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Abstract
Wepropose an algorithm for solving a class of bi-objectivemultistage stochastic linear
programs. We show that the cost-to-go functions are saddle functions, and we exploit
this structure, developing a new variant of the stochastic dual dynamic programming
algorithm. Our algorithm is implemented in the open-source stochastic programming
solver SDDP.jl. We apply our algorithm to a hydro-thermal scheduling problem
using data from the Brazilian Interconnected Power System. We also propose and
implement a computationally tractable heuristic for bi-objective stochastic convex
programs.

Keywords Bi-objective · Non-convex · Stochastic dual dynamic programming ·
Stochastic programming

Mathematics Subject Classification 90C15 (Stochastic programming) · 90C29
(Multi-objective and goal programming)

1 Introduction

Multi-objective linear programs are well-studied in the literature; see, e.g., [16] and
the references therein. A standard formulation of a multi-objective linear program is:

min
x∈Rn

Cx

s.t. Ax = b
x ≥ 0,

(1)

B O. Dowson
o.dowson@gmail.com

D. P. Morton
david.morton@northwestern.edu

A. Downward
a.downward@auckland.ac.nz

1 Department of Industrial Engineering and Management Sciences, Northwestern University,
Evanston, IL, USA

2 Department of Engineering Science, University of Auckland, Auckland, New Zealand

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01872-x&domain=pdf
http://orcid.org/0000-0003-1575-668X


908 O. Dowson et al.

where C is an o × n matrix, A is an m × n matrix, b is an m-dimensional vector,
and x is an n-dimensional decision vector. Here and throughout, objective vectors are
ranked according to a partial ordering such that Cx1 ≤ Cx2 ⇐⇒ Cx2 −Cx1 ∈ R

o+.
Unlike a single-objective program, where a solution is reported via a single vector for
x , a solution to a multi-objective program is a set of Pareto-optimal vectors, whose
corresponding objective vectors are indistinguishable under the partial ordering.

Definition 1 Let x̂ be a feasible solution of (1). Then, x̂ is calledPareto-optimal if there
is no feasible x such that Cx �= Cx̂ and Cx ≤ Cx̂ ; Cx̂ is called non-dominated. The
set of non-dominated objective vectors is called the Pareto frontier. A non-dominated
objective vector is called supported if it cannot be represented by a strict convex
combination of other non-dominated objective vectors.

Typically, multi-objective optimization is applied to deterministic problems, using
tools such as the epsilon-constraint and weighted-sum methods to find the Pareto
frontier, or an approximation thereof. Both of these approaches convert the multi-
objective problem into a family of single-objective problems: the epsilon-constraint
method by shifting all-but-one of the objectives to constraints, and the weighted-sum
by replacing the objective by a convex combination of each of the scalar objectives;
see Ehrgott [16] for details. Less often, multi-objective optimization is applied to
stochastic problems, e.g., [21]. This paper focuses on the special case of multistage
stochastic linear programs with two objectives.

Multistage stochastic programming is a way of modeling a class of sequential
decision problems under uncertainty. One application of multistage stochastic pro-
gramming that has received much attention in the literature involves hydro-thermal
scheduling, in which we seek a policy for controlling the generation of electricity from
hydro and thermal generators under inflow uncertainty; e.g., [22, 25, 27]. In general,
hydro generation is preferred because it has a lower short-run marginal cost (and envi-
ronmental impact) than thermal generation technologies such as coal. However, if too
much water is used for generation, then there may be insufficient water in the reser-
voirs to meet demand in future periods, requiring load to be shed at high cost. This
results in a trade-off for the decision maker between the short-run thermal cost and
the shortage cost of load shedding. These competing objectives must be reconciled in
some manner.

In the past ten years, considerable research has focused on using so-called coherent
risk measures [1] as a way to balance these competing objectives. Instead of minimiz-
ing the expected cost over all outcomes, coherent risk measures allow the practitioner
to optimize some function that emphasizes the tail of the distribution, e.g., involving
10% of the outcomes with the highest costs. While such an approach has desirable
mathematical properties and is computationally tractable, it poses challenges in choos-
ing a risk measure and in interpreting the solution for a decision maker. (See [26] and
the references therein for more on this topic.)

Our paper takes a different approach. Instead of using coherent risk measures to
control undesirable outcomes, we propose solving a bi-objective multistage stochas-
tic optimization problem in which we directly derive the Pareto frontier. As a result,
instead of finding a single “optimal” policy, we are able to provide a range of poli-
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Bi-objective multistage stochastic linear programming 909

cies, each with different characteristics, in order for the decision maker to make an
interpretable decision about how to trade-off the competing objectives.

We are not the first to advocate for a multi-objective approach to solving stochastic
programs. Readers are directed to [21] for a thorough survey on the topic. Exam-
ples of practical applications include [7, 30, 31]. Notably, all of these papers use the
epsilon-constraint method to deal with multiple objectives, instead of the weighted-
sums approach that we take. We note that we do not address multi-objective integer
programs; see, e.g., [6] and references therein.

In recent work, the authors of [23] solve a bi-objective problem using Benders
decomposition. However, they transform the problem into single-objectivemodel with
a fixed weight, so they do not find the full Pareto frontier. We also highlight the
work of [24], which derives a bi-objective algorithm in the context of Dantzig–Wolfe
decomposition. Theirwork is interesting given the similarities betweenDantzig–Wolfe
decomposition (column generation) and Benders decomposition (row generation), but
the results are not directly comparable since they provide no proof of convergence.

Our main contributions in this paper are three-fold:

(i) an extension of Benders decomposition to bi-objective linear programs;
(ii) the formalization of bi-objective multistage stochastic programming, along with

notions such as Pareto-optimal policies; and
(iii) an algorithm to efficiently find the Pareto frontier of a bi-objective multistage

stochastic linear program, for which we provide an open-source implementation
in SDDP.jl [13].

The rest of this paper is laid out as follows. In Sect. 2, we begin with some pre-
liminary discussion of the bi-objective simplex method and stochastic dual dynamic
programming algorithm [25, 29, 32]. Then, in Sect. 3, we describe a hybrid algorithm
that is able to solve bi-objective linear programs using Benders decomposition. In
that section we also provide finite convergence results. Next, in Sect. 4, we extend
the results from our deterministic Benders setting to bi-objective multistage stochastic
programs. In particular, the algorithmwe propose is an extension of the stochastic dual
dynamic programming algorithm. We conclude with numerical examples in Sect. 5.

2 Preliminaries

2.1 The bi-objective simplexmethod

In this section we introduce the bi-objective simplex method. For a thorough treatment
of the subject, readers are directed to [16, Ch. 6].

Consider a linear program as in problem (1) with two objectives defined by appro-
priately sized vectors of objective coefficients c1 and c2 such that C = [c1 c2]�.
One solution approach to find the Pareto frontier is the weighted-sums method. This
method reformulates problem (1) into a single-objective problem by taking a convex
combination of the two objectives:
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LP(λ) = min
x

λc�
1 x + (1 − λ)c�

2 x

s.t. Ax = b
x ≥ 0,

(2)

for λ ∈ [0, 1]. Since λ appears as an objective coefficient in a minimization linear
program, LP(λ) is piecewise-linear and concave with respect to λ. Moreover, since
(2) is a finite-dimensional linear program, the solution of (2) over λ ∈ [0, 1] can be
characterized by a finite number of basic feasible solutions.

The formulation of problem (2) naturally extends to more objectives using a convex
combination of weights. We focus on the bi-objective case for simplicity, and because
we only establish convergence of our solution algorithm in the bi-objective case.

Before we proceed, it is useful to state a well-known result from the literature.

Theorem 1 A feasible solution x of problem (1) is Pareto-optimal if and only if it is
an optimal solution of (2) for some value of λ ∈ (0, 1).

Proof See, e.g., [17, Theorem 1]. 	

Because problem (1) is a finite-dimensional multi-objective linear program, there

are afinite number of supported non-dominated objective vectors.Moreover, the Pareto
frontier can be characterized by the convex hull of the supported non-dominated objec-
tive vectors. Therefore, to solve problem (1), it is sufficient to find the finite number of
supported non-dominated objective vectors and a set of corresponding solution vectors
x .

We call the set {(λ, LP(λ)) ∈ [0, 1] × R} weight-space, and extreme points in
weight-space are values of λ that are kink points of the piecewise-linear function
LP(λ). By construction, extreme points in weight-space correspond to facets of the
Pareto frontier, and so at every extreme point in weight-space there are multiple opti-
mal primal solutions. To overcome numerical issues associated with multiple optimal
solutions, we make the following two assumptions throughout the remainder of this
paper.

Assumption 1 We have a solver that, given a linear program:

min
Ax=b,x≥0

c�x,

always returns the same optimal basis for any fixed choice of c, A, and b, regardless
of the preceding order of operations.

Assumption 2 Given the weighted-sum linear program (2), assume we have a solver
that: when solving at λ = 0, always returns a solution that first minimizes c�

2 x and then
minimizes c�

1 x with c�
2 x fixed to its optimal value; and when solving at λ ∈ (0, 1],

always returns a solution that first minimizes λc�
1 x + (1−λ)c�

2 x and then minimizes
c�
2 x with λc�

1 x + (1 − λ)c�
2 x fixed to its optimal value.

Inmost linear programming solvers,Assumption1 canbe ensured—to thedetriment
of performance—by choosing a deterministic solution method (e.g., primal simplex)
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Bi-objective multistage stochastic linear programming 911

and always clearing cached solutions to prevent the solver from warm-starting from a
previous optimal basis or partial solution. The first part of Assumption 2 is necessary
to ensure that when we compute LP(0), we obtain a Pareto-optimal solution. The
second part of Assumption 2 gives a similar result for all other values of λ. Both
cases can be achieved in a linear programming solver by first solving with respect to
problem (2)’s objective for the given λ, fixing that objective as a constraint, and then
solving with respect to the modified objective.

The bi-objective simplex method begins by solving (2) at λ = 1 to find the solution
that minimizes the c�

1 x objective. As a result, we obtain an optimal basis, and by
Assumption 2, the basis corresponds to a non-dominated objective vector. Since λ

only appears in the objective, this basis remains feasible for all values of λ. However,
as we decrease λ, there will, in general, come a value at which a new basis becomes
optimal. The new value can be computed in the spirit of a standard simplex pivot as
follows.

For a given a value of λ ∈ (0, 1], we have a corresponding optimal basis (see, e.g.,
[9]); we denote the set of basic variables by B, and the corresponding columns of the
A matrix by B. Moreover, we denote the set of non-basic variables by N with corre-
sponding columns N . Then, assuming a single objective with objective coefficients c,
the reduced costs associated with the non-basic variables can be calculated as follows:

c̄ = cN − c�
BB−1N ,

where cX indicates the components of the vector c associated with the set X .
Using the reduced costs for each objective, we can compute the minimum value

that λ can take in order for B to remain an optimal basis using the following rule:

λ− = max
i∈I

−e�
i c̄2

e�
i c̄1 − e�

i c̄2
, (3)

where ei is the i-th unit vector, and I is the set of non-basic columns with a non-
negative reduced cost for the first objective and a negative reduced cost for the second
objective, i.e., I = {

i ∈ N : e�
i c̄1 ≥ 0, e�

i c̄2 < 0
}
. If I = ∅, then λ− = 0.

If λ− = λ, then there is another optimal solution at the vertex. In this case, we must
perform a sequence of simplex pivots until we find a basis for which λ− < λ using
standard techniques for dealing with degeneracy in the simplex method, e.g., [5, 35].
As a short-hand, we denote the procedure carried out by (3) (with potential additional
pivots to find a smaller value of λ−) to update the value of λ by λ ← Λ(λ,B).

Once a new value for λ is obtained that represents the next—in decreasing order—
possible value of λ at which a new basis may become optimal, problem (2), i.e.,
LP(λ), can be re-solved to obtain the new optimal basis. This process is repeated
until λ = 0, and the bi-objective simplex algorithm terminates yielding a necessarily
finite sequence of λ values and a corresponding sequence of basic feasible solutions.
The basic feasible solutions can be used to construct a set of non-dominated objective
vectors to define the Pareto frontier. Because of the presence of multiple optimal
solutions we will not, in general, have found all Pareto-optimal solutions, x ; however,
we will have found all supported non-dominated objective vectors, Cx . By taking the
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convex combination of adjacent supported non-dominated objective vectors, we can
recover the entire Pareto frontier.

2.2 Stochastic dual dynamic programming

The main result of this paper is an extension of the stochastic dual dynamic pro-
gramming algorithm [25] to the bi-objective case. In this section, we introduce the
algorithm and associated notation. We follow the terminology and assumptions of
Philpott and Guan [29], restricting our attention to multistage stochastic programs
with the following properties.

Assumption 3 The set of random noise outcomes Ωt in each stage t = 2, 3, . . . , T is
discrete and finite, with a known probability pω

t for each outcome ω ∈ Ωt .

Assumption 4 The random vectors of noise in each stage are mutually independent.

Assumption 5 The optimization problem in each stage is feasible and has a finite
optimal solution for all achievable incoming state xt−1 and all noise realizations ω ∈
Ωt .

In other works, the stochastic dual dynamic programming algorithm has been
extended to general convex programs [18], risk-averse programs [20, 28, 33], andmore
general stage-structures [12]. However, to focus on ideas, in this paper we present an
algorithm for the T -stage, linear, risk-neutral version of the problem.

Consider a T -stage multistage stochastic linear program. As is typical in the liter-
ature [29, 32], we can express the problem in a recursive form:

V1 = min
x1

c�
1 x1 + Eω∈Ω2 [V2(x1, ω)]

s.t. A1x1 = b1
x1 ≥ 0,

(4)

where the cost-to-go from stage t = 2, 3, . . . , T is a functionVt (xt−1, ωt ) that depends
on the incoming state variable xt−1 and a realization of a stagewise-independent ran-
dom noise ωt :

Vt (xt−1, ωt ) = min
x̄,xt

ct (ωt )
�xt + Eω∈Ωt+1

[
Vt+1(xt , ω)

]

s.t. x̄ = xt−1
Tt (ωt )x̄ + Wt (ωt )xt = gt (ωt )

xt ≥ 0,

(5)

where VT+1(·, ·) = 0. Here, ct and gt are appropriately dimensioned vectors that
depend on ωt , and Tt and Wt are appropriately dimensioned matrices that depend on
ωt .

For notational simplicity and without loss of generality, we have followed [29] and
merged the state and control vectors into a single vector, x . The goal of the agent is to
solve model (4), minimizing expected cost.
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Bi-objective multistage stochastic linear programming 913

Stochastic dual dynamic programming is a form of nested Benders decomposi-
tion, and so we use the fact that Vt (·, ωt ) is convex with respect to xt−1 to form the
approximation:

V K
1 = min

x1,θ1
c�
1 x1 + θ1

s.t. A1x1 = b1
x1 ≥ 0
θ1 ≥ α1,k + β�

1,k x1, k = 1, . . . , K
θ1 ≥ −M1,

(6)

and Vt :
V K
t (xt−1, ωt ) = min

x̄,xt ,θt
ct (ωt )

�xt + θt

s.t. x̄ = xt−1 [νt ]
Tt (ωt )x̄ + Wt (ωt )xt = gt (ωt )

xt ≥ 0
θt ≥ αt,k + β�

t,k xt , k = 1, . . . , K
θt ≥ −Mt .

(7)

Stochastic dual dynamic programming is an algorithm that iteratively constructs the
set of cuts in a manner analogous to Benders decomposition: a forward pass computes
a sequence of decision vectors x1, x2, . . . , xT−1, and a backward pass refines the
approximation of the cost-to-go function, Vt , at the decision vectors computed on the
forward pass. Pseudo-code is given in Algorithm 1.

Algorithm 1: The stochastic dual dynamic programming algorithm.
Set K ← 1
while not converged do

/* Forward pass */

Solve V K−1
1 , i.e., (6), and obtain optimal extreme point primal solution x̂1

for t = 2, 3, . . . , T − 1 do
Sample ωt from Ωt

Solve V K−1
t (x̂t−1, ωt ), i.e., (7), and obtain optimal extreme point primal solution x̂t

end
/* Backward pass */
for t = T − 1, T − 2, . . . , 1 do

for ω ∈ Ωt+1 do
Solve V K−1

t+1 (x̂t , ω) and obtain optimal extreme point dual solution ν̂t+1,ω and objective

value V̂t+1,ω
end

Set αt,K ← Eω

[
V̂t+1,ω − ν̂�

t+1,ω x̂t
]

Set βt,K ← Eω

[
ν̂t+1,ω

]

Add the cut θt ≥ αt,K + β�
t,K xt to V K−1

t , creating V K
t

end
Set K ← K + 1

end
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914 O. Dowson et al.

Unlike deterministic optimization, a feasible or optimal solution is not a single
vector of values for x . Instead, a feasible solution is a policy, π = {πt }Tt=1, comprising
a set of decision rules, with one decision rule, πt , for each stage t . Each decision rule is
a mapping, πt (xt−1, ωt ) → xt , that prescribes an action, xt , given the incoming state,
xt−1, and realization of the uncertainty, ωt . We restrict attention to policies whose
decision rules are feasible with respect to the linear programming dynamics in the
constraints of (4)–(5). Under Assumptions 1 and 3–5, a decision rule to construct
a policy, πK , can be formed for stage t by taking the argmin of the approximated
subproblem corresponding to V K

t . With a slight abuse of notation, we denote the
expected cost of a policy, π , by V1(π). The optimal value of problem (4) is then
V1 = V1(π∗), where π∗ is an optimal policy, i.e., a policy satisfying V1(π∗) ≤ V1(π)

for all π . A lower bound on V1(π∗) is available after each iteration, K , by solving the
approximated first-stage problem (6), so that V1(πK ) ≥ V1(π∗) ≥ V K

1 .

3 Bi-objective Benders decomposition

In this section, we extend Benders decomposition [3, 34] to the bi-objective setting.
Benders decomposition is not the main focus of our work; instead, it provides a sim-
plified setting in which to prove necessary building blocks for multistage stochastic
programming.

Consider a bi-objective linear program with a diagonal block structure amenable
to Benders decomposition:

min
x,y

Cx + Dy

s.t. Ax = b
T x + Wy = g
x, y ≥ 0,

(8)

where A, T , andW are appropriately sizedmatrices of finite dimension;C = [c1 c2]�,
D = [d1 d2]�, and b, c1, c2, d1, d2, and g are appropriately sized vectors of finite
dimension; and x and y are commensurate decision vectors.

We propose to solve this problem via the weighted-sums method, and thus in the
following, λ ∈ [0, 1]. Combining the weighted-sum problem (2) with the typical first-
and second-stage subproblems of Benders decomposition, we obtain:

V1(λ) = min
x

λc�
1 x + (1 − λ)c�

2 x + V2(x, λ)

s.t. Ax = b
x ≥ 0,

(9)

where a second-stage subproblem defines V2(x, λ), which depends on the first-stage
decision x and the scalarizing weight λ:
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V2(x, λ) = min
x̄,y

λd�
1 y + (1 − λ)d�

2 y

s.t. x̄ = x [ν]
T x̄ + Wy = g
y ≥ 0.

(10)

Similar to Assumption 5, to ensure that the master and subproblem in our Benders
decomposition algorithm are feasible and have finite optimal solutions, we assume the
second-stage subproblem (10) has relatively complete recourse and is dual feasibile,
and the first-stage feasible region is nonempty and compact:

Assumption 6 For allλ ∈ [0, 1] and any feasible first-stage decision, x , to problem (9),
the second-stage subproblem (10) has nonempty primal and dual feasible regions.
In addition, the first-stage feasible region, {x : Ax = b, x ≥ 0}, is compact and
nonempty.

Wemake the first part of this assumption so that we do not need to consider Benders
infeasibility cuts; this is required for our subsequent extension to multistage stochastic
programs. The second part ensures V2(x, λ) is finite, and holds provided subproblem
(10) is dual feasible for λ = 0 and λ = 1. Coupled with the third part, we are ensured
that the overall problem is feasible, and the forthcoming master problem has a finite
optimal solution. The next lemma characterizes properties of the cost-to-go function,
V2(x, λ).

Lemma 1 Let V2(x, λ) be defined by subproblem (10), and let Assumption 6 hold.
Then, V2(x, λ) is finite, piecewise-linear convex with respect to x on {x : Ax =
b, x ≥ 0}, piecewise-linear concave with respect to λ on [0, 1], and each piecewise-
linear function comprises a finite number of pieces.

Proof For fixed λ, V2 is the optimal value of a linear program in which x appears only
on the right-hand side. Thus V2(·, λ) is piecewise-linear convex.Moreover, given fixed
x , V2 is again a linear program in which λ appears only in the objective coefficients.
Thus, V2(x, ·) is piecewise-linear concave. Finiteness of the number of pieces follows
immediately from the finite number of basic solutions to subproblem (10). 	


By Lemma 1, the cost-to-go function is a saddle function. Models with this struc-
ture have been the subject of a series of recent papers [2, 11, 14], each of which
relies on a dualization property to convert the saddle function into a computationally
tractable form. The first step involves constructing the master problem approximation
of (9), which involves forming a lower-bounding approximation of the saddle function,
V2(x, λ), as follows:
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V K
1 (λ) = min

x,θ
max

γ
λc�

1 x + (1 − λ)c�
2 x +

K∑

k=1
γkθk−L(γ + + γ −)

s.t. Ax = b
x ≥ 0
θk ≥ αk + β�

k x, k = 1, . . . , K
θk ≥ −M, k = 1, . . . , K
K∑

k=1
γkλk+γ + − γ − = λ, [μ]

K∑

k=1
γk = 1, [ϕ]

γk, γ
+, γ − ≥ 0, k = 1, . . . , K .

(11)

Here, the outer minimization problem—involving the variables x and θ , and constants
α and β—forms an outer approximation of the convex dimension of the cost-to-
go function, V2(·, λ), given a fixed value of λ. The inner maximization problem—
involving variables γ , constants λk , and dual variables μ and ϕ—forms an inner
approximation of the concave dimension of the cost-to-go function, V2(x, ·), given a
fixed value of x . Taken together, these two approximations provide a lower bound.
The scalar constants M and L are sufficiently large and ensure that the problem has a
finite optimal solution.

From the point of view of the inner maximization, θk are fixed estimates for
V2(λk, x), so the inner maximization is a standard formulation for constructing an
inner approximation of a uni-variate function. Moreover, θk are the only linkages
between the min problem and the max problem. Therefore, and because of Assump-
tion 6, the second step of the reformulation is to take the dual of the innermaximization
problem to form the following pure minimization problem:

V K
1 (λ) = min

x,μ,ϕ
λc�

1 x + (1 − λ)c�
2 x + λμ + ϕ (12a)

s.t. Ax = b (12b)

x ≥ 0 (12c)

λkμ + ϕ ≥ αk + β�
k x, k = 1, . . . , K (12d)

−L ≤ μ ≤ L (12e)

ϕ ≥ −M . (12f)

Note that we have projected out the θk variables by replacing one set of primal and
one set of dual inequalities involving θk by a single combined set of inequalities. The
simple bounds on μ can be avoided if we initialize the master program with solutions
for λ = 0 and λ = 1 for some x . Following [11], we call the cuts in this reformulated
problem saddle cuts, since they form piecewise-saddle function lower bounds in the
original primal space.

In order to understand the algorithm that we are about to propose to generate the
saddle cuts, it helps to observe two facts. First, given a fixed set of cuts, the master
problem is a bi-objective linear program that can be solved via the bi-objective simplex
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Bi-objective multistage stochastic linear programming 917

method. Thus, we can use the updatemethod of Eq. (3) to efficientlymodify λ. Second,
the cuts generated for a given value of λ are valid for all other values of λ, even if the
chosen value of λ is not associated with an extreme point of the weight-space.

Therefore, we propose an algorithm that iteratively applies one iteration of Benders
decomposition, and then takes one step along the Pareto frontier using the bi-objective
simplexmethod. If the scalarizationweight reaches 0, we reset the scalarizationweight
to λ = 1 and begin a new sweep along the frontier. To ensure that we visit all supported
non-dominated objective vectors, we compute two steps, one each for the master (λm)
and subproblem (λs), and take the smaller step. This is represented by max{λm, λs} in
the algorithmwith the “max”becausewe iteratively decreaseλ. To ensure convergence,
it is also necessary to add a cut at the new scalarization weight, resulting in two cuts
being added at each step. The reasons for taking the smaller step and adding both cuts
are non-trivial, and so we delay discussion until Theorem 2. Pseudo-code is given in
Algorithm2. In the algorithm’s statement, for short-handwe say, e.g., “solve V K

1 (λK )”
to mean solve master problem (12) with cuts accumulated through the K -th iteration,
and with input λ = λK .

Algorithm 2: Bi-objective Benders decomposition algorithm
Set K ← 1
while not converged do

Set λK ← 1
repeat

/* Forward pass */

Solve V K−1
1 (λK ), i.e., (12), and obtain optimal extreme point primal solution x̂K

/* Backward pass */
Solve V2(x̂K , λK ), i.e., (10), and obtain optimal extreme point dual solution ν̂K and
objective value V̂K
Set αK ← V̂K − ν̂�

K x̂K
Set βK ← ν̂K
Add the cut λKμ + ϕ ≥ αK + β�

K x to V K−1
1 , creating V K

1
/* Update weight and add second cut */

Solve V K
1 (λK ) to obtain an optimal basis Bm and decision x̂K+1

Set λm ← Λ(λK ,Bm )

Solve V2(x̂K+1, λK ) to obtain an optimal basis Bs
Set λs ← Λ(λK ,Bs )

Set λK+1 ← max{λm , λs }
Solve V2(x̂K+1, λK+1) and obtain optimal extreme point dual solution ν̂K+1 and objective
value V̂K+1
Set αK+1 ← V̂K+1 − ν̂�

K+1 x̂K+1
Set βK+1 ← ν̂K+1

Add the cut λK+1μ + ϕ ≥ αK+1 + β�
K+1x to V K

1 , creating V K+1
1

Update V K+1
1 , removing cuts that are convex combinations of other cuts

Set λK+2 ← λK+1
Set K ← K + 2

until λK = 0;
end
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Note that the formulation of problems (9) and (10) and the saddle-cut reformula-
tion (12) naturally extend to o objectives using a convex combination of o−1 weights.
However, we focus on the bi-objective case because we do not have a convergent algo-
rithm for exploring the multi-dimensional space of λ when o > 2.

3.1 Bounds

Unlike single-objective Benders decomposition, the concept of lower and upper
bounds in bi-objective Benders decomposition is not straightforward. This is because
the choice of the appropriate trade-off in the objective is left to the decision maker. If
we knew the location of all extreme vertices in weight-space, we could compute an
“expected” lower bound by averaging the lower bound V K

1 (λ) at all extreme points
λ. However, in initial iterations of the algorithm, we do not know the location of
these vertices. Therefore, we need a surrogate measure for the lower bound with two
properties: (i) it is non-decreasing as K increases; and (ii) it has a finite maximum
value.

As our measure, we choose the integral of the function V K
1 (λ) over the domain

λ ∈ [0, 1]. It is easy to show that this measure has the two properties outlined above
since adding a cut can only increase the value of V K

1 (λ), and therefore the integral’s
area must increase, satisfying i); and since V K

1 (λ) ≤ V1(λ) for all λ ∈ [0, 1], it is
bounded above by the area of the true function, satisfying (ii).

To compute the surrogate lower bound, we perform a sweep along λ space in V K
1 (λ)

using the weight-update (3). This results in a sequence of weights λ1, λ2, . . . , λN ,
where λ1 = 1, λN = 0, and λi > λi+1. Then, the surrogate lower bounding area can
be easily computed using the trapezoid rule:

VK =
N−1∑

i=1

(
V K
1 (λi ) + V K

1 (λi+1)

2
− Z

)

(λi − λi+1) , (13)

where Z = min{V 0
1 (0), V 0

1 (1)}.
Given a value of λ, we can obtain an upper bound on the optimal value of the

weighted-sum problem by solving V K
1 (λ) to obtain an optimal decision x∗, and then

solving V2(x∗, λ) to obtain an optimal decision y∗. This feasible solution (x∗, y∗)
defines a linear function:

V
K
x∗,y∗(λ) = λ(c�

1 x
∗ + d�

1 y∗) + (1 − λ)(c�
2 x

∗ + d�
2 y∗), (14)

which is an upper bound on V1(λ) at any value λ ∈ [0, 1]. A collection of these
upper bounding functions can be obtained by computing the set of feasible solutions,
denoted X , one corresponding to each weight λ = λ1, . . . , λN obtained from the
lower-bounding sweep. Then, a valid upper bound can be computed by calculating the
area between the point-wise minimum of these upper bounding linear functions and
the value Z:

V
K =

∫ 1

0
min

(x,y)∈X

{
V

K
x,y(λ) − Z

}
dλ. (15)
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(a) (b)

Fig. 1 Visualization of lower and upper bounds in a fictional example. The upper bounding linear functions
are shown as dashed lines in Fig. 1b, and the upper bounding area (shaded) is formed by the area between
the piecewise minima of these functions on [0, 1] and Z), rather than the convex hull of the upper bounding
points, which are shown as crosses

The integral (15) is easily computed using the trapezoid rule with the intersection
of the upper bounding functions (14), as opposed to the upper bounding points. A
pictorial representation of these bounds is given in Fig. 1 for a fictional example
(assuming that Z = 0.5). In Fig. 1a, the lower bounding points V K

1 (λ) are shown as
dark circles, and the lower bounding area (shaded) is computed by (13), incorporating
Z = 0.5.

By themselves, the lower and upper bounds have limited meaning, especially if
the objectives have different units of measurement. However, the difference between
the upper and lower bounds can be interpreted as a proxy for the average distance
between the lower-bounding approximation and the upper-bounding approximation
of the Pareto frontier. When this distance reaches zero, Algorithm 2 has converged to
the Pareto frontier.

3.2 Convergence

We now discuss finite convergence of Algorithm 2 applied to model (8). The main
thrust of our argument is that there are a finite number of cuts required to define the
complete Pareto frontier, and that the procedure in Algorithm 2 is sufficient to find
them.

Lemma 2 Let Assumptions 1, 2, and 6 hold. Consider a fixed value of λ. Then, ignoring
the weight update so that λK = λ for all K , consider running Algorithm 2. There exists
some K < ∞ such that V K

1 (λ) = V1(λ).

Proof Fixing λ and ignoring the weight update transforms Algorithm 2 into traditional
Benders decomposition with known finite convergence [3, 34]. 	

Lemma 3 Let Assumption 6 hold. There are a finite number of extreme weights λ in
weight-space.

Proof We can re-express model (9) as a linear program with the feasible region of
model (8) and objective function, λ(c�

1 x+d�
1 y)+(1−λ)(c�

2 x+d�
2 y). The result then
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follows immediately from the fact there are finite number of basic feasible solutions
to this linear program. 	

Lemma 4 Consider problem (2). Assume there exists a solution x∗ and two values
λ0, λ1 ∈ [0, 1], λ0 < λ1, such that x∗ is optimal to problem (2) at λ = λ0 and at
λ = λ1. Then x∗ is optimal to problem (2) for all λ ∈ [λ0, λ1].
Proof Let X denote the feasible region of model (2). By hypothesis x∗ satisfies:

λ0c
�
1 x

∗ + (1 − λ0)c
�
2 x

∗ ≤ λ0c
�
1 x + (1 − λ0)c

�
2 x, ∀x ∈ X (16a)

λ1c
�
1 x

∗ + (1 − λ1)c
�
2 x

∗ ≤ λ1c
�
1 x + (1 − λ1)c

�
2 x, ∀x ∈ X . (16b)

The result is immediate for λ = λ0, λ1. Restricting to λ ∈ (λ0, λ1), there exists
γ ∈ (0, 1) such that λ = γ λ0 + (1 − γ )λ1. Multiplying inequality (16a) by γ ,
inequality (16b) by 1 − γ , and summing yields the desired result. 	

Theorem 2 Let Assumptions 1, 2, and 6 hold. Then, Algorithm 2 finds a set of Pareto-
optimal solutions corresponding to the Pareto frontier of model (8) in a finite number
of iterations.

We preface the main argument that we use to prove the theorem. A complicating
factor is that it does not suffice to prove convergence of the value function at the points
identified in weight-space, if we only add one cut at each step. This is because we will
have proved that x1 is an optimal solution at λ1, and that x2 is an optimal solution at
λ2 = Λ(λ1, ·) < λ1, but we have not proved that x1 is an optimal solution for λ = λ2,
and therefore an optimal solution for all λ ∈ [λ2, λ1]. We resolve this issue by adding
a second cut at x1 and λ2 in each step, as indicated in Algorithm 2.

Proof Each inner loop of Algorithm 2 terminates after a finite number of steps from
decrementing λ until λ = 0 due to a finite number of possible bases. To show this,
we will argue that both the subproblem (10) and master program (12) have a finite
number of bases. Finiteness of the inner loop then follows from algorithm’s decre-
ment, max{Λ(λK ,Bm),Λ(λK ,Bs)}. The fact that the subproblem has a finite number
of bases is immediate from the linear programming constraints of (10). The master
program (12)’s cuts (12d) are indexed by λ explicitly via the λkμ term and implicitly
because the cut coefficients αk and βk depend on λ. Suppose that the subproblem has
been solved at two distinct values of λ′ < λ′′ via the same basis of (10). Then, for any
λk ∈ [λ′, λ′′] that also yields the same optimal basis of (10), the cut coefficients λk , αk ,
and βk can be expressed as a convex combination of those of λ′ and λ′′. Algorithm 2
removes cuts that are redundant in this way. As a result, a finite number of bases for
the master (12) follows from the finite number of bases for the subproblem (10).

By design, Algorithm 2 visits λ = 1 at the start of every outer (while) loop.
Therefore, by Lemma 2 there exists some number of iterations κ(1) < ∞ after which
V κ(1)
1 (1) = V1(1). Thus, byAssumptions 1 and 2, every timewe solveV κ(1)

1 (1) and the
corresponding V2 we obtain the same pair of optimal bases B∗

κ(1) = {B∗
κ(1),m,B∗

κ(1),s}
with optimal solutions x∗

κ(1) and y∗
κ(1).

Now, consider computing λs and λm as in Algorithm 2 using B∗
κ(1) at some K >

κ(1). There are two cases: (i) λs ≥ λm ; and (ii) λm > λs .
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In case (i), λs ≥ λm . This case implies that, conditioned on x∗
κ(1) remaining optimal,

λs is the first weight at which y changes. If we repeatedly visit λs during iterations of
the algorithm, then there exists a new value for K , κ(2) < ∞ at which V κ(2)

1 (λs) =
V1(λs), and we obtain a new optimal basis B∗

κ(2) with optimal solutions x∗
κ(2) and

y∗
κ(2). Because there is no approximation when solving the second-stage problem, by
Lemma 4, B∗

κ(1) is an optimal basis for all λ ∈ [λs, 1].
In case (ii), λm > λs . This case implies that, given the current approximation of the

cost-to-go function, λm is the first weight at which a decision variable in the first-stage
problem (i.e., x , μ, or ϕ) changes. If we repeatedly visit λm during iterations of the
algorithm, then there exists a new value κ(2) < ∞ at which V κ(2)

1 (λm) = V1(λm),
and we obtain a new optimal basis B∗

κ(2) with optimal solutions x∗
κ(2) and y∗

κ(2).
However, because of the presence ofmultiple optimal solutions at vertices inweight-

space, it may be that even after we have converged the cost-to-go function at λm , there
exists a weight λ ∈ (λm, 1) at which the basis changes in the “true” problem V1(λ),
and that we have missed identifying this basis because of the under-approximation of
the cost-to-go function. However, the second cut computed at x∗

κ(1) in Algorithm 2
ensures that there exists some value κ(2) < ∞ at which the approximation of the
cost-to-go function is tight at both x∗

κ(2) and at x
∗
κ(1). If the approximation of the cost-

to-go function is tight at both values of x , then by Lemma 4—and the fact that V2 is
not approximated and so the second stage variables must remain optimal—we have
that B∗

κ(1) is an optimal basis for all λ ∈ [λm, 1].
The remainder of the proof follows an inductive argument: (a) beginning at the new

weight λ∗ (either λs from case (i) or λm from case (ii)) and basis B∗
κ(2), there is a

finite number of iterations until we obtain a basis B∗
κ(3) at a new weight λ; and (b) by

Lemma 3 there are a finite number of optimal bases in the Pareto frontier. 	

Corollary 1 Assume the hypotheses of Theorem 2. Then, the theorem still holds if we
initialize the master problem (12) with a set of valid cuts.

Proof Introducing an initial set of cuts does not change the validity of Theorem 2’s
proof. Notably, the sequence of weights λ that are visited may differ, and therefore the
set of discovered cuts may also differ, but Algorithm 2 still obtains the Pareto frontier
in a finite number of iterations. 	


We now consider a random sampling variant of the algorithm in which, instead of
choosing λK+2 ← max{λm, λs}, we randomly and independently choose either λm
or λs at each iteration. We call this algorithm Algorithm 2a. Although not needed for
Benders decomposition, this algorithm foreshadows the random sampling in stochastic
dual dynamic programming.

Theorem 3 Assume thehypotheses of Theorem2. Then,Algorithm2aconverges almost
surely in a finite number of iterations, again finding a set of Pareto-optimal solutions
corresponding to the Pareto frontier of model (8).

Proof The result follows directly from application of the secondBorel–Cantelli lemma
[19]. In particular, we first observe that Theorem2 relies on a deterministic sequence of
weights λ, and second note that by Corollary 1 the master problem may be initialized

123



922 O. Dowson et al.

with an arbitrary finite set of valid cuts. Then, if we independently sample the choice of
λm and λs at each iteration, we will almost surely eventually sample the deterministic
sequence that would have been obtained from Theorem 2, if it were initialized with
the same set of cuts as described in Corollary 1. 	


4 Bi-objective multistage stochastic programming

In Sect. 3, we extended the bi-objective simplex method to linear programs solved
using Benders decomposition. Using those results, we now show how to extend the
bi-objective simplex method to the stochastic dual dynamic programming algorithm.

We start by formulating a bi-objective multistage stochastic program in recursive
form:

−→
V 1 = min

x1
C1x1 + Eω2

[−→
V 2(x1, ω2)

]

s.t. A1x1 = b1
x1 ≥ 0,

(17)

where for t = 2, 3, . . . , T :

−→
V t (xt−1, ωt ) = min

x̄,xt
Ct (ωt )xt + Eωt+1

[−→
V t+1(xt , ωt+1)

]

s.t. x̄ = xt−1
Tt (ωt )x̄ + Wt (ωt )xt = gt (ωt )

xt ≥ 0,

(18)

with the convention that
−→
V T+1(·, ·) = 0. Here, the expectations of

−→
V t+1 (now a

vector) are taken component-wise. Notation from the formulation of model (4) carries
over to (17), except that Ct (ωt ) are matrices with two rows, c�

t,1(ωt ) and c�
t,2(ωt ),

for the respective objective function coefficients. Assumptions 3–5 also carry over
directly.

Just as bi-objective linear programs have Pareto-optimal solutions, bi-objective
stochastic programs require the definition of Pareto-optimal policies. Similar to how
we defined a policy for single-objective multistage stochastic programs in Sect. 2.2, let−→V t (π) be identical to

−→
V t , t = 1, 2, . . . , T , except that a decision-ruleπt (xt−1, ωt ) →

xt replaces the minimization operators in (17) and (18), again respecting the dynamics
of the linear programming constraints of (17)–(18). In other words, instead of solving
an optimization problem, we evaluate the decision rule to obtain a new state xt , and

return the objective value. We define Pareto-optimality of policies using
−→V 1(π).

Definition 2 A policy π̂ , composed of decision rules π̂t (xt−1, ωt ) → xt for each

stage t , is Pareto-optimal if there exists no policy π with
−→V 1(π) �= −→V 1(π̂) such that−→V 1(π) ≤ −→V 1(π̂).
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Proceeding in parallel to the development of Sect. 3, we use the weighted-sum
method and rewrite problem (17):

V1(λ) = min
x1

[λc1,1 + (1 − λ)c1,2]�x1 + Eω2 [V2(x1, λ, ω2)]

s.t. A1x1 = b1
x1 ≥ 0,

(19)

and problem (18):

Vt (xt−1, λ, ωt ) = min
x̄,xt

[λct,1(ωt ) + (1 − λ)ct,2(ωt )]�xt+
Eωt+1

[
Vt+1(xt , λ, ωt+1)

]

s.t. x̄ = xt−1
Tt (ωt )x̄ + Wt (ωt )xt = gt (ωt )

xt ≥ 0,

(20)

where ct,i is the i th objective vector in stage t . Then, like we did in Sect. 3, we
approximate the cost-to-go term by the pointwise maximum of a collection of saddle
cuts. This results in the approximated subproblems:

V K
1 (λ) = min

x1,μ1,ϕ1
[λc1,1 + (1 − λ)c1,2]�x1 + λμ1 + ϕ1

s.t. A1x1 = b1
x1 ≥ 0
λkμ1 + ϕ1 ≥ α1,k + β�

1,k x1, k = 1, . . . , K
−L1 ≤ μ1 ≤ L1
ϕ1 ≥ −M1,

(21)

and:

V K
t (xt−1, λ, ωt ) = min

x̄,xt ,μt ,ϕt
[λct,1(ωt ) + (1 − λ)ct,2(ωt )]�xt + λμt + ϕt

s.t. x̄ = xt−1
Tt (ωt )x̄ + Wt (ωt )xt = gt (ωt )

xt ≥ 0
λkμt + ϕt ≥ αt,k + β�

t,k xt , k = 1, . . . , K
−Lt ≤ μt ≤ Lt

ϕt ≥ −Mt .

(22)

With the approximated subproblems, we can combine the stochastic dual dynamic
programming algorithm (Algorithm 1) and the bi-objective Benders decomposition
algorithm (Algorithm 2) to create a bi-objective stochastic dual dynamic programming
algorithm. Pseudo-code is given in Algorithm 3. Just like it was necessary to compute
max{λs, λm} in the bi-objective Benders case, in theory it is necessary to compute
the minimum step in weight-space across all stages and outcomes of the stagewise-
independent random variable ωt . However, like Algorithm 2a, we select a subproblem
at random (from any stage) to compute the change in basis, independently across
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iterations. Finally, note the distinction that Algorithms 2 and 2a construct the Pareto
frontier using Pareto-optimal solutions, but Algorithm 3 instead constructs the Pareto
frontier using Pareto-optimal policies.

Algorithm 3: Bi-objective stochastic dual dynamic programming algorithm
Set K ← 1
while not converged do

Set λK ← 1
repeat

/* Forward pass */

Solve V K−1
1 (λK ), i.e., (21), and obtain optimal extreme point primal solution x̂1

for t = 2, 3, . . . , T − 1 do
Sample ω̂t from Ωt

Solve V K−1
t (xt−1, λK , ω̂t ), i.e., (22), and obtain optimal extreme point primal solution

x̂t
end
/* Backward pass */
for t = T − 1, T − 2, . . . , 1 do

for ω ∈ Ωt+1 do
Solve V K−1

t+1 (x̂t , λK , ω) and obtain optimal extreme point dual solution ν̂t+1,ω and

objective value V̂t+1,ω
end

Set αt,K ← Eω

[
V̂t+1,ω − ν̂�

t+1,ω x̂t
]

Set βt,K ← Eω

[
ν̂t+1,ω

]

Add the cut λKμt + ϕt ≥ αt,K + β�
t,K xt to V K−1

t , creating V K
t

end
/* Update weight and add second cuts */
Sample t ∈ {1, . . . , T }
Solve V K

t (x̂t−1, λK , ω̂t ) and obtain optimal basis B
Set λK+1 ← Λ(λK ,B)

for t = T − 1, T − 2, . . . , 1 do
for ω ∈ Ωt+1 do

Solve V K
t+1(x̂t , λK+1, ω) and obtain optimal extreme point dual solution ν̂t+1,ω and

objective value V̂t+1,ω
end

Set αt,K+1 ← Eω

[
V̂t+1,ω − ν̂�

t+1,ω x̂t
]

Set βt,K+1 ← Eω

[
ν̂t+1,ω

]

Add the cut λK+1μt + ϕt ≥ αt,K+1 + β�
t,K+1xt to V K

t , creating V K+1
t

Update V K+1
1 , removing cuts that are convex combinations of other cuts

end
Set λK+2 ← λK+1
Set K ← K + 2

until λK = 0;
end
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4.1 Convergence

The proof of convergence for Algorithm 3 is an extension of the results in Sect. 3.2 to
the multistage stochastic setting, analogous to the way that single-objective Benders
decomposition results have been extended to the multistage stochastic setting.

Our results parallel those obtained in [11], which involves a single-objective prob-
lem but with inter-stage dependence in objective function coefficients. As a result, the
key difference is that in [11] the analog of λ form a stochastic process that is revealed
over time. Here, the weight λ specifies the trade-off between two objectives and is
iteratively updated by Algorithm 3.

First, analogous to Lemma 1, we have a saddle function result for the cost-to-go
function Vt (xt−1, λ, ωt ).

Lemma 5 Let Vt (xt−1, λ, ωt ) be defined by subproblem (20), and let Assumptions 3–
6 hold. Then, given fixed ωt the function Vt (xt−1, λ, ωt ) is piecewise-linear convex
with respect to xt−1 on the convex hull of achievable xt−1’s and piecewise-linear
concave with respect to λ on [0, 1], and each piecewise-linear function comprises a
finite number of pieces.

Proof The proof follows directly from Lemma 1 of [11]. 	

Second, analogous to Lemma 2, given a fixed λwe obtain an optimal policy almost

surely in a finite number of iterations.

Lemma 6 Let Assumptions 1–6 hold. Consider a fixed value of λ. Then, ignoring the
weight update so that λK = λ for all K , consider running Algorithm 3. There almost
surely exists some K < ∞ such that V K

1 (λ) = V1(λ).

Proof Given Lemma 5, this follows directly from existing convergence proofs for the
stochastic dual dynamic programming algorithm in the literature; see, e.g., Theorem
2 of [11]. 	


Finally, analogous to Theorems 2 and 3, we have a convergence result for Algo-
rithm 3.

Theorem 4 Let Assumptions 1–6 hold, and assume that the choice of t ∈ {1, . . . , T }
for the weight update is made randomly and independently across the iterations. Then,
Algorithm 3 converges almost surely to a set of Pareto-optimal policies corresponding
to the Pareto frontier of model (17) in a finite number of iterations.

Proof Like Theorem 2, proof of convergence requires a sequence of iterations at which
we update the scalarizing weight using the minimum decrease until the basis changes.
In the two-stage deterministic case, this involved computing the basis change for two
linear programs. In the multistage stochastic setting, we must compute the change for
every possible stage and sequence of realizations of the noise-terms ωt . However, as
in the proof of Theorem 3, we can apply the second Borel–Cantelli lemma [19] so that
we will, almost surely, sample the requisite deterministic sequence for convergence
in a finite number of iterations.
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When combined with the independent sampling of the forward pass in stochastic
dual dynamic programming, this implies that we almost surely sample a deterministic
sequence of iterations in which we realize a sequence ω2, . . . , ωT and choice of stage
t , required for convergence. The remainder of the proof can be argued via induction
in a manner identical to Theorem 2 using Lemmas 5 and 6. 	


It is important to note that, like the bi-objective linear programming case, our
algorithm does not find all Pareto optimal policies because there may be multiple
optimal policies corresponding to a given weight λ. However, assuming the decision-
maker uses the same trade-off weight λ for all stages, we will have found all supported
and non-dominated objective vectors

−→
V1. The assumption that the decision-maker uses

the same trade-off weight is a strong one, but we know of no quantitative way to
incorporate the subjective choices of a decision-maker that changes their trade-off
weights over time.

4.2 Bounds

Since the first-stage is deterministic, a proxy lower bound for the multistage stochastic
bi-objective problem can be constructed in a manner identical to the lower bound for
the bi-objective Benders decomposition algorithm. However, determining an upper
bound requires a full enumeration of the scenarios. This quickly becomes intractable
as the number of stages and size of Ωt grow, and so we do not attempt to construct a
deterministically valid upper bound. We note that such challenges with upper bounds
in stochastic dual dynamic programming also arise when in risk averse and distribu-
tionally robust settings; i.e., such issues are not unique to the bi-objective context.
That said, we could take a commonly used single-objective approach and conduct a
Monte Carlo simulation of the policy at different values of λ in order to obtain a set
of confidence intervals for the expected cost of the policy at different places along
the Pareto frontier. While this could be done with a relatively large set of independent
forward paths—independent of the paths used in Algorithm 3, along which cuts are
computed—using common random numbers across all values of λ, we do not pursue
this here.

5 Examples

We implementedAlgorithms 2, 2a, and 3 in SDDP.jl [13], an open-sourcemultistage
stochastic programming solver built on JuMP [15] in the Julia Language [4]. All code
and data for our experiments are available at https://github.com/odow/SDDP.jl.

5.1 A simple example

To gain intuition, we test our code on the following problem:
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(a) (b) (c)

Fig. 2 Solutionmetrics of problem (23) against the number of iterations K : (a) The lower and upper (dashed)
bounds; (b) The sequence of weights visited by iteration; and (c) The optimal solution in objective-space,
with annotated solutions for decision-space

min f1 = 2x1 + x2
f2 = x1 + 3x2

s.t. x1 + x2 ≥ 1
0.5x1 + x2 ≥ 0.75

x2 ≥ 0.25
x1, x2 ≥ 0.

(23)

In Fig. 2a we plot evolution of the lower bound V K and upper bound V
K
against

the number of iterations K . As a valid lower bound, we set Z = 0. The solid, gray
lines are the traces using Algorithm 2, and the dashed, black lines are the traces using
Algorithm 2a. The lower and upper bounds of both algorithms converge to the same
(optimal) value of 1.635417.

To explain the (small) difference in convergence, we plot, in Fig. 2b, the scalarizing
weightλK used in iteration K . Because it does not take theminimumstep, the sampling
version of the algorithm skips some values in weight-space (e.g., λ = 0.25) at which
the solution is already optimal and is therefore able to add more cuts at λ = 0 and
λ = 1, where the solution is sub-optimal. Finally, the optimal Pareto frontier is shown
in Fig. 2c.

5.2 Hydro-thermal scheduling

We consider a hydro-thermal scheduling problem in the Brazilian interconnected
power system [33], using the open-source model and data provided by [10]. We now
sketch the main details of the model; see [10, 33] for a full description.

The hydro-thermal scheduling problem for the Brazilian interconnected power sys-
tem seeks to manage the medium-term electricity generation of the Brazilian national
grid. The country is divided into four regions, each with an aggregate reservoir, hydro-
power station, and thermal power stations. Energy can be transferred between regions.
The goal of the agent is to construct a policy for hydro and thermal electricity gen-
eration with minimum expected cost under uncertain inflows into the four reservoirs.
The cost is composed of two main components: (i) deficit cost, which is incurred if
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there is insufficient electricity generated to meet demand; and (ii) thermal cost, which
is incurred when thermal generation is used. Thermal cost is a convex increasing
function of the quantity of thermal generation.

Although both objectives have the same units in this example, this is not a limitation
of our method. We choose these objectives because they are the objectives from [33].
With suitable data, the thermal cost could, for example, be replaced by the tonnes
of CO2 emitted, and the deficit cost could similarly be replaced with the quantity of
unmet demand (MWh). The important point is that there be a trade-off between the
two selected objectives.

As originally formulated, the objective in each stage is composed by the addition
of these terms, therefore, the problem can be stated as:

Vt (xt−1, ωt ) = min
xt

cd(xt ) + ct (xt ) + E[Vt+1(xt , ωt+1)]
s.t. xt ∈ X (xt−1, ωt ),

where x are the decision variables, cd is the deficit cost, ct is the thermal cost, and X
are the various constraints of the problem.

Rather than solve the problem with a fixed objective, in this example we solve the
bi-objective problem in which one objective is the deficit cost and the other objective
is the thermal cost. Therefore, we have:

Vt (xt−1, λ, ωt ) = min
xt

λcd(xt ) + (1 − λ)ct (xt ) + E[Vt+1(xt , λ, ωt+1)]
s.t. xt ∈ X (xt−1, ωt ).

For numerical stability reasons, we scaled cd by 1/100 and ct by 1/10. Therefore,
λ = 10/11 corresponds to the original formulation of the problem (scaled by 1/110).
We use 12 monthly stages to represent one year of decision making, and there are 82
stagewise-independent realizations of inflow in each stage.

We trained a policy for 2000 iterations of Algorithm 3. Then, we selected three λ

weights and performed a Monte Carlo simulation of the policy given those scalarizing
weights, using common random numbers with a total of 1000 forward paths. The
weights were λ = 0.1, λ = 0.7, and λ = 0.9. Visualizations of these Monte Carlo
simulations are given in Fig. 3 in terms of objective-space (Fig. 3a) and weight-space
(Fig. 3b). The figures show the spread of the cost under the 1000 simulated realizations,
along with the mean of each of the three λ weights.

As Fig. 3a shows, with λ = 0.1 we prefer low thermal costs and allow high deficit
costs, and λ = 0.9 does the opposite. The figure also shows that λ = 0.7 provides a
less extreme trade-off between the two costs. In Fig. 3b, observe that the lower bound
V K
1 (λ) is a concave function of λ. Cuts (not shown) are being added with respect to

x (into the page), and interpolated via the dual variables μ and ϕ between different
weights λ.
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(a) (b)

Fig. 3 Visualization of three policies for λ = 0.1, λ = 0.7, and λ = 0.9: (a) Objective-space; (b) Weight-
space. In (a), Solid red dots are the sample mean of 1000 simulated sample paths, with dashed red lines
representing the estimated Pareto frontier. In (b), Solid black line is the deterministic lower-bound V K

1 (λ)

as a function of λ, and red circles are the sample mean upper bound under 1000 simulated realizations. The
error bars are the empirical 10th and 90th percentiles (i.e., red bars represent prediction, not confidence,
intervals)

6 Heuristic solutionmethods

When implementing Algorithm 3, we encountered various numerical and compu-
tational challenges. In this section, we present a heuristic solution method that is
numerically stable and easier to implement. While the heuristic lacks a convergence
guarantee with a finite number of iterations, lower and upper bounds can still be
computed at specific values of λ, per the discussion in Sect. 4.2.

6.1 Motivation

In our experimentation, numerical issues were more frequent when the two objec-
tive functions in the model were of different orders of magnitude, which suggests
appropriate re-scaling should be performed. In addition, we encountered cases in
which the optimal basis would change with very small changes in the weight λ (for
example, a cut leaving the basis and being replaced by a cut that is nearly co-linear).
Therefore, we sought a heuristic solution method that did not have these numerical
challenges.

Moreover, computing theλupdate step,Λ(λK ,B), can become a significant compu-
tational bottleneck. In particular, the weight update either requires computing reduced
costs for coefficients not present in the current problem instance (see Eq. (3)) and/or
requires solver-specific functionality that modeling languages such as JuMP do not
easily provide. For the experiments in the previous section, we hard-coded support
for Gurobi’s basis routines into SDDP.jl. However, due to licensing requirements
of Gurobi, it is not practical to distribute this code, and it limits users of SDDP.jl
to the problem types that Gurobi supports. Therefore, we sought a heuristic solution
method that did not require solver-specific functionality.
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6.2 Heuristic

In standard bi-objective optimization, a common solution approach is the non-inferior
set estimation method [8]. The method starts by solving for λ = 0 and λ = 1, and then
chooses weights so that the new objective function is perpendicular to the line joining
the solutions in objective space. If no new solution is found for this new objective
function, the algorithm stops. Otherwise, the new solution is an extreme point on the
Pareto frontier, andwe partition the previous line into two segments.We then repeat the
process of setting the weights so that the scalarized objective function is perpendicular
to each segment.

This results in a binary search procedure. However, a direct translation to the multi-
stage stochastic case is difficult for two reasons. First, we cannot compute exact points

in objective space; instead, we need a simulation of the policy to estimate
−→V 1(π

K )

given the value of λ. Second, without the saddle cuts, this would requiring solving a
new instance SDDP to provable optimality for each λ.

As an alternative, computationally efficient heuristic, we consider a modified ver-
sion of Algorithm 3. The resulting Algorithm 4 starts by solving λ = 0 and λ = 1
to near optimality, but then instead of performing a binary search in objective-space,
we conduct a binary search in weight-space. Thus, the next weight we consider is
λ = 0.5, and then λ = 0.25 and λ = 0.75, and so on. In addition, we maintain the
saddle-cut reformulation. The benefit of this approach is that each successive solve
is warm-started by the saddle-cuts of previous solves. Moreover, the algorithm works
for any solver integrated into SDDP.jl—including conic and nonlinear solvers—and
does not require solver-specific functionality.

Algorithm 4: Heuristic solution method
Input: N > 2
Run Algorithm 3 given (i.e., for a fixed value of) λK = 0 for all K
Run Algorithm 3 given λK = 1 for all K
Initialize Q = {(0, 1)}
for i = 3, . . . , N do

Take an element (l, u) fromQ
Run Algorithm 3 given λK = l+u

2 for all K

Add (l, l+u
2 ) and ( l+u

2 , u) toQ
end

6.3 Experiment

To investigate the performance of our heuristic, we implemented Algorithm 4 in
SDDP.jl and applied it to the same hydro-thermal scheduling instance as in the
previous section, only this time with 60 stages instead of 12.

As a baseline, we chose nine equidistant points in weight space, and then solved
the nine resulting instances separately with SDDP. These weights were visited in the
same order that they would be in Algorithm 4, i.e., 0, 1, 0.5, 0.25, and so on. For a
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(a) (b)

Fig. 4 Cumulative solution time using Algorithm 4 (“Saddle”), and independent instances of SDDPwithout
the saddle-cut formulation (“Independent”)

stopping rule, we used the BoundStalling termination rule in SDDP.jl, which
stops when the lower bound fails to improve by more than 10 units in absolute terms
(≈ 10−4 in relative terms) in each iteration for 10 consecutive iterations. Then, we
timed how long it would take Algorithm 4 to solve the same nine-weight values to the
same value of the lower bound using the BoundLimit stopping rule in SDDP.jl.
In Fig. 4, we present the cumulative solution time (a) and number of iterations to
converge (b) against the number of weights we have visited.

Because Algorithm 4 uses the saddle cuts, it needs fewer iterations to converge at a
given weight than the equivalent run of regular SDDP. This is particularly noticeable
for the λ = 0.875 case, which is visited last; with regular SDDP it takes 93 iterations
to converge, while with the saddle cut we converge after a single iteration because the
interpolated value function has the same objective value.

7 Conclusion

This paper has presented two algorithms for solving bi-objective multistage stochastic
linear programs, and demonstrated the algorithms on an example from hydro-thermal
scheduling. Many real-world examples are naturally bi-objective. In energy systems
alone, future applications of our approach could include capacity expansion problems,
where the capital costs are one objective and the operational costs are the second objec-
tive. Another extension could be tomodel the quantity of CO2 emitted in tonnes against
the quantity of unmet demand inMWh.We encourage other researchers to experiment
with these ideas, using the open-source code we have provided in SDDP.jl.
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