n)). Moreover, ifμp(F) is close toμp(BD3(n))

then F is close to BD3(n). This follows from a stability result (corresponding to
Theorem 11) proved by Ellis, Keller, and Lifshitz. Here we include a version due to
Filmus applied to the case 1

3 < p < 2
5 and t = 2.

Theorem 5 (Ellis–Keller–Lifshitz [6], Filmus [7]) Let 13 < p < 2
5 . There is a constant

ε0 = ε0(p) such that the following holds. IfF ⊂ 2[n] is a 2-wise 2-intersecting family
with μp(F) = μp(BD3(n)) − ε, where ε < ε0, then there is a family G ∼= BD3(n)

such that μp(FG) = O(ε), where the hidden constant depends on p only.

We note that the condition μp(FG) = O(ε) in Theorem 5 cannot be replaced with
the condition F ⊂ G. To see this, consider a 2-wise 2-intersecting family

F = (BD3(n)\{{1, 3, 4}, {2, 3, 4}}) ∪ {[n]\{3, 4}}. (1)

Then μp(F) = μp(BD3(n)) − 2p3qn−3 + p2qn−2 → μp(BD3(n)) as n → ∞, but
F is not contained in BD3(n) (or any isomorphic copy of BD3(n)).

Note that a non-trivial r -wise t-intersecting family is necessarily an (r − 1)-wise
(t + 1)-intersecting family. (Otherwise there are r − 1 subsets whose intersection is
of size exactly t , and so all subsets contain the t vertices to be r -wise t-intersecting,
which contradicts the non-trivial condition.) Thus Theorem 5 also holds if we replace
the assumption that F is a 2-wise 2-intersecting family with the assumption that F is
a non-trivial 3-wise intersecting family. We also note that the family F defined by (1)
is 2-wise 2-intersecting, but not 3-wise intersecting. This suggests a possibility of a
stronger stability for non-trivial 3-wise intersecting families than 2-wise 2-intersecting
families.

Conjecture 1 Let 1
3 < p ≤ 1

2 . There is a constant ε0 = ε0(p) such that the fol-
lowing holds. If F ⊂ 2[n] is a non-trivial 3-wise intersecting family with μp(F) =
μp(BD3(n)) − ε, where ε < ε0, then there is a family G ∼= BD3(n) such that F ⊂ G.

We verify the conjecture for the case 2
5 ≤ p ≤ 1

2 provided that the family is shifted.
Here we say that a family F ⊂ 2[n] is shifted if F ∈ F and {i, j} ∩F = { j} for some
1 ≤ i < j ≤ n, then (F\{ j}) ∪ {i} ∈ F . The following is our main result in this
paper.

Theorem 6 Let 2
5 ≤ p ≤ 1

2 , and letF ⊂ 2[n] be a shifted non-trivial 3-wise intersect-
ing family. If F �⊂ BD3(n) then μp(F) < μp(BD3(n)) − 0.0018.
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For the proof of Theorem 6 we divide the family into some subfamilies. These sub-
families are not only 3-wise intersecting, but also satisfy some additional intersection
conditions. To capture the conditions we need some more definitions. We say that r
families F1, . . . ,Fr ⊂ 2[n] are r -cross t-intersecting if |F1 ∩ · · · ∩ Fr | ≥ t for all
F1 ∈ F1, . . . , Fr ∈ Fr . If moreover Fi �= ∅ for all 1 ≤ i ≤ r , then the r families are
called non-empty r -cross t-intersecting. As usual we say r -cross intersecting to mean
r -cross 1-intersecting. The following result is used to prove Theorem 6.

Theorem 7 Let 1
3 ≤ p ≤ 1

2 . If F1,F2,F3 ⊂ 2[n] are non-empty 3-cross intersecting
families, then

μp(F1) + μp(F2) + μp(F3) ≤ 3p. (2)

Suppose, moreover, that 1
3 < p ≤ 1

2 , all Fi are shifted, and
⋂

F = ∅, where the
intersection is taken over all F ∈ F1 ∪ F2 ∪ F3. Then,

μp(F1) + μp(F2) + μp(F3) ≤ 3p − εp, (3)

where εp = (2 − 3p)(3p − 1).

The first inequality (2) is an easy consequence of a recent result on r -cross t-
intersecting families obtained by Gupta et al. [13], while the second inequality (3)
is proved by solving linear programming (LP) problems. We mention that equality
holds in (2) only if | ⋂F∈F1∪F2∪F3

F | = 1 unless p = 1
3 . This fact will not be used

for the proof of Theorem 6, but it follows easily from (3) and Lemma 1.
Here we outline the proof of Theorem 6. This is done by solving LP problems

as follows. First we divide F into subfamilies, say, F = F1 ∪ F2 ∪ · · · ∪ Fk . Let
xi = μp(Fi ). These subfamilies satisfy some additional conditions, which give us
(not necessarily linear) constraints on the variables xi . Under the constraints we need
tomaximizeμp(F) = ∑k

i=1 xi . In principle this problem can be solved by themethod
of Lagrange multipliers, but in practice it is not so easy even if concrete p is fixed. To
overcome the difficulty we first replace non-linear constraints with weaker piecewise
linear constraints. In this way the problem turns into an LP problemwith the parameter
p, which can be solved efficiently provided p is given. Next, instead of solving this
primal problem, we seek a feasible solution to the dual LP problemwith the parameter.
Finally the desired upper bound for μp(F) is obtained by the weak duality theorem.
As to related proof technique we refer [24] for application of LP methods to some
other extremal problems, and also [18, 19] for SDP methods.

In the next section we gather tools we use to prove our results. Then in Sect. 3 we
deduce Theorem 3 and Theorem 4 from Theorem 6. In Sect. 4 we prove Theorem 7,
whose proof is a prototype of the proof of Theorem 6. In Sect. 5 we prove our main
result Theorem 6. Finally in the last section we discuss possible extensions to non-
trivial r -wise intersecting families for r ≥ 4, and a related k-uniform problem. In
particular we include counterexamples to a recent conjecture posed by O’Neill and
Versträete [17] (c.f. Balogh and Linz [4]).
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2 Preliminaries

2.1 Shifting

For 1 ≤ i < j ≤ n we define the shifting operation σi, j : 2[n] → 2[n] by

σi, j (G) := {Gi, j : G ∈ G},
where

Gi, j :=
{

(G\{ j}) � {i} if (G\{ j}) � {i} /∈ G,

G otherwise.

By definition μp(G) = μp(σi, j (G)) follows. We say that G is shifted if G is invariant
under any shifting operations, in other words, if G ∈ G then Gi, j ∈ G for all 1 ≤ i <

j ≤ n. If G is not shifted then
∑

G∈G
∑

g∈G g >
∑

G ′∈σi, j (G)

∑
g′∈G ′ g′ for some i, j ,

and so starting from G we get a shifted G′ by applying shifting operations repeatedly
finitely many times. It is not difficult to check that if G is r -wise t-intersecting, then
so is σi, j (G). Therefore if G is an r -wise t-intersecting family, then there is a shifted
r -wise t-intersecting family G′ with μp(G′) = μp(G). It is also true that if G1, . . . ,Gr
are r -cross t-intersecting families, then there are shifted r -cross t-intersecting families
G′
1, . . . ,G′

r with μp(Gi ) = μp(G′
i ) for all 1 ≤ i ≤ r .

For the proof of Theorem 4 we use the fact that if σi, j (G) ∼= BD3(n) then G ∼=
BD3(n). More generally the following holds.

Lemma 1 Let n, a, b be positive integers with a ≥ 1, b ≥ 0, and n ≥ a + 2b, and let
F = {F ⊂ [n] : |F ∩ [a + 2b]| ≥ a + b}. If G ⊂ 2[n] satisfies σi, j (G) = F then
G ∼= F .

The above result is well-known, see, e.g., Lemma 6 in [16] for a proof and a history.
We note that the condition σi, j (G) = F can be replaced with σi, j (G) ∼= F . Indeed
if σi, j (G) = F ′ and F ′ ∼= F , then by Lemma 1 (and by renaming the vertices) we
have G ∼= F ′, and so G ∼= F . By choosing a = r − 1 and b = 1, we see that if
σi, j (G) ∼= BDr (n) then G ∼= BDr (n).

For G, H ⊂ [n] we say that G shifts to H , denoted by G � H , if G = ∅, or if
|G| ≤ |H | and the i th smallest element of G is greater than or equal to that of H for
each i ≤ |G|. Note that the relation � is transitive, and this fact will be used later
(Claims 16 and 17).

We say that G is inclusion maximal if G ∈ G and G ⊂ H imply H ∈ G. Since
we are interested in the maximum measure of non-trivial 3-wise intersecting families,
we always assume that families are inclusion maximal. If G is shifted and inclusion
maximal, then G ∈ G and G � H imply H ∈ G.

2.2 Duality in linear programming

For later use we briefly record the weak duality theorem in linear programming. See
e.g., chapter 6 in [12] for more details.
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A primal linear programming problem (P) is formalized as follows.

maximize: cTx ,
subject to: Ax ≤ b and x ≥ 0.

The corresponding dual programming problem (D) is as follows.

minimize: bT y,
subject to: AT y ≥ c and y ≥ 0.

Theorem 8 (Weak duality) For each feasible solution x of (P) and each feasible solu-
tion y of (D) we have cTx ≤ bT y.

2.3 Tools for the proof of Theorem 7

Let n, t, a be fixed positive integers with t ≤ a ≤ n. Define two families A and B by

A = {F ⊂ [n] : |F ∩ [a]| ≥ t},
B = {F ⊂ [n] : [a] ⊂ F}.

Then μp(A) = 1 − ∑t−1
j=0

(a
j

)
p jqa− j , and μp(B) = pa . Let F1 = A, F2 = · · · =

Fr = B. Then F1, . . . ,Fr are r -cross t-intersecting families with
∑r

i=1 μp(Fi ) =
μp(A) + (r − 1)μp(B). The next result is a special case of Theorem 1.4 in [13],
which states that the above construction is the best choice to maximize the sum of
p-measures of non-empty r -cross t-intersecting families provided p ≤ 1

2 .

Theorem 9 (Gupta–Mogge–Piga–Schülke [13]) Let r ≥ 2 and 0 < p ≤ 1
2 . If

F1, . . . ,Fr ⊂ 2[n] are non-empty r-cross t-intersecting families, then

r∑

i=1

μp(Fi ) ≤ max

{(
1 −

t−1∑

j=0

(
a

j

)
p jqa− j

)
+ (r − 1)pa : t ≤ a ≤ n

}
.

We need the non-empty condition to exclude the caseF1 = ∅,F2 = · · · = Fr = 2[n].

Lemma 2 Let 0 < p ≤ 1
2 . Suppose that F1,F2 ⊂ 2[n] are 2-cross intersecting

families.

(i) μp(F1) + μp(F2) ≤ 1.
(ii) μp(F1)μp(F2) ≤ p2.

Proof (i) If one of the families is empty, then the inequality clearly holds. So suppose
that both families are non-empty. Then, by Theorem 9, we have

μp(F1) + μp(F2) ≤ max{(1 − qa) + pa : 1 ≤ a ≤ n}.

Thus it suffices to show that 1 − qa + pa ≤ 1, or equivalently, pa ≤ (1 − p)a for all
a ≥ 1. Indeed this follows from the assumption p ≤ 1

2 .
(ii) This is proved in [21] as Theorem 2. ��
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Lemma 3 Let 0 < p ≤ 1
2 , and t ≥ 2. If F1,F2,F3 ⊂ 2[n] are non-empty 3-cross

t-intersecting families, then μp(F1) + μp(F2) + μp(F3) ≤ 1.

Proof Note that if t ≥ 2 then 3-cross t-intersecting families are 3-cross 2-intersecting
families. Thus, using Theorem 9, it suffices to show that

f (p, a) := (1 − qa − apqa−1) + 2pa ≤ 1

for a ≥ t . This inequality follows from the fact that f (p, a) is increasing in p, and
f ( 12 , a) is non-decreasing in a for a = 2, 3, . . ., and lima→∞ f ( 12 , a) = 1. ��

2.4 Randomwalk

Here we extend the random walk method to deal with p-measures of r -cross t-
intersecting families possibly with different p-measures. The method was originally
introduced by Frankl in [9].

Let r ≥ 2 be a positive integer. For 1 ≤ i ≤ r let pi be a real number with
0 < pi < 1 − 1

r , and let qi = 1 − pi . Let α(pi ) ∈ (0, 1) be a unique root of the
equation

X = pi + qi X
r , (4)

and let β = β(p1, . . . , pr ) ∈ (0, 1) be a unique root of the equation

X =
r∏

i=1

(pi + qi X). (5)

Consider two types of random walks, Ai and B, in the two-dimensional grid Z
2.

Both walks start at the origin, and at each step it moves from (x, y) to (x, y + 1) (one
step up), or from (x, y) to (x + 1, y) (one step to the right). For every step the type Ai

walk takes one step up with probability pi , and one step to the right with probability
qi . On the other hand, at step j , the type B walk takes one step up with probability pi ,
and one step to the right with probability qi , where i = j mod r . Let L j denote the
line y = (r − 1)x + j .

Claim 1 Let r ≥ 2 and t ≥ 1 be integers. Then we have

P(the type Ai walk hits the line Lt ) = α(pi )
t ,

P(the type B walk hits the lineLrt ) = β(p1, . . . , pr )
t .

Proof Let xi (t) denote the probability that the walk Ai hits the line Lt . After the first
step of the walk, it is at (0, 1) with probability pi , or at (1, 0) with probability qi .
From (0, 1) the probability for the walk hitting Lt is xi (t − 1), and from (1, 0) the
probability is xi (t − 1 + r). Therefore we have

xi (t) = pi xi (t − 1) + qi xi (t − 1 + r). (6)
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Let a j be the number of walks from (0, 0) to Pj := ( j, (r − 1) j + t) which touch
Lt only at Pj . (It is known that a j = t

r j+t

(r j+t
j

)
, but we do not need this fact.) Then

we have xi (t) = ∑
j≥0 a j p

(r−1) j+t
i q j

i . If a walk touches the line Lt+1, then the walk
needs to hit Lt somewhere, say, at Pj for the first time. Then the probability that the
walk hit Lt+1 starting from Pj is equal to xi (1). Thus we have

xi (t + 1) =
∑

j≥0

(a j p
(r−1) j+t
i q j

i ) xi (1) = xi (t)xi (1),

and so we can write xi (t) = zt , where z := xi (1). Substituting this into (6) and
dividing both sides by zt−1 we see that z is a root of the equation (4). Let f (X) :=
pi + qi Xr − X . Then we have f (0) = pi > 0, f (1) = 0, f ′(1) = qir − 1 > 0,
and f ′′(X) = qir(r − 1)Xr−2 > 0. Thus the equation f (X) = 0, or equivalently, (4)
has precisely two roots in [0, 1], that is, α(pi ) and 1. We claim that z �= 1. Indeed we
have limt→∞ xi (t) = limt→∞ zt = 0 because a step in the type Ai walk reduces, on
average, y − (r − 1)x by (r − 1) − rpi > 0. Consequently we have z = α(pi ), and
so xi (t) = α(pi )t .

Next let y(t) denote the probability that the walk B hits the line Lrt . After the first
r steps, it is at (x, r − x) for some 0 ≤ x ≤ r with probability

∑

J∈([r ]
x )

∏

i∈[r ]\J
pi

∏

j∈J

q j .

From (x, r − x) the probability for the walk hitting Lrt is y(x + t − 1). This yields

y(t) =
r∑

x=0

y(x + t − 1)
∑

J∈([r ]
x )

∏

i∈[r ]\J
pi

∏

j∈J

q j . (7)

Let bs be the number of walks from (0, 0) to Qs := (s, (r − 1)s + r t) which touch
Lrt only at Qs . Then we have

y(t) =
∑

s≥0

bs
∑

J∈([r(s+t)]
s )

∏

i∈[r(s+t)]\J
pi

∏

j∈J

q j .

If a walk touches the line Lr(t+1), then the walk needs to hit Lrt somewhere, say, at
Qs for the first time. Then the probability that the walk hit Lr(t+1) starting from Qs

is equal to y(1). Thus we have

y(t + 1) =
∑

s≥0

bs
∑

J∈([r(s+t)]
s )

∏

i∈[r(s+t)]\J
pi

∏

j∈J

q j y(1) = y(t)y(1),
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and so y(t) = wt , where w := y(1). Substituting this into (7) and dividing both sides
by wt−1 we have

w =
r∑

x=0

wx
∑

J∈([r ]
x )

∏

i∈[r ]\J
pi

∏

j∈J

q j =
r∏

i=1

(pi + qiw).

Thusw is a root of the equation (5). Let g(X) := ∏r
i=1(pi +qi X)− X . Then we have

g(0) = ∏
i pi > 0, g(1) = 0, g′(1) = ∑

i qi > 0, and g′′(X) > 0. Thus the equation
g(X) = 0, or equivalently, (5) has precisely two roots in [0, 1], that is, β and 1. But
we can exclude the possibility w = 1 in the same way as in the previous case. Thus
we have w = β and so y(t) = β t . ��
Claim 2 Let F1, . . . ,Fr ⊂ 2[n] be shifted r-cross t-intersecting families. Then, for
all (F1, . . . , Fr ) ∈ F1 × · · · × Fr , there exists j = j(F1, . . . , Fr ) ∈ [n] such that∑r

i=1 |Fi ∩ [ j]| ≥ t + (r − 1) j .

This is Proposition 8.1 in [9]. We include a simple proof for convenience.

Proof Suppose the contrary. Then there exist an r -tuple of a counterexample
(F1, . . . , Fr ) ∈ F1 × · · · × Fr , which we choose |F1 ∩ · · · ∩ Fr | minimal. Let j
be the t-th element of F1 ∩ · · · ∩ Fr . Then we have

r∑

i=1

|Fi ∩ [ j]| < t + (r − 1) j = |F1 ∩ · · · ∩ Fr ∩ [ j]| + (r − 1)|[ j]|.

Thus there exist some i ∈ [ j − 1] such that i is not contained in (at least) two of the
r subsets, say, i /∈ F1 ∪ F2. By the shiftedness we have F ′

1 := (F\{ j}) ∪ {i} ∈ F1.
Then |F1 ∩ [ j]| = |F ′

1 ∩ [ j]| and so (F ′
1, F2, . . . , Fr ) is also a counterexample. But

this contradicts the minimality because |F ′
1 ∩ F2 ∩ · · · ∩ Fr | < |F1 ∩ F2 ∩ · · · ∩ Fr |. ��

LetF1, . . . ,Fr ⊂ 2[n] be families of subsets. For each (F1, . . . , Fr ) ∈ F1×· · ·×Fr

we define a vector w by

w = w(F1, . . . , Fr ) := (w
(1)
1 , w

(1)
2 , . . . , w(1)

r , . . . , w
(n)
1 , w

(n)
2 , . . . , w(n)

r ) ∈ {0, 1}rn,

where

w
( j)
i =

{
1 if j ∈ Fi ,

0 if j /∈ Fi .

We can view w as an rn-step walk whose k-th step is up (resp. right) if the k-th entry
of w is 1 (resp. 0) for 1 ≤ k ≤ rn.

Claim 3 LetF1, . . . ,Fr ⊂ 2[n] be shifted r-cross t-intersecting families. Then, for all
(F1, . . . , Fr ) ∈ F1 × · · · × Fr , the walk w(F1, . . . , Fr ) hits the line Lrt .
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Proof Let j = j(F1, . . . , Fr ) be from Claim 2, and let w = w(F1, . . . , Fr ) be the
corresponding walk. In the first r j steps of w there are at least t + (r − 1) j up steps,
and so at most r j − (t + (r − 1) j) = j − t right steps. This means that the walk w

hits the line Lrt within the first r j steps. ��
Theorem 10 Let p1, . . . , pr be positive real numbers less than 1 − 1

r , and let
F1, . . . ,Fr ⊂ 2[n] be r-cross t-intersecting families. Then we have

∏r
i=1 μpi (Fi ) ≤

β t , where β is the root of the equation (5).

Proof Since the shifting operation preserves r -cross t-intersecting property and p-
measures, we may assume that all Fi are shifted. We have

r∏

i=1

μpi (Fi ) =
r∏

i=1

∑

Fi∈Fi

p|Fi |
i qn−|Fi |

i

=
∑

(F1,...,Fr )∈F1×···×Fr

r∏

i=1

p|Fi |
i qn−|Fi |

i .

Using Claim 3 the RHS is

≤ P(type B walk hits Lrt in the first rn steps) ≤ P(type B walk hits Lrt ) = β t ,

where the last equality follows from Claim 1. ��
By comparing (4) and (5) it follows that if p1 = · · · = pr =: p then

β(p, . . . , p) = α(p)r . If r = 3 then it is not so difficult to verify that β(p1, p2, p3) ≤
α(p1)α(p2)α(p3), see [15] for more details, and we have the following.

Lemma 4 Let 0 < p1, p2, p3 < 2
3 and t be a positive integer. If F1,F2,F3 ⊂ 2[n]

are 3-cross t-intersecting, then

μp1(F1)μp2(F2)μp3(F3) ≤ (α(p1)α(p2)α(p3))
t ,

where

α(p) := 1

2

(√
1 + 3p

1 − p
− 1

)
. (8)

2.5 Tools for the proof of Theorem 6

Let 0 < p1 < p2 < 1 be fixed. Let R[p1,p2] denote the set of real-valued functions
defined on the interval [p1, p2] := {x ∈ R : p1 ≤ x ≤ p2}. We will bound a convex
function g ∈ R

[p1,p2] by a linear function connecting (p1, g(p1)) and (p2, g(p2)). To
this end, define an operator L p1,p2 : R[p1,p2] → R

[p1,p2] by

(L p1,p2(g))(p) := g(p2) − g(p1)

p2 − p1
(p − p1) + g(p1).
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By definition we have the following.

Claim 4 Let g ∈ R
[p1,p2] be a convex function. Then g(p) ≤ (L p1,p2(g))(p) for

p ∈ [p1, p2].
The function α = α(p) defined by (8) is convex because ∂2α(p)

∂ p2

= 6p
(1+3p)2q2

( 1+3p
q

)1/2
> 0. Thus by Claim 4 we have the following.

Claim 5 For 2
5 ≤ p ≤ 1

2 it follows that α(p) ≤ α̃(p), where

α̃(p) := (L 2
5 , 12

(α))(p) = (−3 − 12
√
5 + 5

√
33)/6 + (30

√
5 − 10

√
33)p/6

≈ −0.185 + 1.60607p.

Let AK(n, t, p) denote the maximum p-measure μp(G) of 2-wise t-intersecting
families G ⊂ 2[n].

Theorem 11 (Ahlswede and Khachatrian [2]) Let

i

t + 2i − 1
≤ p ≤ i + 1

t + 2i + 1
.

Then AK(n, t, p) = μp(A(n, t, i)), where

A(n, t, i) = {A ⊂ [n] : |A ∩ [t + 2i]| ≥ t + i}.

Moreover, if i
t+2i−1 < p < i+1

t+2i+1 (resp. p = i
t+2i−1 ) then μp(G) = AK(n, t, p) if

and only if G ∼= A(n, t, i) (resp. G ∼= A(n, t, i − 1) or G ∼= A(n, t, i)).

Let

ft (p) := lim sup
n→∞

AK(n, t, p).

By Katona’s t-intersection theorem we have ft (
1
2 ) = 1

2 . For p < 1
2 , by Theorem 11,

we have AK(n, t, p) = max{μp(A(n, t, i)) : i ≤ n−t
2 }, and AK(n, t, p) is non-

decreasing in n. In this case we have

ft (p) = lim
n→∞AK(n, t, p) =

t+2i∑

j=t+i

(
t + 2i

j

)
p jqt+2i− j ,

where i =
⌊

(t−1)p
1−2p

⌋
. The function ft (p) is left-continuous at p = 1

2 .

Claim 6 Let t ≥ 2 be fixed. Then ft (p) is a convex function in p.
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Proof First suppose that i
t+2i−1 < p < i+1

t+2i+1 . Then ft (p) = ∑t+2i
t+i

(t+2i
j

)
p jqt+2i− j

=: g(p), and we have

∂2

∂ p2
ft (p) = (2i + t)!

(i + t − 1)! i ! p
t−2+i qi−1(i + t − 1 − (2i + t − 1)p) > 0.

Next let p0 = i
t+2i−1 . If p is slightly larger than p0 then we have the same ft (p) =

g(p) as above, and if p is slightly smaller than p0 then ft (p) = ∑t+2i−2
t+i−1 p jqt+2i−2 =:

h(p). Since h(p) < g(p) for p > p0 and h(p) > g(p) for p < p0, we see that the
left derivative of ft (p) at p = p0 is smaller than that of the right derivative. ��

By Claim 4 and Claim 6 we have the following.

Claim 7 For 2
5 ≤ p ≤ 1

2 it follows that AK(n, t, p) ≤ ãt (p), where ãt = L 2
5 , 12

( ft ).

For convenience we record the ãt which will be used to prove Theorem 6.

ã2(p) = 1
2 + (401(p − 1

2 ))/125 ≈ −1.104 + 3.208p,

ã3(p) = 1
2 + (1565029(p − 1

2 ))/390625 ≈ −1.50324 + 4.00647p,

ã4(p) = 1
2 + (5391614441(p − 1

2 ))/1220703125 ≈ −1.70841 + 4.41681p,

ã5(p)= 1
2+(17729648464189(p − 1

2 ))/3814697265625 ≈ −1.82386 + 4.64772p.

3 Proof of Theorem 3 and Theorem 4

In this section we deduce Theorem 3 from Theorem 4, and then deduce Theorem 4
from Theorem 6 whose proof is given in the next section.

Proof of Theorem 3 Let F ⊂ 2[n] be a non-trivial 3-wise intersecting family with
μp(F) = M3(n, p).Wemay assume thatF is shifted and inclusionmaximal. SinceF
is non-trivially 3-wise intersecting, it is also 2-wise 2-intersecting, and so M3(n, p) ≤
AK(n, 2, p). ��
Claim 8 If p < 1

3 then M3(p) = p2.

Proof Let p < 1
3 be fixed. Then we have μp(F) = M3(n, p) ≤ AK(n, 2, p) = p2.

Moreover G ∼= A(n, 2, 0) is the only 2-wise 2-intersecting family with μp(G) = p2.
Since A(n, 2, 0) is not non-trivial 3-wise intersecting, we get M3(n, p) < p2.

On the other hand we can construct a non-trivial 3-wise intersecting family F1 by

F1 = {F ∈ [n] : [2] ⊂ F, F ∩ [3, n] �= ∅} � {[n]\{1}} � {[n]\{2}}.

Then it follows that

μp(F1) = p2(1 − qn−2) + 2pn−1q → p2 as n → ∞.

Thus we have M3(p) = p2 for p < 1
3 . ��
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Claim 9 If 1
3 ≤ p ≤ 1

2 then M3(p) = 4p3q + p4.

Proof This is an immediate consequence of Theorem 4. ��

Claim 10 If 1
2 < p ≤ 2

3 then M3(p) = p.

Proof Let 1
2 < p ≤ 2

3 be fixed. It is known from [8, 10, 22] that 3-wise intersecting
families G have p-measure at most p for p ≤ 2

3 , and moreover if μp(G) = p then
| ⋂G| = 1 for p < 2

3 . Thus we have M(n, p) < p for 1
2 < p < 2

3 and M(n, 2
3 ) ≤ 2

3 .
On the other hand, let us define a non-trivial 3-wise intersecting family F2 by

F2 = {F ∈ [n] : 1 ∈ F, |F ∩ [2, n]| ≥ n/2} � {[2, n]}.

Then it follows that, for fixed p,

μp(F2) = p
∑

k≥n/2

(
n − 1

k

)
pkqn−1−k + qpn−1 → p as n → ∞.

Thus we have M(p) = p for 1
2 < p ≤ 2

3 . ��

Claim 11 If 2
3 < p < 1 then M3(p) = 1.

Proof Let 2
3 < p < 1 be fixed. Clearly we have M(n, p) ≤ 1 and M(p) ≤ 1. Let us

define a non-trivial 3-wise intersecting family F3 by

F3 = {F ⊂ [n] : |F | > 2
3n}.

Then μp(F3) = ∑
i> 2

3 n

(n
i

)
piqn−i → 1 as n → ∞. Thus we have M(p) = 1 for

p > 2
3 . ��

This completes the proof of Theorem 3 assuming Theorem 4. ��

Proof of Theorem 4 Let F ⊂ 2[n] be a non-trivial 3-wise intersecting family.
First suppose that 1

3 ≤ p < 2
5 . Note that F is 2-wise 2-intersecting, and

A(n, 2, 1) = BD3(n). Thus it follows from Theorem 11 that μp(F) ≤ μp(BD3(n)).
Moreover equality holds if and only if F ∼= BD3(n) for p > 1

3 . If p = 1
3 then

μp(F) = μp(BD3(n)) if and only if F ∼= BD3(n) or A(n, 2, 0), but the latter is not
non-trivial 3-wise intersecting, and so F ∼= BD3(n) must hold.

Next suppose that 25 ≤ p ≤ 1
2 . IfF is shifted then by Theorem 6 we haveμp(F) ≤

μp(BD3(n)) with equality holding if and only if F = BD3(n). The same inequality
holds without assuming that F is shifted (see the first paragraph in Sect. 2). In this
case, by Lemma 1, we have μp(F) = μp(BD3(n)) if and only if F ∼= BD3(n). ��
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4 Proof of Theorem 7

4.1 Proof of (2) of Theorem 7

Let 1
3 ≤ p ≤ 1

2 , and let F1,F2,F3 be non-empty 3-cross intersecting families. By

Theorem 9 with r = 3 we have
∑3

i=1 μp(Fi ) ≤ max{(1 − qa) + 2pa : a ∈ [n]}. So
we need to show that f (p, a) ≥ 0, where

f (p, a) := 3p − (1 − qa) − 2pa,

for all 1
3 ≤ p ≤ 1

2 and all 1 ≤ a ≤ n.
If a = 1 then f (p, 1) = 3p − (1 − q) − 2p = 0, and we are done. So we may

assume that 2 ≤ a ≤ n, and we show that f (p, a) > 0.
If p = 1

3 then f ( 13 , a) = 1−1+ ( 23 )
a −2( 13 )

a = ( 13 )
a(2a −2) > 0. We claim that

f (p, a) is increasing in p, which yields f (p, a) ≥ f ( 13 , a) > 0 (for a ≥ 2). We have

∂ f

∂ p
(p, a) = 3 − aqa−1 − 2apa−1. (9)

Fix p and let g(a) denote the RHS of (9). We have g(2) = 1−2p > 0 for 1
3 ≤ p < 1

2 .
Next we show that g(a) is increasing in a. For this we have

g(a + 1) − g(a) = (ap − q)qa−1 + 2(aq − p)pa−1,

and we need to show that the RHS is positive. Since aq − p ≥ ap − q it suffices to
show that ap−q ≥ 0, or equivalently, a ≥ 1−p

p . Indeed a ≥ 2 ≥ 1−p
p because p ≥ 1

3 .

Thus g(a) is increasing in a, and g(a) ≥ g(2) > 0 as needed. ��

4.2 Proof of (3) of Theorem 7

Recall that, for i < j , we write [i, j] := {i, i + 1, . . . , j} = [ j]\[i − 1].
We divide Fi = {{1} � A : A ∈ Ai } ∪ Bi , where

Ai := {F\{1} : 1 ∈ F ∈ Fi } ⊂ 2[2,n],
Bi := {F : 1 /∈ F ∈ Fi } ⊂ 2[2,n].

Since Fi �= ∅ is shifted, we have Ai �= ∅. Let ai = μp(Ai : [2, n]) > 0 and
bi = μp(Bi : [2, n]) ≥ 0. Then

∑3
i=1 μp(Fi ) = ∑3

i=1(pai + qbi ). Without loss
of generality we may assume that b1 ≥ b2 ≥ b3. If b1 = 0 then Bi = ∅ for all i .
In this case 1 ∈ ⋂

F , where the intersection is taken over all F ∈ F1 ∪ F2 ∪ F3, a
contradiction. So we may assume that b1 �= 0, that is, B1 �= ∅.
Claim 12 Let {i, j, k} = [3].
(1) If {Ai ,A j ,Bk} are all non-empty, then they are 3-cross intersecting, and ai +a j +

bk ≤ 3p.
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Table 1 Case B2 = B3 = ∅ a1 a2 a3 b1

y1 1 1 1 3p

y2 1 1 1

y3 1 1 1

y4 1 1

y5 1 1

y6 1 1

y7 1 1

p p p q

(2) If {Ai ,B j ,Bk} are all non-empty, then they are 3-cross 2-intersecting, and ai +
b j + bk ≤ 1.

Proof The item (1) follows from the assumption that Fi ,F j ,Fk are 3-cross intersect-
ing, and (2) of Theorem 7.

To show (2), suppose, to the contrary, that there exist three subsets Ai ∈ Ai ,
Bj ∈ B j , Bk ∈ Bk , and x ∈ [2, n] such that {x} ⊃ Ai ∩ Bj ∩ Bk . By definition
we have Fi := {1} ∪ Ai ∈ Fi and Fk := Bk ∈ Fk . By the shiftedness we have
Fj := (Bj\{x})∪{1} ∈ F j . Then Fi∩Fj∩Fk = ∅, a contradiction. Thus {Ai ,B j ,Bk}
are 3-wise 2-intersecting, and the inequality follows from Lemma 3. ��

Now we will show that
∑3

i=1 μp(Fi ) ≤ 3p − εp, where εp = (2 − 3p)(3p − 1).

4.2.1 CaseB2 = B3 = ∅

Since {B1,A2,A3} are 3-cross intersecting, any two of them are 2-cross intersecting.
Then, by (2) of Theorem 7 and Lemma 2, we have the following.

Claim 13 (1) b1 + a2 + a3 ≤ 3p,
(2) b1 + a2 ≤ 1,
(3) b1 + a3 ≤ 1.

We solve the following linear programming problem:

maximize:
∑3

i=1 μp(Fi ) = p(a1 + a2 + a3) + qb1,
subject to: (1)–(3) in Claim 13, and 0 ≤ ai ≤ 1 for all i , 0 ≤ b1 ≤ 1.

The corresponding dual problem is (Table 1)

minimize: 3py1 + ∑7
i=2 yi ,

subject to: y4 ≥ p, y1 + y2 + y5 ≥ p, y1 + y3 + y6 ≥ p, y1 + y2 + y3 + y7 ≥ q, and
yi ≥ 0 for all i .

A feasible solution is given by y1 = 3p − 1, y2 = y3 = 1 − 2p, y4 = p,
y5 = y6 = y7 = 0, and the corresponding value of the objective function is

3p(3p − 1) + 2(1 − 2p) + p = 2 − 6p + 9p2 = 3p − εp.
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Table 2 Case B2 �= ∅,B3 = ∅ a1 a2 a3 b1 b2

y1 1 1 1 3p

y2 1 1 1 3p

y3 1 1 1 1

y4 1 1 1

y5 1 1 1

y6 1 1

y7 1 1

y8 1 1

y9 1 1

y10 1 1

p p p q q

Then it follows from Theorem 8 (weak duality) that the same bound applies to the
primal problem, and so

∑3
i=1 μp(Fi ) ≤ 3p − εp.

4.2.2 CaseB2 �= ∅,B3 = ∅

In this case {A1,B2,A3} and {B1,A2,A3} are both 3-cross intersecting, and
{B1,B2,A3} are 3-cross 2-intersecting. Thus we have the following.
Claim 14 (1) b1 + a2 + a3 ≤ 3p,
(2) a1 + b2 + a3 ≤ 3p,
(3) b1 + b2 + a3 ≤ 1,
(4) b1 + a2 ≤ 1,
(5) a1 + b2 ≤ 1.

We solve the following linear programming problem:

maximize:
∑3

i=1 μp(Fi ) = p(a1 + a2 + a3) + q(b1 + b2),
subject to: (1)–(5) in Claim 14, and 0 ≤ ai ≤ 1 for all i , 0 ≤ b j ≤ 1 for all j .

The corresponding dual problem is (Table 2)

minimize: 3p(y1 + y2) + ∑10
i=3 yi ,

subject to: y2+y5+y6 ≥ p, y1+y4+y7 ≥ p, y1+y2+y3+y8 ≥ p, y1+y3+y4+y9 ≥
q, y2 + y3 + y5 + y10 ≥ q, and yi ≥ 0 for all i .

A feasible solution is given by y1 = y6 = y7 = y8 = y9 = y10 = 0, y2 = 3p − 1,
y3 = y5 = 1 − 2p, y4 = p, and the corresponding value of the objective function is

3p(3p − 1) + 2(1 − 2p) + p = 3p − εp.

Thus, by the weak duality, we have
∑3

i=1 μp(Fi ) ≤ 3p − εp.
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Table 3 Case B2 �= ∅,B3 �= ∅ a1 a2 a3 b1 b2 b3

y1 1 1 1 3p

y2 1 1 1 3p

y3 1 1 1 3p

y4 1 1 1 1

y5 1 1 1 1

y6 1 1 1 1

y7 1 1

y8 1 1

y9 1 1

y10 1 1

y11 1 1

y12 1 1

p p p q q q

4.2.3 CaseB2 �= ∅,B3 �= ∅

Let {i, j, k} = [3]. Then families {Ai ,A j ,Bk} are 3-cross intersecting, and families
{Ai ,B j ,Bk} are 3-cross 2-intersecting. Thus we have the following.
Claim 15 (1) b1 + a2 + a3 ≤ 3p,
(2) a1 + b2 + a3 ≤ 3p,
(3) a1 + a2 + b3 ≤ 3p,
(4) a1 + b2 + b3 ≤ 1,
(5) b1 + a2 + b3 ≤ 1,
(6) b1 + b2 + a3 ≤ 1.

We solve the following linear programming problem:

maximize:
∑3

i=1 μp(Fi ) = p(a1 + a2 + a3) + q(b1 + b2 + b3),
subject to: (1)–(6) in Claim 15, and 0 ≤ ai ≤ 1 for all i , 0 ≤ b j ≤ 1 for all j .

The corresponding dual problem is (Table 3)

minimize: 3p(y1 + y2 + y3) + ∑12
i=4 yi ,

subject to: y2 + y3 + y4 + y7 ≥ p, y1 + y3 + y5 + y8 ≥ p, y1 + y2 + y6 + y9 ≥ p,
y1 + y5 + y6 + y10 ≥ q, y2 + y4 + y6 + y11 ≥ q, y3 + y4 + y5 + y12 ≥ q,
and yi ≥ 0 for all i .

A feasible solution is given by y1 = 3p − 1, y2 = y3 = y7 = y8 = y9 = y10 =
y11 = y12 = 0, y4 = p, y5 = y6 = 1 − 2p, and the corresponding value of the
objective function is

3p(3p − 1) + p + 2(1 − 2p) = 3p − εp.

Thus we have
∑3

i=1 μp(Fi ) ≤ 3p − εp.
This complete the proof of (3) of Theorem 7. ��
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Fig. 2 Poset induced by shifting and inclusion

5 Proof of Theorem 6

Let 2
5 ≤ p ≤ 1

2 , and let F ⊂ 2[n] be a non-trivial 3-wise intersecting family. Suppose
thatF is shifted, inclusion maximal, andF �⊂ BD3(n). We may also assume thatF is
size maximal (with respect to 3-wise intersection condition), that is, for every G /∈ F ,
the larger family F ∪ {G} is no longer 3-wise intersecting. Our goal is to show that

μp(F) < μp(BD3(n)) − 0.0018.

For I ⊂ [3] define FI ⊂ 2[n] and GI ⊂ 2[4,n] by

FI = {F ∈ F : F ∩ [3] = I },
GI = {F\[3] : F ∈ FI }.

Let xI = μp(GI : [4, n]). Then we have

μp(FI ) = p|I |q3−|I |xI ,

and

μp(F) =
∑

I⊂[3]
p|I |q3−|I |xI . (10)

For simplicity we often write GI or xI without braces and commas, e.g., we write G12
to mean G{1,2}. Let Ī denote [3]\I .
Claim 16 If I , J ⊂ [3] satisfy I � J then GI ⊂ GJ and xI ≤ xJ .

Proof Suppose that G ∈ GI . Then I ∪G ∈ FI . SinceF is shifted, inclusion maximal,
and I � J , we have that J ∪G ∈ FJ , and soG ∈ GJ . Thus GI ⊂ GJ , and so xI ≤ xJ .

��
Applying Claim 16 to the diagram in Fig. 2, we get Claim 17.

Claim 17 We have x∅ ≤ x3 ≤ x2 ≤ x1 ≤ x13 ≤ x12 ≤ x123, and x2 ≤ x23 ≤ x13.

Let I1, I2, I3 ⊂ [3]. Define a 3 × 3 matrix M = M(I1, I2, I3) = (mi, j ) by

mi, j =
{
1 if j ∈ Ii ,

0 if j /∈ Ii .
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Then I1 ∩ I2 ∩ I3 = ∅ if and only if every column of M contains (at least one) 0. In
this case we say that M is acceptable, and let τ := 7 − s, where s is the total sum of
mi, j .

Claim 18 Let M(I1, I2, I3) be acceptable. If {GI1 ,GI2 ,GI3} are all non-empty, then
they are 3-cross τ -intersecting, and any two of them are 2-cross τ -intersecting.

Proof Let us start with two concrete examples.
First example is the case I1 = I2 = {1}, I3 = {2, 3}, and so s = 1 + 1 + 2 = 4,

τ = 7 − 4 = 3. We show that {G1,G1,G23} are 3-cross 3-intersecting. Suppose
the contrary. Then there are G1,G ′

1 ∈ G1, G23 ∈ G23 and x, y ∈ [4, n] such that
G1 ∩G ′

1 ∩G23 ⊂ {x, y}. Let F12 = {1, 2} ∪ (G1\{x}), F13 = {1, 3} ∪ (G ′
1\{y}), and

F23 = {2, 3} ∪G23 ∈ F23. By the shiftedness we have F12 ∈ F12 and F13 ∈ F13. But
F12 ∩ F13 ∩ F23 = ∅, a contradiction.

Next example is the case I1 = I2 = I3 = ∅, and so τ = 7. We show that
{G∅,G∅,G∅} are 3-cross 7-intersecting, that is, G∅ is 3-wise 7-intersecting. Suppose
the contrary. Then there are F, F ′, F ′′ ∈ F∅ and x1, . . . , x6 ∈ [4, n] such that F∩F ′∩
F ′′ ⊂ {x1, . . . , x6}. Let F12 := (F\{x1, x2}) ∪ {1, 2} ∈ F12, F ′

13 := (F ′\{x3, x4}) ∪
{1, 3} ∈ F13, and F ′′

23 := (F ′\{x5, x6})∪{2, 3} ∈ F23. Thenwe have F12∩F ′
13∩F ′′

23 =
∅, a contradiction.

The following proof for the general case is given by one of the referees. We assume
by contradiction that there are sets Gi ∈ GI such that |G1 ∩G2 ∩G| ≤ τ −1 = 6− s.
The matrix M has s “taken” places out of 9. “Reserve” one empty spot in each column
(these are available since the matrix is acceptable). We are left with 6− s empty spots,
say ri in row i . Shift ri elements from Gi to the empty spots on row i to construct
a new set Fi , no longer belonging to GIi . By construction, F1, F2, F3 have empty
intersection. ��

5.1 CaseG1 = ∅

In this case, by Claim 17, we have G∅ = G3 = G2 = G1 = ∅.
First suppose that G23 �= ∅. If ⋂

G �= ∅, where the intersection is taken over
all G ∈ G12 ∪ G13 ∪ G23, then since the family is shifted, 4 ∈ ⋂

G. Since F ⊂
F23 ∪ F13 ∪ F12 ∪ F123, we have |F ∩ [4]| ≥ 3 for every F ∈ F . This means
that F ⊂ BD3(n), which contradicts our assumption. Therefore we have

⋂
G = ∅.

Moreover, the families G12,G13,G23 are 3-cross intersecting by Claim 18. Thus we
can apply (3) of Theorem 7 with min{εp : 2

5 ≤ p ≤ 1
2 } = 4

25 to get

x12 + x13 + x23 ≤ 3p − εp ≤ 3p − 0.16.

Next suppose that G23 = ∅. By Lemma 2 we have x12 + x13 + x23 = x12 + x13 ≤ 1 ≤
3p − 0.2. Thus in both cases we have x12 + x13 + x23 ≤ 3p − 0.16. Then it follows
from (10) that
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μp(F) = p2q(x12 + x13 + x23) + p3x123

≤ p2q(3p − 0.16) + p3

= 4p3q + p4 − 0.16p2q.

Noting that μp(BD3(n)) = 4p3q + p4 and p2q ≥ 12
125 = 0.96 for 2

5 ≤ p ≤ 1
2 , we

have

μp(F) ≤ 4p3q + p4 − 0.16 · 0.96 < μp(BD3(n)) − 0.01,

as needed.

5.2 CaseG1 �= ∅ andG2 = ∅

IfG23 = ∅ then [2, n] /∈ F . Thismeans that there are F, F ′ ∈ F such that F∩F ′ = {1}.
(Otherwise all F, F ′ ∈ F intersect on [2, n] and we could add [2, n] to F , which
contradicts the assumption that F is size maximal.) In this case all subsets in F must
contain 1, which contradicts the assumption that F is non-trivial. So we may assume
that G23 �= ∅. Then bothF1 andF23 are non-empty, and so the familiesF13,F12,F123
are also non-empty by Claim 17.

By Claim 18 we have the following.

Claim 19 (1) {G1,G1,G23} are 3-cross 3-intersecting, and so G1 is 2-wise 3-
intersecting.

(2) {G12,G13,G23} are 3-cross intersecting, and so {G12,G13} are 2-cross intersecting.
(3) {G1,G23,G123} are 3-cross intersecting, and so both {G1,G123} and {G23,G123}

are 2-cross intersecting.
(4) {G1,G12,G23} are 3-cross 2-intersecting.
(5) {G1,G23,G23} are 3-cross 2-intersecting, and so G23 is 2-wise 2-intersecting.
Claim 20 (1) min{x1, x23} ≤ α̃3 (see Claim 5 for the definition of α̃).
(2) x12 + cx13 ≤ p(c + 1), where c = 1

2p (1 + √
1 − 4p2).

(3) x1 + x123 ≤ 1.
(4) x23 + x123 ≤ 1.
(5) x1 + x12 + x23 ≤ 1.
(6) x23 ≤ ã2 (see Claim 7 for the definition of ãt ).
(7) x1 ≤ ã3.

Proof Item (1): By Lemma 4 with (1) of Claim 19, we have x21 x23 ≤ α9. Then, using
α ≤ α̃ from Claim 5, we get (min{x1, x23})3 ≤ x21 x23 ≤ α9 ≤ α̃9.

Item (2): By (i) of Lemma 2with (2) of Claim 19, we have x13+x12 ≤ 1.Moreover,
by (ii) of Lemma 2 with x13 ≤ x12 from Claim 17, we have x213 ≤ x13x12 ≤ p2

and x13 ≤ p. By solving x13x12 = p2 and x13 + x12 = 1 with x13 ≤ x12 we
get (x13, x12) = ( 12 (1 − √

1 − 4p2), 1
2 (1 + √

1 − 4p2)) = (1 − cp, cp). Also, by
solving x13x12 = p2 and x13 = x12 we get (x13, x12) = (p, p). Thus (x13, x12) exists
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Fig. 3 Item (2) of Claim 20:
(x13, x12) is included in the gray
area

x12

1

x13
1O

p

p

1− cp

cp

x13x12 = p2

x12 = c(p− x13) + p

Table 4 Subcase x1 ≤ x23 x1 x23 x13 x23 x123

y0 1 −1 0

y1 1 α̃3

y2 c 1 p(c + 1)

y3 1 1 1

y4 1 1 1

y5 1 1 1 1

y6 1 ã2

pq2 p2q p2q p2q p3

only under the line connecting these two points, that is, x12 ≤ c(p − x13) + p (See
Fig. 3). ��

Items (3) and (4): These follow from (i) of Lemma 2 with (3) of Claim 19.
Items (5): This follows from Lemma 3 with (4) of Claim 19.
Items (6): This follows from Claim 7 with (5) of Claim 19.
Items (7): This follows from Claim 7 with (1) of Claim 19.
Recall from (10) that μp(F) = pq2x1 + p2q(x12 + x13 + x23) + p3x123.

5.2.1 Subcase x1 ≤ x23.

We solve the following linear programming problem:

maximize: pq2x1 + p2q(x12 + x13 + x23) + p3x123,
subject to: x1 − x23 ≤ 0, (1)–(6) in Claim 20, and xI ≥ 0 for all I .

The corresponding dual problem is (Table 4)

minimize: α̃3y1 + p(c + 1)y2 + y3 + y4 + y5 + ã2y6,
subject to: y0 + y1 + y3 + y5 ≥ pq2, −y0 + y4 + y5 + y6 ≥ p2q, cy2 ≥ p2q,

y2 + y5 ≥ p2q, y3 + y4 ≥ p3, and yi ≥ 0 for all i .

A feasible solution is given by y0 = y6 = 0, y1 = pq2 − p2q(1 − 2
c ) − p3,

y2 = y4 = p2q
c , y3 = p3 − p2q

c , y5 = p2q(1 − 1
c ), and the corresponding value of
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the objective function is

p
(
p + p2 − p3 + α̃3(1 − 3p + p2)

)
− 1

c
p2q(1 − 2α̃3 − p). (11)

By the Taylor expansion of 1
c at p = 2

5 it follows that 1
c > d(p), where d(p) =

1375p2

216 − 325p
108 + 37

54 for 2
5 ≤ p ≤ 1

2 . Since 1− 2α̃3 − p > 0 in this interval, the value
(11) satisfies

< p
(
p + p2 − p3 + α̃3(1 − 3p + p2)

)
− d(p)p2q(1 − 2α̃3 − p) =: f (p)

≈ −0.00633167p + 0.490037p2 + 3.71975p3 − 8.76595p4

+ 21.3084p5 − 61.7755p6 + 95.9036p7 − 52.7438p8.

Let g(p) := (4p3q+ p4−0.00194)− f (p), and let g(i)(p) denote the i-th derivative.
Let 25 ≤ p ≤ 1

2 . We have g(6)(p) ≈ 1063314.937p2−483354.3468p+44478.39041
and g(6)(p) > 0. Thus g(4)(p) is convex. Since g(4)( 25 ) < −213 < 0 and g(4)( 12 ) <

−112 < 0, we have g(4)(p) < 0. Thus g(3)(p) is decreasing in p. Since g(3)( 25 ) <

−7 < 0 we have g(3)(p) < 0. Thus g′(p) is concave. Since g′( 25 ) > 0.23 > 0 and
g′( 12 ) > 0.34 > 0, we have g′(p) > 0 and g(p) is increasing in p. Finally we have
g( 25 ) > 3 × 10−6 > 0, and so g(p) > 0. This means that the value (11) is less than
4p3q + p4 − 0.00194.

Then by the weak duality theorem we have μp(F) < 4p3q + p4 − 0.00194.

5.2.2 Subcase x23 ≤ x1.

We solve the following linear programming problem:

maximize: pq2x1 + p2q(x12 + x13 + x23) + p3x123,
subject to: x23 − x1 ≤ 0, (1)–(5) and (7) in Claim 20, and xI ≥ 0 for all I .

The corresponding dual problem is (Table 5)

minimize: α̃3y1 + p(c + 1)y2 + y3 + y4 + y5 + ã3y7,
subject to: −y0 + y3 + y5 + y7 ≥ pq2, y0 + y1 + y4 + y5 ≥ p2q, cy2 ≥ p2q,

y2 + y5 ≥ p2q, y3 + y4 ≥ p3, and yi ≥ 0 for all i .

A feasible solution is given by y0 = y4 = 0, y1 = y2 = p2q(1 − 1
c ), y3 = p3,

y5 = p2q(1 − 1
c ), y7 = pq2 − p2q(1 − 1

c ) − p3. Noting that c + 1
c = p, the

corresponding value of the objective function is

p3
(
−α̃3 + ã3 − 1

)
+ p2

(
α̃3 − 3ã3 + 2

)
+ ã3 p − 1

c
p2q

(
α̃3 − ã3 + 2p + 1

)
.
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Table 5 Subcase x23 ≤ x1 x1 x23 x13 x23 x123

y0 −1 1 0

y1 1 α̃3

y2 c 1 p(c + 1)

y3 1 1 1

y4 1 1 1

y5 1 1 1 1

y7 1 ã3

pq2 p2q p2q p2q p3

Then, using α̃3 − ã3 + 2p + 1 > 0 and 1
c > d(p) (see the previous subsection), the

above value satisfies

< −1.50324p + 8.79901p2 − 3.86493p3 − 26.8212p4

+ 30.6062p5 + 12.8608p6 − 47.9518p7 + 26.3719p8 =: f (p).

Let g(p) := (4p3q + p4 − 0.00182) − f (p). Let J1 = {p ∈ R : 2
5 ≤ p ≤ 9

20 },
J2 = {p ∈ R : 9

20 ≤ p ≤ 1
2 }, and J = J1 ∪ J2. We need to show that g(p) > 0 for

p ∈ J .
First we show that g(4)(p) > 0 for p ∈ J1. We have g(7)(p) < 0 for p ∈ J . Thus

g(5)(p) is concave. Since g(5)( 25 ) > 0 and g(5)( 9
20 ) > 0 we have g(5)(p) > 0 for

p ∈ J1. Thus g4(p) is increasing in p ∈ J1. Since g(4)( 9
20 ) < 0, we have g(4)(p) < 0

for p ∈ J1.
Next we show that g(4)(p) > 0 for p ∈ J2. Since g(7)(p) < 0, g(6)(p) is decreasing

in p. Since g(6)( 9
20 ) < 0, g(4)(p) is concave for p ∈ J2. Leth(p) = 481.064p−381.36

be the tangent to g(4)(p) at p = 9
20 . Then we have g

(4)(p) ≤ h(p) ≤ h( 12 ) for p ∈ J2.
Since h( 12 ) < 0, we have g(4)(p) < 0 for p ∈ J2.

Let p ∈ J . We have shown that g(4)(p) > 0. Then g(2)(p) is concave. Since
g(2)( 25 ) > 0 and g(2)( 12 ) > 0, we have g(2)(p) > 0. Thus g′(p) is increasing in p.
Since g′( 25 ) > 0, we have g′(p) > 0 and g(p) is increasing in p. Since g( 25 ) > 0, we
have g(p) > 0 as needed.

Thus it follows from the weak duality theorem that μp(F) < 4p3q + p4 −0.0018.

5.3 CaseG2 �= ∅,G3 = ∅

Using Claim 18 we have the following.

Claim 21 (1) {G1,G1,G2}are3-cross4-intersecting, and soG1 is2-wise4-intersecting.
(2) {G2,G13,G13} are 3-cross 2-intersecting, and so G13 is 2-wise 2-intersecting.
(3) {G2,G13,G123}are3-cross intersecting, and so {G13,G123}are2-cross intersecting.
(4) {G2,G12,G13} are 3-cross 2-intersecting.
(5) {G1,G2,G123} are 3-cross 2-intersecting.
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Table 6 Case G2 �= ∅ x2 x1 x23 x13 x23 x123

y1 1 ã4
y2 1 ã2

y3 1 α̃4

y4 1 1 1

y5 1 1 1 1

y6 1 1 1 1

y7 1 1 1 1

pq2 pq2 p2q p2q p2q p3

Claim 22 (1) x1 ≤ ã4.

(2) x13 ≤ ã2.

(3) x2 ≤ α̃4.

(4) x13 + x123 ≤ 1.

(5) x1 + x12 + x23 ≤ 1.

(6) x2 + x12 + x13 ≤ 1.

(7) x1 + x2 + x123 ≤ 1.

Proof Item (3): By Lemma 4 with (1) of Claim 21, we have x21 x2 ≤ α12. Then, using
x2 ≤ x1 from Claim 17 and Claim 5, we get x32 ≤ x21 x2 ≤ α12 ≤ α̃12.

Item (5) is from Claim 20. Indeed all inequalities in Claim 20 are still valid in this
case.

The other items follow from Claim 21, Claim 7, Lemma 2, and Lemma 3. ��
We solve the following linear programming problem:

maximize: pq2(x1 + x2) + p2q(x12 + x13 + x23) + p3x123,
subject to: (1)–(7) in Claim 22, and xI ≥ 0 for all I .

The corresponding dual problem is (Table 6)

minimize: ã4y1 + ã2y2 + α̃4y3 + y4 + y5 + y6 + y7,
subject to: y3 + y6 + y7 ≥ pq2, y1 + y5 + y7 ≥ pq2, y5 ≥ p2q, y2 + y4 + y6 ≥ p2q,

y5 + y6 ≥ p2q, y4 + y7 ≥ p3, and yi ≥ 0 for all i .

A feasible solution is given by y1 = pq(1 − 2p), y2 = p2(1 − 2p), y3 = pq2,
y4 = p3, y5 = p2q, y6 = y7 = 0. Then the corresponding value of the objective
function is

ã4 pq(1 − 2p) + ã2 p
2(1 − 2p) + α̃4 pq2 + p2

≈ −1.70723p + 9.39501p2 − 10.639p3 − 1.74811p4

+ 13.3146p5 − 16.3729p6 + 6.6536p7

< 4p3q + p4 − 0.00436,
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and so μp(F) < 4p3q + p4 − 0.004.

5.4 CaseG3 �= ∅,G∅ = ∅

Using Claim 18 we have the following.

Claim 23 (1) {G3,G12,G12} are 3-cross 2-intersecting, and so G12 is 2-wise 2-
intersecting.

(2) {G3,G12,G123}are3-cross intersecting, and so {G12,G123}are2-cross intersecting.
Claim 24 (1) x1 ≤ ã4.
(2) x12 ≤ ã2.
(3) x2 ≤ α̃4.
(4) x12 + x123 ≤ 1.
(5) x1 + x12 + x23 ≤ 1.
(6) x2 + x12 + x13 ≤ 1.
(7) x1 + x2 + x123 ≤ 1.
(8) x3 − x2 ≤ 0.
(9) x23 − x13 ≤ 0.
(10) x13 − x12 ≤ 0.

Proof Items (1), (3), (6), and (7) are from Claim 21. Items (2) and (4) follow from
Claim 23, Claim 7, and Lemma 2. Item (5) is from Claim 19. The other items are from
Claim 17. ��

We solve the following linear programming problem:

maximize: pq2(x1 + x2 + x3) + p2q(x12 + x13 + x23) + p3x123,
subject to: (1)–(10) in Claim 24, and xI ≥ 0 for all I .

The corresponding dual problem is (Table 7)

minimize: ã4y1 + ã2y2 + α̃4y3 + y4 + y5 + y6 + y7,
subject to: y8 ≥ pq2, y3 + y6 + y7 − y8 ≥ pq2, y1 + y5 + y7 ≥ pq2, y5 + y9 ≥ p2q,

y6 − y9 + y10 ≥ p2q, y2 + y4 + y5 + y6 − y10 ≥ p2q, y4 + y7 ≥ p3, and
yi ≥ 0 for all i .

We distinguish the following two subcases.

5.4.1 Subcase 2
5 ≤ p ≤ 0.453264

A feasible solution is given by y1 = pq2, y2 = p2(3 − 4p), y3 = 2pq2, y4 = p3,
y5 = y6 = y7 = 0, y8 = pq2, y9 = p2q, y10 = 2p2q, and the corresponding value
of the objective function is

p
(
ã4q

2 + ã2(3 − 4p)p + 2α̃4q2 + p2
)

≈ −1.70606p + 4.43558p2 + 5.72241p3 − 16.7467p4

+ 26.6293p5 − 32.7457p6 + 13.3072p7

< 4p3q + p4 − 0.00404377.
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Table 7 Case G3 �= ∅ x3 x2 x1 x23 x13 x23 x123

y1 1 ã4
y2 1 ã2

y3 1 α̃4

y4 1 1 1

y5 1 1 1 1

y6 1 1 1 1

y7 1 1 1 1

y8 1 −1 0

y9 1 −1 0

y10 1 −1 0

pq2 pq2 pq2 p2q p2q p2q p3

Thus μp(F) < 4p3q + p4 − 0.004.

5.4.2 Subcase 0.453264 ≤ p ≤ 1
2

A feasible solution is given by y1 = y6 = y9 = 0, y2 = p(1 − 2p), y3 = pq,
y4 = p(3p − p2 − 1), y5 = y10 = p2q, y7 = pq(1 − 2p), y8 = pq2, and the
corresponding value of the objective function is

p
(
ã2(1 − 2p) + α̃4q + p

)

≈ −1.10283p + 6.37415p2−5.84563p3−3.59536p4+9.71927p5 − 6.6536p6

< 4p3q + p4 − 0.00404377.

Thus μp(F) < 4p3q + p4 − 0.004.

5.5 CaseG∅ �= ∅

Using Claim 18 we have the following.

Claim 25 (1) {G∅,G∅,G∅}are3-cross7-intersecting, that is,G∅ is3-wise7-intersecting.
(2) {G1,G1,G∅} are 3-cross 5-intersecting, and so G1 is 2-wise 5-intersecting.
(3) {G∅,G123,G123} are 3-cross intersecting, and so {G123,G123} are 2-cross intersect-

ing.

Claim 26 (1) x∅ ≤ α̃7.
(2) x2 ≤ α̃4.
(3) x1 ≤ ã5.
(4) x123 ≤ p.
(5) x1 + x12 + x23 ≤ 1.
(6) x3 − x2 ≤ 0.
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Table 8 Case G∅ �= ∅ x∅ x3 x2 x1 x23 x13 x23 x123

y1 1 α̃7

y2 1 α̃4

y3 1 α̃3

y4 1 p

y5 1 1 1 1

y6 1 −1 0

y7 1 −1 0

y8 1 −1 0

y9 1 −1 0

q3 pq2 pq2 pq2 p2q p2q p2q p3

(7) x23 − x13 ≤ 0.
(8) x13 − x12 ≤ 0.
(9) x12 − x123 ≤ 0.

Proof Items (1), (3), and (4) follow from Claim 25, Lemma 4, Claim 5, Claim 7, and
Lemma 2. Items (2) and (5) are from Claim 22 and Claim 20, respectively. The other
items are from Claim 17. ��

We solve the following linear programming problem:

maximize: q3x∅ + pq2(x1 + x2 + x3) + p2q(x12 + x13 + x23) + p3x123,
subject to: (1)–(9) in Claim 26, and xI ≥ 0 for all I .

The corresponding dual problem is (Table 8)

minimize: α̃7y1 + α̃4y2 + ã5y3 + py4 + y5,
subject to: y1 ≥ q3, y6 ≥ pq2, y2 − y6 ≥ pq2, y3 + y5 ≥ pq2, y5 + y7 ≥ p2q,

−y7 + y8 ≥ p2q, y5 − y8 + y9 ≥ p2q, y4 − y9 ≥ p3, and yi ≥ 0 for all i .

We distinguish the following two subcases.

5.5.1 Subcase 2
5 ≤ p ≤ 0.424803

A feasible solution is given by y1 = q3, y2 = 2pq2, y3 = y6 = pq2, y4 = p2(3−2p),
y5 = 0, y7 = p2q, y8 = 2p2q, y9 = 3p2q, and the corresponding value of the
objective function is

α̃7q3 + 2α̃4 pq2 + ã5 pq
2 + p3(3 − 2p)

≈ −27.5644p10+104.919p9−157.051p8+132.065p7−82.6061p6+39.2544p5

− 7.70344p4 − 6.68845p3 + 8.19629p2 − 1.82104p − 7.41682 · 10−6

< 4p3q + p4 − 0.004322.

Thus μp(F) < 4p3q + p4 − 0.004.
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5.5.2 Subcase 0.424803 ≤ p ≤ 1
2

A feasible solution is given by y1 = q3, y2 = 2pq2, y3 = pq(1 − 2p), y4 = p2,
y5 = y8 = y9 = p2q, y6 = pq2, y7 = 0, and the corresponding value of the objective
function is

α̃7q3 + 2α̃4 pq2 + ã5 pq(1 − 2p) + p2

≈ −27.5644p10 + 104.919p9 − 157.051p8 + 132.065p7 − 82.6061p6 + 39.2544p5

− 1.05572p4 − 16.16p3 + 11.0202p2 − 1.82104p − 7.41682 · 10−6

< 4p3q + p4 − 0.004322.

Thus μp(F) < 4p3q + p4 − 0.004.
This completes the proof of Theorem 6. ��

6 Concluding remarks

In this section we discuss possible extensions and related problems.

6.1 Non-trivial r-wise intersecting families for r ≥ 4

Wehave determinedM2(p) andM3(p) for all p. Let us considerMr (p) for the general
case r ≥ 4. Some of the facts we used for the cases r = 2, 3 can be easily extended
for the other cases as follows.

Proposition 1 Let r ≥ 2.

(1) For s = 0, 1, . . . , r − 1 we have Mr (p) ≥ ps for p > r−s−1
r−s .

(2) Mr (p) = pr−1 for 0 < p ≤ 1
r .

(3) Mr (p) = p for r−2
r−1 < p ≤ r−1

r .

(4) Mr (p) = 1 for r−1
r < p < 1.

Proof Item (1): We construct a non-trivial r -wise intersecting family

Fr (n, s) := {{[s] ∪ G : G ⊂ [s + 1, n], |G| ≥ r−s−1
r−s n}} ∪ {[n]\{i} : 1 ≤ i ≤ s}.

Then μp(Fr (n, s)) → ps as n → ∞, cf. [11].
Item (2): By item (1) with s = r − 1 we have Mr (p) ≥ pr−1. On the other

hand, a non-trivial r -wise intersecting family is 2-wise (r − 1)-intersecting, and by
Theorem 11 the p-measure of the family is at most pr−1 if p ≤ 1

r .
Item (3): By item (1) with s = 1 we have Mr (p) ≥ p. On the other hand, it is

known from [8, 10, 22] that r -wise intersecting family has p-measure at most p if
p ≤ r−1

r .
Item (4): By item (1) with s = 0 we have Mr (p) ≥ 1, and so Mr (p) = 1 by

definition of Mr (p). ��
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Even for the case r = 4 the exact value of M4(p) is not known for 1
4 < p ≤ 2

3 . In
this case Proposition 1 and Theorem 1 give us the following. For simplicity here we
write bdr (p) = limn→∞ μp(BDr (n)) and fr (p, s) = limn→∞ μp(Fr (n, s)).

Fact 1 For non-trivial 4-wise intersecting families we have the following:

M4(p)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= f4(p, 3) = p3 if 0 < p ≤ 1
4 ,

≥ bd4(p) = 5p4q + p5 if 1
4 ≤ p < 1

2 ,

= bd4(p) = 5p4q + p5 if p = 1
2 ,

≥ f4(p, 2) = p2 if 1
2 < p ≤ 1+√

17
8 ,

≥ bd4(p) = 5p4q + p5 if 1+√
17

8 < p ≤ 2
3 ,

= f4(p, 1) = p if 2
3 < p ≤ 3

4 ,

= 1 if 3
4 < p < 1.

Conjecture 2 For r ≥ 2 it holds that Mr (p) = bdr (p) for 1
r ≤ p ≤ 1

2 .

It is known that Mr (p) = bdr (p) if r ≥ 13 and 1
2 ≤ p ≤ 1

2 + εr for some εr > 0,

see [11]. Note also that M5(p) ≥ f5(p, 3) > bd5(p) for 1
2 < p < 1+√

21
10 .

Problem 1 Let 0 < p ≤ r−1
r , and let F ⊂ 2[n] be a non-trivial r-wise intersecting

family. Is it true that

Mr (p) ≤ max{bdr (p), fr (p, 1), . . . , fr (p, r − 1)} ?

6.2 Uniform families

One can consider non-trivial r -wise intersecting k-uniform families, that is, families
in

([n]
k

) := {F ⊂ [n] : |F | = k}, and ask the maximum size. Let us construct some
candidate families to address this problem. For 1 ≤ s ≤ r − 1 and r − s + 1 ≤ y ≤
k − s + 1, let j0 := � (r−s−1)y+1

r−s �. Note that j0 < y and j0 is the minimum integer j
satisfying (r − s) j ≥ (r − s − 1)y + 1. Let Fr (n, k, s, y) := A ∪ B, where

A := {A ∈ ([n]
k

) : [s] ⊂ A, |A ∩ [s + 1, s + y]| ≥ j0},
B := {B ∈ ([n]

k

) : |B ∩ [s]| = s − 1, [s + 1, s + y] ⊂ B}.

Then the family {A\[s] : A ∈ A} is (r − s)-wise intersecting due to the choice of
j0 and y. Thus Fr (n, k, s, y) is a k-uniform non-trivial r -wise intersecting family. In
particular,

Fr (n, k, 1, r) = BDr (n) ∩ ([n]
k

)
( j0 = r − 1),

andFr (n, k, r−1, k−r+2) ( j0 = 1) is the so-called Hilton–Milner family. Note that
different parameters may give the same family, e.g., Fr (n, k, 1, r) = Fr (n, k, s, r −
s + 1) for all 1 ≤ s ≤ r − 1.
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Conjecture 3 (O’Neill and Versträete [17]) Let k > r ≥ 2 and n ≥ kr/(r − 1). Then
the unique extremal non-trivial r-wise intersecting families in

([n]
k

)
are Fr (n, k, 1, r)

and Fr (n, k, r − 1, k − r + 2) (up to isomorphism).

O’Neill and Versträete proved the conjecture if n ≥ r + e(k22k)2
k
(k − r). This

bound can be reduced to n > (1 + r
2 )(k − r + 2) using the Ahlswede–Khachatrian

theorem for non-trivial 2-wise t-intersecting families in [3] with the fact that an r -wise
intersecting family is 2-wise (r − 1)-intersecting, see [4] for more details. The case
r = 2 in the conjecture is known to be true as the Hilton–Milner theorem [14]. The
case r = 3 is studied in [23], and a k-uniform version of Theorem 3 is obtained,
from which it follows that the conjecture fails if n and k are sufficiently large and
roughly 1

2 < k
n ≤ 2

3 . In this case F3(n, k, 1, k − 1) or F3(n, k, 1, k) has size larger
than F3(n, k, 1, 3) and F3(n, k, 2, k − 1) (see Theorem 4 in [23]). Balogh and Linz
[4] verified that F3(11, 7, 1, 7) is indeed a counterexample to the conjecture. They
constructed the families Fr (n, k, 1, (r − 1)i + 1) (i ≤ � k−1

r−1 �), and suggested that
the largest family of them could be a counterexample if n ≈ kr/(r − 1). Here we
show that Conjecture 3 fails if r ≥ 3, and n and k are sufficiently large and k/n is
roughly in ( r−2

r−1 ,
r−1
r ). More precisely we prove the following. Let Mr (n, k) denote

the maximum size of a non-trivial r -wise intersecting family in
([n]
k

)
.

Theorem 12 Let r ≥ 3. For every ε > 0 and every δ > 0, there exists n0 ∈ N such
that for all integers n and k with n > n0 and

r−2
r−1 + ε < k

n < r−1
r − ε, we have

(1 − δ)

(
n − 1

k − 1

)
≤ Mr (n, k) <

(
n − 1

k − 1

)
.

Before proving this result, let us check that it gives counterexamples to the con-
jecture. To this end, suppose that k

n = p, and n and k are sufficiently large. Then we
have

|Fr (n, k, r , 1)|=(r + 1)

(
n − r − 1

k − r

)
+

(
n − r − 1

k − r − 1

)
≈

(
(r + 1)pr−1q + pr

) (
n

k

)
,

|Fr (n, k, r − 1, k − r + 2)| =
(
n − r + 1

k − r + 1

)
−

(
n − k − 1

k − r + 1

)
+ r − 1 ≈ pr−1

(
n

k

)
.

If p > 1
r then (r + 1)pr−1q + pr > pr−1. Indeed if k > r and n ≤ r(k − r + 2),

then |Fr (n, k, r , 1)| > |Fr (n, k, r − 1, k − r + 2)|. If moreover p = k
n ≤ r−1

r , then

lim
n,k→∞ |Fr (n, k, r , 1)|/

(
n − 1

k − 1

)
= (r + 1)prq + pr ≤ 8

9
,

where equality holds if and only if r = 3 and p = 2
3 . This implies that under the

assumptions in Theorem 12 we have max{|Fr (n, k, 1, r)|, |Fr (n, k, r − 1, k − r +
2)|} < (1 − δ)

(n−1
k−1

)
for 0 < δ < 1

9 .

Proof of Theorem 12 The upper bound Mr (n, k) <
(n−1
k−1

)
was proved by Frankl in [9].
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We prove the lower bound. Let r be fixed, and let ε > 0 and δ > 0 be given. Let
r−2
r−1 < p < r−1

r , and k = pn. Let c > 0 be a constant depending on r only (specified
later), and let

Jn,p = { j ∈ N : | j − p2n| ≤ c
√
n}.

For j ∈ Jn,p let

θ j (n, p) =
(pn

j

)(n−pn
pn− j

)
( n
pn

) =
(k
j

)(n−k
k− j

)
(n
k

) .

Let erf(z) denote the error function, that is,

erf(z) = 2√
π

∫ z

0
exp(−x2) dx .

Then, by Lemma 5 of [23], we have

lim
n→∞

∑

j∈Jn,p

θ j (n, p) = erf

(
3c√
2p

)
.

The RHS is a function decreasing in p (for fixed c), and we have

min
p∈[ r−2

r−1 , r−1
r ]

erf

(
3c√
2p

)
= erf

(
3rc√

2(r − 1)

)
.

Then the RHS is a function increasing in c and approaching 1. Thus we can choose

c > 0 so that erf
(

3rc√
2(r−1)

)
> 1 − δ

3 , and we fix c.

We will show that |Fr (n, k, 1, k)| > (1 − δ)
(n−1
k−1

)
. Let j0 = � (r−2)k+1

r−1 �. Choose
n1 so that if n > n1 then

∑

j∈Jn,p

θ j (n, p) > 1 − δ

2
(12)

for all p with r−2
r−1 ≤ p ≤ r−1

r . Next choose n2 so that if r−2
r−1 + ε < p < r−1

r − ε,
n > n2, and k = pn, then j0 < pk − c

√
n and pk + c

√
n < k − 1. Then we have

Jn,p ⊂ [ j0, k − 1]. Finally choose n3 so that if n > n3 then p − c
q
√
n

> (1 − δ
2 )p,

and let n0 := max{n1, n2, n3}.
We have

|Fr (n, k, 1, k)| ≥
k−1∑

j= j0

(
k

j

)(
n − k − 1

k − j − 1

)
>

∑

j∈Jn,p

(
k

j

)(
n − k − 1

k − j − 1

)
.

The summands in the RHS is
(k
j

)(n−k−1
k− j−1

) = k− j
n−k

(k
j

)(n−k
k− j

)
. For j ∈ Jn,p we have

j < p2n + c
√
n and
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k − j

n − k
= p − j

n

1 − p
>

1

q

(
p − p2 − c√

n

)
= p − c

q
√
n

>

(
1 − δ

2

)
p,

where we used n > n3 in the last inequality. We then have

(
k

j

)(
n − k − 1

k − j − 1

)
>

(
1 − δ

2

)
p

(
k

j

)(
n − k

k − j

)
.

The RHS can be rewritten as
(
1 − δ

2

) (n−1
k−1

)
θ j (n, p) because

(k
j

)(n−k
k− j

) = θ j (n, p)
(n
k

)

and p
(n
k

) = (n−1
k−1

)
. Finally we have

Mr (n, k) ≥ |Fr (n, k, 1, k)|
>

∑

j∈Jn,p

(
k

j

)(
n − k − 1

k − j − 1

)

>

(
1 − δ

2

) (
n − 1

k − 1

) ∑

j∈Jn,p

θ j (n, p)

>

(
1 − δ

2

)2 (
n − 1

k − 1

)
(by (12))

> (1 − δ)

(
n − 1

k − 1

)
,

and this is the lower bound we needed. ��

Fact 1 suggests that the conjecture could be false even if k
n < r−2

r−1 . For example
we have |F4(41, 26, 2, 25)| > |F4(41, 26, 1, 4)| > |F4(41, 26, 3, 24)|. Noting that
1+√

17
8 ≈ 0.64 we can expect F4(n, k, 2, k − 1) is larger than F4(n, k, 1, 4) if 1

2 <
k
n < 0.64 and n, k sufficiently large. Indeed we have

|F4(1000, 514, 2, 513)|/|F4(1000, 514, 1, 4)| ≈ 1.03254,

|F4(1000, 630, 2, 629)|/|F4(1000, 630, 1, 4)| ≈ 1.0165,

|F4(1000, 650, 2, 649)|/|F4(1000, 650, 1, 4)| ≈ 0.98655.

Problem 2 Let k > r ≥ 2 and n ≥ kr/(r − 1), and let F ⊂ ([n]
k

)
be a non-trivial

r-wise intersecting family. Is it true that

|F | ≤ max{|Fr (n, k, s, y)| : 1 ≤ s ≤ r − 1, r − s + 1 ≤ y ≤ k − s + 1} ?
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Intersection Problem of Erdős and Sós. arXiv:1604.06135
7. Filmus, Y.: More complete intersection theorems. Discrete Math. 342, 128–142 (2019)
8. Filmus, Y., Golubev, K., Lifshitz, N.: High dimensional Hoffman bound and applications in extremal

combinatorics. Algebr. Comb. 4(6), 1005–1026 (2021)
9. Frankl, P.: The Shifting Technique in Extremal Set Theory. Surveys in Combinatorics (New Cross),

London Mathematical Society Lecture Note Series 123, pp. 81–110 (1987)
10. Frankl, P., Tokushige,N.:Weightedmultiply intersecting families. Studia Sci.Math.Hung. 40, 287–291

(2003)
11. Frankl, P., Tokushige,N.:Weighted non-trivialmultiply intersecting families. Combinatorica 26, 37–46

(2006)
12. Gärtner, B., Matoušek, J.: Approximation Algorithms and Semidefinite Programming. xii+251 pp.

Springer, Heidelberg (2012)
13. Gupta, P., Mogge, Y., Piga, S., Schülke, B.: r -cross t-intersecting families via necessary intersection

points. Procedia Comput. Sci. 195, 453–458 (2021)
14. Hilton, A.J.W., Milner, E.C.: Some intersection theorems for systems of finite sets. Q. J. Math. Oxf.

Ser. (2) 18, 369–384 (1967)
15. Kato, M., Kosuda, M., Tokushige, N.: ExtendingMuirhead’s inequality. Graphs Comb. 37, 1923–1941

(2011)
16. Lee, S.J., Siggers, M., Tokushige, N.: Toward extending the Ahlswede–Khachatrian theorem to cross

t-intersecting families. Discrete Appl. Math. 216, 627–645 (2017)
17. O’Neill, J., Versträete, J.: Non-trivial d-wise intersecting families. J. Comb. Theory Ser. A 178, 105369

(2021)
18. Suda, S., Tanaka, H.: A cross-intersection theorem for vector spaces based on semidefinite program-

ming. Bull. Lond. Math. Soc. 46, 342–348 (2014)
19. Suda, S., Tanaka, H., Tokushige, N.: A semidefinite programming approach to a cross-intersection

problem with measures. Math. Program. Ser. A 166, 113–130 (2017)
20. Tokushige, N.: Brace–Daykin type inequalities for intersecting families. Eur. J. Comb. 29, 273–285

(2008)
21. Tokushige, N.: On cross t-intersecting families of sets. J. Comb. Theory A 117, 1167–1177 (2010)
22. Tokushige, N.: Application of hypergraph Hoffman’s bound to intersecting families. Algebr. Comb.

5(3), 537–557 (2022)
23. Tokushige, N.: Non-trivial 3-wise intersecting uniform families. Discrete Math. 346(5), Paper No.

113368 (2023)
24. Wagner, A.Z.: Refuting conjectures in extremal combinatorics via linear programming. J. Comb. The-

ory A 169, 105130 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/2104.00778
http://arxiv.org/abs/1604.06135

	The maximum measure of non-trivial 3-wise intersecting families
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Shifting
	2.2 Duality in linear programming
	2.3 Tools for the proof of Theorem 7
	2.4 Random walk
	2.5 Tools for the proof of Theorem 6

	3 Proof of Theorem 3 and Theorem 4
	4 Proof of Theorem 7
	4.1 Proof of (2) of Theorem 7
	4.2 Proof of (3) of Theorem 7
	4.2.1 Case mathcalB2=mathcalB3=
	4.2.2 Case mathcalB2neq, mathcalB3=
	4.2.3 Case mathcalB2neq, mathcalB3neq


	5 Proof of Theorem 6
	5.1 Case mathcalG1=
	5.2 Case mathcalG1neq and mathcalG2=
	5.2.1 Subcase x1leqx23.
	5.2.2 Subcase x23leqx1.

	5.3 Case mathcalG2neq, mathcalG3=
	5.4 Case mathcalG3neq, mathcalG=
	5.4.1 Subcase 25leqpleq0.453264
	5.4.2 Subcase 0.453264leqpleq12

	5.5 Case mathcalGneq
	5.5.1 Subcase 25leqpleq0.424803
	5.5.2 Subcase 0.424803leqpleq12


	6 Concluding remarks
	6.1 Non-trivial r-wise intersecting families for r4
	6.2 Uniform families

	Acknowledgements
	References




