
Mathematical Programming (2023) 201:263–293
https://doi.org/10.1007/s10107-022-01907-3

FULL LENGTH PAPER

Series A

An approximation algorithm for indefinite mixed integer
quadratic programming

Alberto Del Pia1

Received: 1 March 2021 / Accepted: 11 November 2022 / Published online: 2 December 2022
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2022

Abstract
In this paper, we give an algorithm that finds an ε-approximate solution to a mixed
integer quadratic programming (MIQP) problem. The algorithm runs in polynomial
time if the rank of the quadratic function and the number of integer variables are fixed.
The running time of the algorithm is expected unless P=NP. In order to design this
algorithm we introduce the novel concepts of spherical form MIQP and of aligned
vectors, and we provide a number of results of independent interest. In particular, we
give a strongly polynomial algorithm to find a symmetric decomposition of a matrix,
and show a related result on simultaneous diagonalization of matrices.

Keywords Mixed integer quadratic programming · Approximation algorithm ·
Polynomial time · Symmetric decomposition · Simultaneous diagonalization

Mathematics Subject Classification 90C11 · 90C20 · 90C26 · 90C59

1 Introduction

Mixed Integer Quadratic Programming (MIQP) is an optimization problem where the
objective function is a general quadratic function, the constraints are linear inequalities,
and some of the variables are required to be integers. Formally, given a symmetric
matrix H ∈ Qn×n , a matrix W ∈ Qm×n , vectors h ∈ Qn , w ∈ Qm , and p ∈
{0, 1, . . . , n}, we seek a vector x ∈ Rn that attains

min xTHx + hTx

s. t. Wx ≤ w

x ∈ Zp × Rn−p.

(MIQP)

B Alberto Del Pia
delpia@wisc.edu

1 Department of Industrial and Systems Engineering and Wisconsin Institute for Discovery, University
of Wisconsin-Madison, Madison, WI, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01907-3&domain=pdf
http://orcid.org/0000-0001-8428-3914

264 A. Del Pia

Many important applications can be modeled asMIQPs, in areas such as operations
research, engineering, computer science, physics, biology, finance, economics, and
artificial intelligence. MIQP reduces to Mixed Integer Linear Programming (MILP)
when H is a zero matrix, and to Quadratic Programming (QP) if p = 0. Moreover,
MIQP is a prototypical Mixed Integer Nonlinear Programming (MINLP) problem,
as it captures the critical elements of those models, but in the simplest possible way,
making it the natural first step to construct efficient algorithms for MINLP.

The decision version of MIQP lies in the complexity class NP [10]. Furthermore,
MIQP is strongly NP-hard [15], and remains NP-hard even if H has rank one and
p = 0 [28]. This implies the lack of efficient algorithms for solving this class of
optimization problems in its full generality.

The main result of this paper is an approximation algorithm for MIQP. In order
to state our result, we first give the definition of ε-approximate solution. Consider an
instance of (MIQP), and assume that it has an optimal solution x∗. Let f (x) denote
the objective function, and let fmax be the maximum value of f (x) on the feasible
region. For ε ∈ [0, 1], we say that a feasible point x� is an ε-approximate solution if

f (x�) − f (x∗) ≤ ε · (fmax − f (x∗)).

Note that only optimal solutions are 0-approximate solutions, while any feasible point
is a 1-approximate solution. The definition of ε-approximate solution has some useful
invariance properties which make it a natural choice in this setting. For instance, it is
preserved under dilation and translation of the objective function, and it is insensitive
to affine transformations of the objective function and of the feasible region, like for
example changes of basis. Our definition of approximation has been used in earlier
works, and we refer to [1, 22, 27, 31] for more details. We can now state our main
result.

Theorem 1 For every ε ∈ (0, 1], there is an algorithm that finds an ε-approximate
solution to a bounded (MIQP), if it exists. The running time of the algorithm is poly-
nomial in the size of the input and in 1/ε, provided that the rank k of the matrix H
and the number of integer variables p are fixed numbers.

This is the first known polynomial time approximation algorithm for MIQP with k
and p fixed. In particular, note that the dimension n of the problem is not required to
be fixed. The running time of the algorithm exhibits a polynomial dependence on the
size of the instance and on 1/ε, and an exponential dependence on k and on p. It is
known that this dependence is expected unless P=NP, and we refer the reader to the
discussion below the statement of Theorem 1 in [8].

One might wonder if the boundedness assumption can be relaxed in Theorem 1,
with the understanding that, if the input MIQP is unbounded, the algorithm should
return at least a statement that the instance is unbounded. The next theorem implies
that the boundedness assumption cannot be removed unless P=NP.

Theorem 2 Determining whether (MIQP) is unbounded is NP-complete, even if the
rank k of the matrix H equals three and the number p of integer variables is zero.

123

An approximation algorithm for indefinite MIQP 265

Proof From Theorem 4 in [10], the decision problem in the statement is in NP, thus
we only need to show the NP-hardness. In Sects. 2 and 3 in [28], the authors present
a QP of the form

min{x1 − x22 : Wx ≤ w, x ∈ Rn} (1)

with nonnegative optimum objective value, and for which it is NP-hard to determine
if the optimum value is zero. Since every bounded QP has an optimal solution of
polynomial size [29], there is a number φ which is polynomial in the size of the input
QP (1) for which the optimum objective value is either zero or strictly larger than 2−φ .

Consider now the QP

min{x1xn+1 − x22 − 2−φx2n+1 : (W | −w)x ≤ 0, xn+1 ≥ 1, x ∈ Rn+1}. (2)

Notice that the rank of the objective function is three. Thus, to conclude the proof of
the theorem we only need to show that (2) is unbounded if and only if the optimum
value of (1) is zero.

Assume that the optimum value of (1) is zero. Then there is a point x̄ ∈ Rn with
Wx̄ ≤ w and x̄1 − x̄22 = 0. Consider now the set of vectors in Rn+1 given by (λx̄, λ),
for λ ≥ 1. Note that all these vectors are feasible to (2). Furthermore, the objective
value of (λx̄, λ) is λ2(x̄1 − x̄22 − 2−φ) = −λ22−φ which goes to −∞ as λ → ∞.
Therefore, (2) is unbounded.

Next, assume that the optimum value of (1) is positive, therefore strictly larger than
2−φ . Consider a vector feasible to (2) and note that it can be written as (λ̄x̄, λ̄), where
λ̄ ≥ 1 and x̄ satisfies Wx̄ ≤ w. The objective value of (λ̄x̄, λ̄) is λ̄2(x̄1 − x̄22 − 2−φ).
Since x̄ is feasible to (1), we have x̄1 − x̄22 > 2−φ , thus the objective value of (λ̄x̄, λ̄)

is positive. In particular, (2) is bounded. 	

In particular, Theorem 2 strengthens the result by Murty and Kabadi [26] that

deciding whether a QP is bounded or not is NP-hard.

1.1 Literature review

In this section, we review the known exact and approximation algorithms for MIQP
with a polynomial running time.

MIQP admits a polynomial time approximation algorithm if the dimension n is
fixed [6]. MIQP is polynomially solvable if the dimension n is fixed and the objective
is convex [21] or concave [3, 4, 18]. If the objective is concave with a fixed number
of negative eigenvalues and the number p of integer variables is fixed, there is a
polynomial time approximation algorithm [8].

Next, we survey Integer Quadratic Programming (IQP), which is the special case of
MIQP where all variables are integer, i.e., p = n. IQP is solvable in polynomial time
in dimension one and two [11]. Furthermore, there is a polynomial time approximation
algorithm if the dimension is fixed and the objective is homogeneous with at most one
positive or negative eigenvalue [19]. If the objective function is separable and convex,
and the constraint matrix W is TU, then IQP can be solved in polynomial time [20].

123

266 A. Del Pia

IQP admits a polynomial time approximation algorithm if the objective is separable
and concave, with a fixed number of negative eigenvalues, and the largest absolute
value of the subdeterminants of the constraint matrix is bounded by two [9]. Other
IQP tractability results under specific structural restrictions can be found in [13, 24].

Finally, we discussQuadratic Programming (QP), the special case of MIQP where
all variables are continuous, i.e., p = 0. QP can be solved in polynomial time if the
dimension is fixed [10, 29]. Furthermore, QP admits a polynomial time approximation
algorithm if the number of negative eigenvalues of H is fixed [30], and it admits a
weaker polynomial time approximation algorithm in general [32]. If the objective is
convex, then QP can be solved in polynomial time [23].

1.2 Overview of the results and organization of the paper

Our approximation algorithm is based on the novel concepts of spherical form MIQP
and of aligned vectors. These two notions significantly enhance the available mathe-
matical toolkit for the design and analysis of algorithms for MIQP, and therefore their
importance is not limited to this work.

Sections 2 and 3 are devoted to finding a change of basis that transforms a MIQP in
spherical form. In a spherical formMIQP the objective is separable and the polyhedron
has a “spherical appearance”. Moreover, the set Zp ×Rn−p is replaced by a set of the
form�+span(�)⊥, for a lattice� of rank p. The formal definition is given in Sect. 3.
In order to obtain this change of basis we develop a number of results of independent
interest.

Since a spherical form MIQP has a separable objective function, in particular we
need to find an invertible matrix L and a diagonal matrix D such that H = LDLT. In
Sect. 2 we focus on this simpler task and, in Theorem 3 and Corollary 1, we present
a symmetric decomposition algorithm that constructs such matrices L, D in strongly
polynomial time. This is the first known polynomial time algorithm for this problem.

In Sect. 3, we build on this algorithm and obtain, in Proposition 1, a rational version
of theorems on simultaneous diagonalization of matrices. In particular, we show that
we can find in polynomial time an invertiblematrix L that at the same time diagonalizes
a given matrix H , and provides the shape of an ellipsoid that approximates a given
polytope within a factor depending only on the dimension. This result is the main
building block that allows us to obtain, in Proposition 2, a polynomial time algorithm
to transform a MIQP in spherical form.

In Sect. 4 we introduce the concept of aligned vectors for a spherical form MIQP.
In particular, they are two feasible vectors that are “far” in the direction where the
objective is “most curved” and “almost aligned” in all other directions. Furthermore,
their midpoint is feasible as well. We then show, in Proposition 3, that if a spherical
form MIQP has two aligned vectors, then it is possible to find an ε-approximate
solution by solving a number of MILPs. This number is polynomial in 1/ε if both k
and p are fixed in the original (MIQP).

In Sect. 5 we focus on the problem of deciding whether a spherical form MIQP
has two aligned vectors or not. In Proposition 5 we give a polynomial time algorithm
that either finds two aligned vectors, or finds a vector v ∈ span(�) along which the

123

An approximation algorithm for indefinite MIQP 267

polyhedron is “flat”. The vector v allows us to decompose the problem in a number
of MIQPs with fewer integer variables. Furthermore, this number depends only on k
and p, and thus is a constant if both k and p are fixed.

In Sect. 6 we then present our approximation algorithm for MIQP and provide a
proof of Theorem 1. The algorithm first uses Proposition 2 to find a change of basis
that transforms the input MIQP in spherical form. Then, it employs Proposition 5 and
it either finds two aligned vectors, or finds a vector v ∈ span(�) along which the
polyhedron is “flat”. In the first case, we use Proposition 3 to find an ε-approximate
solution. In the second case, the input MIQP is decomposed into a constant number of
instances with fewer integer variable, and the algorithm is recursively applied to these
instances. At the end of the execution, the algorithm returns the best solution found,
and we show that it is an ε-approximate solution to the input MIQP.

In this paper, we will be using several concepts from computational complexity.
Recall that a strongly polynomial algorithm is a polynomial space algorithm in the
Turing model and a polynomial time algorithm in the arithmetic model. The definition
of strong polynomiality mixes the Turing model and the arithmetic model of compu-
tation. Throughout the paper, unless we state a different model, we mean the Turing
model. For more details on time and space complexity we refer the reader to [17]. In
particular, we recall that a strongly polynomial algorithm is also a polynomial time
algorithm.

2 A strongly polynomial algorithm for symmetric decomposition

Given a rational symmetric n × n matrix H , a symmetric decomposition of H is a
decomposition of the form BHBT = D, where B is an n × n nonsingular matrix and
D is an n × n diagonal matrix. The goal of this section is to give an algorithm that
constructs a symmetric decomposition of any rational symmetric matrix H with two
fundamental properties: (i) the algorithm is strongly polynomial, (ii) the Frobenius
norms of B and B−1 are upper bounded by an integer of size polynomial in n. To
the best of our knowledge, our algorithm is the first known polynomial time algo-
rithm that finds a symmetric decomposition of any rational symmetric matrix. Note
that the spectral decomposition, the Schur decomposition, and Takagi’s factorization
yield a symmetric decomposition of a rational symmetric matrix. However, none of
these decompositions can be performed in polynomial space since the resulting matri-
ces generally contain irrational elements. Other related matrix decompositions are
the Cholesky decomposition and the LDLT decomposition, but are not applicable to
indefinite matrices. For more details on matrix decompositions we refer the reader to
[16].

By introducing pivoting operations that perform symmetric additions of rows and
columns, as well as symmetric interchanges, Dax and Kaniel [5] describe an algorithm
that constructs a symmetric decomposition of any symmetric n × n matrix H . Their
algorithm performs a number of arithmetic operations that is polynomial in n, thus it
is a polynomial time algorithm in the arithmetic model. However, it is unknown if it
is a polynomial time algorithm or a polynomial space algorithm.

123

268 A. Del Pia

In this section, we present a strongly polynomial version of Dax and Kaniel’s
algorithm. Therefore, for our version of the algorithm, we show that all numbers
stored during the execution of the algorithm have size that is polynomial in the size of
the input matrix H . This in particular implies that the output matrices B and D have
polynomial size. The proof builds on the technique introduced by Edmonds to perform
Gaussian elimination in strongly polynomial time [12], but it is more involved due to
the “complete pivoting” performed at each iteration. In particular, while in Gaussian
elimination every number stored during the algorithm is a ratio of subdeterminants of
the original matrix, every number stored in our version Dax and Kaniel’s algorithm
at iteration k is shown to be a ratio of subdeterminants of the matrix obtained from H
by performing only the first k pivoting operations.

Another fundamental property of our symmetric decomposition algorithm is that the
Frobenius norms of B and B−1 are upper bounded by an integer of size polynomial in n.
In particular, this integer depends only on n and not on the input matrix. This property
will be fundamental in the next sections of the paper, where the symmetric decompo-
sition algorithm will be used to obtain a change of basis for our MIQP. Recall that the

Frobenius norm of an m × n matrix A is defined by ‖A‖F :=
√∑m

i=1
∑n

j=1 A
2
i j .

Therefore, the purpose of this section is to prove the following result.

Theorem 3 Let H be a rational symmetric n × n matrix. There is a strongly poly-
nomial algorithm that finds matrices B, D such that BH BT = D is a symmetric
decomposition of H. Furthermore, ‖B‖F and ‖B−1‖F are upper bounded by (5n)n/2.

If we set L := B−1 in Theorem 3, we obtain H = LDLT. Since the inverse can be
computed in strongly polynomial time [12], also this decomposition can be obtained
in strongly polynmomial time.

Corollary 1 Let H be a rational symmetric n×n matrix. There is a strongly polynomial
algorithm that finds an invertible n×n matrix L and an n×n diagonal matrix D such
that H = LDLT. Furthermore, ‖L‖F and ‖L−1‖F are upper bounded by (5n)n/2.

Corollary 1 then provides a strongly polynomial algorithm to compute a change
of basis that transforms a general (MIQP) in a separable form. Namely, compute the
decomposition H = LDLT and set y := LTx . In particular, our approach can be
substituted to the techniques used in [7, 8, 19, 31] to transform the original QP or
MIQP in a separable form.

In the remainder of this section we only consider matrices that are n × n, thus we
avoid repeating it throughout the section.

2.1 Description of the symmetric decomposition algorithm

In this section, we describe the symmetric decomposition algorithm that we analyze. It
is the version of Dax and Kaniel’s algorithm where the parameter γ is always chosen
in ±1.

Let H be the rational symmetric n × n matrix given in the input. Let H (0) := H ,
and for every k = 1, . . . , n − 1, we denote by H (k) the n × n matrix obtained after

123

An approximation algorithm for indefinite MIQP 269

k iterations of the algorithm. The matrix H (k) is symmetric and all the off-diagonal
elements in the first k rows and columns equal zero. In particular, H (n−1) is a diagonal
matrix and coincides with the matrix D in the output.

For any k = 1, . . . , n − 1, we now describe the iteration k of the symmetric
decomposition algorithm,where thematrix H (k) is obtained from H (k−1). The iteration
is subdivided into two stages, called “pivoting” and “elimination”.

Pivoting. The goal of the pivoting stage is to ensure that the pivotal element, which is
the element in the (k, k) position, is one with largest absolute value among rows and
columns k, . . . , n. Let s and r be indices such that |H (k−1)

sr | = maxi, j∈{k,...,n}|H (k−1)
i j |.

Since H (k−1)
sr = H (k−1)

rs we can assume without loss of generality that s ≤ r . Let H̃
be the symmetric n × n matrix obtained from H (k−1) by interchanging rows s and k,
and interchanging columns s and k. If s = r , then H (k−1)

sr = H̃kk . In this case, we
have achieved our goal and the pivoting is terminated. Thus, we now assume s < r .
This implies that H (k−1)

sr = H̃rk . We define

γ :=
{

+1 if H̃rk(H̃kk + H̃rr) ≥ 0

−1 if H̃rk(H̃kk + H̃rr) < 0,

and we let ˜̃H be the symmetric n × n matrix obtained from H̃ by adding row r
multiplied by γ to row k, and adding column r multiplied by γ to column k. It is
simple to check that the new (k, k) element is the one with largest absolute value
among rows and columns k, . . . , n, i.e., | ˜̃Hkk | = maxi, j∈{k,...,n}| ˜̃Hi j |.

Pivoting can be achieved via matrix multiplication. We define the matrix P̃k which
interchanges rows s and k, thus it is the permutation matrix obtained from the identity
matrix by interchanging rows s and k (note that, if s = k, then P̃k is the identitymatrix).
Thematrix ˜̃Pk adds (if necessary) the row r multiplied by γ to row k, therefore, it is the
identity matrix if s = r , or it is obtained from the identity matrix by replacing the zero
element in the (k, r) position with the scalar γ . The matrix H̃ can then be written as
H̃ = P̃k H (k−1) P̃T

k , while the matrix ˜̃H is the product ˜̃H = ˜̃Pk H̃ ˜̃PT
k = PkH (k−1)PT

k ,

where Pk := ˜̃Pk P̃k .
Elimination. The goal of this stage is to obtain zeros in the off-diagonal elements of
row and column k. We first perform row elimination and then column elimination. The
row elimination is done as in Gaussian elimination: For each i = k+1, . . . , n, add row
k multiplied by − ˜̃Hik/

˜̃Hkk to row i . The column elimination is done symmetrically:
for each j = k + 1, . . . , n, add column k multiplied by − ˜̃Hkj/

˜̃Hkk to column j .
Row elimination is performed by multiplying on the left by the matrix (I − Ek),

where I denotes the n × n identity matrix and the elements of Ek are given by

(Ek)ik := ˜̃Hik/
˜̃Hkk i = k + 1, . . . , n, (3)

and all the other elements are zeros. Symmetrically, column elimination is performed
by multiplying on the right by the matrix (I − Ek)

T. Therefore, the matrix H (k) is
obtained from H (k−1) via the matrix product

123

270 A. Del Pia

H (k) := [(I − Ek)Pk]H (k−1)[(I − Ek)Pk]T. (4)

This completes the description of the iteration k of the symmetric decomposition
algorithm. At the end of iteration n − 1 the algorithm returns the diagonal matrix
D := H (n−1) and the nonsingular matrix

B := (I − En−1)Pn−1 · · · (I − E1)P1.

It follows directly from the description of the algorithm that the algorithm is correct,
i.e., BHBT = D is a symmetric decomposition of H .

2.2 Analysis of the algorithm

In this section, we prove the first part of Theorem 3. Namely, we show that the symmet-
ric decomposition algorithm presented in Sect. 2.1 runs in strongly polynomial time.
Clearly, the number of arithmetic operations performed is polynomial in n. Therefore,
we only need to show that the size of each matrix constructed during the execution
is polynomial in the size of H . For matrices P̃k, ˜̃Pk, Pk , for k = 1, . . . , n − 1, this
follows directly from their definition. In fact, we only need to show that each matrix
H (k), for k = 1, . . . , n − 1, has size polynomial in the size of H . Indeed, once this is
proven, we obtain that also Ek and the returned matrix B have size polynomial in the
size of H .

Thus, we now focus our attention on the matrix H (k). From the equality (4) we
deduce that

H (k) = B(k)HB(k)T,

where

B(k) := (I − Ek)Pk(I − Ek−1)Pk−1 · · · (I − E1)P1.

As noticed on page 224 in [5], it is simple to verify that for every t, j ∈ {1, . . . , n−1}
with t < j , we have Et Pj = Et . This in turn implies that for every t, j ∈ {1, . . . , n−1}
with t < j , we have

Pj (I − Pj−1Pj−2 · · · Pt+1Et) = (I − Pj Pj−1 · · · Pt+1Et)Pj ,

which allows us to write B(k) in the form

B(k) = (I − Ek)(I − Pk Ek−1) · · · (I − Pk · · · P2E1)Pk · · · P1. (5)

Therefore H (k) can be written as

H (k) = E (k)G(k)E (k)T, (6)

123

An approximation algorithm for indefinite MIQP 271

where

G(k) := (Pk · · · P1)H(Pk · · · P1)T,
E (k) := (I − Ek)(I − Pk Ek−1) · · · (I − Pk · · · P2E1).

In the next lemma, we analyze the matrices Pk Pk−1 · · · Pt+1Et in the definition
of E (k). The second part of the statement will only be used later in Sect. 2.3.

Lemma 1 For each t ∈ {1, . . . , k}, the matrix Pk Pk−1 · · · Pt+1Et can have nonzeros
only in positions (t +1, t), . . . , (n, t). Furthermore, the elements in rows t +1, . . . , k
are bounded by two in absolute value, while the elements in rows k + 1, . . . , n are
bounded by one in absolute value.

Proof We show this lemma by induction on k − t . In the base case we have k − t =
0, thus we are considering matrix Et . By definition, Et can have nonzeros only in
positions (t + 1, t), . . . , (n, t), and from (3) all nonzeros are are bounded by one in
absolute value.

For the inductive step we assume k − t ≥ 1 and consider the matrix
Pk(Pk−1 · · · Pt+1Et). By induction, Pk−1 · · · Pt+1Et can have nonzeros only in posi-
tions (t + 1, t), . . . , (n, t). Furthermore, the elements in rows t + 1, . . . , k − 1 are
bounded by two in absolute value, while the elements in rows k, . . . , n are bounded by
one in absolute value.We have Pk = ˜̃Pk P̃k,where thematrix P̃k interchanges two rows
in {k, . . . , n}, and the matrix ˜̃Pk adds or subtracts (if necessary) a row in {k+1, . . . , n}
to row k. Since k ≥ t + 1, the matrix Pk(Pk−1 · · · Pt+1Et) can have nonzeros only
in positions (t + 1, t), . . . , (n, t). The elements in rows t + 1, . . . , k − 1 are left
unchanged, thus they are bounded by two in absolute value. The element in row k is
now bounded by two in absolute value, while the elements in rows k+1, . . . , n remain
bounded by one in absolute value. 	

Next, we use Lemma 1 to discuss the effect of multiplying a matrix on the left by
E (k). Note that a multiplication of this type is performed in (6).

Lemma 2 Multiplying a matrix on the left by E (k) results in a sequence of elementary
row operations in which a multiple of a row t ∈ {1, . . . , k} is added to a row in {t +
1, . . . , n}.
Proof Due to the definition of E (k), it suffices to show that multiplying a matrix on
the left by (I − Pk · · · Pt+1Et), for t ∈ {1, . . . , k}, results in a sequence of elementary
row operations in which a multiple of row t is added to a row in {t + 1, . . . , n}.

From Lemma 1, the matrix Pk · · · Pt+1Et can have nonzeros only in positions
(t+1, t), . . . , (n, t). Hence, themultiplication on the left bymatrix (I−Pk · · · Pt+1Et)

preserves the first t rows, and each subsequent row is obtained by adding a multiple
of row t to the original row. 	

We are finally ready to show, in the next claim, that each matrix H (k) has size poly-
nomial in the size of H . This concludes the proof that our symmetric decomposition
algorithm runs in strongly polynomial time.

123

272 A. Del Pia

Claim 1 For each k ∈ {1, . . . , n − 1}, the size of H (k) is polynomial in the size of H.

Proof Let G(k)
k denote the k × k submatrix of G(k) determined by the first k rows and

columns, and letG(k)
k|i j , for i, j ∈ {k+1, . . . , n}, denote the (k+1)×(k+1) submatrix

of G(k) determined by rows {1, . . . , k, i} and columns {1, . . . , k, j}.
It suffices to show that for every k ∈ {1, . . . , n − 1} and for every i, j ∈ {k +

1, . . . , n}, we have

H (k)
i j = det(G(k)

k|i j)/ det(G
(k)
k). (7)

In fact, the definition of G(k) implies that its size is polynomial in the size of H .
Therefore, also det(G(k)

k|i j) and det(G(k)
k) have size polynomial in the size of H , and

so does each element of H (k) due to (7). Therefore, in the remainder of the proof we
show (7).

Consider the product E (k)G(k) in (6). From Lemma 2, the resulting matrix is
obtained from G(k) via a sequence of elementary row operations. Among all these
elementary row operations, only a subset modify the first k rows of the matrix G(k).
From Lemma 2, in each of these elementary row operations, a multiple of a row
t ∈ {1, . . . , k − 1} is added to a row in {t + 1, . . . , k}. Similarly, among all the

elementary column operations performed by E (k)T, only a subset modify the first k
columns of the matrix G(k). In each of these elementary column operations, a multiple
of a column t ∈ {1, . . . , k − 1} is added to a column in {t + 1, . . . , k}. We perform
these subsets of elementary row and column operations to the matrix G(k)

k . From (6),
the resulting matrix is precisely the submatrix of H (k) given by the first k rows and
columns, hence it is diagonal with elements H (k)

11 , . . . , H (k)
kk in the diagonal. Note that

each elementary operation considered preserves the determinant of G(k)
k . Thus,

det(G(k)
k) = H (k)

11 · · · H (k)
kk . (8)

A similar argument can be applied to the matrix G(k)
k|i j . Among all the elementary

row operations performed by E (k), only a subset modify rows {1, . . . , k, i} of the
matrix G(k). From Lemma 2, in each of these elementary row operations, a multiple
of a row t ∈ {1, . . . , k} is added to a row in {t + 1, . . . , k, i}. Similarly, among all

the elementary column operations performed by E (k)T, only a subset modify columns
{1, . . . , k, j} of the matrix G(k). In each of these elementary column operations, a
multiple of a column t ∈ {1, . . . , k} is added to a column in {t + 1, . . . , k, j}. We
perform this subset of elementary operations to thematrixG(k)

k|i j . From (6), the resulting

matrix is precisely the submatrix of H (k) determined by rows {1, . . . , k, i} and columns
{1, . . . , k, j}. Hence it is diagonal with elements H (k)

11 , . . . , H (k)
kk , H (k)

i j in the diagonal.

Each elementary operation considered preserves the determinant of G(k)
k|i j . Thus, we

have

det(G(k)
k|i j) = H (k)

11 · · · H (k)
kk · H (k)

i j .

123

An approximation algorithm for indefinite MIQP 273

Dividing the latter equation by Eq. (8), we obtain (7). 	

2.3 Frobenius norm of B and B−1

In this section, we prove the second part of Theorem 3. Namely, we show that for the
matrix B returned by the algorithm described in Sect. 2.1, both its Frobenius norm and
the Frobenius norm of its inverse are upper bounded by an integer of size polynomial
in n. Wewill use the fact that the Frobenius norm is submultiplicative, i.e., for matrices
A, A′ we have ‖AA′‖F ≤ ‖A‖F · ‖A′‖F .
Claim 2 The Frobenius norm of matrices B and B−1 is upper bounded by (5n)n/2.

Proof From (5), we can write B = B(n−1) as the product B = EP , where

E := E (n−1) = (I − En−1)(I − Pn−1En−2) · · · (I − Pn−1 · · · P2E1),

P := Pn−1Pn−2 · · · P1.

In order to bound the Frobenius normof B and B−1,we bound separately the Frobenius
norm of P, P−1, E , and E−1.
Norm of P . Recall that each matrix Pk is the product of two matrices Pk = ˜̃Pk P̃k ,
where the matrix P̃k interchanges row s and k, where s ≥ k, and the matrix ˜̃Pk adds
(if necessary) row r multiplied by γ to row k, where r > k. Therefore, for each
k = n − 1, . . . , 1, in the matrix Pk · · · P1, the last n − k rows are permuted rows of
the identity matrix, while each of the first k rows has at most two nonzero elements,
each one being ±1. We obtain

‖P‖F = ‖Pn−1 · · · P1‖F ≤ √
2n − 1.

Norm of P−1. Each matrix P−1
k is the product P−1

k = P̃−1
k

˜̃P−1
k , where the matrix

˜̃P−1
k adds (if necessary) row r multiplied by−γ to row k, where r > k, and the matrix

P̃−1
k interchanges row s and k, where s ≥ k. Therefore, for each k = n − 1, . . . , 1, in

the matrix P−1
k P−1

k+1 · · · P−1
n−1, the first k − 1 rows coincide with the first k − 1 rows

of the identity matrix, and the remaining rows are a permutation of the rows from k
to n of an upper triangular matrix with elements in 0,±1. We obtain

‖P−1‖F = ‖P−1
1 P−1

2 · · · P−1
n−1‖F ≤

√
(n2 + n)/2.

Norm of E . From Lemma 1 with k = n − 1, for each t ∈ {1, . . . , n − 1}, the matrix
Pn−1Pn−2 · · · Pt+1Et can have nonzeros only in positions (t + 1, t), . . . , (n, t). Fur-
thermore, the elements in rows t +1, . . . , n−1 are bounded by two in absolute value,
while the element in the last row is bounded by one in absolute value. Thus, we obtain

‖I − Pn−1Pn−2 · · · Pt+1Et‖F ≤ √
(n + 1) + 4(n − t − 1) ≤ √

5(n − 1).

123

274 A. Del Pia

Hence

‖E‖F ≤ ‖I − En−1‖F · ‖I − Pn−1En−2‖F · · · ‖I − Pn−1 · · · P2E1‖F
≤

√
(5(n − 1))n−1.

Norm of E−1. Once again, from Lemma 1 with k = n − 1, we know that for each t ∈
{1, . . . , n − 1}, the matrix Pn−1Pn−2 · · · Pt+1Et can have nonzeros only in positions
(t + 1, t), . . . , (n, t). This fact allows us to write E−1 as

E−1 = (I − Pn−1 · · · P2E1)
−1 · · · (I − Pn−1En−2)

−1(I − En−1)
−1

= (I + Pn−1 · · · P2E1) · · · (I + Pn−1En−2)(I + En−1)

= I + Pn−1 · · · P2E1 + · · · + Pn−1En−2 + En−1.

In particular, the matrix E−1 is unit lower triangular, i.e., lower triangular with all
elements on the main diagonal equal to one. The second part of Lemma 1 then implies
that the elements in rows 1, . . . , n − 1 are bounded by two in absolute value, while
the elements in the last row are bounded by one in absolute value. We obtain

‖E−1‖F ≤
√

(2n − 1) + 4(n2 − 3n + 2)/2 =
√
2n2 − 4n + 3.

Norm of B and B−1. Using the obtained bounds on the Frobenius norm of P , P−1,
E , E−1, we derive

‖B‖F = ‖EP‖F ≤ ‖E‖F ‖P‖F ≤
√

(5(n − 1))n−1(2n − 1),

‖B−1‖F = ‖P−1E−1‖F ≤ ‖P−1‖F ‖E−1‖F ≤
√

(n2 + n)(2n2 − 4n + 3)/2.

It can be checked that (5n)n/2 is larger than both upper bounds for any n. Therefore,
the claim follows. 	

While the bound on the Frobenius norm of matrices B and B−1 in Claim 2 is
sufficient for our task, we remark that a better bound can be obtained by providing a
better bound on ‖E‖F . This can be done by bounding the largest absolute value of an
element in E , instead of using the fact that the Frobenius norm is submultiplicative.

3 Simultaneous diagonalization and spherical formMIQP

In this section, a fundamental role is played by the spherical form MIQP. To formally
define this problem, we now briefly recall the notion of lattice, and introduce some
notation.

Given linearly independent vectors b1, . . . , bp in Rd , the lattice generated by
b1, . . . , bp is the set� := {∑p

i=1 vi bi : vi ∈ Z ∀i = 1, . . . , p
}
of integer linear com-

binations of the vectors bi , for i = 1, . . . , p. The rank of � is p and the dimension

123

An approximation algorithm for indefinite MIQP 275

of � is d. If p = d, then � is said to be a full rank lattice. Note that, in this paper, we
will consider mainly lattices that are not full rank. The vectors b1, . . . , bp are called a
lattice basis. Given a vector a ∈ Rd and a nonnegative scalar r , we denote by B(a, r)
the closed ball with center a and radius r . Formally,

B(a, r) := {x ∈ Rd : ‖x − a‖ ≤ r}.

Note that, throughout the paper, we use the euclidian vector norm defined as ‖x‖ :=√
xTx .Given vectors x1, . . . , xt , we denote by (x1, . . . , xt) the vector (x1

T
, . . . , xt T)T.

The orthogonal complement of a linear space L is denoted by L⊥.
We are now in a position to give the formal definition of a spherical form MIQP. A

spherical form MIQP is an optimization problem of the form

min yTDy + cTy + lTz

s. t. (y, z) ∈ P
y ∈ � + span(�)⊥, z ∈ Rn−d .

(S-MIQP)

In this formulation, the variables are y ∈ Rd and z ∈ Rn−d . The matrix D ∈ Qd×d is
diagonal and its diagonal elements satisfy |D11| ≥ · · · ≥ |Ddd |. Furthermore, c ∈ Qd ,
and l ∈ Qn−d . The set � is a lattice of rank p and dimension d, and is given via a
rational lattice basis. Finally, the set P ⊆ Rn is a polytope given via a finite system
of rational linear inequalities, and it satisfies

B(a, 1) ⊂ projy P ⊂ B(a, rd), (9)

where projy P denotes the orthogonal projection of P onto the space Rd of the y

variables, a is a given vector in Qd , and rd is an integer of size polynomial in d.
The symmetric decomposition algorithm described in Sect. 2 allows us to obtain,

in strongly polynomial time, a change of basis that directly transforms (MIQP) in a
separable form. In this section, our main goal is to obtain another change of basis
that not only maps (MIQP) in a separable form, but also guarantees that the result-
ing problem is in spherical form. The additional requirements on the change of basis
will result in an algorithm that is polynomial time instead of strongly polynomial. To
obtain this change of basis, we rely on two key results: (i) the symmetric decompo-
sition algorithm discussed in Sect. 2, and (ii) the existence of an algorithm based on
linear programming that, for every full-dimensional polytope P , constructs a pair of
concentric ellipsoids E1, E2 such that E1 ⊂ P ⊂ E2 and E1 is obtained by shrinking
E2 by a factor depending only on the dimension [25].

3.1 Simultaneous diagonalization

The first result of this section does not deal directly withMIQP but is themain building
block that will allow us to transform a MIQP in spherical form. This result can be

123

276 A. Del Pia

interpreted as a rational version of classic theorems on simultaneous diagonalization
of matrices (see Sect. 8.7 in [16]).

In order to present our result we need to introduce ellipsoids. An ellipsoid in Rn is
an affine transformation of the unit ball. That is, an ellipsoid is a set of the form

E(a, L) = {x ∈ Rn : ‖LT(x − a)‖ ≤ 1},

where a ∈ Rn and L is an n × n invertible matrix. Note that B(a, r) = E(a, In/r),
where In denotes the n × n identity matrix.

In what follows, we will often work with rational linear subspaces. In the context
of polynomial time algorithms, it is not important if they are given to us via a system
of linear equations or via a basis, since each description can be obtained in polynomial
time from the other. Given a linear subspace L of Rn of dimension d, a basis matrix
of L is an n × d matrix whose columns b1, . . . , bd form a basis of L. An L-ellipsoid
is a set of the form

EL(a, L) = {x ∈ L : ‖LT(x − a)‖ ≤ 1},

where L is a linear subspace ofRn , a ∈ L, and L is a basis matrix of L. Given a linear
subspace L ofRn and a set S ⊆ Rn , we denote by projL(S) the orthogonal projection
of S onto L. We also say that a polyhedron {x : Wx ≤ w} is rational if W and w are
rational. We are now ready to present the first result of this section.

Proposition 1 Let H be a rational symmetric n × n matrix of rank k, let {x ∈ Rn :
Wx ≤ w} be a full-dimensional rational polytope, and let M be a rational linear
subspace of Rn of dimension p. There is a polynomial time algorithm that finds a linear
subspace L of Rn containingM and of dimension d withmax{k, p} ≤ d ≤ k + p, a
d × d diagonal matrix D, and an L-ellipsoid EL(a, L) such that

(i) H = LDLT,
(ii) EL(a, L) ⊂ projL{x : Wx ≤ w} ⊂ EL(a, L/(2d3/2�(5d)d/2�2)).
Proof ByCorollary 1 there is a strongly polynomial algorithm that computes an invert-
ible n × n matrix L1 and an n × n diagonal matrix D1 such that H = L1D1LT

1. Since
H has rank k and L1 is invertible, the matrix D1 has also rank k. Let D2 be the matrix
obtained from D1 by deleting row i and column i for each i such that the i th diago-
nal element of D1 is zero. Clearly, D2 is an invertible k × k diagonal matrix. We also
define thematrix L2, obtained from L1 by deleting column i for each i such that the i th
diagonal element of D1 is zero. The matrix L2 is then an n× k matrix of rank k. Since
row and column i of D1 have all zero elements, we have H = L1D1LT

1 = L2D2LT
2.

LetL be the linear subspace ofRn obtained as the Minkowski sum ofM and of the
linear space spanned by the k columns of L2. Clearly,L containsM, and its dimension
d satisfies max{k, p} ≤ d ≤ k+ p. Note that projL{x : Wx ≤ w} is full-dimensional.
It then follows form Sections 2 and 5 in [25] that there is a polynomial time algorithm
which computes an L-ellipsoid EL(a,C) such that

EL(a,C) ⊂ projL{x : Wx ≤ w} ⊂ EL(a,C/(2d3/2)). (10)

123

An approximation algorithm for indefinite MIQP 277

Since the n × d matrix C is a basis matrix of L and each column of L2 is a vector
in L, we can compute in polynomial time a d × k matrix M such that L2 = CM . We
obtain

H = L2D2L
T
2 = CMD2M

TCT = C H̃CT,

where H̃ := MD2MT is a d × d symmetric matrix.
By Corollary 1, applied to H̃ , there is a strongly polynomial algorithm which

computes an invertible d × d matrix L̃ and a d × d diagonal matrix D̃ such that
H̃ = L̃ D̃ L̃T. Furthermore, ‖L̃‖F and ‖L̃−1‖F are upper bounded by qd := �(5d)d/2�.
Note that qd is an integer of size polynomial in d. We obtain H = C L̃ D̃L̃TCT. By
defining the d × d matrix D and the n × d matrix L in the statement as D := D̃/q2d ,
L := qdC L̃, we obtain H = LDLT. Clearly, D is diagonal, thus condition (i) in the
statement holds.

Note that the vector a is in L. Moreover, since C is a basis matrix of L and L̃ is
invertible, we have that also L is a basis matrix ofL. Hence EL(a, L) is anL-ellipsoid.
We now show that condition (ii) is satisfied. Using the fact that the Frobenius norm is
submultiplicative and that ‖L̃‖F and ‖L̃−1‖F are upper bounded by qd , we obtain

‖CT(x − a)‖ = ‖L̃−TLT(x − a)‖/qd ≤ ‖L̃−1‖F ‖LT(x − a)‖/qd ≤ ‖LT(x − a)‖,
‖LT(x − a)‖ = qd‖L̃TCT(x − a)‖ ≤ qd‖L̃‖F ‖CT(x − a)‖ ≤ q2d‖CT(x − a)‖.
The first chain of inequalities and (10) imply

EL(a, L) ⊆ EL(a,C) ⊂ projL{x : Wx ≤ w}.

The second chain of inequalities implies EL(a, q2dC) ⊆ EL(a, L), thus from (10),

projL{x : Wx ≤ w} ⊂ EL(a,C/(2d3/2)) ⊆ EL(a, L/(2d3/2q2d)).

	

Consider now the simplest case of Proposition 1, where we set M := Rn . Then

L = Rn , d = n, the L-ellipsoids are just ellipsoids, and the polytope projL{x : Wx ≤
w} is simply {x : Wx ≤ w}. In this case, Proposition 1 provides a matrix L that at the
same time diagonalizes H and provides the shape of an ellipsoid that approximates the
given polytope within a factor depending only on the dimension. This special case can
then be interpreted as a rational version of theorems on simultaneous diagonalization
of matrices. If we perform the change of basis y := LTx , the given matrix H is
diagonalized, and the ellipsoids are just balls.

3.2 Reduction to spherical formMIQP

Next, we employ Proposition 1 to show that (MIQP) can be transformed in spherical
form (S-MIQP). Throughout the paper, we denote by e1, e2 . . . , en the standard basis
of Rn .

123

278 A. Del Pia

Proposition 2 Consider (MIQP), assume that {x : Wx ≤ w} is a full-dimensional
polytope, and let k denote the rank of H. There is a polynomial time algorithm that
finds a change of basis that transforms (MIQP) in spherical form (S-MIQP), where d
satisfies max{k, p} ≤ d ≤ k + p, the rank of the matrix D is k, and rd in (9) is the
ceiling of 2d3/2�(5d)d/2�2.

Proof Consider (MIQP), assume that {x : Wx ≤ w} is a full-dimensional polytope,
and let k denote the rank of H . By Proposition 1 withM := Rp × {0}n−p, we obtain
in polynomial time a linear subspace L of Rn containingM and of dimension d with
max{k, p} ≤ d ≤ k + p, a d × d diagonal matrix D, and an L-ellipsoid EL(a, Ly)

such that H = LyDLT
y and

EL(a, Ly) ⊂ projL{x : Wx ≤ w} ⊂ EL(a, Ly/rd), (11)

where we define rd as the ceiling of 2d3/2�(5d)d/2�2. Since Ly is an n × d matrix of
rank d, it is simple to check that the rank of D coincides with the rank of H .

We now compute an n × (n − d) basis matrix Lz of the orthogonal complement
L⊥ of L. Denote by L the n × n invertible matrix (Ly | Lz). We perform the change
of basis x �→ (y, z), where (y, z) ∈ Rn is defined by (y, z) := LTx , i.e., y ∈ Rd is
defined by y := LT

yx , and z ∈ Rn−d is defined by z := LT
z x .

Next, we consider the problem obtained from (MIQP) via the above change of
basis, and we show that it coincides with (S-MIQP). The objective function of the new
problem is

xTHx + hTx = xTLyDLT
yx + hTx = yTDy + hTL−T(y, z),

which coincides with the objective function of (S-MIQP) if we define the vectors
c ∈ Qd and l ∈ Qn−d by (c, l) := L−1h. The image of the polytope {x : Wx ≤ w} is
the set P := {(y, z) : WL−T(y, z) ≤ w}. Clearly, P is a polytope defined by a finite
system of rational linear inequalities.

By definition of Lz , the linear subspace L can be written as L = {x : LT
z x = 0},

thus the image of L under the change of basis is {(y, z) : z = 0} = Rd × {0}n−d .
Similarly, the linear subspace L⊥ can be written as L⊥ = {x : LT

yx = 0}, thus the
image of L⊥ is {0}d × Rn−d .

Next we show that (11) implies (9). The above discussion implies that a point
projL(x) is mapped to projy(L

−T(y, z)) × {0}n−d . Thus, projL{x : Wx ≤ w} is
mapped to projy P × {0}n−d . The set EL(a, Ly) is mapped to

{
(y, z) : ‖y − LT

ya‖ ≤ 1
}

∩ (Rd × {0}n−d) = E(LT
ya, Id) × {0}n−d

= B(LT
ya, 1) × {0}n−d .

123

An approximation algorithm for indefinite MIQP 279

Similarly, the set EL(a, Ly/rd) is mapped to

{
(y, z) : ‖(y − LT

ya)/rd‖ ≤ 1
}

∩ (Rd × {0}n−d) = E(LT
ya, Id/rd) × {0}n−d

= B(LT
ya, rd) × {0}n−d .

From (11), we obtain B(LT
ya, 1) ⊂ projy P ⊂ B(LT

ya, rd), which coincides with (9)

if we redefine the vector a ∈ Qd to be LT
ya.

We now consider the image ofZp ×Rn−p. The setZp ×Rn−p can be written as the
Minkowski sum (Zp × {0}n−p) + N + L⊥, where N is the orthogonal complement
of M in L. Since M ⊆ L and the image of L is Rd × {0}n−d , we have that the
image of Zp × {0}n−p is � × {0}n−d , where � is a lattice of rank p and dimension d.
Furthermore, the image of the vectors e1, e2 . . . , ep forms a lattice basis b1, . . . , bp

of �. Since N ⊆ L, the image of N is N ′ × {0}n−d , where N ′ is a linear subspace
of Rd of dimension d − p. SinceM andN are orthogonal, we have that � +N ′ has
dimension d. Finally, we know that the image ofL⊥ is {0}d ×Rn−d . We conclude that
the image ofZp×Rn−p is (�+N ′)×Rn−d . Let�′ be the orthogonal projection of�
ontoN ′⊥. Then�′ is a lattice of rank p and dimension d, and the image ofZp×Rn−p

is (�′ + span(�′)⊥) × Rn−d as desired. A basis of �′ can be obtained by taking the
orthogonal projection of b1, . . . , bp onto N ′⊥.

By eventually reordering the components of the vector y, and accordingly the
data of the problem, we obtain that the diagonal elements of the matrix D satisfy
|D11| ≥ · · · ≥ |Ddd |. 	

Next, we briefly discuss how Proposition 2 simplifies in the pure integer setting and
in the pure continuous setting. In the pure integer setting we have p = n in (MIQP),
and Proposition 2 implies d = n. Therefore, in (S-MIQP) we have no z variables and
the constraint y ∈ � + span(�)⊥ is replaced by y ∈ � since the set � is a full rank
lattice of dimension n. Furthermore, in (9), the set projy P is replaced by P . In the
pure continuous setting we have p = 0 in (MIQP), and Proposition 2 implies d = k.
Therefore, in (S-MIQP) the constraint y ∈ �+ span(�)⊥ is replaced by y ∈ Rd since
the set � is a lattice of rank zero.

We remark that a change of basis similar to the one given by Proposition 2 can
be obtained through the use of eigenvalue methods like the Schur decomposition
[16], instead of our symmetric decomposition algorithm. These techniques have been
used by Vavasis to obtain a related change of basis for QP (see page 282 in [30]).
Unfortunately, thesemethods donot yield polynomial time algorithms since symmetric
integer matrices can have irrational eigenvalues.

4 Aligned vectors

In this section,we introduce the notion of aligned vectors.Given an instance of problem
(S-MIQP), two vectors y+, y− ∈ Rd are said to be aligned if y+, y− ∈ B(a, 1) ∩
(2� + span(�)⊥), and y+

1 − y−
1 ≥ 1,

∑d
i=2(y

+
i − y−

i)2 ≤ 1/4. The end goal of this
section is to show that, if there exist two aligned vectors, then, for every ε ∈ (0, 1],

123

280 A. Del Pia

it is possible to find an ε-approximate solution to (S-MIQP) by solving a number of
MILPs.

We begin by showing, in Lemma 4, how aligned vectors allow us to obtain a lower
bound on the gap between maximum and minimum of a separable quadratic function
evaluated on the two vectors and their midpoint. In the proof of Lemma 4 we use
the following simple lemma. The proof is that of Lemma 3 in [30], even though our
statement is slightly stronger.

Lemma 3 Let q(λ) = aλ2+bλ+c be a univariate quadratic function and let u, � ∈ R.
Let q and q be the minimum and maximum values attained by q on the three points

u, �, (u + �)/2. Then q − q ≥ |a|(u − �)2/4.

Lemma 4 Let f : Rd × Rn−d → R be a quadratic function of the form f (y, z) =
yTDy + cTy + lTz, where D is diagonal and D11 is the element of D with the largest
absolute value. Let (y+, z+), (y−, z−) ∈ Rd × Rn−d such that y+

1 − y−
1 ≥ 1 and∑d

i=2(y
+
i − y−

i)2 ≤ 1/4. Let f and f be the minimum and maximum values attained

by f on the three vectors (y+, z+), (y−, z−), (y+, z+)/2+(y−, z−)/2. Then f − f ≥
3
16 |D11|.

Proof By eventually replacing f with − f , we can assume without loss of generality
that D11 ≥ 0. Let q : R → R be defined by

q(λ) := f
(
(y−, z−) + λ

(
(y+, z+) − (y−, z−)

))
.

Using the separability of f , we obtain

q(λ) =
d∑

i=1

Dii
(
y−
i + λ(y+

i − y−
i)

)2 + O(λ) = λ2 ·
d∑

i=1

Dii (y
+
i − y−

i)2 + O(λ).

To conclude the proof we just need to show that

∣∣∣∣∣
d∑

i=1

Dii (y
+
i − y−

i)2

∣∣∣∣∣ ≥ 3

4
D11. (12)

In fact, by noting that q(0) = f (y−, z−), q(1) = f (y+, z+), and q(1/2) =
f
(
(y+, z+)/2 + (y−, z−)/2

)
, we can apply Lemma 3 to q and the points 0, 1 ∈ R

and obtain

f − f = q − q ≥ 1

4

∣∣∣∣∣
d∑

i=1

Dii (y
+
i − y−

i)2

∣∣∣∣∣ ≥ 3

16
D11.

123

An approximation algorithm for indefinite MIQP 281

To prove inequality (12), we bound its left hand side as follows:

∣∣∣∣∣
d∑

i=1

Dii (y
+
i − y−

i)2

∣∣∣∣∣ ≥
d∑

i=1

Dii (y
+
i − y−

i)2 =

=
∑

i :Dii≥0

Dii (y
+
i − y−

i)2 −
∑

i :Dii<0

−Dii (y
+
i − y−

i)2.

We can now separately bound the two nonnegative sums using the assumption on D11,
and the conditions y+

1 − y−
1 ≥ 1 and

∑d
i=2(y

+
i − y−

i)2 ≤ 1/4.

∑
i :Dii≥0

Dii (y
+
i − y−

i)2 ≥ D11(y
+
1 − y−

1)2 ≥ D11,

∑
i :Dii<0

−Dii (y
+
i − y−

i)2 ≤ D11

∑
i :Dii<0

(y+
i − y−

i)2 ≤ D11/4.

Hence inequality (12) holds. 	

Weare now ready to discuss our approximation algorithm for spherical formMIQPs

for which there exist two aligned vectors. This algorithm is based on the classic tech-
nique of mesh partition and linear underestimators. This natural approach consists in
replacing the nonlinear objective function with a piecewise linear approximation, an
idea known in the field of optimization since at least the 1950s. Mesh partition and
linear underestimators have proven to be a very successful technique to obtain approx-
imation algorithms for several special classes of MIQP [7–9, 30, 31]. In this section,
for the first time we employ mesh partition and linear underestimators to MIQPs that,
at the same time, have integer variables and an indefinite quadratic objective function.
The generality of this setting poses a number of additional challenges, and the results
presented in the paper so far provide the key to successfully apply these techniques.
In the proof, we will use the following standard lemma.

Lemma 5 Let q(λ) = aλ2+bλ+c be a univariate quadratic function and let u, � ∈ R.
Let q ′(λ) be the affine univariate function that attains the same values as q at �, u.
Then |q ′(λ) − q(λ)| ≤ |a|(u − �)2/4 for every λ ∈ [�, u].
Proposition 3 Consider (S-MIQP), assume that there exist two aligned vectors, and
let k be the rank of the matrix D. For every ε ∈ (0, 1], there is an algorithm that finds
an ε-approximate solution, if it exists, by solving at most

⌈
4rd

√
k/(3ε)

⌉k
MILPs of

the same size as (S-MIQP) and with p integer variables.

Proof We start by describing the approximation algorithm. We define ϕk boxes inRk ,
where ϕ := ⌈

4rd
√
k/(3ε)

⌉
:

C j1,..., jk :=
k∏

i=1

(
{ai − rd} + 2rd

ϕ
[ji − 1, ji]

)
∀ j1, . . . , jk ∈ {1, . . . , ϕ}. (13)

123

282 A. Del Pia

Note that the union of these ϕk boxes is the polytope

{(y1, . . . , yk) ∈ Rk : ai − rd ≤ yi ≤ ai + rd ∀i = 1, . . . , k},

which contains the projection of P onto the space defined by the first k coordinates
of y, since projy P ⊂ B(a, rd) from (9).

For each box C = ∏k
i=1[�i , ui] among those defined in (13), we construct the affine

functions gi : R → R that attain the same values as Dii y2i at �i , ui , for i = 1, . . . , k:

gi (yi) := Dii (�i + ui)yi − Dii�i ui ∀i = 1, . . . , k.

We define γ := |D11|. Then we define the affine function g : Rk → R given by

g(y1, . . . , yk) :=
k∑

i=1

gi (yi) − γ r2d
ϕ2 |{i ∈ {1, . . . , k} : Dii > 0}|. (14)

We solve theMILP obtained from (S-MIQP) by substituting yTDy with g(y1, . . . , yk)
and adding the constraint (y1, . . . , yk) ∈ C:

min g(y1, . . . , yk) + cTy + lTz

s. t. (y, z) ∈ P
(y1, . . . , yk) ∈ C
y ∈ � + span(�)⊥, z ∈ Rn−d .

(15)

To see that (15) is indeed a MILP, one just needs to perform a change of basis that
maps � to Zp × {0}d−p and span(�)⊥ to {0}p × Rd−p.

The approximation algorithm returns the best solution (y�, z�) among all the (at
most) ϕk optimal solutions just obtained of the MILPs (15). If all the MILPs (15)
are infeasible, the algorithm returns that (S-MIQP) is infeasible. This concludes the
description of the algorithm.

Next, we show that (y�, z�) is an ε-approximate solution to (S-MIQP). To simplify
the notation, in this proof we denote the objective function of (S-MIQP) by

f (y, z) := yTDy + cTy + lTz =
k∑

i=1

Dii y
2
i + cTy + lTz.

In order to show that (y�, z�) is an ε-approximate solution, we derive two bounds:
(i) an upper bound on f (y�, z�) − f (y∗, z∗), where (y∗, z∗) is an optimal solution to
(S-MIQP), and (ii) a lower bound on fmax − f (y∗, z∗), where fmax is the maximum
value of f (y, z) on the feasible region of (S-MIQP). Note that both boundswill depend
linearly on γ . This dependence is what allows us to solve a number of MILPs that is
independent on γ .

123

An approximation algorithm for indefinite MIQP 283

An upper bound on f (y�, z�) − f (y∗, z∗). Let C ⊂ Rk be a box constructed in (13),

say C = ∏k
i=1[�i , ui]. For each i = 1, . . . , k, we apply Lemma 5 to each univariate

quadratic function Dii y2i and points �i , ui . Since ui − �i = 2rd/ϕ and |Dii | ≤ γ for
i = 1, . . . , k, we obtain that, for every (y1, . . . , yk) ∈ C,

gi (yi) − γ r2d/ϕ2 ≤ Dii y
2
i ≤ gi (yi) if Dii > 0

gi (yi) ≤ Dii y
2
i ≤ gi (yi) + γ r2d/ϕ2 if Dii < 0.

We sum up all these inequalities for i = 1, . . . , k and obtain that for every
(y1, . . . , yk) ∈ C,

g(y1, . . . , yk) ≤
k∑

i=1

Dii y
2
i ≤ g(y1, . . . , yk) + γ kr2d/ϕ2. (16)

Let C� ⊂ Rk be the box constructed in (13) that yields the solution (y�, z�) and let g�
be the corresponding affine function defined in (14). Let C∗ ⊂ Rk be a box constructed
in (13) such that (y∗, z∗) ∈ C∗ and let g∗ be the corresponding affine function. We
have

f (y�, z�) ≤ g�(y�
1 , . . . , y�

k) + cTy� + lTz� + γ kr2d/ϕ2

≤ g∗(y∗
1 , . . . , y

∗
k) + cTy∗ + lTz∗ + γ kr2d/ϕ2

≤ f (y∗, z∗) + γ kr2d/ϕ2.

(17)

The first inequality follows by applying the right inequality in (16) to C� and y�.
The second inequality holds by definition of (y�, z�). The third inequality follows by
applying the left inequality in (16) to C∗ and y∗.
A lower bound on fmax − f (y∗, z∗). By assumption, there exist two aligned vectors
y+, y− for (S-MIQP). From (9) we have B(a, 1) ⊂ projy P , thus there exist z+, z− ∈
Rn−d such that the vectors (y+, z+), (y−, z−) ∈ Rd × Rn−d are in P . We define the
midpoint of the segment joining (y+, z+) and (y−, z−) as (y◦, z◦) := (y+, z+)/2 +
(y−, z−)/2.By convexity, the vector (y◦, z◦) is inP . Moreover, as both vectors y+/2,
y−/2 are in � + span(�)⊥, so is their sum y◦. Let f and f be the minimum and
maximum values attained by f on the three vectors (y+, z+), (y−, z−), (y◦, z◦).
Then, by Lemma 4, f − f ≥ 3

16 |D11| = 3
16γ. Since all three vectors are feasible to

(S-MIQP), we conclude that

fmax − f (y∗, z∗) ≥ 3

16
γ. (18)

We are now ready to show that (y�, z�) is an ε-approximate solution to (S-MIQP).
We have

f (y�, z�) − f (y∗, z∗)
fmax − f (y∗, z∗)

≤ �γ kr2d
ϕ2 · 16

3�γ
= 16

3

kr2d
ϕ2 ≤ ε.

123

284 A. Del Pia

In the first inequality we used (17) and (18), and the last inequality holds by the
definition of ϕ given at the beginning of the proof. 	

In particular, note that the number of MILPs solved in Proposition 3 is polynomial
in 1/ε if k and d are fixed. Due to Proposition 2, this is indeed the case if both k and
p are fixed in the original (MIQP).

5 Flatness and decomposition of spherical formMIQP

In Sect. 4 we saw that, if a spherical form MIQP has two aligned vectors, then we
can find an ε-approximate solution. But what if there are no aligned vectors? In this
section,we show that in this casewe can decompose the problem in a number ofMIQPs
with fewer integer variables. This result will play a crucial role in our approximation
algorithm for MIQP. Before stating our theorem, we recall the concepts of width and
of reduced basis.

Let S ⊆ Rd be a bounded closed convex set. Given a vector v ∈ Rd , we define the
width of S along v to be

widthv(S) := max{vTy : y ∈ S} − min{vTy : y ∈ S}.

Let� be a lattice of rank p and dimension d, and let b1, . . . , bp ∈ Rd be a lattice basis
of �. Consider now a vector v ∈ Rd that satisfies vTbi ∈ Z for every i = 1, . . . , p.
Then vTy is an integer for every y ∈ � since y can be written as an integer linear
combination of the bi . It follows that widthv(S) is an upper bound on the number of
hyperplanes orthogonal to v that contain points in S ∩ �.

Next, we recall the notion of reduced basis. Let � be a lattice of rank p and
dimension d, and let b1, . . . , bp ∈ Rd be a lattice basis of �. The d × p matrix B
formed by taking the columns to be the basis vectors bi is called a basis matrix of �.
The determinant of � is the volume of the fundamental parallelepiped of any basis
for �, that is, det(�) := √

det(BTB).
Lovász introduced the notion of a reduced basis, using a Gram-Schmidt orthogonal

basis as a reference. The Gram-Schmidt procedure is as follows. Define g1 := b1

and, recursively, for i = 2, . . . , p, define gi ∈ Rd as the projection of bi onto the
orthogonal complement of the linear space spanned by b1, . . . , bi−1. Formally, for
i = 2, . . . , p, gi is defined by

gi := bi −
i−1∑
j=1

μi j g
j , where μi j := (bi)Tg j

‖g j‖2 ∀ j = 1, . . . , i − 1. (19)

By construction, theGram-Schmidt basis g1, . . . , gp is an orthogonal basis of span(�)

with the property that, for i = 1, . . . , p, the linear spaces spanned by b1, . . . , bi

and by g1, . . . , gi coincide. Moreover, we have ‖bi‖ ≥ ‖gi‖ for i = 1, . . . , p, and
‖g1‖ · · · ‖gp‖ = det(�).

123

An approximation algorithm for indefinite MIQP 285

A basis r1, . . . , r p of the lattice � is said to be reduced if it satisfies the following
two conditions

|μi j | ≤ 1

2
for 1 ≤ j < i ≤ p

‖gi + μi,i−1g
i−1‖2 ≥ 3

4
‖gi−1‖2 for 2 ≤ i ≤ p,

where g1, . . . , gp is the output of the Gram-Schmidt procedure when applied to
r1, . . . , r p. Lovász’ celebrated basis reduction algorithm yields a reduced basis, and
it runs in polynomial time in the size of the original basis. If a basis r1, . . . , r p of �

is reduced, then it is “nearly orthogonal”, in the sense that it satisfies

‖r1‖ · · · ‖r p‖ ≤ 2p(p−1)/4 det(�). (20)

See for example [2] for more details on lattices and reduced basis, or [14] for an
exposition that does not consider only full rank lattices.

In order to show our decomposition result for spherical form MIQP, we first prove
the following Lenstra-type proposition.

Proposition 4 Let a ∈ Qd , δ ∈ Q with δ ≥ 0, and let � be a lattice of rank p and
dimension d with basis matrix B ∈ Qd×p. There is a polynomial time algorithm which
either finds a vector ȳ ∈ B(a, δ) ∩ (� + span(�)⊥), or finds a vector v ∈ span(�)

with vTB integer such that widthv(B(a, δ)) ≤ p2p(p−1)/4.

Proof If p = 0, then the algorithm simply returns ȳ = a, thus we now assume p ≥ 1.
The basis reduction algorithm gives in polynomial time a reduced basis r1, . . . , r p ∈
Qd of the lattice �. Let r̂1, . . . r̂ p ∈ Qd be obtained by reordering r1, . . . r p so that
the vector in the last position has maximum norm, and denote by R̂ ∈ Qd×p the
corresponding basis matrix. Since B and R̂ are basis matrices of the same lattice �, it
is well known that we can find in polynomial time a p× p unimodular matrixU such
that B = R̂U .

Let a� := projspan(�) a ∈ Qd , let λ ∈ Qp be such that R̂λ = a�, and define

y� := R̂�λ� ∈ Qd , where �λ� = (�λ1�, . . . , �λp�) and �λi� denotes a nearest integer
to λi . Clearly, y� ∈ �. Consider first the case y� ∈ projspan(�)(B(a, δ)). This implies
that the vector ȳ := (a + span(�)) ∩ (y� + span(�)⊥)) ∈ Qd is in B(a, δ). Since
y� ∈ �, we have that ȳ ∈ �+ span(�)⊥. Therefore, in this case we are done. Hence,
in the remainder of the proof we consider the case y� /∈ projspan(�)(B(a, δ)).

Since B is a d× pmatrix of rank p, thematrix BTB is an invertible p× p symmetric
matrix, thus we can define the p×d matrix B† := (BTB)−1BT. The matrix B† is a left
inverse of B, i.e., B†B is the identity matrix Ip. Let u ∈ Z1×p be the last row ofU , and
define the vector v := (uB†)T ∈ Qd . We have that v ∈ span(�), since for every vector
t ∈ (span(�))⊥ we have vTt = uB†t = u(BTB)−1BTt = 0, since each column of B
lies in span(�). Moreover, the vector vTB is integer since vTB = uB†B = uIp = u.

Hence, to complete the proof, we only need to show widthv(B(a, δ)) ≤ p2p(p−1)/4.

123

286 A. Del Pia

The assumption y� /∈ projspan(�)(B(a, δ)) is equivalent to ‖y� − a�‖ > δ. Since

y� = R̂�λ� and a� = R̂λ, we have

‖y� − a�‖ = ‖R̂(�λ� − λ)‖ =
∥∥∥∥∥

p∑
i=1

(�λi� − λi)r̂
i

∥∥∥∥∥

≤
p∑

i=1

|�λi� − λi | ‖r̂ i‖ ≤ p‖r̂ p‖/2.

We obtain that ‖r̂ p‖ > 2δ/p. Consider the Gram-Schmidt orthogonal basis
ĝ1, . . . , ĝ p ∈ Qd obtained from r̂1, . . . , r̂ p. Using (20) we have

‖r̂1‖ · · · ‖r̂ p‖ = ‖r1‖ · · · ‖r p‖ ≤ 2p(p−1)/4 det(�) = 2p(p−1)/4‖ĝ1‖ · · · ‖ĝ p‖.

Moreover, as ‖r̂ i‖ ≥ ‖ĝi‖ for i = 1, . . . , p−1, it follows that ‖r̂ p‖ ≤ 2p(p−1)/4‖ĝ p‖.
Since ‖r̂ p‖ > 2δ/p, we obtain

‖ĝ p‖ >
2δ

p2p(p−1)/4
. (21)

We define the p × d matrix R̂† := (R̂T R̂)−1 R̂T, which is a left inverse of R̂. Using
B = R̂U , we obtain the relation

B† = (BTB)−1BT = (U T R̂T R̂U)−1U T R̂T

= U−1(R̂T R̂)−1U−TU T R̂T = U−1(R̂T R̂)−1 R̂T = U−1 R̂†.

It is simple to check that widthv(B(a, δ)) = 2δ‖v‖. If we denote by r̂ ∈ Q1×d the last
row of R̂†, we have

widthv(B(a, δ)) = 2δ‖v‖ = 2δ‖(uB†)T‖ = 2δ‖(uU−1 R̂†)T‖ = 2δ‖r̂T‖, (22)

where the last equality holds since u is the last row of U .
We now show that r̂T = ĝ p/‖ĝ p‖2. First, note that both r̂T and ĝ p live in span(�).

For ĝ p this follows from the fact that ĝ1, . . . , ĝ p is a basis of span(�). For r̂T, it
can be seen because this vector is orthogonal to each vector t ∈ (span(�))⊥ as r̂ is
the last row of R̂† and we have R̂†t = (R̂T R̂)−1 R̂Tt = 0, since each column of R̂
lies in span(�). Since ĝ p is orthogonal to ĝ1, . . . , ĝ p−1, it follows from (19) that
(ĝ p)Tr̂ i = 0 for i = 1, . . . , p−1 and (ĝ p)Tr̂ p = ‖ĝ p‖2. Since r̂ is the last row of R̂†,
we have r̂ r̂ i = 0 for i = 1, . . . , p − 1 and r̂ r̂ p = 1. This concludes the proof that
r̂T = ĝ p/‖ĝ p‖2.

Thus, by (22) and (21),

widthv(B(a, δ)) = 2δ‖r̂T‖ = 2δ

‖ĝ p‖ ≤ p2p(p−1)/4. 	

123

An approximation algorithm for indefinite MIQP 287

We are now ready to give our decomposition result.

Proposition 5 There is a polynomial time algorithm which either finds two aligned
vectors for (S-MIQP), or finds a vector v ∈ span(�) with vTB integer such that
widthv(P) ≤ rdsp, where sp := 14p2p(p−1)/4.

Proof Let a+ := a+ 3
4e

1 ∈ Qd , where e1 denotes the first vector of the standard basis
of Rd . It is simple to verify that

B(a+, 1/4) ⊆ B(a, 1) ⊆ B(a+, 7/4). (23)

Denote by B ∈ Qd×p the given basis matrix of the lattice �. We apply Propo-
sition 4 to B(a+, 1/4) and the lattice 2� with basis matrix 2B. Consider first the
case where Proposition 4 finds a vector v ∈ span(�) with vT(2B) integer such that
widthv(B(a+, 1/4)) ≤ p2p(p−1)/4. We then set v′ := 2v and note that v′ ∈ span(�)

with v′TB integer. Furthermore, it follows from (23) that

widthv′(B(a, 1)) = 2widthv(B(a, 1)) ≤ 2widthv(B(a+, 7/4))

= 14widthv(B(a+, 1/4)) ≤ 14p2p(p−1)/4 = sp.

Using (9) we obtain

widthv′(P) = widthv′(projy P)) ≤ widthv′(B(a, rd))

≤ rd widthv′(B(a, 1)) ≤ rdsp.

Hence the statement of the proposition holds. Therefore, we now assume that Propo-
sition 4 finds a vector y+ ∈ B(a+, 1/4) ∩ (2� + span(�)⊥). Clearly, (23) implies
that y+ ∈ B(a, 1).

Next, we define a− := a− 3
4e

1 ∈ Qd , andwe apply Proposition 4 toB(a−, 1/4) and
the lattice 2� with basis matrix 2B. Symmetrically, we can assume that Proposition 4
finds a vector y− ∈ 2� + span(�)⊥ that is in B(a−, 1/4) and therefore in B(a, 1).

To conclude the proof, we only need to show that the vectors y+, y− are aligned
for (S-MIQP). Since y+ ∈ B(a+, 1/4) and y− ∈ B(a−, 1/4), we obtain y+

1 − y−
1 ≥

(a1+1/2)−(a1−1/2) = 1. For a vector y ∈ Rd we denote by y−1 the vector inRd−1

obtained by deleting the first component from y. Using the triangle inequality and the
fact that a+

−1 = a−
−1 = a−1, we obtain

d∑
i=2

(y+
i − y−

i)2 = ‖y+
−1 − y−

−1‖2 ≤ (‖y+
−1 − a−1‖ + ‖y−

−1 − a−1‖)2

= (‖y+
−1 − a+

−1‖ + ‖y−
−1 − a−

−1‖)2 ≤ (‖y+ − a+‖ + ‖y− − a−‖)2
≤ (1/4 + 1/4)2 = 1/4.

Hence y+, y− are aligned for (S-MIQP). 	

123

288 A. Del Pia

6 Approximation algorithm

In this section, we present our approximation algorithm for (MIQP) and we prove
Theorem 1. First, we present two lemmas that allow us to reduce the number of
variables in MIQPs with polyhedra that are not full-dimensional. The arguments are
direct extensions of those for pure integer MILPs (see, e.g., [2]). Proofs are given for
completeness.

Lemma 6 Let a ∈ Qn \ {0}, β ∈ Q, p ∈ {0, . . . , n}. There is a polynomial time
algorithm that determines whether the set S := {x ∈ Zp ×Rn−p : aTx = β} is empty
or not. If S �= ∅, the algorithm finds a vector x̄ ∈ Qn and a matrix M ∈ Qn×(n−1)

such that

S = {x̄ + My : y ∈ Zp × Rn−p−1} if ai �= 0 for some i ∈ {p + 1, . . . , n}
S = {x̄ + My : y ∈ Zp−1 × Rn−p} if ai = 0 for all i ∈ {p + 1, . . . , n}.

Proof First, consider the case ai �= 0 for some i ∈ {p+1, . . . , n}. We can then rewrite
aTx = β in the form xi = (β − ∑

j∈{1,...,n}\{i} a j x j)/ai . Since xi is a continuous
variable, we obtain that S is nonempty. We define the vector x̄ ∈ Qn with entry
x̄i := β/ai and all other entries zero. We also define the matrix M ∈ Qn×n−1 obtained
from the n × n identity matrix by replacing the i th row with the horizontal vector
−aT/ai and deleting column i . With these definitions of x̄ and M , we obtain

S = {x̄ + My : y ∈ Zp × Rn−p−1}.

Next, consider the case ai = 0 for all i ∈ {p + 1, . . . , n}. Possibly by multiplying
the equation aTx = β by the least common multiple of the denominators of the entries
of a, we may assume that a is an integral vector. Possibly by dividing the equation
aTx = β by the greatest common divisor of the entries of a, we may assume that a
has relatively prime entries. If β /∈ Z, then S is empty and we are done. Thus, we
now assume β ∈ Z. Since a1, . . . , ap are relatively prime, by Corollary 1.9 in [2],
the equation

∑p
j=1 a j x j = β has an integral solution x̃ ∈ Zp, thus S is nonempty.

Furthermore, there exists a unimodular matrixU ∈ Zp×p such that ãTU = e1T, where
ã is the vector of the first p coordinates of a, and e1 denotes the first unit vector inRp.
From the proof of Corollary 1.9 in [2], both x̃ and U can be computed in polynomial
time. If we define the matrix N ∈ Zp×(p−1) formed by the last p − 1 columns of U ,
we have

⎧
⎨
⎩x ∈ Zp :

p∑
j=1

a j x j = β

⎫
⎬
⎭ = {x̃ + Ny : y ∈ Zp−1}.

We define the vector x̄ ∈ Zn by x̄ j := x̃ j for j ∈ {1, . . . , p} and x̄ j := 0 for
j ∈ {p+1, . . . , n}. We also define the matrix M ∈ Qn×n−1 with block corresponding
to the first p rows and p−1 columns being equal to N , block corresponding to the last

123

An approximation algorithm for indefinite MIQP 289

n− p rows and n− p columns being equal to the identity matrix In−p, and remaining
entries zero. Since ai = 0 for all i ∈ {p + 1, . . . , n}, we conclude

S = {x̄ + My : y ∈ Zp−1 × Rn−p}.

	

Lemma 7 Consider an instance of (MIQP) with a nonempty feasible region. There is
a polynomial time algorithm that determines whether {x ∈ Rn : Wx ≤ w} is full-
dimensional. If not, it rewrites the instance as an instance of (MIQP) with one fewer
variable.

Proof It is well-known [2] that there is a polynomial time algorithm that determines
whether {x ∈ Rn : Wx ≤ w} is full-dimensional, and if not, finds a rational hyperplane
{x ∈ Rn : aTx = β} that contains it. In the latter case, we let x̄ ∈ Qn and M ∈
Qn×(n−1) from Lemma 6, and we define H ′ := MTHM , h′ := 2MTHT x̄ + MTh,
c := x̄THx̄+hT x̄ ,W ′ := WM ,w′ := w−Wx̄ . By Lemma 6, our instance of (MIQP)
can be rewritten as

min xTH ′x + h′Tx + c

s. t. W ′x ≤ w′

x ∈ �,

where

� :=
{
Zp × Rn−p−1 if ai �= 0 for some i ∈ {p + 1, . . . , n}
Zp−1 × Rn−p if ai = 0 for all i ∈ {p + 1, . . . , n}.

	

6.1 Description of the approximation algorithm

We are now in a position to present our approximation algorithm for (MIQP). We will
make use of Proposition 2, Proposition 3, Proposition 5, and Lemma 7.

The input of the algorithm consists of an instance of a bounded MIQP. Theorem 4
in [10] implies that, if there is an optimal solution, there is one of size bounded by an
integer ψ , which is polynomial in the size of the input MIQP. 1 Therefore, we obtain
an equivalent MIQP instance by restricting each variable to the segment [−2ψ, 2ψ].
The size of the latter instance is polynomial in the size of the former. Furthermore,
it is simple to check that an ε-approximate solution to the latter instance is also an
ε-approximate solution to the former, for every ε ∈ [0, 1]. Therefore, we can now
assume that our input MIQP has a bounded feasible region.

1 Even though Theorem 4 in [10] does not give ψ explicitly, a formula for ψ , as a function of the size of
the MIQP instance, can be derived from its proof.

123

290 A. Del Pia

We initialize the setI of MIQP instances to be solved as a set containing only our
input MIQP, and the set of possible approximate solutions as A := ∅. Throughout
the algorithm, each instance inI will be our input MIQP with a number of additional
linear equality constraints. On the other hand, the set A will contain a number of
feasible solutions to the input MIQP.

Step 1: Output, feasibility, full-dimensionality, and linear case.
Output. If I = ∅, then we return the solution in A with the minimum objective
function value ifA �= ∅, and we return “infeasible” ifA = ∅. OtherwiseI �= ∅, we
choose a MIQP instance in I and we remove it from I . Without loss of generality,
the chosen MIQP instance is (MIQP).
Feasibility. Using Lenstra’s algorithm [25], we check if the feasible region {x ∈
Zp × Rn−p : Wx ≤ w} of (MIQP) is the emptyset. If so, we go back to Step 1.
Otherwise, (MIQP) is feasible and we continue.
Full-dimensionality.We apply recursively Lemma 7 until the polyhedron describing
the feasible region is full-dimensional. For ease of notation, we denote the obtained
instance again by (MIQP), and we now assume that {x ∈ Rn : Wx ≤ w} is full-
dimensional.
Linear case.Let k be the rank of thematrix H . If k = 0, (MIQP) is aMILP, andwe find
an optimal solution using Lenstra’s algorithm.We construct the corresponding feasible
solution to the input MIQP by inverting the linear transformation just performed in
“Full-dimensionality”, andwe add it toA . Otherwise, we have k ≥ 1 andwe continue.

Step 2: Reduction to spherical form.
By Proposition 2, we perform a change of basis that transform (MIQP) in spherical
form (S-MIQP), where d satisfies d ≤ k + p, the rank of the matrix D is k, and rd in
(9) is the ceiling of 2d3/2�(5d)d/2�2.

Let B ∈ Qd×p be the obtained basis matrix of the lattice �. By Proposition 5, we
either find two aligned vectors y+, y− for (S-MIQP), or we find a vector v ∈ span(�)

with vTB integer such that widthv(P) ≤ rdsp, where sp = 14p2p(p−1)/4. In the first
case, continue with Step 3; In the second case, go to Step 4.

Step 3: Mesh partition and linear underestimators.
By Proposition 3 we obtain an ε-approximate solution (y�, z�) to (S-MIQP). This
requires solving, with Lenstra’s algorithm, at most

⌈
4rd

√
k/(3ε)

⌉k MILPs of the
same size as (S-MIQP) and with p integer variables. We construct the corresponding
ε-approximate solution x� to the (MIQP) chosen at the beginning of this iteration of
the algorithm by inverting the linear transformations in Step 2 and in Step 1, and we
add it to A . Then, we go back to Step 1.

Step 4: Decomposition.
Since widthv(P) ≤ rdsp, each point (y, z) ∈ P with y ∈ � + span(�)⊥ is contained
in one of the following polytopes:

Pt := {(y, z) ∈ P : vTy = t} for t = �μ�, . . . , �μ + rdsp�,

where μ := min{vTy : y ∈ P}.

123

An approximation algorithm for indefinite MIQP 291

For each t = �μ�, . . . , �μ + rdsp�, we consider the instance obtained from
(S-MIQP) by replacing the polytope P with Pt , and we add toI the MIQP obtained
by inverting the linear transformations in Step 2 and in Step 1. Note that the instances
that we just added to I differ from the one chosen at the beginning of this iteration
of the algorithm only by the additional constraint obtained from vTy = t by inverting
the two linear transformations. Finally, we go back to Step 1.

6.2 Analysis of the algorithm

First, we show that the algorithm described in Sect. 6.1 is correct.

Claim 3 The algorithm in Sect. 6.1 returns an ε-approximate solution, if it exists.

Proof Clearly, if the input MIQP is infeasible, the algorithm correctly detects it in
Step 1, thus we now assume that it is feasible. In this case, we need to show that
the algorithm returns an ε-approximate solution to the input MIQP. To prove this, we
only need to show that the algorithm eventually adds to the set A an ε-approximate
solution xε to the input MIQP. In fact, the vector returned at the end of the algorithm
has objective value at most that of xε , and so it is an ε-approximate solution to the
input MIQP as well.

Let x∗ ∈ Rn be an optimal solution to the input MIQP. Let MIQP∗ be an instance
stored at some point inI that contains in the feasible region the vector x∗. Among all
these possible instances, we assume thatMIQP∗, after the “Full-dimensionality” trans-
formation in Step 1, has a minimal number of integer variables. Note that MIQP∗ does
not get decomposed in Step 4. Otherwise, the vector x∗ would be feasible for one of the
instances generated inStep4 fromMIQP∗,which after the “Full-dimensionality” trans-
formation will have fewer integer variables than MIQP∗. Hence, when the algorithm
selects MIQP∗ fromI , it performs Step 3 of the algorithm, and so by Proposition 3 it
adds toA a vector xε that is an ε-approximate solution to MIQP∗. Since the feasible
region of MIQP∗ is contained in the feasible region of the input MIQP, and since the
vector x∗ is feasible for MIQP∗, it is simple to check that xε is an ε-approximate
solution to the input MIQP. 	

We complete the proof of Theorem 1 by showing that the running time of the
algorithm matches the one stated in Theorem 1.

Claim 4 The running time of the algorithm in Sect. 6.1 is polynomial in the size of the
input and in 1/ε, provided that the rank k of the matrix H and the number of integer
variables p are fixed numbers.

Proof First, we show that the algorithm performs at most (rk+psp + 1)p+1 iterations,
which is a fixed number if both k and p are fixed. Note that the number of iterations
coincides with the total number of instances that are stored in I throughout the
execution of the algorithm. Instances are added toI only in Step 4, where the MIQP
chosen in that iteration gets replaced in I with at most rk′+p′sp′ + 1 new instances.
Here, k′ denotes the rank of the quadratic objective and p′ denotes the number of
integer variables of the chosen instance after the “Full-dimensionality” transformation

123

292 A. Del Pia

in Step 1. In the new instances added toI , the rank of the quadratic objective is at most
k′, and the number of integer variables is at most p′ −1. In particular, this implies that
for every chosen instance we have k′ ≤ k and p′ ≤ p. Finally, note that Step 4 may
be triggered only if p′ ≥ 1. Therefore, the total number of MIQPs that are eventually
stored in I is at most

∑p
j=0(rk+psp + 1) j ≤ (rk+psp + 1)p+1.

It is simple to check that each instance constructed by the algorithmand eachnumber
generated has size polynomial in the size of the input MIQP. Thus, to conclude the
proof we only need to analyze the running time of a single iteration of the algorithm.
EachMILP encountered (in Step 1 and Step 3) has at most p integer variables. Since p
is fixed, they can be solvedwith Lenstra’s algorithm [25] in time polynomial in the size
of the input MIQP. Step 1 of the algorithm can then be performed in time polynomial
in the size of the input MIQP. By Proposition 2 and Proposition 5, also Step 2 can be
performed in time polynomial in the size of the input MIQP. In Step 3, the algorithm
solves at most

⌈
4rk+p

√
k/(3ε)

⌉k MILPs with at most p integer variables. Since k and
p are fixed, this number is polynomial in 1/ε. Therefore, Step 3 of the algorithm can
be performed in time polynomial in the size of the input MIQP and in 1/ε. Step 4 only
solves one linear program to find μ and stores at most rk+psp + 1 MIQPs, which is a
fixed number if both k and p are fixed. 	

Funding: A. Del Pia is partially funded by ONR grant N00014-19-1-2322. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the Office of Naval Research.

References

1. Bellare, M., Rogaway, P.: The complexity of approximating a nonlinear program. Math. Program. 69,
429–441 (1995)

2. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, Berlin (2014)
3. Cook, W., Hartman, M., Kannan, R., McDiarmid, C.: On integer points in polyhedra. Combinatorica

12(1), 27–37 (1992)
4. Cook,W., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems.Math.

Program. 47(1–3), 155–174 (1990)
5. Dax, A., Kaniel, S.: Pivoting techniques for symmetric Gaussian elimination. Numer. Math. 28, 221–

241 (1977)
6. De Loera, J., Hemmecke, R., Köppe, M., Weismantel, R.: FPTAS for optimizing polynomials over the

mixed-integer points of polytopes in fixed dimension. Math. Program. Ser. A 118, 273–290 (2008)
7. Del Pia, A.: On approximation algorithms for concave mixed-integer quadratic programming. In:

Proceedings of IPCO, Lecture Notes in Computer Science, vol. 9682, pp. 1–13 (2016)
8. Del Pia, A.: On approximation algorithms for concave mixed-integer quadratic programming. Math.

Program. Ser. B 172(1–2), 3–16 (2018)
9. Del Pia, A.: Subdeterminants and concave integer quadratic programming. SIAM J. Optim. 29(4),

3154–3173 (2019)
10. Del Pia, A., Dey, S., Molinaro, M.: Mixed-integer quadratic programming is in NP. Math. Program.

Ser. A 162(1), 225–240 (2017)
11. Del Pia, A., Weismantel, R.: Integer quadratic programming in the plane. In: Proceedings of SODA,

pp. 840–846 (2014)
12. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Natl. Bureau Stand. B.

Math. Math. Phys. 71B(4), 241–245 (1967)
13. Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Solving integer quadratic programming via explicit and

structural restrictions. Proceedings of the AAAI Conference on Artificial Intelligence (2019)

123

An approximation algorithm for indefinite MIQP 293

14. Galbraith, S.: Mathematics of Public Key Cryptography. Cambridge University Press, Cambridge
(2012)

15. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoret.
Comput. Sci. 1(3), 237–267 (1976)

16. Golub, G., Van Loan, C.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore
(2013)

17. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.
Springer, Berlin (1988)

18. Hildebrand, R., Oertel, T., Weismantel, R.: Note on the complexity of the mixed-integer hull of a
polyhedron. Oper. Res. Lett. 43, 279–282 (2015)

19. Hildebrand, R., Weismantel, R., Zemmer, K.: An FPTAS for minimizing indefinite quadratic forms
over integers in polyhedra. In: Proceedings of SODA, pp. 1715–1723 (2016)

20. Hochbaum, D., Shanthikumar, J.: Convex separable optimization is not much harder than linear opti-
mization. J. Assoc. Comput. Mach. 37(4), 843–862 (1990)

21. Khachiyan, L.: Convexity and complexity in polynomial programming. In: Proceedings of the Inter-
national Congress of Mathematicians, pp. 16–24. Warsaw (1983)

22. de Klerk, E., Laurent, M., Parrilo, P.: A PTAS for the minimization of polynomials of fixed degree
over the simplex. Theoret. Comput. Sci. 361, 210–225 (2006)

23. Kozlov, M., Tarasov, S., Khachiyan, L.: Polynomial solvability of convex quadratic programming.
Doklady Akademii Nauk SSSR 248, 1049–1051 (1979). Translated in: Soviet Mathematics Doklady
20 (1979) 1108-1111

24. Lee, J., Onn, S., Romanchuk, L., Weismantel, R.: The quadratic graver cone, quadratic integer mini-
mization, and extensions. Math. Program. Ser. B 136, 301–323 (2012)

25. Lenstra, H.J.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548
(1983)

26. Murty, K., Kabadi, S.: Some NP-complete problems in quadratic and linear programming. Math.
Program. 39, 117–129 (1987)

27. Nemirovsky,A.,Yudin,D.: ProblemComplexity andMethodEfficiency inOptimization.Wiley, Chich-
ester (1983). Translated by E.R. Dawson from Slozhnost’ Zadach i Effektivnost’MetodovOptimizatsii
(1979)

28. Pardalos, P., Vavasis, S.: Quadratic programming with one negative Eigenvalue is NP-hard. J. Glob.
Optim. 1(1), 15–22 (1991)

29. Vavasis, S.: Quadratic programming is in NP. Inf. Process. Lett. 36, 73–77 (1990)
30. Vavasis, S.: Approximation algorithms for indefinite quadratic programming.Math. Program. 57, 279–

311 (1992)
31. Vavasis, S.: On approximation algorithms for concave quadratic programming. In: Floudas, C., Parda-

los, P. (eds.) Recent Advances in Global Optimization, pp. 3–18. Princeton University Press, Princeton,
NJ (1992)

32. Vavasis, S.: Polynomial time weak approximation algorithms for quadratic programming. In: P. Parda-
los (ed.) Complexity in Numerical Optimization. World Scientific (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	An approximation algorithm for indefinite mixed integer quadratic programming
	Abstract
	1 Introduction
	1.1 Literature review
	1.2 Overview of the results and organization of the paper

	2 A strongly polynomial algorithm for symmetric decomposition
	2.1 Description of the symmetric decomposition algorithm
	2.2 Analysis of the algorithm
	2.3 Frobenius norm of B and B-1

	3 Simultaneous diagonalization and spherical form MIQP
	3.1 Simultaneous diagonalization
	3.2 Reduction to spherical form MIQP

	4 Aligned vectors
	5 Flatness and decomposition of spherical form MIQP
	6 Approximation algorithm
	6.1 Description of the approximation algorithm
	6.2 Analysis of the algorithm

	References

