
Mathematical Programming (2024) 206:91–124
https://doi.org/10.1007/s10107-023-01965-1

FULL LENGTH PAPER

Series B

On SOCP-based disjunctive cuts for solving a class of
integer bilevel nonlinear programs

Elisabeth Gaar1 · Jon Lee3 · Ivana Ljubić4 ·Markus Sinnl1,2 ·
Kübra Tanınmış1

Received: 10 July 2022 / Accepted: 12 April 2023 / Published online: 27 May 2023
© The Author(s) 2023

Abstract
We study a class of integer bilevel programs with second-order cone constraints at
the upper-level and a convex-quadratic objective function and linear constraints at the
lower-level. We develop disjunctive cuts (DCs) to separate bilevel-infeasible solutions
using a second-order-cone-based cut-generating procedure. We propose DC separa-
tion strategies and consider several approaches for removing redundant disjunctions
and normalization. Using these DCs, we propose a branch-and-cut algorithm for the
problem class we study, and a cutting-plane method for the problem variant with only
binary variables. We present an extensive computational study on a diverse set of
instances, including instances with binary and with integer variables, and instances
with a single and with multiple linking constraints. Our computational study demon-

An extended abstract of this work containing the theoretical foundations for a single linking constraint
appeared as [22]. The present article additionally handles multiple linking constraints, and presents more
theoretical details, new enhancements and many new computational results.

B Elisabeth Gaar
elisabeth.gaar@jku.at

Jon Lee
jonxlee@umich.edu

Ivana Ljubić
ljubic@essec.edu

Markus Sinnl
markus.sinnl@jku.at

Kübra Tanınmış
kuebra.taninmis_ersues@jku.at

1 Institute of Production and Logistics Management, Johannes Kepler University Linz, Linz,
Austria

2 JKU Business School, Johannes Kepler University, Linz, Austria

3 University of Michigan, Ann Arbor, MI, USA

4 ESSEC Business School of Paris, Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-01965-1&domain=pdf
http://orcid.org/0000-0002-1643-6066
http://orcid.org/0000-0002-8190-1091
http://orcid.org/0000-0002-4834-6284
http://orcid.org/0000-0003-1439-8702
http://orcid.org/0000-0003-1081-4182

92 E. Gaar et al.

strates that the proposed enhancements of our solution approaches are effective for
improving the performance. Moreover, both of our approaches outperform a state-of-
the-art generic solver for mixed-integer bilevel linear programs that is able to solve a
linearized version of our binary instances.

Keywords Bilevel optimization · Disjunctive cuts · Conic optimization · Nonlinear
optimization · Branch-and-cut

Mathematics Subject Classification 90C11 · 90C57 · 90C30 · 65K05

1 Introduction

Bilevel programs (BPs) are challenging hierarchical optimization problems in which
the feasible solutions of the upper-level problem depend on the optimal solution of
the lower-level problem. BPs allow us to model two-stage two-player Stackelberg
games in which two rational players (often called leader and follower) compete in a
sequential fashion. BPs have applications in many different domains such as machine
learning [1], logistics [21], revenue management [36], the energy sector [24, 45] and
portfolio optimization [23]. For more details about BPs see, e.g., the book by Dempe
and Zemkoho [16] and the recent surveys [7, 31, 48].

In this work, we consider the following integer bilevel nonlinear programs with
convex leader and follower objective functions (IBNPs)

min c′x + d ′y (1a)

s. t. Mx + Ny ≥ h (1b)

M̃x + Ñ y − h̃ ∈ K (1c)

y ∈ Ω(x) (1d)

x ∈ Z
n1, (1e)

where Ω(x) is the set of optimal solutions of the x-parametrized so-called follower
(or lower-level) problem

min
{
q(y) : Ax + By ≥ f , y ∈ Y, y ∈ Z

n2
}
. (2)

Problem (1) is the so-called leader (or upper-level) problem. The decision variables x
and y are of dimension n1 and n2, respectively, and n := n1 + n2. Moreover, we have
c ∈ R

n1 , d ∈ R
n2 , M ∈ R

m1×n1 , N ∈ R
m1×n2 , h ∈ R

m1 , M̃ ∈ R
m̃1×n1 , Ñ ∈ R

m̃1×n2 ,
h̃ ∈ R

m̃1 , A ∈ Z
m2×n1 , B ∈ Z

m2×n2 , and f ∈ Z
m2 . We denote by Ai , Bi and fi

the i-th row of A, B and i-th entry of f , respectively. We assume that each Ai and
Bi has at least one non-zero entry. The constraints Ax + By ≥ f are referred to
as linking constraints. The constraints (1b)–(1c) are called coupling constraints, if
they explicitly depend on the follower variables y. Furthermore, q(y) is a convex-
quadratic function of the form q(y) = y′Ry + g′y with R = V ′V and V ∈ R

n3×n2

with n3 ≤ n2, K is a cross-product of second-order cones, and Y is a polyhedron. Let

123

On SOCP-based disjunctive cuts for a class of IBNPs 93

F(x) denote the set of feasible solutions of the follower problem for a given x , i.e.,
F(x) := {y ∈ Z

n2 : Ax + By ≥ f , y ∈ Y}. A solution (x, y) ∈ R
n is called bilevel

feasible, if it satisfies all constraints (1b)–(1e); otherwise it is called bilevel infeasible.
The IBNP (1) is called infeasible if there is no bilevel-feasible solution.

Note that even though the objective function (1a) is linear, we can actually consider
any convex objective function which can be represented as a second-order cone con-
straint and whose optimal value is integer for (x, y) ∈ Z

n (e.g., a convex-quadratic
polynomial with integer coefficients). To do so, we can use an epigraph reformulation
to transform it into a problem of the form (1).

Our work considers the optimistic case of bilevel optimization. This means that
whenever there are multiple optimal solutions for the follower problem (2), the one
which is best for the leader is chosen, see, e.g., [39].We note that alreadymixed-integer
bilevel linear programming (MIBLP) is �

p
2 -hard [37].

The value function reformulation (VFR) of the bilevel program (1) is

min c′x + d ′y (3a)

s. t. Mx + Ny ≥ h (3b)

M̃x + Ñ y − h̃ ∈ K (3c)

Ax + By ≥ f (3d)

q(y) ≤ �(x) (3e)

y ∈ Y (3f)

(x, y) ∈ Z
n, (3g)

where the so-called value function �(x) of the follower problem

�(x) := min {q(y) : y ∈ F(x)} (4)

is typically non-convex and non-continuous. Note that in the optimistic bilevel setting,
the VFR is equivalent to the original bilevel program (1). The high-point relaxation
(HPR) is obtained when dropping (3e), i.e., the optimality condition of y for the fol-
lower problem, from the VFR (3). We denote the continuous relaxation (i.e., replacing
the integer constraint (3g) with the corresponding variable bound constraints) of the
HPR as HPR.

1.1 Contribution and outline

Since the seminal work of Balas [5], and more intensively in the past three decades,
disjunctive cuts (DCs) have been successfully exploited for solving mixed-integer
(nonlinear) programs (MI(N)LPs) [6]. While there is a plethora of work on using DCs
for MINLPs [8], we are not aware of any previous applications of DCs for solving
IBNPs. In this work, we demonstrate how DCs can be used within a branch-and-cut
(B&C) algorithm to solve (1). This is the first time that DCs are used to separate
bilevel-infeasible solutions, using a cut-generating procedure based on second-order
cone programming (SOCP). Moreover, we also show that our DCs can be used in a

123

94 E. Gaar et al.

finitely-convergent cutting-plane procedure for 0-1 IBNPs, where the HPR is solved
to optimality before separating bilevel-infeasible solutions.

In our preliminary study [22], we described the methodological foundations of
our approach, based on the assumption of having a single linking constraint in the
follower problem. In this paper, we generalize these results for multiple linking con-
straints (leading to a cut-generating SOCPwithmultiple disjunctions).We additionally
compare DCs derived from non-optimal versus optimal follower solutions, and show
that they are not dominating one another. Moreover, we discuss efficient methods
for eliminating redundant disjunctions and normalization procedures for solving the
cut-generating SOCP.

Our computational study, which is considerably extended compared to [22], is
conducted on instances in which the follower minimizes a convex-quadratic objective
function, subject to covering constraints linked with the leader. We consider instances
with a single and with multiple linking constraints, and instances with only binary
and with integer variables. We demonstrate that the proposed enhancements of our
solution algorithms improve their performance. Furthermore, we compare our B&C
and cutting-plane approaches with a state-of-the-art solver for MIBLPs (which can
solve our binary instances after applying linearization in a McCormick fashion) and
we show that the latter one is outperformed by our new DC-based approaches.

Our article is organized as follows. In the remainder of this section, we dis-
cuss previous and related work. In Sect. 2 we describe the derivation of the DCs.
Section3 contains a discussion of computational methodology which allows a suc-
cessful use of our DCs. In particular, in Sect. 3.1 we demonstrate that our DCs cut
off bilevel-infeasible solutions. In Sect. 3.2, we demonstrate that cuts derived from
optimal follower solutions need not dominate cuts derived from non-optimal follower
solutions. In Sect. 3.3, we describe two different separation strategies, in Sect. 3.4,
we discuss several approaches to remove redundant disjunctions, and in Sect. 3.5, we
address normalization. We present a B&C algorithm for solving (1) in Sect. 4.1 and a
cutting-plane algorithm for 0-1 IBNPs in Sect. 4.2. In Sect. 5, we present a computa-
tional study, together with some implementation details. In Sect. 6, we conclude with
an outlook to further work.

1.2 Literature overview

In recent years, there has been considerable research interest on BPs. When it comes
to solution approaches, a distinction between problems with convex and non-convex
follower problem can be made. For BPs with a convex follower problem, single-level
reformulation techniques based on, e.g., Karush-Kuhn-Tucker optimality conditions
or strong duality (see, e.g., [12, 30, 32]) can be used. For MIBLPs with integrality
restrictions on (some of) the follower variables, state-of-the-art methods are usually
based on B&C (see, e.g., [18, 19, 49]). Other interesting concepts are based on multi-
branching, see [50, 52].

Considerably fewer results are available for nonlinear BPs, and in particular with
integrality restrictions in the follower problem. In [41], Mitsos et al. propose a gen-
eral approach for non-convex follower problems which solves nonlinear optimization

123

On SOCP-based disjunctive cuts for a class of IBNPs 95

problems to compute upper and lower bounds in an iterative fashion. In a series of
papers on the so-called branch-and-sandwich approach, tightened bounds on the opti-
mal value function and on the leader objective-function value are calculated [33–35].
A solution algorithm formixed-IBNPs proposed in [40] by Lozano and Smith approxi-
mates the value function by dynamically inserting additional variables and big-M type
constraints. Recently, Kleinert et al. [30] considered BPs with amixed-integer convex-
quadratic leader and a continuous convex-quadratic follower problem. The method is
based on outer approximation after the problem is reformulated into a single-level
one using strong duality and convexification. In [11], Byeon and Van Hentenryck
develop a solution algorithm for BPs, where the leader problem can be modeled as
a mixed-integer SOCP and the follower problem can be modeled as a SOCP. The
algorithm is based on a dedicated Benders decomposition method. In [51], Weninger
et al. propose a methodology that can tackle any kind of MINLP for the leader which
can be handled by an off-the-shelf solver. The mixed-integer follower problem has to
be convex, bounded, and satisfy Slater’s condition for the continuous variables. This
exact method is derived from a previous approach proposed in [53] by Yue et al. for
finding feasible solutions. For a more detailed overview of the recent literature on
computational bilevel programming we refer to [13, 31, 48].

The only existing application of DCs in the context of bilevel linear programming
is by Audet et al., [4] who derive DCs from LP-complementarity conditions. In [25],
Júdice et al. exploit a similar idea for solving mathematical programs with equilibrium
constraints.

DCs are frequently used for solving MINLPs (see [6] and the many references
therein, and for example [15, 17, 46, 47]). Concerning the existing literature that
includes (computational) studies onDCs formixed-integer SOCPs, we refer the reader
to [2, 3, 14, 27–29, 38, 42] and further references therein.

2 Disjunctive cut methodology

The aim of this section is to derive DCs for the bilevel program (1) with the help of
SOCP; so we want to derive DCs that separate bilevel-infeasible solutions from the
convex hull of bilevel-feasible solutions. Toward this end, we assume throughout this
section that we have a second-order conic convex set P , such that P is a subset of
the set of feasible solutions of the HPR. This implies that P fulfills (3b), (3c), (3d)
and (3f) and potentially already some DCs. Moreover, we assume that (x∗, y∗) is a
bilevel-infeasible point in P .

2.1 Preliminaries

Our general assumptions regarding the structure of the IBNP are given below.

Assumption 1 All variables are bounded in the HPR, and Y is bounded.

We note that in a bilevel-context already for the linear case of MIBLPs, unbounded-
ness of the HPR does not imply anything for the original problem, all three options

123

96 E. Gaar et al.

(infeasible, unbounded, and existence of an optimum) are possible. For more details
see, e.g., [19].

Assumption 2 HPR has a feasible solution satisfying its nonlinear constraint (3c)
strictly, and its dual has a feasible solution.

Assumption 2 ensures that we have strong duality for HPR and its dual, and so we can
solve the HPR (potentially with added cuts) to arbitrary accuracy.

2.2 Deriving disjunctive cuts

To derive DCs, we first examine bilevel-feasible sets. It is easy to see, and also follows
from results of Fischetti et al. [18], that for any ŷ ∈ Y ∩ Z

n2 the set

S(ŷ) := {(x, y) : Ax ≥ f − B ŷ, q(y) > q(ŷ)}

does not contain any bilevel-feasible solution, as for any (x, y) ∈ S(ŷ) clearly ŷ
is a better follower solution for x than y. Furthermore, due to the integrality of our
variables and of A and B, the extended set

S+(ŷ) := {(x, y) : Ax ≥ f − B ŷ − 1, q(y) ≥ q(ŷ)}

does not contain any bilevel-feasible solution in its interior, because any bilevel-
feasible solution in the interior of S+(ŷ) is in S(ŷ). Based on this observation,
intersection cuts have been derived in [18]. However, S+(ŷ) is not convex in our
case, so we turn our attention to DCs. For any ŷ ∈ Y ∩ Z

n2 , any bilevel-feasible
solution is in the disjunction D0(ŷ) ∨ D1(ŷ) ∨ . . . ∨ Dm2(ŷ), where

D0(ŷ) : q(y) ≤ q(ŷ) and Di (ŷ) : Ai x ≤ fi − Bi ŷ − 1, i = 1, . . . ,m2.

To find a DC, we want to generate valid linear inequalities for

{
(x, y) ∈ P : D0(ŷ)

} ∨
m2∨

i=1

{
(x, y) ∈ P : Di (ŷ)

}
,

so in other words we want to find a valid linear inequality that separates the bilevel-
infeasible solution (x∗, y∗) from the convex hull of the union of multiple disjunctions,
namely from

D(ŷ,P) := conv

(
{
(x, y) ∈ P : D0(ŷ)

} ∪
(

m2⋃

i=1

{
(x, y) ∈ P : Di (ŷ)

}
))

. (5)

Toward this end, we first derive a formulation of P . If we have already generated
some DCs of the form α′x +β ′y ≥ τ , then we group them asAx +By ≥ T . We take

123

On SOCP-based disjunctive cuts for a class of IBNPs 97

these cuts, together with Mx + Ny ≥ h and Ax + By ≥ f and also y ∈ Y , which
can be represented as Cy ≥ U , and we bundle them all together as

M̄x + N̄ y ≥ h̄, (6)

such that P is represented by (6) and (3c), and where

M̄ :=

⎛

⎜⎜
⎝

M
A
A
0

⎞

⎟⎟
⎠ , N̄ :=

⎛

⎜⎜
⎝

N
B
B
C

⎞

⎟⎟
⎠ , h̄ :=

⎛

⎜⎜
⎝

h
f
T
U

⎞

⎟⎟
⎠ .

The representation of Di (ŷ), i = 1, . . . ,m2, is straightforward. It is convenient to
writeD0(ŷ) in SOCP-form using a standard technique. Indeed,D0(ŷ) is equivalent to
the standard second-order (Lorentz) cone constraint z0 ≥ ∥∥(z1, z2)

∥∥ with

z0 := 1 − (
g′y − q(ŷ)

)

2
, z1 := V y, z2 := 1 + (

g′y − q(ŷ)
)

2
.

Because z0, z1 and z2 are linear in y, we can as well write it in the form

D̃y − c̃ ∈ Q, (7)

where Q denotes a standard second-order cone, which is self dual, and

D̃ :=
⎛

⎝
− 1

2g
′

V
1
2g

′

⎞

⎠ and c̃ :=
⎛

⎜
⎝

−1−q(ŷ)
2
0

−1+q(ŷ)
2

⎞

⎟
⎠ .

We employ a vector σ of dual multipliers for the linear constraints representing
D1(ŷ), . . . ,Dm2(ŷ). Moreover, we employ a vector ρ ∈ Q∗ of dual multipliers for the
constraint (7), representingD0(ŷ). Furthermore,we employ vectors π̄i , i = 0, . . . ,m2,
of dual multipliers for the constraints (6), and we employ vectors π̃i , i = 0, . . . ,m2,
of dual multipliers for the constraints (3c), both together representing P . Then every
(α, β, τ) corresponding to a valid linear inequality α′x + β ′y ≥ τ for D(ŷ,P) corre-
sponds to a solution of

α′ = π̄ ′
i M̄ + π̃ ′

i M̃ + σi A
i ∀i = 1, . . . ,m2 (8a)

α′ = π̄ ′
0M̄ + π̃ ′

0M̃ (8b)

β ′ = π̄ ′
i N̄ + π̃ ′

i Ñ ∀i = 1, . . . ,m2 (8c)

β ′ = π̄ ′
0 N̄ + π̃ ′

0 Ñ + ρ′ D̃ (8d)

τ ≤ π̄ ′
i h̄ + π̃ ′

i h̃ + σi (fi − 1 − Bi ŷ) ∀i = 1, . . . ,m2 (8e)

τ ≤ π̄ ′
0h̄ + π̃ ′

0h̃ + ρ′c̃ (8f)

123

98 E. Gaar et al.

σ ≤ 0, ρ ∈ Q∗, π̄i ≥ 0, π̃i ∈ K∗ ∀i = 0, . . . ,m2, (8g)

where K∗ and Q∗ are the dual cones of K and Q, respectively (see, e.g., Balas [6,
Theorem 1.2]).

To attempt to generate a valid inequality forD(ŷ,P) that is violated by the bilevel-
infeasible solution (x∗, y∗), we solve

max τ − α′x∗ − β ′y∗ (CG − SOCP)

s. t. (8a)–(8g).

A positive objective value for a feasible (α, β, τ) corresponds to a valid linear inequal-
ity α′x + β ′y ≥ τ for D(ŷ,P) violated by (x∗, y∗), i.e., the inequality gives a DC
separating (x∗, y∗) from D(ŷ,P). Finally, we need to deal with the fact that the fea-
sible region of (CG-SOCP) is a cone. We will take care of this in the usual manner,
by including a normalization constraint; see Sect. 3.5.

3 Computational methodology for our disjunctive cuts

In this section we discuss theory and methodology of our proposed DCs.

3.1 Separation theory

To be able to derive DCs we make the following additional assumption.

Assumption 3 The dual of (CG-SOCP) has a feasible solution in its interior, and we
have an exact solver for (CG-SOCP).

The following theorem allows us to use DCs in our solution methods.

Theorem 1 Let P be a second-order conic convex set, such that P is a subset of the
set of feasible solutions of the HPR. Let (x∗, y∗) be a bilevel-infeasible extreme point
of P . If ŷ is a feasible solution to the follower problem for x = x∗, i.e., ŷ ∈ F(x∗),
such that q(ŷ) < q(y∗), then there is a DC that separates (x∗, y∗) from D(ŷ,P) and
it can be obtained by solving (CG-SOCP).

Proof Assume that there is no cut that separates (x∗, y∗) fromD(ŷ,P), then (x∗, y∗)
is in D(ŷ,P). However, due to the definition of ŷ, the point (x∗, y∗) does not fulfill
Di (ŷ) for any i = 0, . . . ,m2. Therefore, in order to be in D(ŷ,P), the point (x∗, y∗)
must be a convex combination of some points (xi , yi) for i = 0, . . . ,m2, such that
each (xi , yi) is in P ∩ Di (ŷ), and such that at least two coefficients of the convex
combination are larger than zero. This is not possible due to the fact that (x∗, y∗) is
an extreme point of P . Thus, there is a cut that separates (x∗, y∗) from D(ŷ,P). By
construction of (CG-SOCP) and due to Assumption 3, we can use (CG-SOCP) to find
it. ��

123

On SOCP-based disjunctive cuts for a class of IBNPs 99

Note that there are two reasons why a feasible HPR solution (x∗, y∗) is bilevel
infeasible: it is not integer or y∗ is not an optimal follower solution for x∗. Thus, in the
case that (x∗, y∗) is integer, there is a better follower solution ỹ for x∗. ThenTheorem1
with ŷ = ỹ implies that (x∗, y∗) can be separated from D(ŷ,P). We present solution
methods based on this observation in Sect. 4. In the case that (x∗, y∗) does not fulfill
the integer constraints (3g), we distinguish the following situations:

– F(x∗)
= ∅ and there is a better feasible follower solution ỹ for x∗, so one could
still use a DC to eliminate (x∗, y∗) due to Theorem 1 with ŷ = ỹ.

– F(x∗)
= ∅ and all ỹ that are feasible for the follower problem �(x∗) have worse
(or same) follower objective-function value than y∗, so there is no ỹ that we can
choose as ŷ in Theorem 1.

– F(x∗) = ∅, i.e., the follower problem is infeasible for the given fractional point
(x∗, y∗).

In the latter two cases, the point (x∗, y∗) cannot be cut off using a DC, however we
will see below that such points can be discarded using standard integer-programming
techniques. Hence, this potential failure to separate a (x∗, y∗) not fulfilling the integer
constraints does not affect our solution algorithms.

3.2 Choosing the point ŷ to separate

For a given DC α′x +β ′y ≥ τ , we say that the DC is dominated if there exists another
DC ᾱ′x+β̄ ′y ≥ τ̄ such that {(x, y) ∈ P : ᾱ′x+β̄ ′y ≥ τ̄ } ⊂ {(x, y) ∈ P : α′x+β ′y ≥
τ }, otherwise the DC is called non-dominated. If {(x, y) ∈ P : α′x + β ′y ≥ τ } ⊂
{(x, y) ∈ P : ᾱ′x + β̄ ′y ≥ τ̄ }, we say that the DC α′x + β ′y ≥ τ is dominating
the DC ᾱ′x + β̄ ′y ≥ τ̄ , otherwise the DC α′x + β ′y ≥ τ is not dominating the DC
ᾱ′x+ β̄ ′y ≥ τ̄ . The following result establishes that for a given x∗, a DC derived from
a feasible but non-optimal follower solution does not have to be dominated by a DC
derived from an optimal follower solution.

Theorem 2 Let (x∗, y∗) ∈ P be a bilevel-infeasible solution such that Ω(x∗)
= ∅
and such that F(x∗) \ Ω(x∗)
= ∅. Let ŷ1 ∈ Ω(x∗) and ŷ2 ∈ F(x∗)\Ω(x∗). Then,
there exist instances where the two DCs, one derived from D(ŷ1,P) and the other
derived from D(ŷ2,P), do not dominate one another.

Proof To prove this result, we consider an adaptation of the famous example from
[43], namely

min
x∈Z{x − y : y ∈ Ω(x)},

where Ω(x) is the set of optimal solutions of the problem

min
y∈Z{y2 : 25x − 20y ≥ −30 (9a)

−x − 2y ≥ −10 (9b)

−2x + y ≥ −4 (9c)

123

100 E. Gaar et al.

Fig. 1 An example illustrating two DCs which do not dominate one another

2x + 10y ≥ 15 }, (9d)

and P is the set of feasible solutions to the linear constraints (9a)–(9d).
For x∗ = 2, we have ŷ1 = 2 ∈ Ω(x∗) and ŷ2 = 3 ∈ F(x∗) \ Ω(x∗). The

disjunctions associated with ŷ1 = 2 are

D0(ŷ1) : y2 ≤ 4, D1(ŷ1) : x ≤ 9/25, D2(ŷ1) : x ≥ 7,

D3(ŷ1) : x ≥ 7/2, D4(ŷ1) : x ≤ −3.

Note that both P ∩ D2(ŷ1) and P ∩ D4(ŷ1) are empty. When (CG-SOCP) is solved
using the cut-coefficient normalization with 1-norm (see Sect. 3.5 for more details on
normalization) for the solution x∗ = 2 and y∗ = 4, the DC obtained is −1.25x +
3.1y ≤ 5.7.

Similarly, the disjunctions associated with ŷ2 = 3 are

D0(ŷ2) : y2 ≤ 9, D1(ŷ2) : x ≤ 29/25, D2(ŷ2) : x ≥ 5,

D3(ŷ2) : x ≥ 4, D4(ŷ2) : x ≤ −8.

Note thatP ∩Di (ŷ2) is empty for all i ∈ {2, 3, 4}. The corresponding DC obtained by
using cut-coefficient normalization with 1-norm and the solution x∗ = 2 and y∗ = 4
is y ≤ 3. Figure1 illustrates the two cuts, neither of which dominates the other.

��
Theorem 2 indicates that multiple DCs which do not dominate one another could be

derived when separating a bilevel-infeasible point (x∗, y∗). Moreover, it also means
that we do not need to solve the follower problem to optimality in order to generate a

123

On SOCP-based disjunctive cuts for a class of IBNPs 101

(potentially) non-dominated DC. This is exploited in one of the separation procedures
described in the next section.

3.3 Separation procedures

We now turn our attention to describing how to computationally separate our DCs for
a solution (x∗, y∗) ∈ P . Note that we do not necessarily need the optimal solution of
the follower problem (4) for x = x∗ to be able to cut off a bilevel-infeasible solution
(x∗, y∗), as any ŷ that is feasible for the follower problem with q(ŷ) < q(y∗) gives
a violated DC as described in Theorem 1. Motivated by the result of Theorem 2, we
implement two different strategies for separation which are described in Algorithm 1.

In the first one, denoted as O, we solve the follower problem to optimality, and use
the optimal ŷ in (CG-SOCP). In the second strategy, denoted as G, for each feasible
integer follower solution ŷ with a better objective value than q(y∗) obtained during
solving the follower problem, we try to solve (CG-SOCP). The procedure returns the
first-found significantly-violated cut, i.e., it finds a DC greedily. A cut α′x + β ′y ≥ τ

is considered to be significantly violated by (x∗, y∗) if τ − α′x∗ − β ′y∗ > ε for some
ε > 0.

If (x∗, y∗) is a bilevel-infeasible solution satisfying integrality constraints, Algo-
rithm 1 returns a violated cut with both strategies. Otherwise, i.e., if (x∗, y∗) is not
integer, a cut may not be obtained for the reasons discussed after Theorem 1.

Algorithm 1: separation
Input : A feasible HPR solution (x∗, y∗), a separation strategy O or G, a set P
Output: A significantly violated DC or nothing

1 while the follower problem is being solved for x = x∗ by an enumeration-based method do
2 for each feasible integer ŷ with q(ŷ) < q(y∗) do
3 if strategy = G or (strategy = O and ŷ is optimal) then
4 solve (CG-SOCP) for (x∗, y∗), ŷ and P ;
5 if τ − α′x∗ − β ′y∗ > ε then
6 return α′x + β ′y ≥ τ ;

3.4 Removing redundant disjunctions

The examples given in the proof of Theorem 2 illustrate that removing redundant
disjunctions could lead to faster separation and also to DCs which dominate the DCs
obtained without the removal of such disjunctions:

– For ŷ2, the sets P ∩ Di (ŷ2) for i ∈ {2, 3, 4} are empty. Thus we do not need to
consider these disjunctions when defining (CG-SOCP), which leads to a smaller
SOCP in the separation procedure.

– For ŷ1, the setP∩D3(ŷ1) does not contain any bilevel-feasible solution, as it does
not contain any integer solution. By removing the disjunction D3(ŷ1), a new DC

123

102 E. Gaar et al.

y ≤ 2 can be obtained by using cut-coefficient normalization with 1-norm. This
new DC dominates the DC obtained when D3(ŷ1) is included.

Thus, ideally, we would like to eliminate disjunctions Di (ŷ) which do not con-
tain any bilevel-feasible solution. Because this condition is very difficult to verify, as
pointed out in [19, cf. Theorem 5 and Corollary 1], we could simply check whether
Di (ŷ) is not satisfied for any point satisfying the variable bounds of P (thus, relax-
ing the condition of checking whether Di (ŷ) is not satisfied for any point in P) for
i = 1, . . . ,m2. In particular, we could check whether

n1∑

j=1

x̃ j > fi − Bi ŷ

holds, where x̃ j := min{Ai
j x

+
j , Ai

j x
−
j } and where x+

j and x−
j are the upper and lower

bounds imposed on x inside of P , respectively.
However, this only considers each disjunction with variable bounds individually

and may not be very effective. In what follows, we propose several other approaches,
ordered by their computational effort.

Relaxation-based removal. A disjunction Di (ŷ) is redundant if P ∩ Di (ŷ) = ∅.
Checking this requires solving a (small) SOCP. If the disjunction can be removed, (CG-
SOCP) is smaller. Moreover, each DC which can be obtained when the disjunction
is considered in (CG-SOCP), can also be obtained when the disjunction is removed
before solving (CG-SOCP).

Integrality-based removal. A disjunction Di (ŷ) is redundant if P ∩ Di (ŷ) ∩ Z
n =

∅. Checking this requires solving a (small) integer-SOCP. If such a disjunction is
removed, (CG-SOCP) is smaller and the (potentially) resulting DC can dominate the
DCobtainedwithout removal of the disjunction (see, e.g., the example discussed above
for ŷ1).

Optimality-based removal.A disjunctionDi (ŷ) is redundant if among the solutions
inP∩Di (ŷ)∩Z

n , there is no solution that improves the current best objective-function
value (say, UB) of the leader.

Theorem 3 Let UB be the objective-function value of the best-known feasible solution
for the bilevel program (1). Let furthermore Ūi be the optimal objective-function value
of the problem

min{c′x + d ′y : (x, y) ∈ P ∩ Di (ŷ) ∩ Z
n}.

If Ūi ≥ UB, then the disjunction Di (ŷ) is redundant and can be discarded from
D(ŷ,P) and thus also from (CG-SOCP).

Proof If Ūi ≥ UB, then any solution in P ∩ Di (ŷ) ∩ Z
n is not better for the bilevel

program (1) than the best-known feasible solution. Thus any better solution cannot be
in P ∩ Di (ŷ) ∩ Z

n and therefore no optimal solution is missed by removing Di (ŷ).
��

123

On SOCP-based disjunctive cuts for a class of IBNPs 103

Fig. 2 An example illustrating optimality-based removal of disjunctions

If the disjunction can be removed, (CG-SOCP) is smaller and the (potentially)
resulting DC can dominate the DC obtained without removal of the disjunction. In
particular, the removal can result in such a cut even if the integrality-based removal
fails to remove a disjunction: For example, consider a slightly modified version of
the instance in the proof of Theorem 2, where constraint (9c) is replaced by −4x +
3y ≥ −7. In this case, for ŷ1 = 2, we have D3(ŷ1) : x ≥ 7/2 and the set P ∩
D3(ŷ1) contains an integer solution, namely (4, 3). Thus, with the first two approaches
of removing redundant disjunctions, we keep the disjunction D3(ŷ1) and would get
the DC −1.25x + 3.1y ≤ 5.7 using cut-coefficient normalization with 1-norm (see
Fig. 2a). However, suppose that we know, e.g., of the bilevel-feasible solution (2, 2)
which has the leader objective-function valueUB = 0. Because Ū3 = 1, the condition
of Theorem 3 is satisfied, and the disjunction can be removed. The resulting DC in
this case is y ≤ 2 using cut-coefficient normalization with 1-norm (see Fig. 2b).

3.5 Normalization

As mentioned before, we need to deal with the fact that the feasible region of (CG-
SOCP) is a cone. So (CG-SOCP) either has its optimum at the origin (implying that
(x∗, y∗) cannot be separated), or (CG-SOCP) is unbounded, implying that there is a
violated inequality, which of course we could scale by any positive number so as to
make the violation as large as we like. The standard remedy for this is to introduce
a normalization constraint to (CG-SOCP). A typical good choice (see [20]) is to
additionally impose

‖((π̄i)
m2
i=0, (π̃i)

m2
i=0, σ, ρ)‖1 ≤ 1

123

104 E. Gaar et al.

on (CG-SOCP), i.e., that the 1-norm of the set of dual multipliers is unity. Because
we are using a conic solver, we can alternatively impose

‖((π̄i)
m2
i=0, (π̃i)

m2
i=0, σ, ρ)‖2 ≤ 1,

which is just one constraint for a conic solver. This kind of normalization, where
the norm of the vector of all dual variables is bounded by 1, is called the standard
normalization (see, e.g., Lodi et al. [38]).

In [38], not only the standard normalization but also uniform normalization is
concluded to be among the best normalizations in terms of numerical robustness. In
uniform normalization, only the norm of the vector of dual variables corresponding to
the constraints shared by all disjunctions (and not to the ones defining the disjunctions)
is bounded, i.e.,

‖((π̄i)
m2
i=0, (π̃i)

m2
i=0)‖p ≤ 1,

where p ∈ {1, 2}. Note, that [38] considered only a generalization of the 1-norm, and
not the 2-norm, for both the standard and the uniform normalization.

Another alternative is cut-coefficient normalization, where the norm of the cut-
coefficients α and β is bounded by one; so

‖(α, β)‖p ≤ 1

is imposed, typically for some p ∈ {1, 2}. This may seem to be the most intuitive kind
of normalization, as solving the (CG-SOCP) yields the desired cut-coefficients.

Theoretical considerations concerning normalization. To investigate the influence of
normalization, we next present the duals of (CG-SOCP). Without normalization, the
dual has objective function zero and the feasible region is

∑m2
i=0 xi = x∗ (10a)

∑m2
i=0 yi = y∗ (10b)

∑m2
i=0 λi = 1 (10c)

λi ≥ 0 ∀i = 0, . . . ,m2 (10d)

M̄xi + N̄ yi ≥ λi h̄ ∀i = 0, . . . ,m2 (10e)

M̃xi + Ñ yi − λi h̃ ∈ K∗∗ ∀i = 0, . . . ,m2 (10f)

D̃y0 − λ0c̃ ∈ Q (10g)

Ai xi ≤ λi (fi − Bi ŷ − 1) ∀i = 1, . . . ,m2, (10h)

i.e., the dual tries to find points (xi , yi), such that (x∗, y∗) is the sum of these points,
and such that either λi = 0 or λi > 0 and (1

λi
xi ,

1
λi
yi) ∈ P∩Di (ŷ). As a consequence,

(10) is feasible if and only if (x∗, y∗) is in conv
(⋃m2

i=0(P ∩ Di (ŷ))
)
. Note that this

123

On SOCP-based disjunctive cuts for a class of IBNPs 105

corresponds exactly to the case that the primal (CG-SOCP) does not find a violated
cut, i.e., its optimal objective-function value is zero.

When deriving the duals of (CG-SOCP) with normalization, we assume that the
normalization was imposed with the p-norm for p ∈ {1, 2}. Let the p∗-norm be the
dual norm of the p-norm, i.e. p∗ = 2 for p = 2 and p∗ = ∞ for p = 1. Note
that normalizing (CG-SOCP) using the p-norm leads to a p∗-norm in the objective
function of the dual.

In case of standard normalization, the dual of (CG-SOCP) is

−min ‖((μ̄i)
m2
i=0, (μ̃i)

m2
i=0, μσ , μρ)‖p∗ (11a)

s. t. (10a) − (10d) (11b)

M̄xi + N̄ yi ≥ λi h̄ + μ̄i ∀i = 0, . . . ,m2 (11c)

M̃xi + Ñ yi − λi h̃ − μ̃i ∈ K∗∗ ∀i = 0, . . . ,m2 (11d)

D̃y0 − λ0c̃ − μρ ∈ Q (11e)

Ai xi ≤ λi (fi − Bi ŷ − 1) − μσ i ∀i = 1, . . . ,m2. (11f)

Observation 1 The problem (11) is always feasible, and there is a feasible interior
point due to the free variables (μ̄i)

m2
i=0, (μ̃i)

m2
i=0,μσ andμρ , which relax the constraints

to be in P and to be in Di (ŷ). The optimal objective-function value of (11) is zero
if and only if (x∗, y∗) is in conv

(⋃m2
i=0(P ∩ Di (ŷ))

)
, i.e., if and only if there is no

violated DC for (x∗, y∗).

Note that Observation 1 is compatible with what is observed in [38] when deriving
split-cuts for mixed-integer SOCP using disjunctive programming with SOCP.

For the uniform normalization, the dual of (CG-SOCP) is

−min ‖((μ̄i)
m2
i=0, (μ̃i)

m2
i=0)‖p∗ (12a)

s. t. (10a) − (10d), (11c), (11d), (10g), (10h). (12b)

Observation 2 The problem (12) is not necessarily feasible, because only the con-
straints to be in P are relaxed with the variables (μ̄i)

m2
i=0 and (μ̃i)

m2
i=0. To be more

precise, (12) is feasible if and only if (x∗, y∗) is in conv
(⋃m2

i=0 Di (ŷ)
)
. Due to the

structure of our disjunctions (i.e., they are based on the follower constraints and the
follower objective function), the point (x∗, y∗) may not be in conv

(⋃m2
i=0 Di (ŷ)

)
and

thus (12) could be infeasible.
Furthermore, as for standard normalization, the optimal objective-function value

of (12) is zero if and only if (x∗, y∗) is in conv
(⋃m2

i=0(P ∩ Di (ŷ))
)
.

We note that Observation 2 is different compared to what the authors of [38] obtain
in their setting, as the convex hull of the disjunction for split cuts is Rn and thus their
resulting problem (12) is always feasible.

For the cut-coefficient normalization, the dual of (CG-SOCP) is

−min ‖(μx , μy)‖p∗ (13a)

123

106 E. Gaar et al.

s. t.
∑m2

i=0 xi = x∗ + μx (13b)
∑m2

i=0 yi = y∗ + μy (13c)

(10c) − (10h), (13d)

so geometrically (13) determines a point in conv
(⋃m2

i=0(P ∩ Di (ŷ))
)
that minimizes

the distance (in p∗-norm) to (x∗, y∗).

Observation 3 Problem (13) is feasible if and only if conv
(⋃m2

i=0(P ∩ Di (ŷ))
)
is non-

empty. If (13) is infeasible, then all disjunctions are empty (i.e., redundant as described
in Sect. 3.4).

As a result of the investigation of the normalization, we know that Assumption 3 is
always satisfied with standard normalization. Unfortunately this is not the case with
uniform and cut-coefficient normalization. We describe in Sect. 5.3 how we deal with
this.

4 Solutionmethods using disjunctive cuts

We now present two solution methods based on DCs: one applicable for the general
bilevel program (1), and one dedicated to a binary version of (1).

4.1 A branch-and-cut algorithm

We propose to use the DCs in a B&C algorithm to solve the bilevel program (1).
The B&C can be obtained by modifying any given continuous-relaxation-based B&B
algorithm to solve the HPR (assuming that there is an off-the-shelf solver for HPR that
always returns an extreme optimal solution (x∗, y∗) like e.g., a simplex-based B&B
for a linear HPR1).

In particular, we adapt the B&B algorithm in the following way: Use HPR as initial
relaxationP at the root-nodeof theB&C.Whenever a solution (x∗, y∗)which is integer
is encountered in a B&C node, call the DC separation. If a violated DC is found, add
the DC to the set P (which also contains, e.g., variable fixing by previous branching
decisions, previously added globally or locally validDCs,…)of the currentB&Cnode,
otherwise the solution is feasible and the incumbent can be updated. Note that DCs are
only locally valid except the ones from the root node, because P includes branching
decisions. IfP is empty or optimizing overP leads to an objective-function value that
is greater than the objective-function value of the current incumbent, we fathom the
current node. In our implementation, we also use DC separation for fractional (x∗, y∗)
as described in Sect. 3.2 for strengthening the relaxation.

Theorem 4 The B&C solves the bilevel program (1) in a finite number of B&C-
iterations under our assumptions.

1 This assumption is without loss of generality, as we can outer approximate second-order conic constraints
of P and get an extreme optimal point by a simplex method.

123

On SOCP-based disjunctive cuts for a class of IBNPs 107

Proof First, suppose that the B&C terminates, but the integer solution (x∗, y∗) is not
bilevel feasible. This is not possible, as by Theorem 1 and the observations thereafter,
the DC generation procedure finds a violated cut to cut off the integer point (x∗, y∗)
in this case.

Next, suppose that the B&C terminates and the solution (x∗, y∗) is bilevel feasible,
but not optimal. This is not possible, because by construction, the DCs never cut
off any bilevel-feasible solution (or in case of optimality-based removal, any bilevel-
feasible solution, which has a better leader objective-function value than the currently
best-known solution) of the current subtree.

Finally, suppose that the B&C never terminates. This is not possible, as all variables
are integer and bounded due to Assumption 1, thus there is only a finite number of
nodes in the B&C tree. Moreover, this means that there is also a finite number of
integer points (x∗, y∗), thus we solve the follower problem and (CG-SOCP) a finite
number of times. The follower problem is discrete and can therefore be solved in a
finite number of iterations.

��

4.2 A cutting-plane algorithm for binary IBNPs

TheDCs can be directly used in a cutting-plane algorithm under the following assump-
tion.

Assumption 4 All variables in the bilevel program (1) are binary variables.

The algorithm is detailed in Algorithm 2. It starts with the HPR as initial relaxation of
VFR, which is solved to optimality. Then the chosenDC separation routine (either O or
G) is called to check if the obtained integer-optimal solution is feasible for constraint
(3e). If not, the obtained DC is added to the relaxation to cut off the optimal solution,
and the procedure is repeated with the updated relaxation.

Due to Assumption 4, each obtained binary optimal solution is an extreme point of
the convex hull of HPR, and thus due to Theorem 1, a violated cut will be produced by
theDCseparation if the solution is not bilevel feasible.Note thatwithoutAssumption4,
i.e., if variables are allowed to be integer and not just binary, an optimal solution may
not be an extreme point of HPR. In this case, Theorem 1 does not apply. Thus, we
cannot guarantee that the DC separation finds a violated cut. As a consequence, our
proposed cutting-plane algorithm only works for binary instances.

5 Computational analysis

In this section, we present computational results to empirically compare methods
and strategies proposed in Sects. 3 and 4. We also assess computational difficulties
in the presence of multiple linking constraints, or in the presence of integer instead
of binary variables. Finally, we compare our new DC-based branch-and-cut with the
state-of-the-art MIBLP-solver MIX++ [18, 19].

123

108 E. Gaar et al.

Algorithm 2: cutting-plane
Input : An instance of problem (1) where all variables are binary
Output: An optimal solution (x∗, y∗)

1 R ← HPR; P ← set of feasible solutions of HPR; violated ← True;
2 do
3 violated ← False;
4 solveR to optimality, let (x∗, y∗) be the obtained optimal solution;
5 call separation for (x∗, y∗) and P with strategy O or G;
6 if a violated cut is found for (x∗, y∗) then
7 violated ← True; add the violated cut to R and to P ;
8 while violated;
9 return (x∗, y∗)

5.1 Instances

In our computations, we consider two sets of instances: the quadratic bilevel covering
problem (QBCov) instances (originally studied in [22] and extended herewithmultiple
linking constraints) and a new additional set of quadratic bilevel multiple knapsack
problem (QBMKP) instances derived from the SAC-94 library [26]. The instances are
available at https://msinnl.github.io/pages/instancescodes.html. All instances can be
described as

min ĉ′x + d̂ ′y (14a)

s. t. M̂x + N̂ y ≥ ĥ (14b)

y ∈ argmin{y′ R̂ y : Âx + B̂ y ≥ f̂ , y ∈ {0, 1}n2} (14c)

x ∈ {0, 1}n1 , (14d)

where ĉ ∈ R
n1 , d̂ ∈ R

n2 , M̂ ∈ R
m1×n1 , N̂ ∈ R

m1×n2 , ĥ ∈ R
m1 , R̂ = V̂ ′V̂ ∈ Z

n2×n2 ,
Â ∈ Z

m2×n1 , B̂ ∈ Z
m2×n2 , and f̂ ∈ Z

m2 .
The QBCov instances. In this setting, we chose m2 = 1, in which case the problem

can be seen as the covering-version of the quadratic bilevel knapsack problem studied
by Zenarosa et al. in [54]. Indeed, [54] considers a single leader variable (n1 = 1) and
no coupling constraints at the leader (m1 = 0), and with a quadratic non-convex leader
objective function. The linear variant of such a bilevel knapsack-problem is studied in,
e.g., [9, 10]. We note that [9, 10, 54] propose problem-specific solution approaches.

We generated 40 random instances in the following way. We considered n1 = n2
for n1 + n2 = n ∈ {20, 30, 40, 50}, and we study instances with no (as in [54]) and
with one leader constraint (14b), so m1 ∈ {0, 1}. For each n, we created five random
instances for each m1 ∈ {0, 1}. Furthermore, we chose all entries of ĉ, d̂, M̂ , N̂ , Â,
and B̂ uniformly at random from {0, 1, . . . , 99}. The values of ĥ and f̂ (which are
scalars for these instances) were set to the sum of the entries of the corresponding
rows in the constraint matrices divided by four. The matrix V̂ ∈ R

n2×n2 has integer
entries chosen uniformly at random from the set {0, 1, . . . , 9}. We extended this data
set from [22] with 40 new instances generated in the same way, by choosing m2 = 2.

123

https://msinnl.github.io/pages/instancescodes.html

On SOCP-based disjunctive cuts for a class of IBNPs 109

The QBMKP instances. These instances were derived from the multiple knapsack
problem (MKP) instances from SAC-94 library [26] which is a benchmark library
containing 0/1 MKP instances. From there we chose 50 instances and generated 300
new instances of the QBMKP as follows.

The instances have 2 to 10 constraints and 10 to 105 items. For each instance of this
data set, we first constructed two different QBMKP instances by keeping all but the
last m2 constraints at the leader problem, where m2 ∈ {1, 2}. The first 50 or 75% of
items are associated to leader variables x , the remaining ones are associated to follower
variables y. The coefficients of the originalMKP objective function are assigned to the
leader. Each budget constraint of the starting MKP, say a′x + b′y ≤ f , is translated
into a covering constraint of type (14b) as a′x + b′y ≥ e′a + e′b − f̂ (where e is
the vector of all ones). To generate the positive semidefinite matrix R̂ determining the
follower objective function, we follow a procedure proposed in [30].We first randomly
generated quadratic matrices V of suitable size whose entries are chosen uniformly

at random from {−σ, . . . , σ } where σ := � 4
√

||d̂||∞� and then set R̂ := V ′V . This
allows to keep the order of magnitude for the coefficients of the objective function of
the follower similar to those of the leader. Following this procedure, we obtained 200
binary instances, 100 with one linking constraint and 100 with two linking constraints.

Lastly, we generated integer instances where m2 = 1, all decision variables take
value in {0, . . . , 5}, and the right-hand side of the previously generated covering con-
straints are multiplied by two. Together with the two choices of variable assignments
to the leader and the follower problems, we obtained 100 integer QBMKP instances.

Linearization of instances. The structure of (14) allows for an easy linearization of the
convex nonlinear terms in the binary instances using a standard McCormick lineariza-
tion to transform the starting problem into an MIBLP. This allows us to compare the
performance of our algorithm against a state-of-the-art MIBLP-solver MIX++ from
Fischetti et al. [18, 19].

5.2 Computational environment

All experiments were executed on a single thread of an Intel Xeon E5-2670v2machine
with 2.5 GHz processor with a memory limit of 10 GB and a time limit of 600s. Our
B&C algorithm and our cutting-plane algorithm both are implemented in C++. They
make use of IBM ILOG CPLEX 12.10 (in its default settings, except for disabling
presolve so that we can access the original HPR formulation, setting the MIP gap
tolerance to zero, and running it single-threaded) as branch-and-cut framework in our
B&C algorithm and as solver forR in our cutting-plane algorithm. During the B&C,
CPLEX’s internal heuristics are allowed and a bilevel-infeasible heuristic solution is
just discarded if a violated cut cannot be obtained. For calculating the follower solution
ŷ for a given x∗, we also useCPLEX.For solving (CG-SOCP),weuseMOSEK[44] 9.2
in its default settings, except for running it always single-threaded and using always
the primal solver to avoid numerical issues. The solver MIX++ against which we
compare was run with CPLEX 12.9, which is the newest CPLEX version compatible
with this solver.

123

110 E. Gaar et al.

5.3 Implementation details

Update of P . For both the B&C and the cutting-plane algorithm, we start with HPR
as initial P and do not update it with dynamically added DCs. This is in line with the
recent implementation of DCs with split-cuts for mixed-integer SOCP in [38], and
prevents potential numerical instabilities. However, in the B&C we update P with the
local variable bounds at the current node in the B&C-tree. Thus the obtained DCs
are only locally valid (i.e., in the current subtree) and are added as locally valid cuts.
Doing this is numerically safe, as variable bound constraints are already present in
the original problem and they just need to be updated, i.e., the number of constraints
remains the same.

We note that technically, in Theorem 1, we need that the current P incorporates all
added DCs and the local variable bounds to ensure that (x∗, y∗) is an extreme point,
and thus can be separated in case it is bilevel infeasible. However, in our computational
experiments, we never encountered any issues when not including previous DCs inP .
On the other hand, updatingP with the local boundswas crucial tomake the separation
work for integer instances.

Solving the follower problem to obtain ŷ. During the separation of both integer and
fractional points (x∗, y∗), while solving the follower problem, we make use of the
follower objective-function value q(y∗), by setting it as an upper cutoff value. This is
a valid approach because a violated DC exists only if �(x∗) < q(y∗).

Furthermore, we use the solution-pool feature of CPLEX. This means that CPLEX
keeps feasible solutions obtained in previous iterations and tries to use them as initial
solution. As a consequence, when using the separation option G, CPLEXmay not need
to start the solution process, as a solution from the solution-pool might be feasible for
the current follower problem.

Checking for redundant disjunctions. In our implementation, we only check the redun-
dancy of linear disjunctions, i.e.,Di (ŷ) for i = 1, . . . ,m2, because we observed in the
preliminary tests that the objective disjunction is almost never redundant as (x∗, ŷ)
usually gives a feasible solution to P ∩ Di (ŷ).

When solving the problems to detect redundancy, we keep the original leader objec-
tive function and define the feasible region as P ∩Di (ŷ) or P ∩Di (ŷ) ∩ Z

n together
with the local variable bounds which will be used to obtain a DC. For optimality-based
removal, we solve the problem with an upper cutoff value z∗ − 10−5, where z∗ is the
current leader incumbent objective value. Note that redundancy of a disjunction is
indicated by infeasibility of the corresponding detection problem. Thus as soon as
CPLEX finds a feasible solution for a detection problem, we know that the disjunction
is not redundant. Hence, we set the CPLEX parameter solution limit to one.

Solving (CG-SOCP). To avoid numerical issues, whenever a coefficient of a DC is
close enough to zero (i.e., absolute value less than 5 · 10−6), we round it to zero and
adapt the right-hand side of the DC to maintain a valid cut.

Unless mentioned differently, we use standard normalization with the 2-norm,
where Assumption 3 is satisfied. Whenever the dual of (CG-SOCP) is infeasible in
the case of uniform normalization, we take α, β and τ from an unbounded ray of the

123

On SOCP-based disjunctive cuts for a class of IBNPs 111

primal (which is provided by MOSEK) as DC. To prevent numerical issues, we scale
any unbounded ray in such a way that ‖(α, β)‖2 = 1 holds. If the dual of (CG-SOCP)
with cut-coefficient normalization is infeasible, all disjunctions are empty as described
in Sect. 3.5. Thus we add the always violated cut α = 0, β = 0 and τ = 1 in this case.

Separation. We set the minimum acceptable cut violation ε described in Sect. 3.3
to 10−6 for our experiments. We control the number of cuts added for separating
fractional points as follows. At the root node of the B&C tree, we add as many cuts
as needed, i.e., we check if we are able to cut off the current point with a DC until
no violated cut can be obtained. At all other nodes, we add at most one DC and then
proceed to branching, as the separation procedure could be time consuming.

Finally, in our B&C implementation, we also have to deal with integer solutions that
are produced by the internal heuristics of CPLEX. In this case, we do not necessarily
have a useful P for separation at hand. Thus, if the produced heuristic solution is
bilevel infeasible and we fail to cut it off with a DC, we just use the reject-feature
of CPLEX to reject this solution (this prevents CPLEX from updating the incumbent
with the heuristic solution).

5.4 Numerical results

Westart by assessing the performance of theB&Capproach, and by evaluating how the
choice of separation strategy, removal of redundant disjunctions, and normalization
affect the overall performance. We then compare the B&C against two alternatives:
the cutting-plane method described in Sect. 4 and the state-of-the-art MIBLP solver
MIX++ from [18, 19]. We conducted these experiments on 140 instances from our
benchmark set that contain only binary variables, and a single linking constraint.
Finally, we extended the benchmark set, and we also demonstrate the performance of
our B&Cwhen applied to instances with multiple linking constraints, and with integer
variables.

Performance of different ingredients of the B&C algorithm. We discussed different
separation procedures in Sect. 3.2. While executing our B&C algorithm, we consider
four different settings for the separation of cuts:

– IO: only integer solutions are separated using strategy O,
– IFO: both integer and fractional solutions are separated using strategy O,
– IG: only integer solutions are separated using strategy G,
– IFG: both integer and fractional solutions are separated using strategy G.

In Fig. 3 we compare these four settings for the B&C. We show the empirical
cumulative distribution functions (ECDFs) w.r.t. the runtimes and final gaps. The gaps
are defined in the following way. If an instance is proven to be infeasible, we define
the gap to be zero. Otherwise, if no feasible solution is found, we define the gap to be
100. If a feasible solution is found, then the gap is calculated as 100(z∗ − LB)/z∗,
where z∗ and LB are the best-known objective-function value of a feasible solution
and the lower bound, respectively. Note that by the construction of our instances,
the value zero is a trivial lower bound for all feasible instances. Thus the gaps will
always range between zero and 100. The ECDFs with e.g., runtimes can be interpreted

123

112 E. Gaar et al.

Fig. 3 ECDFs reporting runtimes and final gaps for four different separation strategies of the B&C, over
binary instances with one linking constraint

Fig. 4 ECDFs reporting runtimes and final gaps for four strategies for the removal of redundant disjunctions,
over binary instances with one linking constraint

as the percentage of instances (shown in y-axis) that can be solved within a certain
amount of time (depicted in the x-axis). In order to have a fair comparison, out of
140 instances from this benchmark set, we only consider 111 instances for which
at least one of the methods was either able to find a feasible solution, or to prove
infeasibility (for 29 instances from QBMKP, the feasibility status remains unknown).
We observe that the best-performing setting is IFG. This can be explained by the fact
that non-optimal follower solution may also provide a strong DCs (cf. Theorem 2) and
by the significant savings in separation time (as we are avoiding to solve the follower
problem to optimality). Our preliminary results reported in [22] did not identify IFG
as the best setting, because there was no control mechanism implemented to limit the

123

On SOCP-based disjunctive cuts for a class of IBNPs 113

Fig. 5 ECDFs reporting runtimes and final gaps for six different normalization strategies for (CG-SOCP),
over binary instances with one linking constraint

Fig. 6 ECDFs reporting runtimes and final gaps for the base and the best versions of the B&C and cutting-
plane methods, and the MIBLP solver, over binary instances with one linking constraint

number of separated DCs for each fractional point, which may cause overloading of
the master problem. This is now regulated as described in Sect. 5.3.

In what follows, we continuewith the settingIFG, and investigate how the potential
removal of redundant disjunctions (discussed in Sect. 3.4) affects the overall perfor-
mance. Two additional ECDFs are reported in Fig. 4 for the settings denoted as RN (no
removal of redundant disjunctions), RR (relaxation-based removal), RI (integrality-
based removal), and RO (optimality-based removal). We notice that the runtime can
be improved, even when only the simplest strategy RR is applied. Also, the other more
computationally-expensive removal strategies do not deteriorate the runtime, and in
particular, they help to significantly improve the final gaps. For example, when includ-
ing the strongest strategy RO, for 90% of the instances, the final gap remains below

123

114 E. Gaar et al.

Ta
bl
e
1

A
ve
ra
ge

re
su
lts

of
fiv

e
m
et
ho

ds
ov
er

40
Q
B
C
ov

in
st
an
ce
s
w
ith

on
e
lin

ki
ng

co
ns
tr
ai
nt

n
S
e
t
t
i
n
g

t
G
a
p

G
a
p
*

R
G
a
p

R
G
a
p
*

n
N
o
d
e

n
I
C
u
t

n
F
C
u
t

n
R
e
d

t F
t S

n
S
o
l

20
B
C
-
b
a
s
e

2.
0

0.
0

0.
0

56
.0

16
.2

16
5.
8

61
.9

–
–

1.
3

0.
4

10
/1
0

B
C
-
b
e
s
t

1.
1

0.
0

0.
0

66
.6

16
.4

93
.0

17
.1

46
.1

40
.3

0.
4

0.
3

10
/1
0

C
P
-
b
a
s
e

1.
0

–
0.
0

–
–

–
15
.3

–
–

0.
3

0.
2

10
/1
0

C
P
-
b
e
s
t

0.
2

–
0.
0

–
–

–
10
.6

–
1.
0

0.
0

0.
1

10
/1
0

M
I
X
+
+

2.
2

0.
0

0.
0

14
.5

14
.5

25
.0

–
–

–
–

–
10

/1
0

30
B
C
-
b
a
s
e

15
4.
8

2.
6

0.
9

70
.5

15
.1

44
61

.1
18

79
.9

–
–

14
3.
8

10
.0

9/
10

B
C
-
b
e
s
t

3.
6

0.
0

0.
0

53
.4

14
.0

50
7.
8

32
.8

28
5.
9

24
6.
8

1.
5

1.
7

10
/1
0

C
P
-
b
a
s
e

70
.7

–
0.
0

–
–

–
13

1.
3

–
–

12
.5

0.
8

10
/1
0

C
P
-
b
e
s
t

16
.7

–
0.
0

–
–

–
77

.4
–

1.
1

0.
3

0.
4

10
/1
0

M
I
X
+
+

11
6.
5

0.
0

0.
0

15
.6

15
.6

30
0.
2

–
–

–
–

–
10

/1
0

40
B
C
-
b
a
s
e

30
5.
4

16
.3

7.
7

10
0.
0

21
.1

57
17

.0
20

58
.4

–
–

28
9.
4

14
.7

6/
10

B
C
-
b
e
s
t

25
.0

0.
0

0.
0

90
.0

18
.9

32
82

.1
19

6.
2

17
59

.9
16

29
.5

11
.0

12
.7

10
/1
0

C
P
-
b
a
s
e

25
6.
2

–
2.
3

–
–

–
24

9.
2

–
–

52
.6

1.
9

6/
10

C
P
-
b
e
s
t

11
7.
6

–
0.
9

–
–

–
18
2.
4

–
0.
7

0.
9

1.
2

9/
10

M
I
X
+
+

45
6.
9

20
.2

8.
7

32
.2

21
.8

36
8.
2

–
–

–
–

–
4/
10

50
B
C
-
b
a
s
e

55
1.
2

46
.9

27
.8

10
0.
0

36
.2

75
13

.8
26

18
.2

–
–

52
6.
4

23
.2

2/
10

B
C
-
b
e
s
t

23
3.
6

3.
1

2.
8

10
0.
0

33
.5

23
47

9.
3

10
73

.1
14

85
9.
2

94
88

95
.5

12
8.
1

9/
10

C
P
-
b
a
s
e

54
9.
3

–
17

.9
–

–
–

41
8.
8

–
–

15
3.
8

3.
9

1/
10

C
P
-
b
e
s
t

42
3.
1

–
11

.8
–

–
–

37
4.
7

–
0.
5

2.
0

3.
1

4/
10

M
I
X
+
+

60
0.
0

53
.1

31
.6

57
.8

38
.1

24
5.
5

–
–

–
–

–
0/
10

123

On SOCP-based disjunctive cuts for a class of IBNPs 115

Ta
bl
e
2

A
ve
ra
ge

re
su
lts

of
fiv

e
m
et
ho
ds

ov
er

71
Q
B
M
K
P
in
st
an
ce
s
w
ith

on
e
lin

ki
ng

co
ns
tr
ai
nt

n 1
/
n

S
e
t
t
i
n
g

t
G
a
p

G
a
p
*

R
G
a
p

R
G
a
p
*

n
N
o
d
e

n
I
C
u
t

n
F
C
u
t

n
R
e
d

t F
t S

n
S
o
l

0.
50

B
C
-
b
a
s
e

41
7.
5

34
.2

23
.8

85
.8

30
.0

58
47

.7
24

97
.0

–
–

40
3.
4

13
.0

11
/2
6

B
C
-
b
e
s
t

71
.2

3.
6

3.
6

78
.6

13
.6

51
51

.6
34

2.
3

64
15

.3
48

74
.7

31
.0

36
.4

24
/2
6

C
P
-
b
a
s
e

35
7.
2

–
20

.7
–

–
–

25
7.
4

–
–

13
1.
2

5.
3

12
/2
6

C
P
-
b
e
s
t

15
5.
3

–
19

.2
–

–
–

16
4.
5

–
39

.8
0.
8

0.
9

19
/2
6

M
I
X
+
+

34
1.
2

20
.4

14
.3

35
.9

22
.4

19
9.
5

–
–

–
–

–
16

/2
6

0.
75

B
C
-
b
a
s
e

30
2.
8

38
.2

18
.1

66
.3

23
.7

17
84

1.
1

65
81

.2
–

–
25

8.
9

39
.6

23
/4
5

B
C
-
b
e
s
t

15
5.
1

14
.5

7.
0

62
.8

17
.8

96
57

.0
60

0.
8

94
27

.2
56

00
.4

63
.2

84
.1

35
/4
5

C
P
-
b
a
s
e

29
4.
2

–
14

.8
–

–
–

17
1.
0

–
–

66
.4

1.
4

23
/4
5

C
P
-
b
e
s
t

19
1.
5

–
10

.7
–

–
–

15
4.
2

–
8.
7

0.
8

1.
3

31
/4
5

M
I
X
+
+

31
6.
0

38
.4

14
.6

45
.7

20
.6

71
2.
7

–
–

–
–

–
23

/4
5

123

116 E. Gaar et al.

Fig. 7 ECDFs reporting runtimes and final gaps for BC-base and BC-best over 123 binary instances
with two linking constraints

10%, whereas without the removal, the respective gap can be as large as 50%. Even
though for the fewmost difficult instances, the best final gaps are obtained when using
the RR strategy, we decided to continue with the rest of experiments using RO as a
more stable and robust setting.

Finally, when focusing on possible enhancement of the B&C procedure, we look at
the effectiveness of normalization strategies for (CG-SOCP) presented in Sect. 3.5. The
corresponding ECDFs are shown in Fig. 5. The letters S, U and C stand for standard,
uniform and cut-coefficient normalization strategies, respectively, followed by p ∈
{1, 2} denoting the type of norm used. We observe that all normalization strategies
perform very similarly, with two consistent trends: the worst-performing one is C
(which is also in line with the known results from the literature on DCs, see, e.g., [38]),
and the 2-norm is always outperformed by the 1-norm. The latter can be explained by
the sparsity and better numerical stability of cuts produced using the 1-norm. Thus,
based on these experiments, we decide to use the strategy IFG combined with RO
and S1 as our best setting (denoted as BC-best in the following). We denote by
BC-base the setting where IO is combined with RN and S2 (the setting which was
also used in our earlier study in [22]).

Comparison against alternative methods. For binary IBNPs we proposed an alter-
native cutting-plane algorithm in Sect. 4.2. This algorithm can be implemented with
both separation strategies (G and O). Moreover, the removal of redundant disjunc-
tions and normalization strategies can be fine-tuned as well. In Fig. 6, we compare the
B&C results with the two settings (BC-best versus BC-base) against the results
obtained by the cutting-plane algorithm (CP-best which involves G, RO, and S1
versus CP-base which involves O, RN, and S2) as well as a state-of-the-art MIBLP
solver MIX++ of Fischetti et al. [18, 19], which is able to solve the linearized version
of our instances. Figure6 shows the ECDFs of the runtime and the final gaps at the
end of the time limit. It can be seen that the best settings significantly improve their

123

On SOCP-based disjunctive cuts for a class of IBNPs 117

Ta
bl
e
3

A
ve
ra
ge

re
su
lts

of
B
C
-
b
a
s
e
an
d
B
C
-
b
e
s
t
ov
er

40
Q
B
C
ov

in
st
an
ce
s
w
ith

tw
o
lin

ki
ng

co
ns
tr
ai
nt
s

n
S
e
t
t
i
n
g

t
G
a
p

G
a
p
*

R
G
a
p

R
G
a
p
*

n
N
o
d
e

n
I
C
u
t

n
F
C
u
t

n
R
e
d

t F
t S

n
S
o
l

20
B
C
-
b
a
s
e

2.
0

0.
0

0.
0

90
.0

26
.3

29
1.
1

10
8.
9

–
–

1.
2

0.
7

10
/1
0

B
C
-
b
e
s
t

2.
0

0.
0

0.
0

90
.0

25
.7

17
4.
6

26
.1

90
.6

13
9.
4

0.
8

0.
7

10
/1
0

30
B
C
-
b
a
s
e

22
5.
0

14
.8

10
.5

90
.0

27
.4

39
19

.3
16

43
.0

–
–

21
1.
0

13
.3

7/
10

B
C
-
b
e
s
t

42
.5

0.
0

0.
0

73
.6

24
.0

52
80

.2
21

6.
1

34
25

.3
53

79
.6

19
.8

20
.7

10
/1
0

40
B
C
-
b
a
s
e

33
9.
3

32
.0

12
.7

73
.3

21
.9

44
69

.1
15

30
.4

–
–

32
1.
7

16
.8

5/
10

B
C
-
b
e
s
t

10
2.
0

0.
0

0.
0

80
.0

21
.3

83
61

.7
57

5.
6

52
55

.2
69

28
.8

44
.6

54
.0

10
/1
0

50
B
C
-
b
a
s
e

55
0.
4

56
.0

36
.9

10
0.
0

40
.3

32
99

.2
12

18
.1

–
–

53
2.
7

17
.0

1/
10

B
C
-
b
e
s
t

36
4.
0

26
.1

25
.3

10
0.
0

39
.4

21
18

4.
3

11
14

.2
15

53
9.
7

17
11

4.
4

14
7.
3

20
6.
4

5/
10

123

118 E. Gaar et al.

Ta
bl
e
4

A
ve
ra
ge

re
su
lts

of
B
C
-
b
a
s
e
an
d
B
C
-
b
e
s
t
ov
er

83
Q
B
M
K
P
in
st
an
ce
s
w
ith

tw
o
lin

ki
ng

co
ns
tr
ai
nt
s

n 1
/
n

S
e
t
t
i
n
g

t
G
a
p

G
a
p
*

R
G
a
p

R
G
a
p
*

n
N
o
d
e

n
I
C
u
t

n
F
C
u
t

n
R
e
d

t F
t S

n
S
o
l

0.
50

B
C
-
b
a
s
e

41
7.
8

40
.1

19
.8

86
.0

26
.0

37
76

.9
13

87
.8

–
–

40
4.
8

12
.3

14
/3
3

B
C
-
b
e
s
t

19
1.
4

8.
2

8.
2

79
.3

16
.9

10
12

8.
7

52
4.
2

96
23

.2
12

29
7.
6

82
.1

10
2.
8

26
/3
3

0.
75

B
C
-
b
a
s
e

29
5.
6

27
.8

14
.4

67
.9

17
.7

15
58

7.
6

39
87

.9
–

–
24

6.
7

46
.2

26
/5
0

B
C
-
b
e
s
t

16
3.
0

9.
1

8.
9

58
.4

15
.4

97
42

.1
38

5.
6

80
17

.7
10

36
5.
4

71
.2

86
.4

38
/5
0

123

On SOCP-based disjunctive cuts for a class of IBNPs 119

base counterparts. This is particularly pronounced for the B&C algorithm, where the
base setting solves only 55% of instances to optimality, whereas its best counter-
part increases this number to almost 90%. Similar (but not so drastic) improvements
are obtained for the cutting-plane method too. Finally, the overall best-performing
approach is BC-best and the solver MIX++ is also outperformed by both the cutting-
plane algorithm and the B&C.

Tables 1 and 2 provide additional insights into this comparison. For each of the five
methods, we report the following average values: the runtime in seconds (t), the final
gap (Gap), the final gap with respect to the best-known upper bound (Gap*), the root
gap (RGap), the root gap with respect to the best-known upper bound (RGap*), the
number of DCs separated at integer points (nICut), the number of DCs separated
at fractional points (nFCut), the number of cuts where at least one redundant dis-
junctions was removed (nRed), the time needed to solve the follower problem (tF),
the additional time needed to separate a DC (tS), the number of instances solved to
optimality and the total number of instances considered in each row (nSol).

The gaps are calculated as follows: RGap is calculated as 100(z∗R − LBR)/z∗R ,
where z∗R and LBR are the best objective-function value and the lower bound at the
end of the root node, respectively. In the ∗ counterparts of Gap and RGap, we use the
best-known objective-function value of the instance over all the experiments described
in this section, instead of z∗ and z∗R . For the cutting-plane method, only a lower bound
is available unless the instances is solved to optimality, thus we only provide Gap*.

In Table 1 each row presents average values over 10 instances with n ∈
{20, 30, 40, 50}, and in Table 2, the instances are grouped according to the percentage
of items that are controlled by the leader (n1/n ∈ {0.5, 0.75}). We observe that the
removal of redundant disjunctions is particularly effective when fractional points are
separated, and that for the cutting-plane method the redundant disjunctions are rarely
detected. The latter can be explained by the fact that the problems solved to detect
redundancy are more likely to be infeasible when considering local variable bounds.
Moreover, we observe speed-ups of orders of magnitude when using G instead of
using O. In terms of final gaps, for the most difficult instances (namely those from
QBCov with n = 50 and all instances from QBMKP), the best method is BC-best,
providing final average gaps which are two to 15 times lower than the respective gaps
of the competing methods.

Performance of the B&C on instances with two linking constraints. We now turn our
attention to the set of 140 binary instances with two linking constraints, 40 of them
being from the benchmark set QBCov and 100 from QBMKP. For these instances,
(CG-SOCP) has three disjunctions, one for the objective function, and one for each
of the linking constraints. In order to have a fair comparison, out of 140 instances
from this benchmark set, we only consider 123 instances for which at least one of the
methods was either able to find a feasible solution, or to prove infeasibility (for 17
instances from QBMKP, the feasibility status remains unknown). We again compare
the settings BC-best and BC-base and report the corresponding ECDFs in Fig. 7.
Also here, significant improvements in the performance can be achieved thanks to a
proper combination of separation and disjunction removal strategies (around 50% of
instances are solved to optimality in the BC-base setting versusmore than 80%when

123

120 E. Gaar et al.

Fig. 8 ECDFs reporting runtimes and final gaps for BC-base and BC-best over 97 integer instances
with one linking constraint

BC-best is used instead). More detailed results for these instances are provided in
Tables 3 and 4. It is clear that under BC-best we are able to decrease the solution
times for each group of instances and to detect many redundant disjunctions.

Performance of the B&C on instances with integer variables. Finally, we also con-
sider 100 additional instances from the benchmark set QBMKPwith integer variables.
For 97 instances (for which we were able to either find a feasible solution, or to prove
infeasibility) the results comparing the settings BC-best and BC-base are sum-
marized in Fig. 8. We observe that IBNPs with integer variables are more difficult
for our method than their binary counterparts. The improvements obtained using the
BC-best setting are still significant (we double the number of instances solved to
optimality within the time limit), however, more than 50% of the instances from this
benchmark set remain unsolved. These instances are the most difficult ones consid-
ered in this study, which can be explained by the much larger size of the search space.
Based on the detailed results which are provided in Table 5, we observe that the num-
ber of explored branching nodes is orders of magnitude higher compared to the similar
instances with binary variables, and the strength of DCs (in terms of the root bounds)
is significantly weaker when integer variables are involved.

6 Conclusions and outlook

In this article, we demonstrated that SOCP-based DCs are an effective and promising
methodology for solving a challenging family of discrete BPs with a convex quadratic
objective and linear constraints in the follower problem. Although DCs have been
employedwith some success for several classes ofMINLPs, their use and development
for IBNPs is novel. The fact that we significantly outperform a state-of-the-art method
for MIBLPs (after linearizing the nonlinear terms) indicates that further development

123

On SOCP-based disjunctive cuts for a class of IBNPs 121

Ta
bl
e
5

A
ve
ra
ge

re
su
lts

of
B
C
-
b
a
s
e
an
d
B
C
-
b
e
s
t
ov
er

97
in
te
ge
r
Q
B
M
K
P
in
st
an
ce
s
w
ith

on
e
lin

ki
ng

co
ns
tr
ai
nt

n 1
/
n

S
e
t
t
i
n
g

t
G
a
p

G
a
p
*

R
G
a
p

R
G
a
p
*

n
N
o
d
e

n
I
C
u
t

n
F
C
u
t

n
R
e
d

t F
t S

n
S
o
l

0.
50

B
C
-
b
a
s
e

51
7.
6

64
.6

53
.3

96
.0

55
.7

43
04

4.
1

13
40

9.
9

–
–

41
1.
0

98
.6

7/
47

B
C
-
b
e
s
t

46
4.
6

45
.8

43
.9

95
.9

49
.5

36
86

4.
1

95
9.
6

35
20

8.
5

13
36

8.
0

18
0.
0

25
5.
5

11
/4
7

0.
75

B
C
-
b
a
s
e

47
1.
1

25
.9

21
.6

86
.4

23
.8

12
38

43
.5

25
39

8.
6

–
–

24
6.
5

20
4.
2

11
/5
0

B
C
-
b
e
s
t

25
8.
4

21
.4

10
.2

84
.3

19
.2

18
20

0.
1

19
90

.8
15

38
6.
6

56
04

.7
97

.0
14

8.
9

33
/5
0

123

122 E. Gaar et al.

of dedicated solution approaches for IBNPs exploiting nonlinear (and in particular
SOCP-based) techniques is a promising endeavour.

There are still many open questions for future research. The proposed B&C could
be enhanced by bilevel-specific preprocessing, or bilevel-specific valid inequalities
(as this has been done for MIBLPs in e.g., [18, 19]). Problem-specific strengthening
inequalities could be used within disjunctions to obtain stronger DCs, and finally
outer-approximation could be used as an alternative to SOCP-based separation. It also
remains open to study problem generalizations involving (discrete) follower problems
with (multiple) conic constraints.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10107-023-01965-1.

Acknowledgements This research was funded in whole, or in part, by the Austrian Science Fund (FWF)
[P 35160-N]. For the purpose of open access, the author has applied a CC BY public copyright licence to
any Author Accepted Manuscript version arising from this submission. It is also supported by the Johannes
Kepler University Linz, Linz Institute of Technology (Project LIT-2019-7-YOU-211) and the JKUBusiness
School. J. Lee was supported on this project by ESSEC and by ONR grant N00014-21-1-2135.

Funding Open access funding provided by Austrian Science Fund (FWF).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Agor, J., Özaltın, O.Y.: Feature selection for classification models via bilevel optimization. Comput.
Oper. Res. 106, 156–168 (2019)

2. Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Math. Prog. 122(1), 1–20 (2010)
3. Atamtürk, A., Narayanan, V.: Lifting for conic mixed-integer programming. Math. Prog. 126(2), 351–

363 (2011)
4. Audet, C., Haddad, J., Savard, G.: Disjunctive cuts for continuous linear bilevel programming. Optim.

Lett. 1(3), 259–267 (2007)
5. Balas, E.: Disjunctive programming. In: Hammer, P., Johnson, E., Korte, B. (eds.) Ann. of Disc. Math.

5: Discrete Optimization, pp. 3–51. North Holland (1979)
6. Balas, E.: Disjunctive Programming. Springer (2018)
7. Beck, Y., Ljubić, I., Schmidt, M.: A survey on bilevel optimization under uncertainty. Eur. J. Oper.

Res. (2023). https://doi.org/10.1016/j.ejor.2023.01.008
8. Belotti, P., Liberti, L., Lodi, A., Nannicini, G., Tramontani, A., et al.: Disjunctive inequalities: appli-

cations and extensions. Wiley Encyclopedia Oper. Res. Manag. Sci. 2, 1441–1450 (2011)
9. Brotcorne, L., Hanafi, S., Mansi, R.: A dynamic programming algorithm for the bilevel knapsack

problem. Oper. Res. Lett. 37(3), 215–218 (2009)
10. Brotcorne, L., Hanafi, S., Mansi, R.: One-level reformulation of the bilevel knapsack problem using

dynamic programming. Discrete Optim. 10(1), 1–10 (2013)
11. Byeon, G., Van Hentenryck, P.: Benders subproblem decomposition for bilevel problems with convex

follower. INFORMS J. Comput. 34(3), 1749–1767 (2022)

123

https://doi.org/10.1007/s10107-023-01965-1
https://doi.org/10.1007/s10107-023-01965-1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ejor.2023.01.008

On SOCP-based disjunctive cuts for a class of IBNPs 123

12. Calvete, H.I., Galé, C.: Algorithms for linear bilevel optimization. In: Bilevel Optimization, pp. 293–
312. Springer (2020)

13. Cerulli, M.: Bilevel optimization and applications. Ph.D. thesis, École Poly., Paris (2021)
14. Çezik, M.T., Iyengar, G.: Cuts for mixed 0–1 conic programming. Math. Prog. 104(1), 179–202 (2005)
15. D’Ambrosio, C., Lee, J., Skipper, D., Thomopulos, D.: Handling separable non-convexities using

disjunctive cuts. In: Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds.) Proceedings of ISCO
2020. LNCS, vol. 12176, pp. 102–114 (2020)

16. Dempe, S., Zemkoho, A.: Bilevel Optimization. Springer (2020)
17. Fampa, M., Lee, J.: An outer-approximation algorithm for maximum-entropy sampling. In: Ljubić, I.,

Barahona, F., Dey, S.S., Mahjoub, A.R. (eds.) Combinatorial Optimization. ISCO 2022. LNCS, vol.
13526, pp. 130–142 (2022)

18. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: A new general-purpose algorithm for mixed-integer
bilevel linear programs. Oper. Res. 65(6), 1615–1637 (2017)

19. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: On the use of intersection cuts for bilevel optimization.
Math. Prog. 172(1), 77–103 (2018)

20. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts. Math. Prog. 128(1),
205–230 (2011)

21. Fontaine, P., Crainic, T.G., Gendreau, M., Minner, S.: Population-based risk equilibration for the
multimode hazmat transport network design problem. Eur. J. Oper. Res. 284(1), 188–200 (2020)

22. Gaar, E., Lee, J., Ljubić, I., Sinnl, M., Tanınmış, K.: SOCP-based disjunctive cuts for a class of integer
nonlinear bilevel programs. In: Aardal, K., Sanità, L. (eds.) Proceedings of IPCO 2022. LNCS, vol.
13265, pp. 262–276. Springer (2022)

23. González-Díaz, J., González-Rodríguez, B., Leal, M., Puerto, J.: Global optimization for bilevel port-
folio design: economic insights from the Dow Jones index. Omega 102, 102353 (2021)

24. Grimm, V., Orlinskaya, G., Schewe, L., Schmidt, M., Zöttl, G.: Optimal design of retailer-prosumer
electricity tariffs using bilevel optimization. Omega 102, 102327 (2021)

25. Júdice, J.J., Sherali, H.D., Ribeiro, I.M., Faustino, A.M.: A complementarity-based partitioning and
disjunctive cut algorithm for mathematical programming problems with equilibrium constraints. J.
Global Optim. 36(1), 89–114 (2006)

26. Khuri, S., Baeck, T., Heitkoetter, J.: SAC94 Suite: Collection of Multiple Knapsack Problems (1994),
www.cs.cmu.edu/Groups/AI/areas/genetic/ga/test/sac/0.html

27. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. Math. Prog. 154(1),
463–491 (2015)

28. Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic programs. Math. Oper. Res.
41(2), 477–510 (2016)

29. Kılınç-Karzan, F., Steffy, D.E.: On sublinear inequalities for mixed integer conic programs. Math.
Prog. 159(1–2), 585–605 (2016)

30. Kleinert, T., Grimm, V., Schmidt, M.: Outer approximation for global optimization of mixed-integer
quadratic bilevel problems. Math. Prog. 188(2), 461–521 (2021)

31. Kleinert, T., Labbé, M., Ljubić, I., Schmidt, M.: A survey on mixed-integer programming techniques
in bilevel optimization. EURO J. Comput. Optim. 9 (2021)

32. Kleinert, T., Labbé, M., Plein, F., Schmidt, M.: There’s no free lunch: on the hardness of choosing a
correct big-M in bilevel optimization. Oper. Res. 68(6), 1716–1721 (2020)

33. Kleniati, P.M., Adjiman, C.S.: Branch-and-sandwich: a deterministic global optimization algorithm
for optimistic bilevel programming problems: Part II: Convergence analysis and numerical results. J.
Global Optim. 60(3), 459–481 (2014)

34. Kleniati, P.M.,Adjiman,C.S.:Ageneralizationof thebranch-and-sandwich algorithm: fromcontinuous
to mixed-integer nonlinear bilevel problems. Comput. Chem. Eng. 72, 373–386 (2015)

35. Kleniati, P.M., Adjiman, C.S.: Branch-and-sandwich: a deterministic global optimization algorithm
for optimistic bilevel programming problems: Part I: Theoretical development. J. Global Optim. 60(3),
425–458 (2014)

36. Labbé, M., Violin, A.: Bilevel programming and price setting problems. Ann. Oper. Res. 240(1),
141–169 (2016)

37. Lodi, A., Ralphs, T.K.,Woeginger, G.J.: Bilevel programming and the separation problem.Math. Prog.
146(1), 437–458 (2014)

38. Lodi, A., Tanneau, M., Vielma, J.P.: Disjunctive cuts in mixed-integer conic optimization. Math. Prog.
199, 671–719 (2023)

123

www.cs.cmu.edu/Groups/AI/areas/genetic/ga/test/sac/0.html

124 E. Gaar et al.

39. Loridan, P., Morgan, J.: Weak via strong Stackelberg problem: new results. J. Global Optim. 8(3),
263–287 (1996)

40. Lozano, L., Smith, J.C.: A value-function-based exact approach for the bilevel mixed-integer program-
ming problem. Oper. Res. 65(3), 768–786 (2017)

41. Mitsos, A., Lemonidis, P., Barton, P.I.: Global solution of bilevel programs with a nonconvex inner
program. J. Global Optim. 42(4), 475–513 (2008)

42. Modaresi, S.: Valid inequalities and reformulation techniques for mixed integer nonlinear program-
ming. Ph.D. thesis, University of Pittsburgh (2016)

43. Moore, J.T., Bard, J.F.: The mixed integer linear bilevel programming problem. Oper. Res. 38(5),
911–921 (1990)

44. MOSEK ApS: MOSEK Fusion API for C++ manual. Version 9.2. (2021)
45. Plein, F., Thürauf, J., Labbé,M., Schmidt, M.: Bilevel optimization approaches to decide the feasibility

of bookings in the European gas market. Math. Meth. O.R. (2021)
46. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically con-

strained programs: extended formulations. Math. Prog. 124, 383–411 (2010)
47. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically con-

strained programs: projected formulations. Math. Prog. 130, 359–413 (2010)
48. Smith, J.C., Song, Y.: A survey of network interdiction models and algorithms. Eur. J. Oper. Res.

283(3), 797–811 (2020)
49. Tahernejad, S., Ralphs, T., DeNegre, S.: A branch-and-cut algorithm for mixed integer bilevel linear

optimization problems and its implementation. Math. Prog. Comp. 12, 529–568 (2020)
50. Wang, L., Xu, P.: The watermelon algorithm for the bilevel integer linear programming problem. SIAM

J. Optim. 27(3), 1403–1430 (2017)
51. Weninger, D., Orlinskaya, G., Merkert, M.: An exact projection-based algorithm for bilevel mixed-

integer problems with nonlinearities. J. Global Optim. 84(3), 607–650 (2022)
52. Xu, P., Wang, L.: An exact algorithm for the bilevel mixed integer linear programming problem under

three simplifying assumptions. Comput. Oper. Res. 41, 309–318 (2014)
53. Yue, D., Gao, J., Zeng, B., You, F.: A projection-based reformulation and decomposition algorithm for

global optimization of a class of mixed integer bilevel linear programs. J. Global Optim. 73(1), 27–57
(2019)

54. Zenarosa, G.L., Prokopyev, O.A., Pasiliao, E.L.: On exact solution approaches for bilevel quadratic
0–1 knapsack problem. Ann. Oper. Res. 298(1), 555–572 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	On SOCP-based disjunctive cuts for solving a class of integer bilevel nonlinear programs
	Abstract
	1 Introduction
	1.1 Contribution and outline
	1.2 Literature overview

	2 Disjunctive cut methodology
	2.1 Preliminaries
	2.2 Deriving disjunctive cuts

	3 Computational methodology for our disjunctive cuts
	3.1 Separation theory
	3.2 Choosing the point y hat to separate
	3.3 Separation procedures
	3.4 Removing redundant disjunctions
	3.5 Normalization

	4 Solution methods using disjunctive cuts
	4.1 A branch-and-cut algorithm
	4.2 A cutting-plane algorithm for binary IBNPs

	5 Computational analysis
	5.1 Instances
	5.2 Computational environment
	5.3 Implementation details
	5.4 Numerical results

	6 Conclusions and outlook
	Acknowledgements
	References

