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Abstract
Classical trust region methods were designed to solve problems in which function
and gradient information are exact. This paper considers the case when there are
errors (or noise) in the above computations and proposes a simple modification of
the trust region method to cope with these errors. The new algorithm only requires
information about the size/standard deviation of the errors in the function evaluations
and incurs no additional computational expense. It is shown that, when applied to a
smooth (but not necessarily convex) objective function, the iterates of the algorithm
visit a neighborhood of stationarity infinitely often, assuming errors in the function
and gradient evaluations are bounded. It is also shown that, after visiting the above
neighborhood for the first time, the iterates cannot stray too far from it, as measured by
the objective value. Numerical results illustrate how the classical trust region algorithm
may fail in the presence of noise, and how the proposed algorithm ensures steady
progress towards stationarity in these cases.
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446 S. Sun, J. Nocedal

1 Introduction

Trust region methods are powerful techniques for nonlinear optimization that have
the ability to incorporate second-order information, without requiring it to be positive
definite. They are endowedwith strong global convergence properties and have proven
to be effective in practice. Although the design and analysis of trust region methods
are well established in the absence of noise (or errors), this is not the case when noise
is present.

In this paper, we show how to redesign the classical trust region method for uncon-
strained optimization to handle problems where the objective function, gradient, and
(possibly) Hessian, are subject to noise. The modification involves only one change
in the algorithm: the ratio of actual/predicted reduction used for step acceptance is
relaxed by a term proportional to the noise level. All other aspects of the classical trust
region method remain unchanged. We show that, under mild assumptions, the pro-
posed algorithm converges to a neighborhood of stationary points, where the size of
the neighborhood is determined by the noise level—which is assumed to be bounded.
This analysis is more complex than for line search methods due to the effects of mem-
ory encapsulated in the trust region update. Our convergence results do not assume
convexity of the objective function but only that it is sufficiently smooth.

Examples of practical optimization applications with bounded noise include those
that employ mixed-precision arithmetic [22]; derivative-free problems where deriva-
tive information is approximated by finite differences [3, 25, 34]; problems in which
the evaluation of the objective function (and gradient) contain computational noise
[23]; and problems that involve uncertainty. Example of the latter occur in design
optimization when the physical parameters of the system are uncertain, making the
objective function stochastic [26]. Other applications employ a combination of high-
and low-fidelity models, creating bounded noise in the objective function; see [31] for
a survey of optimization problems of this kind.

Although our analysis assumes that noise is bounded, the algorithm will normally
be robust under various unbounded noisemodels, such asGaussian noise.We illustrate
this in Sect. 4.3 through a set of numerical experiments.

This investigation was motivated by numerical experiments performed by the
authors that indicated that, although the classical trust region approach often toler-
ates some noise, it can fail in certain situations. This raises the question of how to
best modify the method to avoid failures. The algorithm proposed here is inspired
by work on line search methods for unconstrained optimization [2, 35] and equality
constrained optimization [28]. In those papers, convergence-to-neighborhood results
were derived, but the analysis presented here follows different lines since trust region
methods require different proof techniques.

The paper is organized into 5 sections. In the rest of this section, we review rel-
evant literature. In Sect. 2, we describe the problem setting and the proposed trust
region algorithm. The main convergence results are presented in Sect. 3. Numerical
experiments are summarized in Sect. 4, and Sect. 5 presents final remarks.
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A trust region method for noisy unconstrained optimization 447

1.1 Literature review

The study of nonlinear optimization with errors or noise in the function and gradient
has attracted attention in recent years, motivated, e.g., by renewed interest in methods
for derivative-free optimization based onfinite differences [25, 34], and by applications
in machine learning; see [17] for a review of some recent work.

One of the earliest studies of nonlinear optimization in the presence of errors [32]
gives a characterization of various types of noise arising in stochastic control, and ana-
lyzes the performance of several algorithms. To our knowledge, the first investigation
of trust region methods with errors is [12]. That paper establishes global convergence
for unconstrained optimization assuming that errors in the gradient diminish at a rate
proportional to the norm of the true gradient; this condition is referred to as the “norm
test” in [4, 8, 9]. The norm test is incorporated into various algorithms [11, 14, 29] for
which convergence and complexity results are established.

Three kinds of assumptions have been made about the nature of the noise in the
recent literature:

1. Noise follows some probability distribution [5–7, 15, 18, 20, 21, 29].
2. Noise is bounded and cannot be diminished [2, 4, 28, 35] —an assumption made

in our analysis.
3. Noise is controlled by the algorithm [1, 8, 11, 13, 19, 30].

The differences in these assumptions led naturally to differences in analytical
techniques and in the form of the theoretical results, as discussed below. Various algo-
rithmic modifications have been proposed in order to establish convergence results in
the noisy setting, as we now discuss.

AlgorithmicFeatures toAccount forNoise.Wecategorize features introduced to handle
noise as follows.

(i) Step Control for Stochastic Noise. In [14], an unmodified line search is proposed
for well behaved settings. To stabilize the line search algorithms, [29] introduces
the a concept of “reliable steps": A step is deemed reliable if the stochastic
directional derivative is larger than a quantity that is adjusted at run time. For
trust region algorithms, [7, 15, 21] proposes controls on the trust region update,
e.g., the norm of the gradient must be larger than a multiple of the norm of the
step in order for the trust region to be increased—even if the step made good
progress. Some of the classical techniques used in the stochastic gradient descent
method (SGD) include the use of a constant step size or diminishing step sizes;
see, e.g., [10].

(ii) Line Search Relaxation for Non-Diminishing Noise. To avoid steps being incor-
rectly rejected due to presence noise, [2, 4, 20] proposes to relax the Armijo
back-tracking line search by a term proportional to the function evaluation error.
In contrast, [35] repeats the iteration (with a new stochastic gradient) when the
Armijo line search fails. In this paper, we adapt the relaxation strategy to trust
region algorithms. For constrained problems, [28] relaxes line search by a term
that is the product of the penalty parameter and the noise level.

(iii) Controlled Reduction of Noise. Customized techniques have been developed
for problems where the noise level can be controlled. [11] studies sample size
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448 S. Sun, J. Nocedal

selection techniques based on the norm test for machine learning problems; [8]
proposes an alternative to the norm test for adaptive sampling methods; [13]
ensures that the function and derivative evaluations are accurate enough to guar-
antee the reliability of the models used for step generation. Other work in this
category includes [19, 30].

Analytical Techniques and Theoretical Results. The convergence results in the lit-
erature can be grouped into three categories. (i) Assuming that noise follows some
probability distribution, stopping time results along with iteration complexity bounds
are derived in [5–7, 15, 18, 20, 21, 21, 29]. (ii) Assuming that noise is bounded and
does not diminish as the iterates approach the solution, convergence-to-neighborhood
results are presented in [2, 24, 28, 35], as well as in this paper. (iii) Rate of conver-
gence and complexity bounds for algorithms that gradually diminish the noise level
in the function and/or gradient are presented in [1, 8, 11, 13, 19, 30], The analytical
approaches (i)–(iii) complement each other and model conditions arising in practical
applications.

The following table provides a summary of the noise assumptions and theoretical
results mentioned above.

Noise/results Follow distributions Bounded,
non-diminishing

Controllable

Iteration Compl. and
Stopping time

[5–7, 15, 18, 20, 21, 29]

Conv. to Neighborhood [2, 24, 28, 35],
this paper

Complexity and rates [1, 8, 11, 13, 19, 30]

2 Problem statement and algorithm

Our goal is to design a trust region method to solve the unconstrained minimization
problem

min
x∈Rn

f (x), (1)

in the case when the function f (x) and gradient g(x) = ∇ f (x) cannot be evaluated
exactly. Instead, we have access to noisy observations of the above quantities, which
we denote as f̃ (x), and g̃(x). We write

f̃ (x) = f (x) + δ f (x), and g̃(x) = g(x) + δg(x), (2)

where the error functions (or noise) δ f (x), δg(x) are assumed to be bounded, i.e.,

|δ f (x)| ≤ ε f , ‖δg(x)‖ ≤ εg, ∀x ∈ R
n . (3)

123



A trust region method for noisy unconstrained optimization 449

Throughout the paper ‖ · ‖ stands for the Euclidean norm.
Let us apply a classical trust region method to problem (1). At each iterate, the

method constructs a quadratic model

mk(p) = f̃ (xk) + g̃(xk)
T p + 1

2
pT B̃k p, (4)

and solves the following trust region subproblem for the step pk :

min
p∈Rn

mk(p) s.t. ‖p‖ ≤ Δk . (5)

In Eq.4, B̃k could be defined as a noisy evaluation of the Hessian, a quasi-Newton
matrix, or some other approximation. To decide if the step pk should be accepted—
and if the trust region radius Δk should be modified— classical trust region methods
employ the ratio of actual to predicted reduction in the objective function, defined as

f̃ (xk) − f̃ (xk + pk)

mk(0) − mk (pk)
. (6)

This ratio is, however, not adequate in the presence of noise because ifΔk becomes very
small, the numerator can be of order ε f , while the denominator will be proportional
to Δk . Thus, if Δk << ε f , the ratio (6) may exhibit wild oscillations that can cause
the algorithm to perform erratically, as we illustrate in Sect. 4.

To address this issue, we propose the following noise tolerant variant of (6):

ρk = f̃ (xk) − f̃ (xk + pk) + rε f

mk(0) − mk (pk) + rε f
, (7)

where r > 2 is a constant specified below. The reason for relaxing both the numerator
and denominator in (7) is to be consistent with the classical narrative of trust region
methods where a ratio close to 1 is an indication that the model is adequate. An
alternative approach would be to relax only the numerator and interpret the condition
ρk > c (where c > 0 is a constant) as a relaxed Armijo condition of the type studied
in [2, 28]. We find the first interpretation to be easier to motivate and to yield tighter
bounds in the convergence analysis. We state the algorithm as follows.

Typical values of the parameters are c0 = 0.1, c1 = 1
4 , c2 = 1

2 , ν = 2, but other
values can be used in practice. The global convergence result presented in the next
section holds if the constant r in (7) is chosen as

r = 2/(1 − c2); (8)

i.e., r = 4 when c2 is chosen as 1/2. We assume that the step pk computed in step 3
yields a decrease in the model mk that is at least as large as that given by the Cauchy
step (defined below). This provides much freedom in the design of the algorithm, and
includes the dogleg and Newton-CGmethods, as well as the exact solution of the trust
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region problem; see, e.g., [27]. We note in passing that lancelot [16] employs a ratio
similar (though not identical) to (7) as a heuristic to handle roundoff errors.

In practice it can be useful to increase the trust region radius in Step 8 only ifρk > c2
and ‖pk‖ = Δk , as this can prevent unnecessary oscillations in the trust region radius.
The convergence result presented in the next section can easily be extended to that case,
assuming certain technical conditions on the step computation—which are satisfied
by the dogleg and Newton-CG methods.

In the case of stochastic noise (as opposed to deterministic errors), one may opt to
re-evaluate f̃ (xk) and compute a new gradient approximation g̃k in Step 16, so as not
to emphasize the effects of a poor choice of g̃k . This variant is also covered by the
analysis presented below.

3 Global convergence analysis

In this section, we establish a global convergence result for Algorithm 1 that applies
to general objective functions. The proof is based on the observation that, when the
gradient is large enough, the trust region radius will eventually become large too,
ensuring sufficient descent in the objective function despite the presence of noise.
This drives the iteration toward regions where the stationarity measure is small (i.e.,
comparable to the noise level).

Algorithm 1: Noisy Trust-Region Algorithm

1 Initialize x0, Δ0, chose constants 0 < c0 ≤ c1 < c2 < 1 and ν > 1.
2 Set k ← 0 and evaluate f̃ (x0), g̃(x0), and B̃k .
3 while a termination condition is not met do
4 Compute pk by solving (5) (exactly or approximately);
5 Evaluate f̃ (xk + pk);
6 Evaluate ρk as in (7);
7 if ρk < c1 then
8 Δk+1 = 1

ν
Δk ;

9 else if ρk > c2 then
10 Δk+1 = νΔk ;
11 else
12 Δk+1 = Δk ;
13 end
14 if ρk > c0 then
15 xk+1 = xk + pk, f̃ (xk+1) ← f̃ (xk + pk) and compute g̃k+1;
16 else
17 xk+1 = xk, f̃ (xk+1) ← f̃ (xk), g̃k+1 ← g̃k ;
18 end
19 Set k ← k + 1;
20 end
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A trust region method for noisy unconstrained optimization 451

We begin by establishing a standard requirement on the step computation based on
the Cauchy step pck for problem (1), which is defined as

pck = −τk
Δk

‖g̃k‖ g̃k, (9)

where

τk =
{
1 if g̃Tk B̃k g̃k ≤ 0

min
(
‖g̃k‖3

/(
Δk g̃Tk B̃k g̃k

)
, 1
)

otherwise.
(10)

As is well known (see e.g. [27, Lemma 4.3]), the reduction in the model provided by
the Cauchy step satisfies

mk(0) − mk(p
c
k) ≥ 1

2
‖g̃k‖min

⎛
⎝Δk,

‖g̃k‖∥∥∥B̃k

∥∥∥
⎞
⎠ . (11)

We assume that the step pk computed by Algorithm 1 yields a reduction in the model
that is not less than that produced by the Cauchy step, i.e.,

mk(0) − mk(pk) ≥ mk(0) − mk(p
c
k) ≥ 1

2
‖g̃k‖min

⎛
⎝Δk,

‖g̃k‖∥∥∥B̃k

∥∥∥
⎞
⎠ . (12)

We can now state the assumptions on the problem and the algorithm under which
the global convergence results are established.

Assumption 1 The objective function f is Lipschitz continuously differentiable with
constant L , i.e.,

‖g(x) − g(y)‖ < L‖x − y‖. (13)

Assumption 2 The error in the function and gradient evaluations is bounded, i.e., (3)
holds for some constants ε f , εg.

We impose no other conditions on the errors, other than boundedness. We could also
assume that the algorithm employs a noisy Hessian, but our analysis applies in this
case,with the constants LB specified below replaced by the bound of the noisyHessian.
Next, we impose a minimal requirement on the Hessian approximations.

Assumption 3 There is a constant LB > 0 such that the matrices B̃k satisfy

‖B̃k‖ < LB, ∀k. (14)

There is freedom in the computation of the step pk , but it must yield Cauchy decrease.
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Assumption 4 The step pk computed by Algorithm 1 satisfies (12).

This assumption can be relaxed so as to require only a fraction of Cauchy decrease, but
we do not do so here to avoid the introduction of more constants. The final requirement
is standard.

Assumption 5 The sequence { f̃k} generated by Algorithm 1 is bounded below.

We now proceed with the analysis.

3.1 Properties of the ratio�k

We begin by establishing a bound between ρk and 1. From (7), we have

|ρk − 1| =
∣∣∣∣∣ mk (pk) − f̃ (xk + pk)

mk(0) − mk (pk) + rε f

∣∣∣∣∣ . (15)

By the definition of f̃ and by Taylor’s Theorem we have

f̃ (xk + pk) = f (xk + pk) + δ f (xk + pk)

= f (xk) + gTk pk +
∫ 1

0
[g (xk + tpk) − gk]

T pkdt + δ f (xk + pk).

With this, by (13), (14), and (3), we obtain∣∣∣mk(pk) − f̃ (xk + pk)
∣∣∣

=
∣∣∣∣δTg pk + 1

2
pTk B̃k pk+

∫ 1

0
[g (xk+tpk) − gk]

T pkdt+ssδ f (xk) + δ f (xk + pk)

∣∣∣∣
≤ LB

2
‖pk‖2 + L

2
‖pk‖2 + εg‖pk‖ + 2ε f

= M‖pk‖2 + εg‖pk‖ + 2ε f

(16)

where

M = 1
2 (LB + L). (17)

By substituting (16) and (12) into (15), we establish the following result.

Lemma 1 If ρk is defined by (7), then for all k,

|ρk − 1| ≤ MΔ2
k + εgΔk + 2ε f

1
2‖g̃k‖min(Δk, ‖g̃k‖/‖B̃k‖) + rε f

. (18)

This lemma suggests that ρk can be made close to 1 by decreasing Δk , up until the
noise term ε f dominates. This assertion will be made more precise below.
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3.2 Lower bound on trust region radius

We now show that if Δk is very small and the gradient is large compared to the noise
εg , Algorithm 1 will increase the trust region radius. We recall that r is defined in (8)
and that ν > 1.

Lemma 2 (Increase of Trust Region Radius) Suppose that, at iteration k,

‖g̃k‖ > rεg + γ, (19)

for some constant γ > 0. Then, if

Δk ≤ Δ̄ =: γ

rM
, (20)

we have that

Δk+1 = νΔk . (21)

Proof Since r > 2, we have from (14), (17) and (19) that

rM > 2M > ‖B̃k‖ and γ < ‖g̃k‖, (22)

and thus

Δ̄ < ‖g̃k‖/‖B̃k‖. (23)

Thus, if Δk ≤ Δ̄, we have

min(Δk, ‖g̃k‖/‖B̃k‖) = Δk . (24)

In addition, if Δk ≤ Δ̄, we also have

MΔk + εg ≤ MΔ̄ + εg = γ

r
+ εg = 1

r
(rεg + γ ). (25)

Substituting (24), (19), (25) and (8) into (18), we have that for all Δk ≤ Δ̄

|ρk − 1| ≤ MΔ2
k + εgΔk + 2ε f

1
2‖g̃k‖Δk + rε f

<
MΔ2

k + εgΔk + 2ε f
1
2 (rεg + γ )Δk + rε f

<

1
r (rεg + γ )Δk + 2ε f
1
2 (rεg + γ )Δk + rε f

= 2

r
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= 1 − c2. (26)

This implies that ρk > c2, and by step 8 of Algorithm 1 we have that Δk+1 = νΔk .

	

A consequence of this lemma is that there is a lower bound for the trust region

radius if the norm of the noisy gradient remains greater than rεg .

Corollary 1 (Lower Bound on Trust Region Radius)Given γ > 0, if there exist K > 0
such that for all k ≥ K

‖g̃k‖ > rεg + γ, (27)

then there exist K0 ≥ K such that for all k ≥ K0,

Δk > 1
ν
Δ̄ = γ

νrM
. (28)

Proof We apply Lemma 2 for each iterate after K to deduce that, whenever Δk ≤ Δ̄,
the trust region radius will be increased. Thus, there is an index K0 for which Δk

becomes greater than Δ̄. On subsequent iterates, the trust region radius can never be
reduced below Δ̄/ν (by Step 6 of Algorithm 1) establishing the bound (28). 	

Remark In traditional trust region analysis for deterministic (noiseless) optimization,
one shows that the trust region radius will not shrink below a certain value that depends
on the Lipschitz constant and the norm of the current gradient. However, that analysis
does not imply that the trust region will increase beyond a certain threshold, which
is required in the presence of noise. We need to show that the trust region eventually
becomes large enough with respect to the noise level so that progress can be made.
This differentiates our analysis from classical trust region convergence theory.

3.3 Reduction of noisy function

The classical trust region algorithm is monotonic, as it requires a reduction in the
objective function when accepting a step. Due to the relaxation in (7), Algorithm 1
can accept steps that increase the noisy function. However, when the iterates are far
from the solution, this is not the case. We now show that when the noisy gradient and
trust region radius are both large enough, the reduction in the objective is large enough
to overcome any increase allowed by (7).

Lemma 3 (Noisy Function Reduction) Suppose that for some k > 0

‖g̃k‖ > rεg + γ and Δk ≥ Δ̄

ν
= γ

νrM
, (29)

where

γ = η + μ, (30)
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A trust region method for noisy unconstrained optimization 455

with μ > 0 an arbitrarily small constant, and

η = 1

2

(−rεg + β
)
, β =

√
(rεg)2 + 8νr2

(
1

c0
− 1

)
Mε f . (31)

Then, if the step is accepted at iteration k by Algorithm 1, we have

f̃ (xk) − f̃ (xk + pk) >
c0

2νrM

(
μβ + μ2

)
. (32)

Proof As argued in (23), Δ̄ = γ
rM <

‖g̃k‖∥∥∥B̃k∥∥∥ , and therefore

min

⎛
⎝Δk,

‖g̃k‖∥∥∥B̃k

∥∥∥
⎞
⎠ ≥ γ

νrM
. (33)

If the step pk is accepted, we have from Step 12 of Algorithm 1 that ρk > c0, which
by (7) is equivalent to

f̃ (xk) − f̃ (xk + pk) + rε f

mk(0) − mk (pk) + rε f
> c0. (34)

Thus by (12), (29), (33) and (30)

f̃ (xk) − f̃ (xk + pk) >c0 [mk(0) − mk(pk)] + r(c0 − 1)ε f

≥c0
2

‖g̃k‖min

⎛
⎝Δk,

‖g̃k‖∥∥∥B̃k

∥∥∥
⎞
⎠+ r(c0 − 1)ε f

>
c0

2νrM

(
rεg + γ

)
γ + r(c0 − 1)ε f

>
c0

2νrM

(
rεg + η

)
η + r(c0 − 1)ε f . (35)

We now chose η so that the right hand side is positive. We obtain

η ≥ 1

2

(−rεg + β
)

or η ≤ 1

2

(−rεg − β
)

We wish for η to be the smallest positive value satisfying these inequalities, yielding

η = 1

2

(−rεg + β
)
. (36)
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Substituting this quantity in (35), we have

f̃ (xk) − f̃ (xk + pk) >
c0

2νrM

(
rεg + γ

)
γ + r(c0 − 1)ε f

= c0
2νrM

(
rεg + η + μ

)
(η + μ) + r(c0 − 1)ε f

= c0
2νrM

(
rεg + 1

2

(−rεg + β
)+ μ

)(
1

2

(−rεg + β
)+ μ

)
+ r(c0 − 1)ε f

= c0
2νrM

(
rεg/2 + β/2 + μ

) (−rεg/2 + β/2 + μ
)+ r(c0 − 1)ε f

= c0
2νrM

[
(β/2 + μ)2 − (

rεg/2
)2]+ r(c0 − 1)ε f

= c0
2νrM

[
(β/2)2 + μβ + μ2 − (

rεg/2
)2]+ r(c0 − 1)ε f

= c0
2νrM

[
β2 − (rεg)2

4
+ μβ + μ2

]
+ r(c0 − 1)ε f

= c0
2νrM

⎡
⎣ (rεg)2 + 8νr2

(
1
c0

− 1
)
Mε f − (rεg)2

4
+ μβ + μ2

⎤
⎦

+ r(c0 − 1)ε f

= c0
2νrM

[
2νr2

(
1

c0
− 1

)
Mε f + μβ + μ2

]
+ r(c0 − 1)ε f

= r(1 − c0)ε f + c0
2νrM

(
μβ + μ2)+ r(c0 − 1)ε f

= c0
2νrM

(
μβ + μ2) .

	


The first inequality (29), together with (30), (31), identify the region where noise does
not dominate and progress in the objective function can be guaranteed. The constant
μ was introduced to ensure that our analysis is meaningful in the case when noise is
not present (ε f = εg = 0), as it shows that a decrease in the objective is achieved.
Nonetheless, the global convergence results presented below are of interest only when
noise is present, so there we essentially absorb μ into η by setting μ = εg/2.

To summarize the results obtained so far, Lemma 2 states that when ‖g̃k‖ is large
enough, the trust region is either large enough or will eventually be increased to be so.
Lemma 3 states that when the gradient and trust region are both large enough, every
accepted iterate reduces the noisy objective function by a non-vanishing amount. We
show that this drives iterations towards stationary points of the problem.

3.4 Global convergence theorems

Our global convergence results are presented in two parts. The first result states that
the iterates visit, infinitely often, a critical region characterized by a small gradient
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A trust region method for noisy unconstrained optimization 457

norm. The second result states that after visiting the above critical region for the first
time, the iterates cannot stray too far from it, as measured by the objective value.

Theorem 6 (Global Convergence to Critical Region) Suppose that Assumptions 1
through 5 are satisfied. Then, the sequence of iterates {xk} generated by Algorithm 1
visits infinitely often the critical region C1 defined as

C1 =
{
x : ‖g(x)‖ ≤ (r + 1) εg + β

2

}
, (37)

where r and β are defined in (8), (30), (31), with μ = εg/2, ν > 1 and M given by
(17).

Proof Assume by way of contradiction that there exist K ′ such that for all k > K ′

‖g(xk)‖ > (r + 1) εg + β

2
. (38)

Thus, by (3), definition (31) of η, and setting μ = εg/2, we have that for all k > K ′

‖g̃(xk)‖ > rεg + 1
2β

= − 1
2rεg + 1

2β + 3
2rεg

= η + rεg + 1
2rεg

> rεg + η + μ (since r > 1)

= rεg + γ. (by (30)) (39)

We now apply Corollary 1 and deduce that there exist K0 ≥ K ′, such that for all
k ≥ K0,

Δk >
γ

νrM
. (40)

When a step is not accepted, ρk < c0 < c1, and Algorithm 1 will reduce the trust
region radius. If no step is accepted for all k > K0, the trust region radius would shrink
to zero, contradicting (40). Therefore, there must exist infinitely many accepted steps.
Now, by (39), (40) the conditions of Lemma 3 hold, and we deduce that each accepted
step k′ > K0 achieves the reduction

f̃ (xk′) − f̃ (xk′ + pk′) >
c0

2νrM

(
μβ + μ2

)
= c0

2νrM

(
εg

2
β + ε2g

4

)
. (41)

Since, as mentioned above, there is an infinite number of accepted steps, we deduce
that { f̃ (xk)} → −∞, contradicting Assumption 5. Therefore, the index K ′ defined
above cannot exist and we have that (38) is violated an infinite number of times. 	
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The achievable accuracy in the gradient guaranteed in (37) depends on εg and
√

ε f ,
by the definition of β. The dependence on εg is evident, while the dependence on

√
ε f

is due to the combined (multiplicative) effect of the gradient and the trust region radius
bound.

Before stating our next theorem, we prove two simple technical results.

Proposition 1 If Algorithm 1 takes a (nonzero) step at iteration k, then

f̃k+1 − f̃k < r(1 − c0)ε f . (42)

Proof If the step is taken, we have from Step 12 of Algorithm 1 that ρk > c0, which
by (7) is equivalent to

f̃ (xk) − f̃ (xk + pk) + rε f

mk(0) − mk (pk) + rε f
> c0, (43)

and since pk cannot increase the model mk , we have

f̃ (xk) − f̃ (xk+ pk)>c0 [mk(0)−mk(pk)] + r(c0 − 1)ε f >r(c0 − 1)ε f . (44)

	

Next, we employ Lemma 2 and obtain the following result.

Corollary 2 (Maintaining Lower Bound on Trust Region Radius) Let γ > 0 be defined
by (30)–(31), and suppose there exist K > 0 and K̂ > K such that for k = K +
1, . . . , K̂ − 1

‖g̃k‖ > rεg + γ, (45)

and that

ΔK+1 ≥ γ

νrM
= Δ̄

ν
. (46)

Then for k = K + 1, . . . , K̂ − 1

Δk ≥ γ

νrM
= Δ̄

ν
. (47)

Proof The proof is by induction. Condition (47) holds for k = K + 1. We show that
if (47) it holds for some k ∈ {K + 1, . . . , K̂ − 2}, then it holds for k + 1.

Specifically, suppose that for such k we have that

Δk ≥ γ

νrM
. (48)
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By Lemma 2, if Δk ≤ γ
rM , the trust region radius is increased, i.e.,

Δk+1 = νΔk ≥ γ

rM
>

γ

νrM
. (49)

If on the other hand Δk >
γ
rM , the trust region radius could be decreased, but in that

case

Δk+1 ≥ Δk

ν
>

γ

νrM
. (50)

	

The next theorem shows that after an iterate has entered the neighborhood C1

defined in Theorem 6, all subsequent iterates cannot stray too far away in the sense
that their function values remain within a band of the largest function value in C1.

Theorem 7 (Iterates Remain in the Level SetC2) Suppose that Assumptions 1 through
5 are satisfied. Then, after the iterates xk generated by Algorithm 1 visit C1 for the
first time, they never leave the set C2 defined as

C2 =
{
x : f (x) ≤ sup

y∈C1

f (y) + 2ε f + max[G, r(1 − c0)ε f ]
}

, (51)

where

G =
[
(r + 1)εg + γ + ν2Lγ

(ν − 1)rM

]
ν2γ

(ν − 1)rM
, (52)

and γ is defined in (30)–(31) with μ = εg/2.

Proof The proof is based on the observation that, when the iterates leaveC1, if the trust
region is large enough, then by Lemma 3 the noisy objective function starts decreasing
immediately (Case 1); otherwise the smallness of the trust region limits the increase in
the objective function before the trust region becomes large enough to ensure descent
(Case 2). We now state this precisely.

Suppose that the K th step is an exiting step, i.e., xK ∈ C1 and xK+1 /∈ C1. We let
K̂ > K + 1 be the index of the first iterate that returns to C1. Such a K̂ exists due
to Theorem 6. We will prove that all iterates xk with k ∈ {K + 1, . . . , K̂ − 1} are
contained in C2.

Since xk /∈ C1 for k ∈ {K + 1, . . . , K̂ − 1}, we have by (37) that

‖gk‖ > (r + 1) εg + β

2
, (53)

and we have seen in (38)–(39) that this implies that

‖g̃k‖ > rεg + γ, k ∈ {K + 1, . . . , K̂ − 1}. (54)
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Also, we know that a step was taken at iterate K since xK ∈ C1 and xK+1 /∈ C1, and
thus applying Proposition 1 yields

f̃K+1 − f̃K < r(1 − c0)ε f . (55)

We divide the rest of the proof according to the size of ΔK+1 relative to Δ̄, which
is defined in (20), i.e.,

Δ̄ = γ

rM
. (56)

Case 1: Suppose ΔK+1 ≥ Δ̄. By (54) and the fact that ν > 1, the conditions of
Corollary 2 are satisfied and thus Δk >

γ
νrM , for k = K + 1, . . . , K̂ − 1. We can

therefore apply Lemma 3, with μ = εg/2 > 0, for each iterate k = K +1, . . . , K̂ −1
to yield

f̃ (xK+1) ≥ f̃ (xK+2) ≥ · · · ≥ f̃ (xK̂ ). (57)

Combining this result with (55) we obtain

f̃k ≤ f̃K+1 < f̃K + r(1 − c0)ε f , k = K + 1, .., K̂ . (58)

Since xK ∈ C1 and by (3), we conclude that for k = K + 1, . . . , K̂ ,

fk < fK + [2 + r(1 − c0)]ε f ≤ sup
y∈C1

f (y) + [2 + r(1 − c0)]ε f . (59)

Therefore, the inequality in (51) is satisfied in this case.

Case 2: Suppose ΔK+1 < Δ̄. We begin by considering the increase in the function
value while the trust region remains less than Δ̄. To this end, we define

l =
⌈
logν

Δ̄

ΔK+1

⌉
, (60)

where �·� denotes the ceiling operation. Since the trust region radius is increased by
a factor of at most ν, we have that l is the minimum number of steps required for the
trust region radius to increase from ΔK+1 to (at least) Δ̄. Now, if K + l > K̂ , then the
iterates return to C1 before the trust region becomes at least Δ̂. Therefore, the number
of out-of-C1 iterations taken by the algorithm while Δk < Δ̂ is

l̂ = min{l − 1, K̂ − K − 1}. (61)

The increase in function values for iterations indexed by k = K + 1, . . . , K + l̂ + 1
is bounded as follows:

| f (xk) − f (xK )| ≤
k−K−1∑
i=0

| f (xK+1+i ) − f (xK+i )|
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≤
l̂∑

i=0

| f (xK+1+i ) − f (xK+i )|

≤
l̂∑

i=0

ΔK+i max
x∈[xK+i ,xK+1+i ]

‖g(x)‖

=
l̂∑

i=0

ΔK+i max
x∈[xK+i ,xK+1+i ]

‖g(x) − g(xK+i ) + g(xK+i )‖

≤
l̂∑

i=0

ΔK+i
[‖g(xK+i )‖ + LΔK+i

]
(by (13)). (62)

To estimate the right hand side, we need to bound the total displacement made by the
algorithm during those iterations. It follows from (60) that

Δ̄/ν ≤ νl−1ΔK+1 < Δ̄ ≤ νlΔK+1, (63)

and thus for i = 0, . . . , l̂,

ΔK+1+i ≤ νiΔK+1 ≤ ν l̂ΔK+1 ≤ νl−1ΔK+1 < Δ̄. (64)

By (54), (64), we can apply Lemma 2 to each iterate i = 0, . . . , l̂, and obtain

Δi+1 = νΔi . (65)

Thus for i = 0, . . . , l̂,

ΔK+1+i = νiΔK+1 ≤ ν l̂ΔK+1 ≤ νl−1ΔK+1 < Δ̄. (66)

Summing from i = 0 to l̂, we have

l̂∑
i=0

ΔK+1+i =
l̂∑

i=0

νiΔK+1 <
Δ̄

ν l̂

l̂∑
i=0

νi = Δ̄

ν l̂

ν l̂+1 − 1

ν − 1
<

Δ̄

ν l̂

ν l̂+1

ν − 1
= ν

ν − 1
Δ̄.

(67)

By assumption, ΔK+1 < Δ̄, which implies ΔK < νΔ̄; adding this to (67) we obtain

l̂+1∑
i=0

ΔK+i <
ν2

ν − 1
Δ̄. (68)
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Therefore, for i = 0, . . . , l̂,

‖g(xK+i )‖ + LΔK+i = ‖g(xK ) +
i−1∑
j=0

[
g(xK+ j+1) − g(xK+ j )

] ‖ + LΔK+i

≤ ‖g(xK )‖ +
i−1∑
j=0

∥∥g(xK+ j+1) − g(xK+ j )
∥∥+ LΔK+i

≤ ‖g(xK )‖ +
⎛
⎝ i−1∑

j=0

LΔK+ j

⎞
⎠+ LΔK+i

< ‖g(xK )‖ + L
l̂+1∑
j=0

ΔK+ j (since i < l̂ + 1)

< ‖g(xK )‖ + ν2

ν − 1
LΔ̄ (by (68)). (69)

Substituting this inequality into (62), we obtain for any k = K + 1, . . . , K + l̂ + 1,

| f (xk) − f (xK )| ≤
l̂∑

i=0

ΔK+i

[
‖g(xK )‖ + ν2

ν − 1
LΔ̄

]

<

[
‖g(xK )‖ + ν2

ν − 1
LΔ̄

]
ν2

ν − 1
Δ̄

≤
[
(r + 1)εg + γ + ν2

ν − 1
LΔ̄

]
ν2

ν − 1
Δ̄ ( since xK ∈ C1)

=
[
(r + 1)εg + γ + ν2Lγ

(ν − 1)rM

]
ν2γ

(ν − 1)rM
(by (56))

= G. (70)

Therefore, for k = K + 1, . . . , K + l̂ + 1,

f (xk) < f (xK ) + G ≤ sup
y∈C1

f (y) + G. (71)

We now consider two possibilities.

Case 2a: Suppose K + 1 + l > K̂ . Then, K̂ − K − 1 ≤ l − 1 and by (61) we have
that l̂ = K̂ − K − 1. Condition (71), thus reads

f (xk) < f (xK ) + G ≤ sup
y∈C1

f (y) + G, k = K + 1, . . . , K̂ , (72)

and thus the inequality in (51) is satisfied for k = K + 1, . . . , K̂ − 1.
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Case 2b: suppose K + 1 + l ≤ K̂ . Then, by (60) we have that l̂ = l − 1, and (71)
reads

f (xk) < f (xK ) + G ≤ sup
y∈C1

f (y) + G k = K + 1, . . . , K + l. (73)

Let us now consider the iterates following K + l that are outsideC1, i.e., those indexed
by k = K + l + 1, . . . , K̂ − 1. Letting i = l̂ = l − 1 in (66) and recalling the first
inequality in (63),

ΔK+l = νl−1ΔK+1 ≥ Δ̄

ν
. (74)

We can therefore apply Corollary 2 to iterates indexed by k = K + l + 1, . . . , K̂ − 1
and deduce that

Δk ≥ Δ̄

ν
, k = K + l + 1, . . . , K̂ − 1.

This fact, together with (54), allow us to invoke Lemma 3, for k = K + l, . . . , K̂ − 1,
to yield

f̃ (xK+l) ≥ f̃ (xK+1+l) ≥ f̃ (xK+2+l) ≥ . . . ≥ f̃ (xK̂ ). (75)

Recalling (73) with k = K + l and using (3) we obtain

f̃ (xK+l) < sup
y∈C1

f (y) + G + ε f . (76)

This condition together with (75) yields

f (xk) ≤ f̃ (xK+l) + ε f < sup
y∈C1

f (y) + G + 2ε f k = K + l, . . . , K̂ − 1.

(77)

Combining this bound with (73) we conclude

f (xk) < sup
y∈C1

f (y) + G + 2ε f , k = K + 1, . . . , K̂ − 1, (78)

and thus the inequality in (51) is satisfied. 	

The constant G defined in (52) is proportional to ε2g, εg

√
ε f , ε f . Since that G char-

acterizes the function value bounds, the dependence on ε f is expected; the dependence
on εg and εg

√
ε f arises from the combined effect of the trust region radius and gradient

norm.
We should point out that one can find examples for which our convergence results

are not informative because the critical region C1 can be all of Rn , as pointed out
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by a referee. Such an example is given by a smoothed absolute value function, with
appropriate parameters and agivennoise level.However, such examples are not typical.

4 Numerical experiments

To illustrate the performance of the proposed Algorithm 1, we coded it inmatlab and
applied it to a small selection of unconstrained optimization problems. We injected
uniformly distributed noise in the evaluations of the function and gradient. Specifically,
we let (c.f. (2))

δ f = X f ∈ R, X f ∼ U (−ε f , ε f ); δg = Xg ∈ R
n, Xg ∼ Bn(0, εg), (79)

whereU (−a, a) denotes the uniform distribution from −a to a, and Bn(0, a) denotes
the n dimensional ball centered at 0 with radius a. By generating noise in this way we
satisfy Assumption 2.

We set the parameters in Algorithm 1 as follows: c0 = 0.1, c1 = 1/4, c2 = 1/2
and ν = 2. The solution of the trust region subproblem (Step 3 of Algorithm 1)
was computed using the standard Newton-CG method described e.g. in [27], with
termination accuracy10−8. In order to better illustrate the performanceof the algorithm
in the presence of noise, we did not include a stop test and simply ran it for 200
iterations, which was sufficient to observe its asymptotic behavior.

4.1 Failure of the classical trust region algorithm

We present two examples showing failure of the classical trust region algorithm, in
contrast with Algorithm 1. First, we consider the simple quadratic function

f = xT Dx, (80)

where x ∈ R
8 and D is the scaled identity matrix D = 1e − 5 I8. We set ε f = 10

and εg = 0.01 in (79). The Hessian of the quadratic model (4) was defined as Bk =
∇2 f (xk); i.e., we did not inject noise in this experiment. We started both algorithms
from x0 = (1e5, 1e5, 1e5, 0, 0, . . . ., 0), with an initial trust region radius Δ0 = 1.
The results are displayed Fig. 1.

The four panels in Fig. 1 compare the performance of the classical algorithm (red
dashed line) and Algorithm 1 (blue solid line). The horizontal axis in each panel
records the iteration number. In the upper left panel (a) we report the norm of the
(noiseless) gradient ‖∇ f (xk)‖, along with the injected noise level εg (dashed black
line); the light blue dashed line plots the lowest value generated by Algorithm 1 in
the past 25 iterations. We also plot in purple the size of the critical region C1, i.e. the
value of the right-hand side in (37). For this particular problem, the C1 level norm of
the gradient is roughly 0.8714. In the upper right panel (b) we report the trust region
radius; in the lower-left panel (c) the distance to solution; and in the lower right panel
(d), the computed actual-to-predicted reduction ratio ρk ; for graphical clarity, ratios
greater than 5 or less than −5 were plotted as +/ − 5 in panel (d).
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Fig. 1 New and classical trust region algorithms applied to a simple quadratic problem

We observe that the classical algorithm exhibits large oscillations in ρk , which
causes the trust region radius to shrink so much that significant progress cannot be
made. In contrast, ρk is controlled well in Algorithm 1. In this test, the initial the trust
region radius Δ0 is not small.

In the next experiment, we illustrate the damaging effect that a very small Δ0 can
have on the classical algorithm, but not on the proposed algorithm. We applied the
two algorithms to the tri-diagonal function

f (x) = 1

2

(
x (1) − 1

)2 + 1

2

N−1∑
i=1

(
x (i) − 2x (i+1)

)4
, N = 200. (81)

The results are reported in Fig. 2. In the upper left panel, we again plot in purple
the size of the critical region C1, i.e. the value of the right-hand side in (37). (The
latter requires knowledge of the constant M , which we approximate by the norm of
the Hessian at the solution.) This panel shows that the theoretical prediction given in

123



466 S. Sun, J. Nocedal

Fig. 2 New and classical trust region algorithms initialized with small trust region radius

Theorem 6 is pessimistic when compared to the final achieved accuracy in the gradient,
as is to be expected of convergence results that assume that the largest possible error
occurs at every iteration. The upper right hand panel illustrates that Algorithm 1 is
able to quickly increase the trust region radius an allow progress, unlike the classical
algorithm.

4.2 General performance of the proposed algorithm

We also tested the two algorithms on a subset of problems from [33]; the results are
presented in the supplementary material. As a representative of these runs, we report
the results for the tri-diagonal objective function (81). This time, the Hessian Bk of
the quadratic model (4) is obtained by injecting noise in the true Hessian matrix. We
define

Bk = ∇2 f (xk) + δB, (82)
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δB = ATΛA

‖A‖2 , Ai j ∼ U (0, 1), (Λ)i i ∼ U (−εB, εB), (83)

whereΛ is a diagonal matrix. Thus, the matrices Bk are symmetric but not necessarily
positive definite. We employed larger noise levels than in the previous experiments:
ε f = 10, εg = 100, and εB = 1000. This simulates the situation that may occur when
employing finite difference approximations, where the error increases with the order
of differentiation. Both algorithms were initialized from the same starting point x0,
which was generated such that each entry in x0 is sampled uniformly from −50 to 50.
To ensure a fair comparison, at each iterate we inject exactly the same noise into both
algorithms.

We report the results in Fig. 3, which displays the same information as in Fig. 2.
We observe that both algorithms perform similarly before entering the noisy regime.
Algorithm 1 exhibits larger oscillations in the gradient norm due to the larger trust
region radius, but achieves a lower objective function value. Whereas the large reduc-
tion in the trust region radius led to failures of the classical algorithm in the examples
reported above, in many test runs such as that given in Fig. 3, it can be beneficial by
producing increasingly smaller steps that yieldmilder oscillations in the gradient norm
than Algorithm 1. We cannot, however, recommend this type of trust region reduction
as a general procedure for handling noise since failures can happen unexpectedly.

4.3 Tests with unbounded noise

We performed tests to observe the behavior of Algorithm 1 in the presence of
unbounded noise. We added either normally distributed noise or sub-exponentially
distributed noise, and defined ε f , εg as the standard deviation or the half maximum
density level (in the case where the standard deviation is not defined).

For case of normally distributed noise, the objective function is given by (81), and
we defined

δ f = X f ∈ R, X f ∼ N (0, ε f ), and δg = Xg ∈ R
n, Xg(i) ∼ N

(
0,

εg√
N

)
.

(84)

The results for a typical run are reported in Fig. 4; they show the robustness of
Algorithm 1.

We also performed tests where noise has a heavy tail distribution. We let

δ f = X f ∈ R, X f ∼ Cauchy(0, ε f ), δg = Xg ∈ R
n, Xg(i)∼Cauchy

(
0,

εg√
N

)
.

(85)

where Cauchy(μ, σ ) denotes Cauchy distribution with statistical median μ and half
maximum density level σ . The result of a typical run is reported in Fig. 5.
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Fig. 3 Comparison of the new and classical trust region algorithmswhen solving problem (81) with uniform
noise given by (79) (82)

We we repeated the experiments (for both types of noise) with larger and smaller
values of ε f , εg and found the performance of Algorithm 1 to be robust across all
runs.

4.4 Evaluating the theoretical results

We have seen that the critical region C1 gives a pessimistic estimate of the achievable
accuracy in the gradient because the analysis assumes worst-case behavior at each
iteration, rather than providing estimates in high probability. Nevertheless, Theorem 6
identifies the functional relationship between the achievable accuracy and the noise
level: the right hand side in (37) scales as a function of εg and

√
ε f . We performed

numerical tests to measure if the accuracy achieved in practice scales in that manner.
We employed the tridiagonal function (81), for which we can estimate the constant

M , as mentioned above. For given ε f and εg , we compute the right hand side in (37),
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Fig. 4 Comparison of the new and classical trust region algorithms when solving problem (81) with normal
noise given by (84)

whichwe denote asC(ε f , εg), and ranAlgorithm 1 as in the previous test.We repeated
the run 10 times using different seeds, s = 1, . . . , 10, to generate noise. For each run,
we track the smallest value of ‖g̃k‖ during the most recent 25 iterations and record
the smallest such value observed during the run, which we denote as ‖g̃∗(εg, ε f , s)‖,
where s denotes the seed. In Fig. 6, we report the quantity

R(ε f , εg) = log10
C(ε f , εg)∑10

s=1 ‖g̃∗(εg, ε f , s)‖
(86)

as we vary ε f and εg from 10−2 to 102. The fact that the ratio between the theoretical
bound and the smallest gradient normmeasured in practice remained roughly constant
gives numerical support to the claim that the achievable gradient norm is proportional
to εg and

√
ε f . We should note that these observations are valid only when averaging

multiple runs with different seeds, as one can observe significant variations among
individual runs of Algorithm 1.
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Fig. 5 Comparison of the new and classical trust region algorithms when solving problem (81) with subex-
ponential noise given by (85)

Fig. 6 R(ε f , εg) given in (86): Log10 of the ratio between predicted and actual accuracy in the gradient, as
a function of these noise level ε f , εg . The small variation in these numbers suggests that Theorem 6 gives
the correct dependence on the noise levels

5 Final remarks

In this paper, we proposed a noise-tolerant trust region algorithm that avoids the pitfall
of the classical algorithm, which can shrink the trust region prematurely, preventing
progress toward a stationary point. Robustness is achieved by relaxing the ratio test
used in the step acceptance, so as to account for errors in the function.
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We showed that when the noise in the function and gradient evaluations is bounded
by the constants ε f , εg , an infinite subsequence of iterates satisfies

‖gk‖ = O(
√

ε f , εg). (87)

When noise is not present, our results yield the limit {‖gk‖} → 0 (the sets C1 and C2
in Theorem 6 and Theorem 7 coincide in this case).

The technique and analysis presented here are relevant to the case when noise can
be diminished as needed, as assumed e.g. in [7, 8, 15]. Algorithm 1 can be run until
it ceases to make significant progress, at which point the accuracy in the function and
gradient is increased (i.e., ε f , εg are reduced) and the algorithm is restarted with the
new value of ε f in (7); this process can then be repeated. This provides a disciplined
approach for achieving high accuracy in the solution using a noise-tolerant trust region
algorithm.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10107-023-01941-9.
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