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Abstract
We propose and investigate a general class of discrete time and finite state space mean
field game (MFG) problems with potential structure. Our model incorporates interac-
tions through a congestion term and a price variable. It also allows hard constraints on
the distribution of the agents. We analyze the connection between the MFG problem
and two optimal control problems in duality. We present two families of numerical
methods and detail their implementation: (i) primal-dual proximal methods (and their
extension with nonlinear proximity operators), (ii) the alternating direction method of
multipliers (ADMM) and a variant called ADM-G.We give some convergence results.
Numerical results are provided for two examples with hard constraints.

Keywords Mean field games · Dynamic programming · Kolmogorov equation ·
Duality theory · Primal-dual optimization · ADMM · ADM-G

Mathematics Subject Classification 49N80 · 49N15 · 90C25 · 91A16 · 91A50

1 Introduction

The class of mean field game (MFG) problems was introduced by Lasry and Lions
in [34–36] and Huang et al. in [33] to study interactions among a large population of
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agents. The agents of the game optimize their own dynamical system with respect to
a criterion; the criterion is parameterized by some endogenous coupling terms. These
coupling terms are linked to the collective behavior of all agents and thus induce
an interaction between them. It is assumed that an isolated agent has no impact on
the coupling terms and that all agents are identical. At a mathematical level, MFGs
typically take the form of a system of coupled equations: a dynamic programming
equation (characterizing the optimal behavior of the agents), a Kolmogorov equation
(describing the distribution of the agents), and coupling equations.

In this work we study a class of discrete time and finite state spacemean field games
with potential structure. The dynamical system of each agent is a Markov chain, with
controlled probability transitions. Few publications deal with fully discrete models;
in a seminal work, Gomes et al. [25] have studied the existence of a Nash equilibrium
via a fixed point approach and investigated the long-term behavior of the game. The
proof relies on a monotonicity assumption for the congestion term. In [31], in a similar
setting, the convergence of the fictitious play algorithm is established. In addition [31]
proves the convergence of a discrete mean field game problem (with an entropic
regularization of the running cost) toward a continuous first-order mean field game.

Potential (also called variational) MFGs are coupled systems which can be inter-
preted asfirst-order conditions of twocontrol problems in dualitywhose state equations
are respectively a Kolmogorov equation and a dynamic programming equation. The
primal problem (involving the Kolmogorov equation) can be interpreted as a stochas-
tic optimal control problem with cost and constraints on the law of the state and the
control. Its numerical resolution is thus of interest beyond the context of MFGs.

1.1 Framework

In our model, the agents interact with each other via two coupling terms: a congestion
variable γ and a price variable P . The congestion γ is linked to the distribution of
the agents via the subdifferential of a proper convex and l.s.c. potential F . The price
P is linked to the joint law of states and controls of the agents via the subdifferential
of a proper convex and l.s.c. potential φ. A specificity of our discrete model is that
the potentials F and φ can take the value +∞ and thus induce constraints on the
distribution of the agents, referred to as hard constraints. In the continuous case, four
classes of variational MFGs can be identified. Our model is general enough to be
seen as the discrete counterpart of these four cases. Case 1: MFGs with monotone
congestion terms (F is differentiable, φ = 0). The first variational formulation was
given in [35] and has been widely studied in following works [8, 14, 16, 37, 38].
Case 2: MFGs with density constraints (F has a bounded domain, φ = 0). These
models are of particular interest for describing crowd motions. The coupling variable
γ has there an incentive role. The reader can refer to [16, 37, 41, 42]. Case 3: MFGs
with Cournot interactions (F = 0, φ is differentiable). In this situation, each agent
optimally chooses a quantity to be sold at each time step of the game. Interactions with
the other players occur through the gradient of φ which maps the mean strategy (the
market demand) to a market price. See for example [9, 27–30]. Case 4: MFGs with
price formation (F = 0, φ has a bounded domain). These models incorporate a hard
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Discrete potential mean field games: duality and numerical resolution 243

constraint on the demand. The price variable is the associated Lagrange multiplier and
has a incentive role. We refer to [26].

The first part of the article is devoted to the theoretical analysis of the MFG system.
We first introduce a potential problem, shown to be equivalent to a convex problem
involving the Kolmogorov equation via a change of variable, similar to the one widely
employed in the continuous setting (e.g. in [5]). Under a suitable qualification condi-
tion, we establish a duality result between this problem and an optimal control problem
involving the dynamic programming equation. We show the existence of solutions to
these problems and finally we show the existence of a solution to the MFG system. A
uniqueness result is proved (when F and φ are differentiable).

The second part of the article is devoted to the numerical resolution of the MFG
system. We focus on two families of methods: primal-dual methods and augmented
Lagrangian methods. These two classes exploit the duality structure discussed above
and can deal with hard constraints. They have already been applied to continuous
MFGs, see for example the survey article [3]. Primal-dual methods have been applied
to stationary MFGs with hard congestion terms in Briceno-Arias et al. [13] and to
time-dependent MFGs in [12]. In a closely related setting, [21] applies a primal-
dual method to solve a discretized optimal transport problem. Augmented Lagrangian
methods have been applied to MFGs in [6] and to MFGs with hard congestion terms
in [8]. Other methods exploiting the potential structure have been investigated in the
literature, they are out of the scope of the current article. Let us mention the Sinkhorn
algorithm [7]. The fictitious play method has been investigated in various settings:
[23] shows the connection between the fictitious play method and the Frank-Wolfe
algorithm in a discrete and potential setting; [15] considers a continuous setting, with
a non-convex potential.

Let us emphasize that the above references all deal with interaction terms depending
on the distribution of the states of the agents; very few publications are concerned by
interactions through the controls (see [2]). The present work is the first to address
methods for “Cournot" mean field games.

1.2 Contributions

Let us comment further on the families of methods under investigation and our con-
tributions. The primal-dual algorithms that we have implemented were introduced by
Chambolle and Pock [17] and applied to mean field games in [13]. A novelty of our
work is also to show that the extension of primal-dual methods of [18], involving non-
linear proximity operators (based on Bregman divergences), can also be used to solve
MFGs. The augmented Lagrangian method that we have implemented is applied to the
dual problem (involving the dynamic programming equation), as originally proposed
in [5] for optimal transportation problems. As in [5], we have actually implemented
a variant of the augmented Lagrangian method, called alternating direction method
of multipliers (ADMM). The method was introduced by Glowinski and Marroco [24]
and studied by Gabay and Mercier [22]. It relies on a successive minimization of
the augmented Lagrangian function. One of the main limitations of ADMM is that
when the number of involved variables is greater or equal to three, as it is the case
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for our problem, convergence is not granted. A novelty of our work is to consider a
variant of ADMM, the alternating direction method with Gaussian back substitution
(ADM-G), introduced in [32]. At each iteration of this method, the ADMM step is
followed by a Gaussian back substitution step. Convergence is ensured. The practical
implementation of the additional step turns out to be inexpensive in our framework.

The last contribution of this work is to propose and solve numerically two hard
constraints problems: a congestion mean field game problem and a “Cournot" mean
field game. Following our analysis we define a notion of residuals allowing us to
compare the empirical convergence of each method in a common setting.

1.3 Organization of the article

The article is organized as follows. In Sect. 2 we provide the main notations, the
mean field game system under study and the underlying individual player problem.
In Sect. 3 we formulate a potential problem and perform the announced change of
variable. In Sect. 4 we form a dual problem and we establish a duality result. In Sect. 5
we provide our main results: existence and uniqueness of a solution to the mean field
game. In Sect. 6 we provide a detailed implementation of the primal-dual proximal
algorithms, ADMM and ADM-G, and we give theoretical convergence results when
possible. In Sect. 7we present numerical results for two concrete problems.Weprovide
outputs obtained for each method: errors, value function, equilibrium measure, mean
displacement, congestion, demand and price.

2 Discrete mean field games

2.1 Notation

Sets. Let T ∈ N
� denote the duration of the game. We set T = {0, ..., T − 1} and

T̄ = {0, ..., T }. Let S = {0, ..., n − 1} denote the state space. We set

Δ(S) =
{
π : S → [0, 1] ∣∣

∑
x∈S

π(x) = 1
}
,

Δ =
{
π : T × S × S → [0, 1] ∣∣ π(t, x, ·) ∈ Δ(S), ∀(t, x) ∈ T × S

}
.

For any finite set A, we denote by R(A) the finite-dimensional vector space of map-
pings from A to R. For any finite set B and linear operator L : R(A) → R(B), we
denote L� : R(B) → R(A) the adjoint operator satisfying the relation

∑
x∈A

L[u](x)v(x) =
∑
y∈B

u(y)L�[v](y).

123



Discrete potential mean field games: duality and numerical resolution 245

All along the article, we make use of the following spaces:

R = R(T̄ × S) × R(T × S2), U = R(T̄ × S) × R(T ),

C = R × R(T̄ × S) × R(T ), K = R(T̄ × S) × U .

Convex analysis. For any function g : Rd → R ∪ {+∞}, we denote

dom(g) = {
x ∈ X

∣∣ g(x) < +∞}
.

The subdifferential of g is defined by

∂g(x) =
{
x� ∈ R

d
∣∣ g(x ′) ≥ g(x) + 〈x�, x ′ − x〉, ∀x ′ ∈ R

d
}

.

By convention, ∂g(x) = ∅ if g(x) = +∞. Note also that x� ∈ ∂g(x) if and only if
g(x) + g�(x�) = 〈x, x�〉, where g� is the Fenchel transform of g, defined by

g�(x�) = sup
x∈Rd

〈x, x�〉 − g(x).

Note that the subdifferential and Fenchel transforms of �, F , and φ (introduced in the
next paragraph) are considered for fixed values of the time and space variables.

We denote by χ the indicator function of {0} (without specifying the underlying
vector space). For any subset C ⊆ R

d , we denote by χC the indicator function of C .
For any x ∈ C , we denote by NC (x) the normal cone to C at x ,

NC (x) =
{
x� ∈ R

d
∣∣ 〈x�, x ′ − x〉 ≤ 0, ∀x ′ ∈ C

}
.

We set NC (x) = ∅ if x /∈ C .

Nemytskii operators. Given two mappings g : X × Y → Z and u : X → Y , we call
Nemytskii operator the mapping g[u] : X → Z defined by

g[u](x) = g(x, u(x)).

We will mainly use this notation in order to avoid the repetition of time and space
variables, for example, we will write �[π ](t, x) instead of �(t, x, π(t, x)).

All along the article, we will transpose some notions associated with g to the
Nemytskii operator g[u]. When Y = R

d and Z = R ∪ {+∞}, we define the domain
of g by

dom(g) = {
u : X → R

d
∣∣ u(x) ∈ dom(g(x, ·)), ∀x ∈ X

}
.

We define g�[v] : Rd → R ∪ {+∞} by g�[v](x) = g�(x, v(x)), where g� is the
Fenchel transform of g with respect to the second variable.
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2.2 Coupled system

Data and assumption. We fix an initial distribution m0 ∈ Δ(S) and four maps: a
running cost �, a potential price function φ, a potential congestion cost F , and a
displacement cost α,

� : T × S × R(S) → R ∪ {+∞}, φ : T × R → R ∪ {+∞},
F : T̄ × R(S) → R ∪ {+∞}, α : T × S2 → R.

The following convexity assumption is in force all along the article. Note that we will
later make use of an additional qualification assumption (Assumption 2).

Assumption 1 (Convexity) For any (t, s, x) ∈ T × T̄ × S, the maps �(t, x, ·), F(s, ·),
andφ(t, ·) are proper, convex and lower semicontinuous. In addition dom(�(t, x, ·)) ⊆
Δ(S).

Coupled system. The unknowns of the MFG system introduced below are denoted
((m, π), (u, γ, P)) ∈ R × K. They can be described as follows:

• γ and P are the coupling terms of the MFG: γ (t, x) is a congestion term incurred
by agents located at x ∈ S at time t ∈ T̄ and P(t) is a price variable

• π(t, x, y) denotes the probability transition from x ∈ S to y ∈ S, for agents
located at x at time t

• m(t, x) denotes the proportion of agents located at x ∈ S at time t ∈ T̄
• u(t, x) is the value function of the agents.

For any (γ, P) ∈ U , we define the individual cost c : T × S × S × Δ(S) → R,

cγ,P (t, x, y, ρ) = �(t, x, ρ) + γ (t, x) + α(t, x, y)P(t).

Given (m, π) ∈ R, we denote

Q[m, π ](t) =
∑

(x,y)∈S2
m(t, x)π(t, x, y)α(t, x, y).

We aim at finding a quintuplet (m, π, u, γ, P) such that for any (t, s, x) ∈ T × T̄ × S,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i)

⎧
⎪⎨
⎪⎩

u(t, x) = inf
ρ∈Δ(S)

∑
y∈S

ρ(y)
(
cγ,P (t, x, y, ρ) + u(t + 1, y)

)
,

u(T , x) = γ (T , x),

(ii) π(t, x, ·) ∈ arg min
ρ∈Δ(S)

∑
y∈S

ρ(y)
(
cγ,P (t, x, y, ρ) + u(t + 1, y)

)
,

(iii)

⎧⎨
⎩
m(t + 1, x) =

∑
y∈S

m(t, y)π(t, y, x),

m(0, x) = m0(x),

(iv) γ (s, ·) ∈ ∂F(s,m(s, ·)),
(v) P(t) ∈ ∂φ

(
t, Q[m, π ](t)).

(MFG)
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Discrete potential mean field games: duality and numerical resolution 247

Heuristic interpretation.

• The dynamical system of each agent is a Markov chain (Xπ
s )s∈T̄ controlled by

π ∈ Δ, with initial distribution m0: for any (t, x, y) ∈ T × S2,

P
(
Xπ
t+1 = y|Xπ

t = x
) = π(t, x, y), P(Xπ

0 = x) = m0(x). (1)

Given the coupling terms (γ, P) ∈ U , the individual control problem is

inf
π∈Δ

Jγ,P (π) := E

( ∑
t∈T

cγ,P (t, Xπ
t , Xπ

t+1, π(t, Xπ
t )) + γ (T , Xπ

T )
)
. (2)

The equations (MFG,i-ii) are the associated dynamic programming equations:
given (γ, P) ∈ U , if u and π satisfy these equations, then π is a solution to (2).
The reader can refer to [10, Chapter 7] for a detailed presentation of the dynamic
programming approach for the optimal control of Markov chains.

• Given π ∈ Δ, denote bymπ the probability distribution of Xπ , that is,mπ (t, x) =
P(Xπ

t = x). Thenmπ is obtained by solving the Kolmogorov equation (MFG,iii).
In the limit when the number of agents tends to ∞, the distribution mπ coincides
with the empirical distribution of the agents.

• Finally, the equations (MFG,iv-v) link the coupling terms γ and P to the distribu-
tion of the agents m and their control π .

In summary: given a solution ((m, π), (u, γ, P)) ∈ R × K to (MFG), the triplet
(π, γ, P) is a solution to the mean field game

π ∈ argmin
ρ∈Δ

Jγ,P (ρ), γ ∈ ∂F[mπ ], P ∈ ∂φ[Q[mπ , π ]].

Potential problem. The next section of the article will be dedicated to the connection
between the coupled system and the potential problem (P), introduced page 10. We
provide here a stochastic formulation of (P) as an optimal control problem of aMarkov
chain, which has its own interest:

inf
π∈Δ

∑
t∈T

E
[
�(t, Xπ

t , π(t, Xπ
t ))

] +
∑

t∈T̄
F(t,L(Xπ

t ))

+
∑
t∈T

φ
(
t,E

[
α(t, Xπ

t , Xπ
t+1)π(t, Xπ

t , Xπ
t+1)

])
,

where (Xπ
t )t∈T̄ is a controlled Markov satisfying (1).

Remark 1 • At any time t ∈ T , it is possible to encode constraints on the transitions
of the agents located at x ∈ S by defining � in such a way that dom(�(t, x, ·)) is
strictly included into Δ(S). An example will be considered in Sect. 7.

• If F and φ are differentiable, then their subdifferentials are singletons and thus the
coupling terms γ and P are uniquely determined bym andπ through the equations
(MFG, iv-v).
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248 J. F. Bonnans et al.

• The equations (MFG, iv-v) imply thatm ∈ dom(F) and Q[m, π ] ∈ dom(φ). Thus
they encode hard constraints on m and π if the coupling functions F or φ take the
value +∞. For example, they can be chosen in the form G : Rd → R ∪ {+∞},
G = g + χK , where g : Rd → R is convex and differentiable and where K is a
closed and convex subset of Rd . Then by [4, Corollary 16.38],

∂G(x) = ∇g(x) + NK (x), ∀x ∈ R
d .

2.3 Further notation

We introduce now two linear operators, A and S. They will allow to bring out the
connection between the coupled system and the potential problem. The operator
A : R(T × S2) → R(T ) and its adjoint A� : R(T ) → R(T × S2) are given by

A[w](t) =
∑

(x,y)∈S2
w(t, x, y)α(t, x, y), A�[P](t, x, y) = α(t, x, y)P(t).

The operator S : R(T × S2) → R(T̄ × S) and its adjoint S� : R(T̄ × S) → R(T × S2)
are given by

S[w](s, x) =
{∑

y∈S w(s − 1, y, x) if s > 0,

0 if s = 0,

S�[u](t, x, y) = u(t + 1, y).

We can now reformulate the dynamic programming equations of the coupled system
(MFG,i-ii) as follows:

⎧
⎪⎨
⎪⎩

(i)

{
u(t, x) + ��[−A�P − S�u](t, x) = γ (t, x),

u(T , x) = γ (T , x),

(ii) (�[π ] + ��[−A�P − S�u])(t, x) = −〈π(t, x), (A�P + S�u)(t, x)〉.

3 Potential problem and convex formulation

3.1 Perspective functions

Given h : Rd → R∪{+∞} a proper l.s.c. and convex function with bounded domain,
we define the perspective function h̃ : R×R

d → R∪ {+∞} (following [39, Section
3]) by

h̃(θ, x) =

⎧
⎪⎨
⎪⎩

θh(x/θ), if θ > 0,

0, if (θ, x) = (0, 0),

+∞, otherwise.
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Lemma 1 The perspective function h̃ is proper, convex, l.s.c. and its domain is given
by dom(h̃) = {

(θ, x) ∈ R+ × R
d
∣∣ x ∈ θ dom(h)

}
. For any (θ�, x�) ∈ R × R

d , we
have

h̃�(θ�, x�) = χQ(θ�, x�), (3)

where Q := {(θ�, x�) ∈ R × R
d , h�(x�) + θ� ≤ 0}.

Proof The proof is a direct application of [11, Lemmas 1.157, 1.158] when h has a
bounded domain. In this case the recession function of h is the indicator function of
zero. ��
Lemma 2 Let (θ, x), (θ�, x�) ∈ R × R

d . Then (θ�, x�) ∈ ∂ h̃(θ, x) if and only if

either: h�(x�) + θ� ≤ 0 and (θ, x) = (0, 0),
or: h�(x�) + θ� = 0, h(x/θ) + h�(x�) − 〈x/θ, x�〉 = 0, and θ > 0.

Proof Direct application of [20, Proposition 2.3]. ��

3.2 Potential problem

We define the following criterion

J (m, π) =
∑

(t,x)∈T ×S

m(t, x)�[π ](t, x) +
∑
t∈T

φ[Q[m, π ]](t) +
∑

s∈T̄
F[m](s)

and the following potential problem (recall that mπ is the solution to the Kolmogorov
equation (MFG,iii), given π ∈ Δ):

inf
(m,π)∈R

J (m, π), subject to: m = mπ . (P)

The link between the mean field game system (MFG) and the potential problem (P)
will be exhibited in Sect. 5. Notice that Problem (P) is not convex. Yet we can define
a closely related convex problem, whose link with (P) is established in Lemma 3.

We denote by �̃ : T × S × R × R(S) → R ∪ {+∞} the perspective function of
� with respect to the third variable. By Lemma 1 the function �̃(t, x, ·, ·) is proper
convex and l.s.c. for any (t, x) ∈ T × S. We define

J̃ (m, w) =
∑

(t,x)∈T ×S

�̃[m, w](t, x) +
∑
t∈T

φ[Aw](t) +
∑

s∈T̄
F[m](s).

In the above definition, �̃ is the Nemytskii operator of �̃, that is, for any (t, x) ∈ T ×S,

�̃[m, w](t, x) =

⎧⎪⎪⎨
⎪⎪⎩

m(t, x)�
(
t, x, w(t,x,·)

m(t,x)

)
, if m(t, x) > 0,

0, if m(t, x) = 0 andw(t, x, ·) = 0,

+∞, otherwise.
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We consider now the following convex problem:

inf
(m,w)∈R

J̃ (m, w), subject to: Sw − m + m̄0 = 0, (P̃)

where m̄0 ∈ R(T̄ × S) is defined by

m̄0(s, x) =
{
m0(x), if s = 0,

0, otherwise.

Lemma 3 Let val(P) and val(P̃) respectively denote the values of problems (P) and
(P̃). Then val(P) = val(P̃). In addition, if Problem (P) is feasible, then both problems
(P) and (P̃) have a non-empty bounded set of solutions.

Proof Step 1: val(P) ≥ val(P̃). Let (m, π) ∈ dom(J ) be such that m = mπ . Let

w(t, x, ·) := m(t, x)π(t, x, ·), (4)

for any (t, x) ∈ T × S. Then (m, w) is feasible for problem (P̃) and

m(t, x)�(t, x, π(t, x, ·)) = �̃(t, x,m(t, x), w(t, x, ·)), (5)

for any (t, x) ∈ T × S. Indeed by definition of �̃(t, x, ·, ·), if m(t, x) > 0 then
(5) holds and if m(t, x) = 0 then w(t, x, ·) = 0 and (5) still holds. It follows that
J (m, π) = J̃ (m, w) and consequently, val(P) ≥ val(P̃).

Step 2: val(P) ≤ val(P̃). Let (m, w) ∈ dom(J̃ ) be such that Sw −m = m̄0 and let π
be such that

{
π(t, x, ·) = w(t, x, ·)/m(t, x), if m(t, x) > 0,

π(t, x, ·) ∈ dom(�(t, x, ·)), otherwise,
(6)

for all (t, x) ∈ T × S. Then (5) is satisfied and (m, π) is feasible for (P). Thus
J (m, π) = J̃ (m, w), and consequently, val(P) ≤ val(P̃).

Step 3: non-empty and bounded sets of solutions. Since J (mπ , π) is l.s.c. with non-
empty bounded domain, it reaches itsminimumon its domain. Then the set of solutions
to (P) is non-empty and bounded. Now let (m, π) be a solution to (P) and let w be
given by (4). We have that

J̃ (m, w) = J (m, π) = val(P) = val(P̃),

thus we deduce that the set of solutions to (P̃) is non-empty. It remains to show that the
set of solutions to (P̃) is bounded. Let (m, w) be a solution to (P̃). The Kolmogorov
equation implies that 0 ≤ m(t, x) ≤ 1, for any (t, x) ∈ T̄ × S. By Lemma 1, we have
w(t, x, ·) ∈ m(t, x)Δ(S), which implies that 0 ≤ w(t, x, y) ≤ 1. ��

Note that the above proof shows how to deduce a solution to (P̃) out of a solution
to (P) and vice-versa, thanks to relations (4) and (6).
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4 Duality

We show in this section that Problem (P̃) is the dual of an optimization problem,
denoted (D), itself equivalent to an optimal control problem of the dynamic pro-
gramming equation, problem (D̃). For this purpose, we introduce a new assumption
(Assumption 2), which is assumed to be satisfied all along the rest of the article.

4.1 Duality result

The dual problem is given by

sup
(u,γ,P)∈K

D(u, γ, P) := 〈m0, u(0, ·)〉 −
∑
t∈T

φ�[P](t) −
∑

s∈T̄
F�[γ ](s),

subject to:

{
u(t, x) + ��[−A�P − S�u](t, x) ≤ γ (t, x), (t, x) ∈ T × S,

u(T , x) = γ (T , x), x ∈ S.

(D)

Note that the above kind of dynamic programming equation involves inequalities (and
not equalities as in (MFG,i)).

We introduce now a qualification condition, which will allow to prove the main
duality result of the section. For any ε = (ε1, ε2, ε3) ∈ K and π ∈ dom(�) we define
m1[ε, π ] the solution to the following perturbed Kolmogorov equation

m1(t + 1, x) =
∑
y∈S

m1(t, y)π(t, y, x) − ε1(t + 1, x), m1(0) − ε1(0) = m̄0.

(7)

We also define, for any (t, x, y) ∈ T × S × S,

w[ε, π ](t, x, y) = m1[ε, π ](t, x)π(t, x, y)
m2[ε, π ](t, x) = m1[ε, π ](t, x) + ε2(t, x)

D[ε, π ](t) = ∑
(x,y)∈S2 w[ε, π ](t, x, y)α(t, x, y) + ε3(t).

(8)

Assumption 2 (Qualification) There exists α > 0 such that for any ε = (ε1, ε2, ε3)

in K with ‖ε‖ ≤ α, there exists π ∈ dom(�) such that

m1[ε, π ] ≥ 0, m2[ε, π ] ∈ dom(F), D[ε, π ] ∈ dom(φ). (9)

Note that the qualification assumption implies the feasibility of Problems (P̃) and
(P).

Remark 2 Assume that int(dom(F)) and int(dom(φ)) are non-empty sets. Then in
this case, Assumption 2 is satisfied if there exists π ∈ dom(�) such that

m1[0, π ] = m2[0, π ] ∈ int
(
dom(F) ∩ R+(T̄ × S)

)
, D[0, π ] ∈ int(dom(φ)).
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Remark 3 [Mean field game planning problem and optimal transport] Let m̄T ∈ Δ(S)

be such that m̄T (x) > 0 for any x ∈ S, let F(T ) = χ{m̄T } and let φ = 0. In this case
(MFG) is a discrete mean field game planning problem (see [1]).

Now further assume that F(t) = 0 for all t ∈ T , then (MFG) can be interpreted as
an optimal transport problem (see [1, 5]). In this setting, Assumption 2 is satisfied if
and only if there exists α > 0 such that the following holds: for any ε ∈ R(T̄ × S)

with ‖ε‖ ≤ α, there exists π ∈ dom(�) and m1 such that

m1(t + 1, x) = ∑
y∈S m1(t, y)π(t, x, y) − ε(t + 1, x), x ∈ S,

m1(0, x) = m̄0(x) + ε(0), x ∈ S,

m1(T , x) = m̄T (x) + ε(T ), x ∈ S,

m1(t, x) ≥ 0, (t, x) ∈ T̄ × S.

Theorem 1 Let Assumption 2 hold true. Then the dual problem (D) has a bounded set
of solutions and val(D) = val(P̃).

Proof The primal problem (P̃) can formulated as follows:

inf
(m1,w,m2,D)∈C

F(m1, w,m2, D) + G(A(m1, w,m2, D)), (P)

where the maps F : C → R ∪ {+∞} and G : K → R ∪ {+∞} and the operator
A : C → K are defined by

F(m1, w,m2, D) =
∑

(t,x)∈T ×S

�̃[m1, w](t, x) +
∑
t∈T

φ[D](t) +
∑

s∈T̄
F[m2](s),

G(y1, y2, y3) = χ(y1 + m̄0) + χ(y2) + χ(y3),
A(m1, w,m2, D) = (Sw − m1,m1 − m2, Aw − D).

(10)

We next prove that the qualification condition

0 ∈ int (dom(G) − A dom(F))

is satisfied. This is equivalent to show the existence of α > 0 such that for any
ε = (ε1, ε2, ε3) ∈ K, with‖ε‖ ≤ α, there exists (m1, w,m2, D) ∈ dom(F) satisfying

(Sw − m1 + ε1,m1 − m2 + ε2, Aw − D + ε3) ∈ dom(G) = {−m̄0} × {0} × {0}.

This is a direct consequence of Assumption 2. Therefore, we can apply the Fenchel-
Rockafellar theorem (see [40, Theorem 31.2]) to problem (P). It follows that the
following dual problem has the same value as (P) and possesses a solution:

inf
(u,γ,P)∈K

F�(−A�(u, γ, P)) + G�(u, γ, P). (D)
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It remains to calculate F�, G�, and A�. For any (s, x) ∈ T̄ × S, we define

Qs,x =
{

{(a, b) ∈ R × R(S), ��(s, x, b) + a ≤ 0} , if s < T ,

{a ∈ R, a = 0} , if s = T .

We then define

Q =
∏

(s,x)∈T̄ ×S

Qs,x . (11)

For any (y1, y2, y3, y4) ∈ C we have by Lemma 1 that

F�(y1, y2, y3, y4) = χQ(y1, y2) +
∑
t∈T

φ�[y4](t) +
∑

s∈T̄
F�[y3](s).

The adjoint operator A� : K → C is given by

A�(u, γ, P) = (γ − u, A�P + S�u,−γ,−P).

It follows that

F�(−A�(u, γ, P)) = χQ(u − γ,−A�P − S�u) +
∑
t∈T

φ�[P](t) +
∑

s∈T̄
F�[γ ](s).

Moreover, G�(u, γ, P) = −〈u(0, ·),m0〉. It follows that (D) and (D) are equivalent,
which concludes the proof of the theorem. ��

4.2 A new dual problem

We introduce in this section a new optimization problem, equivalent to (D). We define
the mapping U : U → R(T̄ × S) which associates with (γ, P) ∈ U the solution
u ∈ R(T̄ × S) to the dynamic programming equation

{
u(t, x) + ��[−A�P − S�u](t, x) = γ (t, x) (t, x) ∈ T × S,

u(T , x) = γ (T , x), x ∈ S.
(12)

We define the following problem

max
(γ,P)∈U

D̃(γ, P) := D(U[γ, P], γ, P) (D̃)

= 〈m̄0,U[γ, P]〉 −
∑
t∈T

φ�[P](t) −
∑

s∈T̄
F�[γ ](s).

Note that the above dual criterion is of similar nature as the dual criterion in [19,
Remark 2.3].
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Lemma 4 Problems (D) and (D̃) have the same value. Moreover, for any solution
(u, γ, P) to (D), (γ, P) is a solution to (D̃); conversely, for any solution (γ, P) to (D̃)
(there exists at least one), (U[γ, P], γ, P) is a solution to (D).

Proof Let (γ, P) ∈ U . Then (u := U[γ, P], γ, P) is feasible for problem (D) and by
definition, D(u, γ, P) = D̃(γ, P). Therefore, val(D) ≥ val(D̃).

Conversely, let (u, γ, P) be feasible for (D). Let û = U[γ, P]. Now we claim that
û(t, x) ≥ u(t, x), for any (t, x) ∈ T̄ ×S (this is nothing but a comparison principle for
our dynamic programming equation). The proof of the claim relies on a monotonicity
property of ��. Given b and b′ ∈ R(S), we say that b ≤ b′ if b(x) ≤ b′(x), for all
x ∈ S. Since �(t, x, ·) has its domain included in Δ(S), we have

b ≤ b′ �⇒ ��(t, x, b) ≤ ��(t, x, b′).

Using the above property, it is easy to prove the claim by backward induction. It
follows that D̃(γ, P) = D(û, γ, P) ≥ D(u, γ, P) and finally, val(D̃) ≥ val(D). Thus
the two problems have the same value.

The other claims of the lemma are then easy to verify. ��

Lemma 5 For any (t, x) ∈ T × S, the map (γ, P) ∈ U �→ U[γ, P](t, x) is concave.

Proof Let (t, x) ∈ T × S. Given π ∈ Δ, consider the Markov chain (Xπ
s )s=t,...,T

defined by

P
(
Xπ
s+1 = y|Xπ

s = x
) = π(s, x, y), ∀s = t, ..., T − 1, Xπ

t = x .

By the dynamic programming principle, we have

U[γ, P](t, x) = inf
π∈Δ

E

( T∑
s=t

cγ,P (t, Xπ
s , Xπ

s+1, π(s, Xπ
s )) + γ (T , Xπ

T )
)
.

The criterion to be minimized in the above equality is affine with respect to (γ, P),
thus it is concave. The infimum of a family of concave functions is again concave,
therefore, U[γ, P](t, x) is concave with respect to (γ, P). ��

As a consequence of the above Lemma, the criterion D̃ is concave.

5 Connection between theMFG system and potential problems

The connection between the MFG system and the potential problems can be estab-
lished with the help of seven conditions, which we introduce first. We say that
(m1, w,m2, D) ∈ C and (u, γ, P) ∈ K satisfy the condition (C1) if for any
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(t, x) ∈ T × S,

either:

{
u(t, x) + ��[−A�P − S�u](t, x) ≤ γ (t, x),

(m1(t, x), w(t, x, ·)) = (0, 0),

or:

⎧
⎪⎨
⎪⎩

u(t, x) + ��[−A�P − S�u](t, x) = γ (t, x),

�[π ](t, x) + ��[−A�P − S�u](t, x) + 〈π(t, x), (A�P + S�u)(t, x)〉 = 0,

m1(t, x) > 0,

where π(t, x) = w(t, x)/m1(t, x). We say that the conditions (C2-C7) are satisfied
if

(C2) u(T ) = γ (T ), (C5) m1 = Sw + m̄0,

(C3) γ ∈ ∂F[m2], (C6) m1 = m2,

(C4) P ∈ ∂φ[D], (C7) D = Aw.

We show in the next lemma that the conditions (C1-C7) are necessary and sufficient
optimality conditions for (P) and (D).

Lemma 6 We have that (m1, w,m2, D) ∈ C and (u, γ, P) ∈ K are respectively
solutions of (P) and (D) if and only if the conditions (C1-C7) hold.

Proof Let (m1, w,m2, D) ∈ C and (u, γ, P) ∈ K. We define the two quantities a and
b as follows:

a = F(m1, w,m2, D) + F�(−A�(u, γ, P)) + 〈(m1, w,m2, D),A�(u, γ, P)〉,
b = G(A(m1, w,m2, D)) + G�(u, γ, P) − 〈A(m1, w,m2, D), (u, γ, P)〉.

By Theorem 1, (m1, w,m2, D) ∈ C and (u, γ, P) ∈ K are respectively solutions of
(P) and (D) if and only if a + b = 0. Then we have the following decomposition

a =
∑

(s,x)∈T ×S

a1(t, x) +
∑
x∈S

a2(x) +
∑

s∈T̄
a3(s) +

∑
t∈T

a4(t),

b =
∑
t∈T

b1(t) +
∑

s∈T̄
b2(s) + b3(s),

where

a1(t, x) := �̃[m1, w](t, x) + χQt,x ((γ − u)(t, x), (−A�P − S�u)(t, x))
+〈m1(t, x), (u − γ )(t, x)〉 + 〈w(t, x), (A�P + S�u)(t, x)〉,

a2(x) := χQT ,x ((γ − u)(T , x)) + 〈m1(T , x), (u − γ )(T , x)〉,
a3(s) := F[m2](s) + F�[γ ](s) − 〈m2(s), γ (s)〉,
a4(t) := φ[D](t) + φ�[P](t) − 〈D(t), P(t)〉,
b1(t) := χ((Aw − D)(t)) − 〈P(t), (Aw − D)(t)〉,
b2(s) := χ((Sw − m1 + m̄0)(s)) − 〈u(s), (Sw − m1 + m̄0)(s)〉,
b3(s) := χ((m1 − m2)(s)) − 〈γ (s), (m1 − m2)(s)〉,
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for any (t, s, x) ∈ T × T̄ × S. By the Fenchel-Young inequality,

a1(s, x) ≥ 0, a2(x) ≥ 0, a3(s) ≥ 0, a4(t) ≥ 0,
b1(t) ≥ 0, b2(s) ≥ 0, b3(s) ≥ 0.

Then a + b = 0 if and only if

a1(s, x) = 0, a2(x) = 0, a3(s) = 0, a4(t) = 0,
b1(t) = 0, b2(s) = 0, b3(s) = 0.

(13)

By Lemma 2 we have that (C1) holds if and only if a1(s, x) = 0 and it is obvious that
(C2-C7) holds if and only if a2(x) = a3(s) = a4(t) = b1(t) = b2(s) = b3(s) = 0.
Then the conditions (C1-C7) hold if and only if (13) holds, which concludes the proof.

��
Proposition 1 Let (m1, π, u, γ, P) ∈ R × K be a solution to (MFG) and let

w(t, x, ·) = m1(t, x)π(t, x, ·), m2 = m1, D = Aw,

for any (t, x) ∈ T × S. Then (m1, w,m2, D) and (u, γ, P) are respectively solutions
to (P) and (D). Moreover, (m1, w) is solution to (P̃), (m1, π) is solution to (P), and
(γ, P) is solution to (D̃).

Proof The conditions (C1-C7) are obviously satisfied. It immediately follows from
Lemma 6 that (m1, w,m2, D) and (u, γ, P) are optimal for (P) and (D). The opti-
mality of (m1, w) and (m1, π) is then deduced from the proof of Lemma 3. The
optimality of (γ, P) is a consequence of Lemma 4. ��

For any (m, w) ∈ R, (u, γ, P) ∈ K we define the set π[m, w, u, γ, P] of controls
π ∈ Δ satisfying

π(t, x, ·) = w(t, x, ·)/m(t, x)

if m(t, x) > 0 and

π(t, x, ·) ∈ argmin
ρ∈Δ(S)

�(t, x, ρ) +
∑
y∈S

ρ(y)(P(t)α(t, x, y) + u(t + 1, y))

if m(t, x) = 0, for any (t, x) ∈ T × S. Note that for any π ∈ π[m, w, u, γ, P], we
havew(t, x, ·) = m(t, x)π(t, x, ·), for any (t, x) ∈ T ×S. We have now the following
converse property to Proposition 1.

Proposition 2 Let (m1, w,m2, D) and (u, γ, P) be respectively solutions to (P) and
(D). Let û = U[γ, P] and letπ ∈ π[m, w, û, γ, P]. Then (m, π̂ , û, γ, P) is a solution
to (MFG).
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Proof By Lemma 4, (û, γ, P) is a solution to (D). The pairs (m1, w,m2, D) and
(û, γ, P) are solutions to (P) and (D)), respectively, therefore they satisfy conditions
(C1–C7), by Lemma 6. Equations (MFG,iii–v) are then obviously satisfied. By def-
inition, û satisfies (MFG,i). Finally, (MFG,ii) is satisfied, by condition (C1) and by
definition of the set π[m, w, u, γ, P]. It follows that (m, π, û, γ, P) ∈ R × K is
solution to (MFG). ��

Since the existence of solutions to (P) and (D) has been established in Lemmas 3
and 4, we have the following corollary.

Corollary 1 There exists a solution to (MFG).

We finish this section with a uniqueness result.

Proposition 3 Let (m, π, u, γ, P) and (m′, π ′, u′, γ ′, P ′) be two solutions to the cou-
pled system (MFG). Assume that F andφ are differentiablewith respect to their second
variable. Then (u, γ, P) = (u′, γ ′, P ′). If moreover, for any (t, x) ∈ T × S, �(t, x, ·)
is strictly convex, then (m, π) = (m′, π ′) and thus (MFG) has a unique solution.

Proof It follows from Proposition 1 that (m, w := mπ,m, D := Aw) is a solution
to (P) and that (u, γ, P) and (u′, γ ′, P ′) are solutions to (D). Thus by Lemma 6,
the conditions (C3) and (C4) are satisfied, both for (m, w,m, D) and (u, γ, P) and
for (m, w,m, D) and (u′, γ ′, P ′), which implies that γ = ∇F[m] = γ ′ and P =
∇φ[D] = P ′. It further follows that u = U[γ, P] = U[γ ′, P ′] = u′.

If moreover �(t, x, ·) is strictly convex for any (t, x) ∈ T × S then the minimal
argument in (MFG,ii) is unique, which implies thatπ = π ′ and finally thatm = mπ =
mπ ′ = m′. ��

6 Numerical methods

In this sectionwe investigate the numerical resolution of the problems (P) and (D).We
investigate different methods: primal-dual proximal algorithms, ADMM and ADM-
G. For all methods, it is assumed that the computation of the prox operators (defined
below) of �̃(t, x, ·), F(t, ·) and φ(t, ·) are tractable. Note that for the method involving
theKullback-Leibler distance in Sect. 6.2.2, the prox of �̃ is replaced by a stightlymore
complex optimization problem.

We explain in the “Appendix A” how to calculate the prox of � (and the nonlinear
proximator based on the entropy function) in the special case where � is linear on its
domain. We explain in Sect. 6.4 how to recover a solution to (MFG).

6.1 Notations

Let X1 be a subset of Rd , let X̄1 denote its closure. Let f : X̄1 → R. Assume that the
following assumption holds true.

Assumption 3 The set X̄1 is convex and themap f is continuous and 1-strongly convex
on X̄1. There exists an open subset X2 containing X1 such that f can be extended to
a continuous differentiable function on X2.
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We define then the Bregman distance d f : X1 × X1 → R by

d f (x, y) = f (x) − f (y) − 〈∇ f (y), x − y〉.

If f is the Euclidean distance 1
2 | · |2, then d f (x, y) = 1

2 |x − y|2.
Given a l.s.c., convex and proper function g : Rd → R, we define its proximal

operator proxg : Rd → R
d as follows:

proxg(x) = argmin
y∈Rd

1

2
|x − y|2 + g(y).

For any non-empty, convex and closed K ⊆ R
d , we define the projection operator

projK of x ∈ R
d on K by

projK (x) = proxχK
(x).

Finally, we denote ᾱ(t) = ∑
(x,y)∈S×S α(t, x, y)2 for any t ∈ T .

6.2 Primal-dual proximal algorithms

In this subsection we present the primal-dual algorithms proposed by Chambolle and
Pock in [17] and [18]. For the sake of simplicity, we denote by x the primal variable
(m1, w,m2, D) and by y the dual variable (u, γ, P). The primal-dual algorithms rely
on the following saddle-point problem

min
x∈C

max
y∈K

L(x, y) := F(x) − G�(y) + 〈Ax, y〉, (14)

which is equivalent to problem (P) (defined in the proof of Theorem 1). Let C1 andK1
be two subsets of C and K, respectively. Let f : C̄1 → R and let g : K̄1 → R satisfy
Assumption 3.

For any τ, σ > 0 and for any (x ′, y′) ∈ C × K we define:

Iteration (x̂, ŷ) = Sτ,σ [d f , dg](x ′, y′),
⎧⎪⎨
⎪⎩

(i) x̂ = argminx∈C1 F(x) + 〈x,A�y′〉 + 1
τ
d f (x, x ′),

(ii) x̃ = 2x̂ − x ′,
(iii) ŷ = argminy∈K1

G�(y) − 〈Ax̃, y〉 + 1
σ
dg(y, y′).

(15)

Then we define the following algorithm.

Theorem 2 Let τ, σ > 0 be such that τσ‖A‖2 < 1, where ‖A‖ denotes the operator
norm of A (for the Euclidean norm). Assume that dom(F) ⊆ C̄1 and dom(G�) ⊆ K̄1.
Assume that the iteration (15) is well-defined, that is, the minimal arguments in (i)
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Algorithm 1 Chambolle–Pock
Choose σ, τ > 0 and (x0, y0) ∈ C × K
for 0 ≤ k < N do

Compute (xk+1, yk+1) = Sτ,σ [d f , dg](xk , yk ).
end for
return (xN , yN ).

and (iii) exist. Let (xk, yk)k∈N denote the sequence generated by the algorithm. For
any k ∈ N we set

x̄k = 1

k

k∑
n=0

xn, and ȳk = 1

k

k∑
n=0

yn . (16)

Let (x, y) ∈ C × K. Then the following holds:

1. The sequence (x̄ k)k∈N converges to a solution of (P̃) and the sequence (ȳk)k∈N
converges to a solution of (D). In addition the saddle-point gap is such that

L(x̄ k, y) − L(x, ȳk)

≤ 1

k

(
d f (x, x̄

k)/τ + dg(y, ȳ
k))/σ − 〈A(x − x0), (y − y0)〉

)
.

(17)

2. If f and g are the Euclidean distance 1
2 | · |2, then the sequence (xk)k∈N converges

to a solution of (P̃) and the sequence (yk)k∈N converges to a solution of (D).

Proof Point 1 holds as a direct application of [18, Theorem 1, Remark 3]. Point 2
holds as a direct application of [17, Theorem 1], applied with θ = 1. ��
Remark 4 Fix (x, y), solution to (14). Let (x̂, ŷ) ∈ C × K . Then we have that 0 ≤
δ(x̂) := L(x̂, y) − L(x, y) and 0 ≤ δ′(ŷ) := L(x, y) − L(x, ŷ), with equality if
x̂ (resp. ŷ) is a primal (resp. dual) solution. These measures of optimality (for the
saddle-point problem) trivially satisfy

0 ≤ δ(x̂) + δ′(ŷ) = L(x̂ k, y) − L(x, ŷk), (18)

for which an upper-bound is provided by (17).

Lemma 7 Let a = maxt∈T ᾱ(t). Then ‖A‖ ≤ √
max {n + a, 4}, where n is the car-

dinal of the set S.

Proof For any (m1, w,m2, D) ∈ C, we have

|A(m1, w,m2, D)|2 ≤ |Sw − m1|2 + |m1 − m2|2 + |Aw − D|2
≤ (‖A‖ + ‖S‖)|w|2 + 4|m1|2 + 2|m2|2 + 2|D|2.

We have ‖A‖ ≤ a and ‖S‖ ≤ n, which concludes the proof. ��
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6.2.1 Euclidean distance

Now we explicit the update rule (15) in the case where f and g are both equal to the
Euclidean distance 1

2 | · |2 and defined on C and K respectively. In this situation (i,15)
and (iii,15) can be expressed via proximal operators:

{
(i) x̂ = proxτF (x ′ − τA�y′),
(iii) ŷ = proxσG� (y′ + τAx̃).

(19)

Now we detail the computation of the proximal steps in the above algorithm.
Primal step. For any x = (x1, x2, x3, x4) ∈ C, we have by Moreau’s identity

proxτF (x) = x − τ proxF�/τ (x/τ).

As a consequence of (12), the proximal operator of F� is given by

proxF� (x) = argmin
x ′∈C

1

2
|x − x ′|2 + χQ(x ′

1, x
′
2) +

∑

s∈T̄
F�(s, x ′

3(s)) +
∑
t∈T

φ�(t, x ′
4(t)).

Then (i,19) is given by

(m̂1, ŵ) = (m′
1 − τ(γ ′ − u′), w′ − τ(A�P ′ + S�u′))

− τ projQ(m′
1/τ − γ ′ + u′), w′/τ − A�P ′ − S�u′), (20)

and for any (t, s) ∈ T × T̄ ,

m̂2(s) = m′
2(s) + τγ ′(s) − τ proxF�(s)/τ (m

′
2(s)/τ + γ ′(s)),

D̂(t) = D′(t) + τ P ′(t) − τ proxφ�(t)/τ (D
′(t)/τ + P ′(t)). (21)

Dual step. It follows from (10) that proxσG� (y1, y2, y3) = (y1 + σ m̄0, y2, y3). Then
(iii,19) is given by

û = u′ + σ(Sw̃ − m̃1 + m̄0), γ̂ = γ ′ + σ(m̃1 − m̃2), P̂ = P ′ + σ(Aw̃ − D̃).

Remark 5 An alternative formulation of the primal problem (avoiding the decoupling
m1 and m2) is as follows:

inf
(m,w)∈R

F̄(m, w) + Ḡ(Ā(m, w)),

where

⎧⎨
⎩
F̄ : (m, w) �→ ∑

(t,x) �̃[m, w](t, x) + ∑
s F[m](s),

Ḡ : (y, D) �→ χm̄0(y) + φ(D),

Ā : (m, w) �→ (Sw − m, Aw).
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This formulation may have numerical advantages since the operator Ā has a smaller
norm than A. In full generality, there is however no analytic form for the proximal
operator of the F̄ that would be based on the proximal operators of �̃(t, ·) and F(t, ·).
Therefore we do not explore any further this formulation.

6.2.2 Kullback–Leibler divergence

In this section we slightly modify the Euclidean framework above. Instead of con-
sidering a Euclidean distance d f in (i,15), we consider an entropy based Bregman
distance called Kullback-Leibler divergence. Let us define

C1 =
{
(m1, w,m2, D) ∈ C |m1(t, x), w(t, x, y) ∈ (0, 1], (t, x, y) ∈ T × S × S

}
,

C2 =
{
(m1, w,m2, D) ∈ C |m1(t, x), w(t, x, y) ∈ (0, 2), (t, x, y) ∈ T × S × S

}
.

For any (m1, w,m2, D) ∈ C̄1, we define

f (m1, w,m2, D) =
∑

(s,x)∈T̄ ×S

m1(s, x) ln(m1(s, x))

+
∑

(t,x,y)∈T ×S2

w(t, x, y) ln(w(t, x, y)) + 1

2
|(m2, D)|2,

(22)

with the convention that 0 ln(0) = 0. Then, given (m1, w,m2, D) ∈ C1 and
(m′

1, w
′,m′

2, D
′) ∈ C1, we have

d f ((m1, w,m2, D), (m′
1, w

′,m′
2, D

′)) = dK L((m1, w), (m′
1, w

′))

+ 1

2
|(m2, D) − (m′

2, D
′)|2,

where

dK L((m1, w), (m′
1, w

′)) =
∑

(s,x)∈T̄ ×S

m1(s, x)(ln(m1(s, x)/m
′
1(s, x)) − 1)

+
∑

(t,x,y)∈T ×S2

w(t, x, y)(ln(w(t, x, y)/w′(t, x, y)) − 1).

(23)

As can be easily verified, the map f is 1-strongly convex on C̄1. The domain ofF is
not contained in C̄1 in general (as required by Theorem 2), however f is not 1-strongly
convex on C. This is a minor issue, since any solution to (14) lies in C̄1, thus we can
replace F by F + χC̄1 without modifying the solution set to the problem.
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Compared to the Sect. 6.2.1, the computations of (21) still hold. The projection step
(20) is now replaced by

(m̂1, ŵ) = argmin
(m1,w)∈R

∑
(t,x)∈T ×S

�̃[m1, w](t, x) + 〈m1, γ
′ − u′〉 + 〈w, A�P ′ + S�u′〉

+ 1

τ
dK L((m1, w), (m′

1, w
′)) +

∑

(t,x)∈T̄ ×S

χR−
(
m1(t, x) − 1

)
. (24)

Note that it is not necessary to explicit the constraint w(t, x, y) ≤ 1 in the above
problem; it is satisfied as a consequence of Assumption 1 and Lemma 1. In general,
the computation of this proximal operator can be difficult. In Sect. 6 we consider a
linear running cost and explain (in Appendix 1) how to solve explicitly problem (24)
in this specific case.

6.3 ADMM and ADM-G

We now present ADMM and ADM-G. Introducing the variables

(a, b) = (u − γ,−A�P − S�u)

and recalling the definition of Q and F∗ (see the proof of Theorem 1), the problem
(D) can be written as follows:

sup
(u,γ,P)∈K, (a,b)∈Q

D(u, γ, P)

s.t.:

{
u(s, x) − γ (s, x) = a(s, x) (s, x) ∈ T̄ × S,

−α(t, x, y)P(t) − u(t + 1, y) = b(t, x, y) (t, x, y) ∈ T × S2.

(25)

Remark 6 Let Dt and Dx be finite difference operators defined for any (t, x, y) ∈
T × S × S by

Dt [u](t, x) =
{
u(t + 1, x) − u(t, x) if t < T ,

−u(T , x) if t = T ,

Dx [u](t, x, y) = u(t + 1, x) − u(t + 1, y).

Since dom(�(t, x, ·)) ⊆ Δ(S), for any (u, b) ∈ R we have that

��[b + S�u](t, x) = ��[b + Dxu](t, x) − u(t + 1, x),

for any (t, x) ∈ T × S. Then we have that (a, b) ∈ Q if and only if (ã, b̃) ∈ Q, where

ã(t, x) = a(t, x) − u(t + 1, x), b̃(t, x, y) = b(t, x, y) + u(t + 1, x).
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Thus the problem (25) can be alternatively written

sup
(u,γ,P)∈K, (ã,b̃)∈Q

D(u, γ, P), subject to:

{
Dtu = −γ − ã,

Dxu = A�P + b̃.

This problem is close to the problem studied in [5, Section 4] in the context of optimal
transport theory.

Let r > 0. The Lagrangian and augmented Lagrangian associated with problem
(25) are defined by

L = D(u, γ, P) − χQ(a, b) + 〈m, u − γ − a〉 + 〈w,−A�P − S�u − b〉 (26)

Lr = L(u, γ, P, a, b,m, w) + r

2
|(u − γ − ā,−A�P − S�u − b)|2,

when evaluated at (u, γ, P, a, b,m, w). Note that their definition is different from the
one introduced in (14). We define an ADMM step which consists in the updates of u,
(γ, P) and (a, b) via three successive minimization steps and in the update of (m, w)

via a gradient ascent step of the augmented Lagrangian:

Iteration (û, γ̂ , P̂, â, b̂, m̂, ŵ) = Lr (u, γ, P, a, b,m, w),

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(i) û ∈ argminu∈R(T̄ ×S) Lr (u, γ, P, a, b,m, w),

(ii) (γ̂ , P̂) ∈ argmin(γ,P)∈R(T̄ ×S)×R(T ) Lr (û, γ, P, a, b,m, w),

(iii) (â, b̂) ∈ argmin(a,b)∈Q Lr (û, γ̂ , P̂, a, b,m, w),

(iv) (m̂, ŵ) = (m, w) + r(û − γ̂ − â,−A�[P̂] − S�[û] − b̂).

(28)

6.3.1 ADMM

The ADMM method is given by Algorithm 2.

Algorithm 2 ADMM
Choose r > 0, (m0, w0) ∈ R, (u0, γ 0, P0) ∈ K, (a0, b0) ∈ Q .
Let v0 = (u, γ, P, a, b,m, w).
for 0 ≤ k < N do

ADMM step: vk+1 = Lr (vk ),
end for
return vN .

Unlike in [5] this algorithm does not reduce to ALG2, thus we have no theoretical
guarantee about the convergence. But as we will see in Sect. 6.3.2, convergence results
are available for ADM-G. The relation (28,i) is given by

uk+1 = −(mk − m̄0 − Swk)/r + γ k + ak − S[A�Pk+1 + bk].
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The relation (28,ii) can be written under a proximal form,

γ k+1(s) = proxF�(s)/r

(
mk(s)/r + uk+1(s) − āk(s)

)
,

Pk+1(t) = proxφ�(t)/(r ᾱ(t))

(
A[wk/r − S�uk − bk](t)/ᾱ(t)

)
,

for any (t, s) ∈ T × T̄ . The relation (28, iii) can be written as a projection step

(ak+1, bk+1) = projQ
(
(mk/r + uk+1 − γ k+1, wk/r − A�Pk+1 − S�uk+1)

)
. (29)

6.3.2 ADM-G

We explicit now the implementation of the ADM-G algorithm introduced in [32]. To
fit their framework we define

A1 =
(

id
−S�

)
, A2 =

(−id 0
0 −A�

)
, A3 =

(−id 0
0 −id

)
,

with appropriate dimensions, so that the constraint of problem (25) writes A1u +
A2(γ, P) + A3(a, b) = 0. We define

M =
⎛
⎝
r A�

2A2 0 0
r A�

3A2 r A�
3A3 0

0 0 id/r

⎞
⎠ , H =

⎛
⎝
r A�

2A2 0 0
0 r A�

3A3 0
0 0 id/r

⎞
⎠ .

Then we have

(M�H−1)−1 =
⎛
⎝
id −(A�

2A2)
−1A2A3 0

0 id 0
0 0 id

⎞
⎠ .

Algorithm 3 ADM-G
Choose r > 0 and ξ ∈ (0, 1). Let (m0, w0) ∈ R, (u0, γ 0, P0) ∈ K, (a0, b0) ∈ Q .
Let v0 = (γ, P, a, b,m, w).
for 0 ≤ k < N do

ADMM step: (ũk+1, ṽk+1) = Lr (uk , vk ),

Substitution step:

{
vk+1 = vk + ξ(M�H−1)−1(ṽk − vk ),

uk+1 = ũk+1,

end for
return (uN , vN ).
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Theorem 3 Let (uk, γ k, Pk, ak, bk,mk
1, w

k)k∈N be the sequence generated by Algo-
rithm 3, and let mk

2 = mk
1, Dk = Awk , for any k ∈ N. Then the sequence

(mk
1, w

k,mk
2, D

k)k∈N converges to a solution of (P̃) and the sequence (uk, γ k, Pk)k∈N
converges to a solution of (D).

Proof By [32, Theorem 4.7] we have that (uk, γ k, Pk, ak, bk,mk
1, w

k)k∈N converges
to a saddle-point of the Lagrangian (26). Thus by definition of (mk

2, D
k), the sequence

(mk
1, w

k,mk
2, D

k)k∈N converges to a solution of (P) and the sequence (uk, γ k, Pk)k∈N
converges to a solution of (D). ��
Remark 7 In our case the first equality of the Gaussian back substitution step in Algo-
rithm (3) can be written

vk+1 = vk + ξ(M�H−1)−1(ṽk − vk)

= (γ̃ k − ξ(ãk − ak), P̃k − ξ(AA�)−1A�(b̃k − bk), ãk, b̃k, m̃k, w̃k).

The Gaussian back substitution step is thus given by

γ k+1 = γ̃ k − ξ(ãk − ak), (30)

Pk+1 = P̃k − ξ(AA�)−1A�(b̃k − bk),

(uk+1, ak+1, bk+1,mk+1, wk+1) = (ũk, ãk, b̃k, m̃k, w̃k), (31)

where (AA�)−1P(t) = P(t)/ᾱ(t) for any t ∈ T . Then the differences between
ADM-G and ADMM can be summarized by the two corrections (30) and (31).

6.4 Residuals

Let (mk
1, w

k,mk
2, D

k)k∈N and (uk, γ k, Pk)k∈N denote the two sequences generated
by a numerical method. Let us consider

ûk = U[γ k, Pk] and πk ∈ π [mk
1, w

k, ûk, γ k, Pk]. (32)

It was shown in Proposition 2 that if for some k ∈ N, (mk
1, w

k,mk
2, D

k) and
(uk, γ k, Pk) are solutions to (P) and (D), then (mk

1, π
k, ûk, γ k, Pk) is a solution

to (MFG).
Therefore, we look the sequence (mk

1, π
k, ûk, γ k, Pk)k∈N as a sequence of approx-

imate solutions to (MFG). Note that (MFG,i) is exactly satisfied, by construction.
We consider the residuals (εm, επ , εγ , εP ) ∈ R × U defined as follows, in order to
measure the satisfaction of the remaining relations in the coupled system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

επ (t, x) = (�[π ] + ��[−A�P − S�û])(t, x) − 〈π(t, x), (A�P + S�û)(t, x)〉,
εm(s, x) = mπ (s, x) − m(s, x),

εγ (s) = m(s) − proj∂F�[γ ](s)(m(s)),

εP (t) = Q[m, π ](t) − proj∂φ�[P](t)(Q[m, π ](t)Δx ),
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for all (t, s, x) ∈ T × T̄ × S. If the residuals are null, then (mk
1, π

k, ûk, γ k, Pk) is a
solution to (MFG). The errors are then defined as the norms of επ , εm , εγ , and εP .

Remark 8 In the following numerical Sect. 7, we plot residuals for ADMM, ADMG,
Chambolle–Pock andChambolle–Pock–Bregman algorithms. The difference in nature
of the convergence results (ergodic versus classical) makes the performance compar-
ison between different methods delicate:

• In view of the ergodic convergence result (Theorem 2, point 1), we plot the resid-
uals associated with the averaged iterates (as defined in (16)). In particular, the
performances of Chambolle–Pock and Chambolle–Pock–Bregman can be com-
pared.

• Following Theorem 3, we plot the sequence of residuals for ADM-G and ADMM.

7 Numerical results

In this section we provide two problems that we solve with the algorithms presented
in the previous section. We set n = T = 50 and we define two scaling coefficients
Δx = 1/n and Δx = 1/T . We solve two instances of the following scaled system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i)

{
u(t, x)/Δt + ��[−A�P − S�u/Δt ](t, x) = γ (t, x),

u(T , x) = γ (T , x),

(ii) (�[π ] + ��[−A�P − S�u/Δt ])(t, x) = −〈π(t, x), (A�P + S�u/Δt )(t, x)〉,

(iii)

⎧
⎨
⎩
m(t + 1, x) =

∑
y∈S

m(t, y)π(t, y, x),

m(0, x) = m0(x)/Δx ,

(iv) γ ∈ ∂F[m],
(v) P ∈ ∂φ[Q[m, π ]Δx ].

(MFGΔ)

One can show that this system is connected to two optimization problems of very
similar nature as Problems (P) and (D), which can be solved as described previously.
For both examples, � is defined by

�(t, x, ρ) =
∑
y∈S

ρ(y)β(t, x, y) + χΔ(Sx )(ρ), β(t, x, y) =
(

(y − x)
Δx

Δt

)2

/4,

(33)

where Sx = {x, x − 1, x + 1} ∩ {0, ..., n − 1}. Since � is linear with respect to ρ, we
can interpret β as displacement cost from state x to state y that is fixed (in opposition
to the displacement cost induced by P(t)α(t, x, y) that depends on the price). In
Appendix 1 the reader can find detailed computations of the Euclidean projection (20)
(Sect. 1) and the computation of (24) (Sect. 2) for this particular choice of running
cost �. The notion of residuals that we use in the following is adapted from Sect. 6.4
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to the scaled system (MFGΔ). In all subsequent graphs, the state space is represented
by {0,Δx , ..., 1} and the set of time steps by {0,Δt , ...1}.

7.1 Example 1

In our first example, we take φ = 0 and α = 0. We consider a potential F of the form
F[m] = F1[m] + F2[m], where

F1[m](s) = |m(s)|2/2, F2[m](s) = χ[0,η(s)](m(s)), (34)

and where η ∈ R+(T̄ × S) is given by

η(s, x) :=
{
0.5 if T /3 ≤ s ≤ 2T /3 and n/3 ≤ x ≤ 2n/3,

3 else,

for any (s, x) ∈ T̄ ×R(S). We refer to F1 as the soft congestion term and to F2 as the
hard congestion term (Fig. 1). We call narrow region the set of points (s, x) for which
η(s, x) = 0.5 and we call spacious region the set of points for which η(s, x) = 3.
In this situation the state of an agent represents its physical location on the interval
[0, 1]. Each agent aims at minimizing the displacement cost induced by � and avoids
congestion as time evolves from time t = 0 to t = 1. The congestion term is linked
to η by the following relation (see Remark 1):

γ ∈ ∂F[m] = ∇F1[m] + ∂F2[m] = m + N[0,η](m).

As shown on the graphs below, we have two regimes at equilibrium: in the spacious
regions γ plays the role of a classical congestion term and γ = ∇F1[m]. In the narrow
region the constraint is binding, γ is such that the constraint m ∈ [0, η] is satisfied at
the equilibrium and is maximal for the dual problem.

We give a representation of the solution to the mean field system in Fig. 2. Since
it is hard to give a graphical representation of π , we give instead a graph of the mean
displacement v, defined by

v(t, x) =
∑
y∈S

π(t, x, y)(y − x), ∀(t, x) ∈ T × S.

For each variable, a 3D representation of the graph and a 2D representation of the con-
tour plots are provided (Fig. 2). For the contour plots, the horizontal axis corresponds
to the state space and the vertical axis to the time steps (to be read from the bottom to
the top).

Let us comment the results. We start with the interpretation of the measure m and
the mean displacement v. At the beginning of the game, the distribution of players is
given by the initial condition m(0) = m̄0. Then the players spread since they are in
the spacious region to avoid congestion.

123



268 J. F. Bonnans et al.

Fig. 1 Hard contraint η

Thus the mean displacement is negative on the left (black region) and positive on
the right (yellow region), around t = 0. The distribution becomes uniform after some
time. In a second phase, the agents move again towards the border of the state space,
anticipating the narrow region. They start their displacement before entering into the
narrow region due to their limited speed and displacement cost. Then we are in a
stationary regime (purple region), the mean displacement is null and the mass does
not vary until the end of the narrow region. At the end of the narrow region, the agents
spread again along the state axis and the distribution m becomes uniform.

We now interpret the value u and the congestion γ . The value function has to be
interpreted backward in time. At the end of the game, the terminal condition imposes
that the value is equal to the congestion. Since the congestion is positive and accumu-
lates backward in the value function (which can be seen in the dynamic programming
equation), the value function increases backward in time. At the end and at the begin-
ning of the narrow region we observe irregularities in the value function due to the
irregularities of the congestion term γ . But the impact on the value function is limited
due to the trade-off between the variables u and γ in the dual problem. At the begin-
ning of the game the value function is higher at the middle of the space because of the
initial distribution of players that are accumulated at this point. The congestion term
γ is high enough at the beginning of the narrow region to ensure that the constraint on
the distribution of players is satisfied at this point. Then γ is high enough at the end of
the narrow region to ensure that the constraint on the distribution of players is satisfied
for all time indices T /3 ≤ s ≤ 2T /3. At the exception of these two moments, γ plays
the role of a classical congestion term.

Figure 3 shows the evolution of the error terms in function of the iterations. The
execution time of each algorithm is given in Table 1.
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Fig. 2 Solution of Example 1
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Fig. 3 Errors plots for Example 1

Table 1 Execution time of each algorithm for Example 1, with N = 10000

Chambolle–Pock Chambolle–Pock–Bregman ADMM ADM-G

Time (s) 1600 1300 2000 2000

7.2 Example 2

Here we assume that F = 0. In this situation the state of an individual agent represents
a level of stock. We set α(t, x, y) = y − x ; it represents the quantity bought in order
to “move" from x to y. Therefore the variable D (used in the primal problem) is
the average quantity which is bought; it has to be understood as a demand, since at
equilibrium,

D(t) = Q[m, π ](t) =
∑

(x,y)∈S2
m(t, x)π(t, x, y)α(t, x, y).
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Fig. 4 Market equilibrium, demand and price

We define the potential φ[D] = φ1[D] + φ2[D], where

φ1[D] = 1

4
(D + D̄)2, φ2[D] = χ(−∞,Dmax](D).

The potential φ is the sum of a convex and differential term φ1 with full domain and
a convex non-differentiable term φ2. The quantity D̄ is a given exogenous quantity
which represent a net demand (positive or negative) to be satisfied by the agents. In
this example D̄(t) = 2 sin(4π t/(T − 1)) for any t ∈ T and Dmax = 0.

In this situation each agent faces a price and chooses to increase or deplete her
stock. The price mechanism is given by

P(t) ∈ ∂φ[D](t) = ∇φ1[D] + ∂φ2[D] = 1

2
Deff(t) + N(−∞,Dmax](D(t))

where Deff := D + D̄ is called the effective demand and follows two regimes.
When the constraint on the demand D is not binding, we are in a soft regime, the

price plays the role of a classical price term and is given by P(t) = 1
2Deff(t). The
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Fig. 5 Solution of Example 2

quantity D̄ is an exogenous quantity which can be positive or negative. If the quantity
D̄(t) > 0, the exogenous quantity is interpreted as being a demand and the agents have
an incentive to deplete their stock to satisfy this demand. If D̄(t) < 0, the exogenous
quantity is interpreted as being a supply. In the absence of a hard constraint, the agents
would have interest to increase their stock to absorb this supply. When the constraint
on the demand is binding, we are in a hard regime and the price plays the role of an
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Fig. 6 Errors plots for Example 2

adjustment variable so that the constraint D(t) ≤ Dmax is satisfied and is maximal
for the dual problem.

In the case where it is not profitable to buy or sell, we have that D(t) = 0 and
thus Deff(t) = D̄(t). This situation occurs when the quantity D̄(t) ≤ 0, since the
hard constraint prevents the agents from buying on the market. On the graph this
corresponds to the case where the red and the black curves coincide (Fig. 4).

When D̄(t) ≥ 0we observe that the red curve is lower than the black curvemeaning
that a certain amount (given by the blue curve on the following graph) of the demand
has been satisfied by the agents. Three effects prevent the agents from fully satisfying
the demand: their level of stock, their trading cost and their depletion speed limitation.

At the optimumwe observe that the demand D is indeed below the threshold Dmax,
meaning that the constraint is satisfied. We now comment the measure m, the mean
displacement v and the value function u (Fig. 5). For a given initial distribution of
the level of stock, we observe that the measure m is shifted to the left with time. This
means that the agents deplete their stocks with time. This is consistent with the mean
displacement v where we observe two regimes: either the agents choose to sell as
much as possible or the agents choose not to sell on average. The value function u can
be interpreted backward. At the end of the game the value is null due to the terminal
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Table 2 Execution time of each algorithm for Example 2 and N = 10000

Chambolle–Pock Chambolle–Pock–Bregman ADMM ADM-G

Time (s) 1700 1300 2200 2200

condition. Then the higher the level of stock, the lower the value function that is to
say the value function is increasing in time and decreasing in space. This comes from
the definition of α and the constraint D ≤ 0, which implies that the price is positive.

ADMM and ADM-G again converge faster (Fig. 6). The execution time of each
algorithm is given in Table 2.
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A Appendix

We detail here the calculation of the projection on Q and the non-linear proximity
operator in (24), for a running cost of the form

�(t, x, ρ) =
∑
y∈S

ρ(y)β(t, x, y) + χΔ(S)(ρ).

The adaptation to the case where � is defined by (33) is straightforward.

A.1 Projection onQ

We detail the computation of projQ , as it appears in (20) and (29). First notice that
the projection is decoupled in space and time, then for any (t, x) ∈ T × S and
(ā, b̄) ∈ R × R(S), we need to compute

projQt,x
(ā, b̄) = argmin

(a,b)∈Qt,x

(a − ā)2/2 +
∑
y∈S

(b(y) − b̄(y))2/2,

where Qt,x = {(a, b) ∈ R × R(S), a + b(y) − β(y) ≤ 0}. The corresponding prob-
lem is

min
a∈R

(
(a − ā)2/2 + min

b∈R(S)
b(y)≤β(y)−a, ∀y∈S

∑
y∈S

(b(y) − b̄(y))2/2

)
. (35)
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For any a ∈ R, the solution of the inner minimization problem is given by

b�(a, y) := min{b̄(y), β(y) − a}, ∀y ∈ S.

Then replacing into (35), the minimization problem is now given by

min
a∈R g(a), g(a) := (a − ā)2/2 +

∑
y∈S

max(0, a − β̃(y))2/2,

where β̃(y) := β(y) − b̄(y). It is now relatively easy to minimize g. Let us sort the
sequence (β̃(y))y∈S , that is, let us consider (yi )i∈{0,...,n−1} such that β̃(y0) ≤ · · · ≤
β̃(yn−1). It is obvious that the function g is strictly convex and polynomial of degree
2 on each of the intervals (−∞, β̃(y0)), (β̃(y0), β̃(y1)),..., and (β̃(yn−1),+∞). One
can identify on which of these intervals a stationary point of g exists, by evaluating
∂g(β̃(yi ), for all i = 0, ..., n − 1. Then one can obtain an analytic expresison of the
(unique) stationary point a�, which minimizes g. Finally, we have projQt,x

(ā, b̄) =
(a�, b�(a�, ·)).

A.2 Entropic proximity operator

Here we detail the computation of the solution to (24). For notational purpose we set
c1 = τ(−u′ + γ ′) and c2 = τ(β + A�P ′ + S�u′). By definition of the running cost
�, we have that

∑
(t,x)∈T ×S

�̃[m1, w](t, x) = 〈w, β〉 + χdom(�̃)
(m1, w).

Problem (24) writes

min
(m1,w)∈R

〈m1, c1〉 + 〈w, c2〉 + 1

τ
dK L((m1, w), (m′

1, w
′))

subject to:

{
m1(t, x) ≤ 1

m1(t, x) − ∑
y∈S w(t, x, y) = 0.

To find the solution, we define the following Lagrangian with associated multipliers
(λ1, λ2) ∈ R(T × S) × R+(T̄ × S):

L(m1, w, λ1, λ2) = 〈m1, c1〉 + 〈w, c2〉 + dK L((m1, w), (m′
1, w

′))

+
∑

(t,x)∈T ×S

λ1(t, x)
(
m1(t, x) −

∑
y∈S

w(t, x, y)
)

+
∑

(s,x)∈T̄ ×S

λ2(s, x)(m1(s, x) − 1).
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For any (t, s, x, y) ∈ T × T̄ × S × S, a saddle point of the Lagrangian is given by
the following first order conditions,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m̂1(T , x) = m′
1(T , x) exp(−λ2(T , x) − c1(T , x)),

m̂1(t, x) = m′
1(t, x) exp(−λ1(t, x) − λ2(t, x) − c1(t, x)),

ŵ(t, x, y) = w′(t, x, y) exp(λ1(t, x) − c2(t, x, y)),

m̂1(t, x) = ∑
y′∈S ŵ(t, x, y′),

0 = min
{
λ2(s, x), m̂1(s, x) − 1

}
.

(36)

Case 1: λ2(s, x) > 0. At time s = T we have that m̂1(s, x) = 1. For any s < T
we have that m̂1(s, x) = 1 and

∑
y∈S ŵ(s, x, y) = 1 and by a direct computation we

have that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m̂1(s, x) = 1,

ŵ(s, x, y) = w′(s, x, y) exp(−c2(s, x, y))C(s, x),

λ1(s, x) = ln (C(s, x)) ,

λ2(s, x) = ln
(
m′

1(s, x)/C(s, x))
) − c1(s, x),

(37)

where C(s, x) = ∑
y∈S w′(s, x, y) exp(−c2(s, x, y)).

Case2:λ2(s, x) = 0.At time s = T wehave that m̂1(s, x) = m′
1(s, x) exp(−c1(s, x)).

For any s < T we have by a direct computation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m̂1(s, x) = m′
1(s, x)C(s, x)−1 exp(−c1(s, x)),

ŵ(s, x, y) = w′(s, x, y)C(s, x) exp(−c2(s, x, y)),

λ1(s, x) = ln (C(s, x)) ,

λ2(s, x) = 0,

(38)

whereC(s, x) =
(
m′

1(s, x) exp(−c1(s, x))/
∑

y∈S w′(s, x, y) exp(−c2(s, x, y))
)1/2

.

In order to identify which of the two cases arises, one can compute a solution with
formula (37) and check a posteriori that λ2(s, x) > 0. If this is not the case, we deduce
that the solution to (36) is given by (38).

References

1. Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Mean field games: numerical methods for the planning
problem. SIAM J. Control Optim. 50(1), 77–109 (2012)

2. Achdou, Y., Kobeissi, Z.: Mean field games of controls: finite difference approximations (2020)
3. Achdou, Y., Laurière, M.: Mean Field Games and Applications: Numerical Aspects. In: Cardaliaguet,

P., Porretta, A. (eds) Mean Field Games. Lecture Notes in Mathematics, vol 2281. Springer, Cham.
(2020). https://doi.org/10.1007/978-3-030-59837-2_4

4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces,
vol. 408. Springer, New York (2011)

5. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to theMonge-Kantorovich mass
transfer problem. Numer. Math. 84(3), 375–393 (2000)

123

https://doi.org/10.1007/978-3-030-59837-2_4


Discrete potential mean field games: duality and numerical resolution 277

6. Benamou, J.D., Carlier, G.: Augmented Lagrangian methods for transport optimization, mean field
games and degenerate elliptic equations. J. Optim. Theory Appl. 167(1), 1–26 (2015)

7. Benamou, J.D., Carlier, G., Di Marino, S., Nenna, L.: An entropy minimization approach to second-
order variational mean-field games. Math. Models Methods Appl. Sci. 29(08), 1553–1583 (2019)

8. Benamou, J.D., Carlier, G., Santambrogio, F.: Variational mean field games. In: Active Particles, vol.
1, pp. 141–171. Springer (2017)

9. Bonnans, J., Hadikhanloo, S., Pfeiffer, L.: Schauder estimates for a class of potential mean field games
of controls. Appl. Math. Optim. 83(3), 1431–1464 (2021)

10. Bonnans, J.F.: Convex andStochasticOptimization.Universitext Series. Springer-Verlag,Berlin (2019)
11. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Science &

Business Media, Berlin (2000)
12. Briceño-Arias, L., Kalise, D., Kobeissi, Z., Laurière, M., González, A.M., Silva, F.J.: On the imple-

mentation of a primal-dual algorithm for second order time-dependent mean field games with local
couplings. ESAIM: Proceedings and Surveys 65, 330–348 (2019)

13. Briceno-Arias, L.M., Kalise, D., Silva, F.J.: Proximal methods for stationary mean field games with
local couplings. SIAM J. Control Optim. 56(2), 801–836 (2018)

14. Cardaliaguet, P., Graber, P.J., Porretta, A., Tonon, D.: Second order mean field games with degenerate
diffusion and local coupling. Nonlinear Differ. Equ. Appl. 22(5), 1287–1317 (2015)

15. Cardaliaguet, P., Hadikhanloo, S.: Learning in mean field games: the fictitious play. ESAIM Control
Optim. Calcul. Var. 23(2), 569–591 (2017)

16. Cardaliaguet, P., Mészáros, A.R., Santambrogio, F.: First order mean field games with density con-
straints: pressure equals price. SIAM J. Control Optim. 54(5), 2672–2709 (2016)

17. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

18. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm.Math.
Program. 159(1), 253–287 (2016)

19. Chow, Y., Li, W., Osher, S., Yin, W.: Algorithm for Hamilton–Jacobi equations in density space via a
generalized Hopf formula. J. Sci. Comput. 80(2), 1195–1239 (2019)

20. Combettes, P.L.: Perspective functions: properties, constructions, and examples. Set-Valued Var. Anal.
26(2), 247–264 (2018)

21. Erbar, M., Rumpf, M., Schmitzer, B., Simon, S.: Computation of optimal transport on discrete metric
measure spaces. Numer. Math. 144(1), 157–200 (2020)

22. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite
element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

23. Geist, M., Pérolat, J., Laurière, M., Elie, R., Perrin, S., Bachem, O., Munos, R., Pietquin,O. :Concave
utility reinforcement learning: themean-field game viewpoint. In: Proceedings of the 21st International
Conference on Autonomous Agents and Multiagent Systems, pp. 489–497 (2022)

24. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution,
par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. ESAIM: Mathemati-
cal Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 9(R2),
41–76 (1975)

25. Gomes, D.A., Mohr, J., Souza, R.R.: Discrete time, finite state space mean field games. J. Math. Pures
et Appl. 93(3), 308–328 (2010)

26. Gomes, D.A., Saude, J.: A mean-field game approach to price formation. Dyn. Games Appl. pp. 1–25
(2020)

27. Graber, P., Mullenix, A., Pfeiffer, L.: Weak solutions for potential mean field games of controls.
Nonlinear Differ. Equ. Appl. 28(5), 1–34 (2021)

28. Graber, P.J., Bensoussan, A.: Existence and uniqueness of solutions for Bertrand and Cournot mean
field games. Appl. Math. Optim. vol 77. https://doi.org/10.1007/s00245-016-9366-0 (2015)

29. Graber, P.J., Ignazio, V., Neufeld, A.: Nonlocal Bertrand and Cournot mean field games with general
nonlinear demand schedule. J. Math. Pures Appl. 148, 150–198 (2021)

30. Graber, P.J., Mouzouni, C.: Variational mean field games for market competition. In: PDE models for
multi-agent phenomena, pp 93–114. Springer (2018)

31. Hadikhanloo, S., Silva, F.J.: Finite mean field games: fictitious play and convergence to a first order
continuous mean field game. J. Math. Pures Appl. 132, 369–397 (2019)

32. He, B., Tao, M., Yuan, X.: Alternating direction method with gaussian back substitution for separable
convex programming. SIAM J. Optim. 22(2), 313–340 (2012)

123

https://doi.org/10.1007/s00245-016-9366-0


278 J. F. Bonnans et al.

33. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop
McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–
252 (2006)

34. Lasry, J.M., Lions, P.L.: Jeux à champ moyen. i-le cas stationnaire. Comptes Rendus Math. 343(9),
619–625 (2006)

35. Lasry, J.M., Lions, P.L.: Jeux à champ moyen. ii-horizon fini et contrôle optimal. Comptes Rendus
Math. 343(10), 679–684 (2006)

36. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)
37. Mészáros, A.R., Silva, F.J.: A variational approach to second order mean field games with density

constraints: the stationary case. J. Math. Pures Appl. 104(6), 1135–1159 (2015)
38. Prosinski, A., Santambrogio, F.: Global-in-time regularity via duality for congestion-penalized mean

field games. Stochastics 89(6–7), 923–942 (2017)
39. Rockafellar, R.T.: Level sets and continuity of conjugate convex functions. Trans. Am. Math. Soc.

123(1), 46–63 (1966)
40. Rockafellar, R.T.: Convex Analysis, vol. 36. Princeton University Press, Princeton (1970)
41. Santambrogio, F.: A modest proposal for MFG with density constraints. Netw. Heterog. Media 7(2),

337–347 (2012)
42. Santambrogio, F.: Crowd motion and evolution PDEs under density constraints. ESAIM Proc. Surv.

64, 137–157 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Discrete potential mean field games: duality and numerical resolution
	Abstract
	1 Introduction
	1.1 Framework
	1.2 Contributions
	1.3 Organization of the article

	2 Discrete mean field games 
	2.1 Notation
	2.2 Coupled system
	2.3 Further notation

	3 Potential problem and convex formulation 
	3.1 Perspective functions
	3.2 Potential problem

	4 Duality 
	4.1 Duality result
	4.2 A new dual problem

	5 Connection between the MFG system and potential problems 
	6 Numerical methods 
	6.1 Notations
	6.2 Primal-dual proximal algorithms 
	6.2.1 Euclidean distance 
	6.2.2 Kullback–Leibler divergence

	6.3 ADMM and ADM-G 
	6.3.1 ADMM
	6.3.2 ADM-G 

	6.4 Residuals 

	7 Numerical results 
	7.1 Example 1 
	7.2 Example 2 

	Acknowledgements
	A Appendix
	A.1 Projection on Q
	A.2 Entropic proximity operator

	References




