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Abstract
This paper is devoted to the theoretical and numerical investigation of an augmented
Lagrangian method for the solution of optimization problems with geometric con-
straints. Specifically, we study situations where parts of the constraints are nonconvex
and possibly complicated, but allow for a fast computation of projections onto this non-
convex set. Typical problem classes which satisfy this requirement are optimization
problemswith disjunctive constraints (like complementarity or cardinality constraints)
as well as optimization problems over sets of matrices which have to satisfy additional
rank constraints. The key idea behind our method is to keep these complicated con-
straints explicitly in the constraints and to penalize only the remaining constraints by
an augmentedLagrangian function. The resulting subproblems are then solvedwith the
aid of a problem-tailored nonmonotone projected gradient method. The corresponding
convergence theory allows for an inexact solution of these subproblems. Nevertheless,
the overall algorithm computes so-called Mordukhovich-stationary points of the orig-
inal problem under a mild asymptotic regularity condition, which is generally weaker
thanmost of the respective available problem-tailored constraint qualifications. Exten-
sive numerical experiments addressing complementarity- and cardinality-constrained
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optimization problems as well as a semidefinite reformulation of MAXCUT problems
visualize the power of our approach.

Keywords Asymptotic regularity · Augmented Lagrangian method · Cardinality
constraints · Complementarity constraints · MAXCUT problem ·
Mordukhovich-Stationarity · Nonmonotone projected gradient method

Mathematics Subject Classification 49J53 · 65K10 · 90C22 · 90C30 · 90C33

1 Introduction

We consider the program

min
w

f (w) s.t. G(w) ∈ C, w ∈ D, (P)

where W and Y are Euclidean spaces, i.e., real and finite-dimensional Hilbert spaces,
f : W → R and G : W → Y are continuously differentiable, C ⊂ Y is nonempty,
closed, and convex, whereas the set D ⊂ W is only assumed to be nonempty and
closed. This setting is very general and covers, amongst others, standard nonlinear
programs, second-order cone and, more generally, conic optimization problems [14,
24], as well as several so-called disjunctive programming problems like mathematical
programs with complementarity, vanishing, switching, or cardinality constraints, see
[15, 16, 29, 56] for an overview and suitable references. Since W and Y are Euclidean
spaces, ourmodel also coversmatrix optimizationproblems like semidefinite programs
or low-rank approximation problems [53].

The aim of this paper is to apply a (structured) augmented Lagrangian technique to
(P) in order to find suitable stationary points. The augmented Lagrangian or multiplier
penalty method is a classical approach for the solution of nonlinear programs, see
[17] as a standard reference. The more recent book [18] presents a slightly modified
version of this classical augmented Lagrangian method, which uses a safeguarded
update of the Lagrange multipliers and has stronger global convergence properties. In
the meantime, this safeguarded augmented Lagrangian method has also been applied
to a number of optimization problems with disjunctive constraints, see e.g. [5, 33, 42,
45, 61].

Since, to the best of our knowledge, augmented Lagrangian methods have not
yet been applied to the general problem (P) with general nonconvex D and arbi-
trary convex sets C in the setting of Euclidean spaces, and in order to get a better
understanding of our contributions, let us add some comments regarding the existing
results for the probably most prominent non-standard optimization problem, namely
the class of mathematical programs with complementarity constraints (MPCCs). Due
to the particular structure of the feasible set, the usual Karush–Kuhn–Tucker (KKT
for short) conditions are typically not satisfied at a local minimum. Hence, other
(weaker) stationarity concepts have been proposed, like C- (abbreviating Clarke) and
M- (for Mordukhovich) stationarity, with M-stationarity being the stronger concept.
Most algorithms (regularization, penalty, augmented Lagrangian methods etc.) for
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An augmented Lagrangian method for structured optimization 1367

the solution of MPCCs solve a sequence of standard nonlinear programs, and their
limit points are typically C-stationary points only. Some approaches can identify M-
stationary points if the underlying nonlinear programs are solved exactly, but they loose
this desirable property if these programs are solved only inexactly, see the discussion
in [47] for more details.

The authors are currently aware of only three approaches where convergence to M-
stationary points for a general (nonlinear) MPCC is shown using inexact solutions of
the corresponding subproblems, namely [9, 33, 61]. All three papers deal with suitable
modifications of the (safeguarded) augmented Lagrangian method. The basic idea of
reference [9] is to solve the subproblems such that both a first- and a second-order
necessary optimality condition hold inexactly at each iteration, i.e., satisfaction of the
second-order condition is the central point here which, obviously, causes some over-
head for the subproblem solver and usually excludes the application of this approach
to large-scale problems. The paper [61] proves convergence to M-stationary points
by solving some complicated subproblems, but for the latter no method is specified.
Finally, the recent approach described in [33] provides an augmented Lagrangian
technique for the solution of MPCCs where the complementarity constraints are kept
as constraints, whereas the standard constraints are penalized. The authors present a
technique which computes a suitable stationary point of these subproblems in such a
way that the entire method generatesM-stationary accumulation points for the original
MPCC. Let us also mention that [36] suggests to solve (a discontinuous reformulation
of) the M-stationarity system associated with an MPCC by means of a semismooth
Newton-type method. Naturally, this approach should be robust with respect to (w.r.t.)
an inexact solution of the appearing Newton-type equations although this issue is not
discussed in [36].

Thepresent paper universalizes the idea from[33] to themuchmoregeneral problem
(P). In fact, a closer look at the corresponding proofs shows that the technique from
[33] can be generalized using some relatively small modifications. This allows us to
concentrate on some additional new contributions. In particular, we prove convergence
to an M-type stationary point of the general problem (P) under a very weak sequential
constraint qualification introduced recently in [54] for the general setting from (P).We
further show that this sequential constraint qualification holds under the conditions
for which convergence to M-stationary points of an MPCC is shown in [33]. Note that
this is also the first algorithmic application of the general sequential stationarity and
regularity concepts from [54].

The global convergence result for our method holds for the abstract problem (P)
with geometric constraints without any further assumptions regarding the sets C and,
in particular, D. Conceptually, we are therefore able to deal with a very large class of
optimization problems. On the other hand, we use a projected gradient-typemethod for
the solution of the resulting subproblems. Since this requires projections onto the (usu-
ally nonconvex) set D, our method can be implemented efficiently only if D is simple
in the sense that projections onto D are easy to compute. For this kind of “structured”
geometric constraints (this explains the title of this paper), the entire method is then
both an efficient tool and applicable to large-scale problems. In particular, we show
that this is the case for MPCCs, optimization problems with cardinality constraints,
and some rank-constrained matrix optimization problems.
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1368 X. Jia et al.

The paper is organized as follows. We begin with restating some basic definitions
from variational analysis in Sect. 2. There, we also relate the general regularity concept
from [54] to the constraint qualification (the so-called relaxed constant positive linear
dependence condition, RCPLD for short) used in the underlying paper [33] (as well as
in many other related publications in this area). We then present the spectral gradient
method for optimization problems over nonconvex sets in Sect. 3. This method is
used to solve the resulting subproblems of our augmented Lagrangian method whose
details are given in Sect. 4. Global convergence to M-type stationary points is also
shown in this section. Since, in our augmented Lagrangian approach, we penalize the
seemingly easy constraints G(w) ∈ C , but keep the condition w ∈ D explicitly in
the constraints, we have to compute projections onto D. Sect. 5 therefore considers
a couple of situations where this can be done in a numerically very efficient way.
Extensive computational experiments for some of these situations are documented in
Sect. 6. This includesMPCCs, cardinality-constrained (sparse) optimization problems,
and a rank-constrained reformulation of the famousMAXCUTproblem.We closewith
some final remarks in Sect. 7.

Notation. The Euclidean inner product of two vectors x, y ∈ R
n will be denoted

by x�y. More generally, 〈x, y〉 is used to represent the inner product of x, y ∈ W

whenever W is some abstract Euclidean space. For brevity, we exploit x + A :=
A + x := {x + a | a ∈ A} for arbitrary vectors x ∈ W and sets A ⊂ W. The sets
cone A and span A denote the smallest cone containing the set A and the smallest sub-
space containing A, respectively. Whenever L : W → Y is a linear operator between
Euclidean spaces W and Y, L∗ : Y → W denotes its adjoint. For some continuously
differentiable mapping ϕ : W → Y and some point w ∈ W, we use ϕ′(w) : W → Y

in order to denote the derivative of ϕ at w which is a continuous linear operator. In the
particular case Y := R, we set ∇ϕ(w) := ϕ′(w)∗1 ∈ W for brevity.

2 Preliminaries

We first recall some basic concepts from variational analysis in Sect. 2.1, and then
introduce and discuss general stationarity and regularity concepts for the abstract
problem (P) in Sect. 2.2.

2.1 Fundamentals of variational analysis

In this section, we comment on the tools of variational analysis which will be exploited
in order to describe the geometry of the closed, convex set C ⊂ Y and the closed (but
not necessarily convex) set D ⊂ W which appear in the formulation of (P).

The Euclidean projection PC : Y → Y onto the closed, convex set C is given by

PC (y) := argmin
z∈C

||z − y||.
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An augmented Lagrangian method for structured optimization 1369

Thus, the corresponding distance function dC : Y → R can be written as

dC (y) := min
z∈C ||z − y|| = ||PC (y) − y||.

On the other hand, projections onto the potentially nonconvex set D still exist, but are,
in general, not unique. Therefore, we define the corresponding (usually set-valued)
projection operator ΠD : W ⇒ W by

ΠD(x) := argmin
z∈D

||z − x || �= ∅.

Given w̄ ∈ D, the closed cone

N lim
D (w̄) := lim sup

w→w̄

[
cone(w − ΠD(w))

]

is referred to as the limiting normal cone to D at w̄, see [59, 64] for other representations
and properties of this variational tool. Above, we used the notion of the outer (or upper)
limit of a set-valuedmapping at a certain point, see e.g. [64,Definition 4.1]. Forw /∈ D,
we setN lim

D (w) := ∅. Note that the limiting normal cone depends on the inner product
of W and is stable in the sense that

lim sup
w→w̄

N lim
D (w) = N lim

D (w̄) ∀w̄ ∈ W (2.1)

holds. This stability property, which might be referred to as outer semicontinuity of
the set-valued operator N lim

D : W ⇒ W, will play an essential role in our subsequent
analysis. The limiting normal cone to the convex set C coincides with the standard
normal cone from convex analysis, i.e., for ȳ ∈ C , we have

N lim
C (ȳ) = NC (ȳ) := {λ ∈ Y | 〈λ, y − ȳ〉 ≤ 0 ∀y ∈ C} .

For points y /∈ C , we setNC (y) := ∅ for formal completeness. Note that the stability
property (2.1) is also satisfied by the set-valued operator NC : Y ⇒ Y.

2.2 Stationarity and regularity concepts

Noting that the abstract set D is generally nonconvex in the exemplary settingswe have
in mind, the so-called concept of Mordukhovich-stationarity, which exploits limiting
normals to D, is a reasonable concept of stationarity which addresses (P).

Definition 2.1 Let w̄ ∈ W be feasible for the optimization problem (P). Then w̄ is
called an M-stationary point (Mordukhovich-stationary point) of (P) if there exists a
multiplier λ ∈ Y such that

0 ∈ ∇ f (w̄) + G ′(w̄)∗λ + N lim
D (w̄), λ ∈ NC (G(w̄)).
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Note that this definition coincides with the usual KKT conditions of (P) if the set D
is convex. An asymptotic counterpart of this definition is the following one, see [54].

Definition 2.2 Let w̄ ∈ W be feasible for the optimization problem (P). Then w̄ is
called an AM-stationary point (asymptotically M-stationary point) of (P) if there exist
sequences {wk}, {εk} ⊂ W and {λk}, {zk} ⊂ Y such that wk → w̄, εk → 0, zk → 0,
as well as

εk ∈ ∇ f (wk) + G ′(wk)∗λk + N lim
D (wk), λk ∈ NC (G(wk) − zk) ∀k ∈ N.

The definition of an AM-stationary point is similar to the notion of an AKKT
(asymptotic or approximate KKT) point in standard nonlinear programming, see [18],
but requires some explanation: The meanings of the iterates wk and the Lagrange
multiplier estimates λk should be clear. The vector εk measures the inexactness by
which the stationary conditions are satisfied at wk and λk . The vector zk does not
occur (at least not explicitly) in the context of standard nonlinear programs, but is
required here for the following reason: The method to be considered in this paper
generates a sequence {wk} satisfying wk ∈ D, while the constraint G(w) ∈ C gets
penalized, hence, the condition G(wk) ∈ C will typically be violated. Consequently,
the corresponding normal coneNC (G(wk)) would be empty which is why we cannot
expect to have λk ∈ NC (G(wk)), though we hope that this holds asymptotically. In
order to deal with this situation, we therefore have to introduce the sequence {zk}. Let
us note that AM-stationarity corresponds to so-called AKKT stationarity for conic
optimization problems, i.e., where C is a closed, convex cone and D := W, see [3,
Section 5]. The more general situation where C and D are closed, convex sets and the
overall problem is stated in arbitrary Banach spaces is investigated in [20]. Asymptotic
notions of stationarity addressing situations where D is a nonconvex set of special type
can be found, e.g., in [5, 46, 61]. As shown in [54], the overall concept of asymptotic
stationarity can be further generalized to feasible sets which are given as the kernel
of a set-valued mapping. Let us mention that the theory in this section is still valid in
situations where C is merely closed. In this case, one may replace the normal cone to
C in the sense of convex analysis by the limiting normal cone everywhere. However,
for nonconvex sets C , our algorithmic approach from Sect. 4 is not valid anymore.
Note that, for the price of a slack variablews ∈ Y, we can transfer the given constraint
system into

G(w) − ws = 0, (ws, w) ∈ C × D

where the right-hand side of the nonlinear constraint is trivially convex. In order to
apply the algorithmic framework of this paper to this reformulation, projections onto
C have to be computed efficiently. Moreover, there might be a difference between the
asymptotic notions of stationarity and regularity discussed here when applied to this
reformulation or the original formulation of the constraints.

Apart from the aforementioned difference, the motivation of AM-stationarity is
similar to the one of AKKT-stationarity: Suppose that the sequence {λk} is bounded
and, therefore, convergent along a subsequence. Then, taking the limit on this subse-
quence in the definition of an AM-stationary point while using the stability property
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An augmented Lagrangian method for structured optimization 1371

(2.1) of the limiting normal cone shows that the corresponding limit point satisfies the
M-stationarity conditions fromDefinition 2.1. In general, however, the Lagrange mul-
tiplier estimates {λk} in the definition ofAM-stationaritymight be unbounded. Though
this boundedness can be guaranteed under suitable (relatively strong) assumptions, the
resulting convergence theory works under significantly weaker conditions.

It is well known in optimization theory that a local minimizer of (P) is M-stationary
only under validity of a suitable constraint qualification. In contrast, it has been pointed
out in [54, Theorem 4.2, Section 5.1] that each localminimizer of (P) is AM-stationary.
In order to infer that an AM-stationary point is already M-stationary, the presence of
so-called asymptotic regularity is necessary, see [54, Definition 4.4].

Definition 2.3 A feasible point w̄ ∈ W of (P) is called AM-regular (asymptotically
Mordukhovich-regular) whenever the condition

lim sup
w→w̄, z→0

M(w, z) ⊂ M(w̄, 0)

holds, where M : W × Y ⇒ W is the set-valued mapping defined via

M(w, z) := G ′(w)∗NC (G(w) − z) + N lim
D (w).

The concept of AM-regularity has been inspired by the notion of AKKT-regularity
(sometimes referred to as cone continuity property), which became popular as one of
the weakest constraint qualifications for standard nonlinear programs or MPCCs, see
e.g. [7, 8, 61], and can be generalized to a much higher level of abstractness. In this
regard, we would like to point the reader’s attention to the fact that AM-stationarity
and -regularity from Definitions 2.2 and 2.3 are referred to as decoupled asymptotic
Mordukhovich-stationarity and -regularity in [54] since these are already refinements
of more general concepts. For the sake of a concise notation, however, we omit the
term decoupled here.

It has been shown in [54, Section 5.1] that validity of AM-regularity at a feasible
point w̄ ∈ W of (P) is implied by

0 ∈ G ′(w̄)∗λ + N lim
D (w̄), λ ∈ NC (G(w̄)) �⇒ λ = 0. (2.2)

The latter is known as NNAMCQ (no nonzero abnormal multiplier constraint qualifi-
cation) or GMFCQ (generalized Mangasarian–Fromovitz constraint qualification) in
the literature. Indeed, in the setting where we fix C := R

m1− × {0}m2 and D := W,
(2.2) boils down to the classical Mangasarian–Fromovitz constraint qualification from
standard nonlinear programming. The latter choice for C will be of particular interest,
which is why we formalize this setting below.

Setting 2.4 Given m1,m2 ∈ N, we set m := m1 + m2, Y := R
m , and C :=

R
m1− × {0}m2 . No additional assumptions are postulated on the set D. We denote the

component functions of G by G1, . . . ,Gm : W → R. Thus, the constraint G(w) ∈ C
encodes the constraint system

Gi (w) ≤ 0 i = 1, . . . ,m1, Gi (w) = 0 i = m1 + 1, . . . ,m
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1372 X. Jia et al.

of standard nonlinear programming. For our analysis, we exploit the index sets

I (w̄) := {i ∈ {1, . . . ,m1} |Gi (w̄) = 0} , J := {m1 + 1, . . . ,m},

whenever w̄ ∈ D satisfies G(w̄) ∈ C in the present situation.

Let us emphasize that we did not make any assumptions regarding the structure of
the set D in Setting 2.4. Thus, it still covers numerous interesting problem classes like
complementarity-, vanishing-, or switching-constrained programs. These so-called
disjunctive programs of special type are addressed in the setting mentioned below
which provides a refinement of Setting 2.4.

Setting 2.5 LetX be another Euclidean space, let X ⊂ X be the union of finitely many
convex, polyhedral sets, and let T ⊂ R

2 be the union of two polyhedrons T1, T2 ⊂ R
2.

For functions g : X → R
m1 , h : X → R

m2 , and p, q : X → R
m3 , we consider the

constraint system given by

gi (x) ≤ 0 i = 1, . . . ,m1,

hi (x) = 0 i = 1, . . . ,m2,
(
pi (x), qi (x)

) ∈ T i = 1, . . . ,m3,

x ∈ X .

Setting W := X × R
m3 × R

m3 , Y := R
m1 × R

m2 × R
m3 × R

m3 ,

G(x, u, v) := (
g(x), h(x), p(x) − u, q(x) − v

)
,

and

C := R
m1− × {0}m2+2m3 , D := X × T̃ ,

where we used T̃ := {(u, v) | (ui , vi ) ∈ T ∀i ∈ {1, . . . ,m3}}, we can handle this sit-
uation in the framework of this paper.

Constraint regions as characterized in Setting 2.4 can be tackled with a recently
introduced version of RCPLD (relaxed constant positive linear dependence constraint
qualification), see [67, Definition 1.1].

Definition 2.6 Let w̄ ∈ W be a feasible point of the optimization problem (P) in
Setting 2.4. Then w̄ is said to satisfy RCPLDwhenever the following conditions hold:

(i) the family (∇Gi (w))i∈J has constant rank on a neighborhood of w̄,
(ii) there exists an index set S ⊂ J such that the family (∇Gi (w̄))i∈S is a basis of the

subspace span {∇Gi (w̄) | i ∈ J }, and
(iii) for each index set I ⊂ I (w̄), each set of multipliers λi ≥ 0 (i ∈ I ) and λi ∈ R

(i ∈ S), not all vanishing at the same time, and each vector η ∈ N lim
D (w̄) which

satisfy

0 ∈
∑

i∈I∪S

λi∇Gi (w̄) + η,
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An augmented Lagrangian method for structured optimization 1373

we find neighborhoods U of w̄ and V of η such that for all w ∈ U and η̃ ∈
N lim

D (w) ∩ V , the vectors from

{
(∇Gi (w))i∈I∪S, η̃ if η̃ �= 0,

(∇Gi (w))i∈I∪S if η̃ = 0

are linearly dependent.

RCPLD has been introduced for standard nonlinear programs (i.e., D := W = R
n

in Setting 2.4) in [4]. Some extensions to complementarity-constrained programs can
be found in [27, 34]. A more restrictive RCPLD-type constraint qualification which is
capable of handling an abstract constraint set can be found in [35, Definition 1]. Let
us note that RCPLD from Definition 2.6 does not depend on the precise choice of the
index set S in (ii).

In case where D is a set of product structure, condition (iii) in Definition 2.6 can be
slightlyweakened in order to obtain a reasonable generalization of the classical relaxed
constant positive linear dependence constraint qualification, see [67, Remark 1.1] for
details. Observing that GMFCQ from (2.2) takes the particular form

0 ∈
∑

i∈I (w̄)∪J

λi∇Gi (w̄) + N lim
D (w̄), λi ≥ 0 (i ∈ I ) �⇒ λi = 0 (i ∈ I (w̄) ∪ J )

in Setting 2.4, it is obviously sufficient for RCPLD. The subsequently stated result
generalizes related observations from [7, 61].

Lemma 2.7 Let w̄ ∈ W be a feasible point for the optimization problem (P) in Set-
ting 2.4 where RCPLD holds. Then w̄ is AM-regular.

Proof Fix some ξ ∈ lim supw→w̄, z→0 M(w, z). Then we find {wk}, {ξ k} ⊂ W and
{zk} ⊂ R

m which satisfy wk → w̄, ξ k → ξ , zk → 0, and ξ k ∈ M(wk, zk) for all
k ∈ N. Particularly, there are sequences {λk} and {ηk} satisfyingλk ∈ NC (G(wk)−zk),
ηk ∈ N lim

D (wk), and ξ k = G ′(wk)∗λk+ηk for each k ∈ N. FromG(wk)−zk → G(w̄)

and the special structure of C , we find Gi (w
k)− zki < 0 for all i ∈ {1, . . . ,m1} \ I (w̄)

and all sufficiently large k ∈ N, i.e.,

λki

{
= 0 i ∈ {1, . . . ,m1} \ I (w̄),

≥ 0 i ∈ I (w̄)

for sufficiently large k ∈ N. Thus, we may assume without loss of generality that

ξ k =
∑

i∈I (w̄)∪J

λki ∇Gi (w
k) + ηk

holds for all k ∈ N. By definition of RCPLD, (∇Gi (w
k))i∈S is a basis of the subspace

span
{∇Gi (w

k) | i ∈ J
}
for all sufficiently large k ∈ N. Hence, there exist scalars μk

i
(i ∈ S) such that
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ξ k =
∑

i∈I (w̄)

λki ∇Gi (w
k) +

∑

i∈S
μk
i ∇Gi (w

k) + ηk

holds for all sufficiently large k ∈ N. On the other hand, [4, Lemma 1] yields the
existence of an index set I k ⊂ I (w̄) and multipliers μ̂k

i > 0 (i ∈ I k), μ̂k
i ∈ R (i ∈ S),

and σk ≥ 0 such that

ξ k =
∑

i∈I k∪S

μ̂k
i ∇Gi (w

k) + σkη
k

and

σk > 0 �⇒ (∇Gi (w
k))i∈I k∪S, ηk linearly independent,

σk = 0 �⇒ (∇Gi (w
k))i∈I k∪S linearly independent.

Since there are only finitely many subsets of I (w̄), there needs to exist I ⊂ I (w̄) such
that I k = I holds along a whole subsequence. Along such a particular subsequence
(without relabeling), we furthermore may assume σk > 0 (otherwise, the proof will
be easier) and, thus, may set η̂k := σkη

k ∈ N lim
D (wk)\{0}. From above, we find linear

independence of

(∇Gi (w
k))i∈I∪S, η̂k .

Furthermore, we have

ξ k =
∑

i∈I∪S

μ̂k
i ∇Gi (w

k) + η̂k . (2.3)

Suppose that the sequence {((μ̂k
i )i∈I∪S, η̂

k)} is not bounded. Dividing (2.3) by the
norm of ((μ̂k

i )i∈I∪S, η̂
k), taking the limit k → ∞, and respecting boundedness of

{ξ k}, continuity of G ′, and outer semicontinuity of the limiting normal cone yield the
existence of a non-vanishing multiplier ((μ̂i )i∈I∪S, η̂) which satisfies μ̂i ≥ 0 (i ∈ I ),
η̂ ∈ N lim

D (w̄), and

0 =
∑

i∈I∪S

μ̂i∇Gi (w̄) + η̂.

Obviously, themultipliers μ̂i (i ∈ I∪S) donot vanish at the same time since, otherwise,
η̂ = 0would follow from abovewhich yields a contradiction. Now, validity of RCPLD
guarantees that the vectors

(∇Gi (w
k))i∈I∪S, η̂k

need to be linearly dependent for sufficiently large k ∈ N. However, we already have
shown above that these vectors are linearly independent, a contradiction.
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An augmented Lagrangian method for structured optimization 1375

Thus, the sequence {((μ̂k
i )i∈I∪S, η̂

k)} is bounded and, therefore, possesses a conver-
gent subsequence with limit ((μ̄i )i∈I∪S, η̄). Taking the limit in (2.3) while respecting
ξ k → ξ , the continuity of G ′, and the outer semicontinuity of the limiting normal
cone, we come up with μ̄i ≥ 0 (i ∈ I ), η̄ ∈ N lim

D (w̄), and

ξ =
∑

i∈I∪S

μ̄i∇Gi (w̄) + η̄.

Finally, we set μ̄i := 0 for all i ∈ {1, . . . ,m} \ (I ∪ S). Then we have (μ̄i )i=1,...,m ∈
NC (G(w̄)) from I ⊂ I (w̄), i.e.,

ξ ∈ G ′(w̄)∗NC (G(w̄)) + N lim
D (w̄) = M(w̄, 0).

This shows that w̄ is AM-regular. ��
A popular situation, where AM-regularity simplifies and, thus, becomes easier to

verify, is described in the following lemma which follows from [54, Theorems 3.10,
5.2].

Lemma 2.8 Let w̄ ∈ W be a feasible point for the optimization problem (P) where C
is a polyhedron and D is the union of finitely many polyhedrons. Then w̄ is AM-regular
if any only if

lim sup
w→w̄

(
G ′(w)∗NC (G(w̄)) + N lim

D (w̄)
) ⊂ G ′(w̄)∗NC (G(w̄)) + N lim

D (w̄).

Particularly, in case where G is an affine function, w̄ is AM-regular.

Let us consider the situation where (P) is given as described in Setting 2.4, and
assume in addition that D := W holds, i.e., that (P) is a standard nonlinear optimiza-
tion problem with finitely many equality and inequality constraints. Then Lemma 2.8
shows that AM-regularity corresponds to the cone continuity property from [7, Def-
inition 3.1], and the latter has been shown to be weaker than most of the established
constraint qualifications which can be checked in terms of initial problem data.

The above lemma also helps us to find a tangible representation of AM-regularity
in Setting 2.5.

Lemma 2.9 Let x̄ ∈ X be a feasible point of the optimization problem from Setting 2.5.
Furthermore, define a set-valued mapping M̃ : X ⇒ X by

M̃(x) :=

⎧
⎪⎨

⎪⎩
L(x, λ, ρ, μ, ν, ξ)

∣∣∣∣∣∣
∣

0 ≤ λ ⊥ g(x̄),

(μ, ν) ∈ N lim
T̃

(p(x̄), q(x̄)),

ξ ∈ N lim
X (x̄)

⎫
⎪⎬

⎪⎭

where L : X × R
m1 × R

m2 × R
m3 × R

m3 × X → X is the function given by

L(x, λ, ρ, μ, ν, ξ) := g′(x)∗λ + h′(x)∗ρ + p′(x)∗μ + q ′(x)∗ν + ξ.
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1376 X. Jia et al.

Then the feasible point (x̄, p(x̄), q(x̄)) of the associated problem (P) is AM-regular
if and only if

lim sup
x→x̄

M̃(x) ⊂ M̃(x̄). (2.4)

Proof First, observe that transferring the constraint region from Setting 2.5 into the
form used in (P) and keeping Lemma 2.8 in mind shows that AM-regularity of
(x̄, p(x̄), q(x̄)) is equivalent to

lim sup
x→x̄

M̂(x) ⊂ M̂(x̄) (2.5)

where M̂ : X ⇒ X × R
m3 × R

m3 is given by

M̂(x) :=

⎧
⎪⎨

⎪⎩

(
L(x, λ, ρ, μ̃, ν̃, ξ),−μ̃ + μ,−ν̃ + ν

)

∣∣∣
∣∣∣∣

0 ≤ λ ⊥ g(x̄),

(μ, ν) ∈ N lim
T̃

(p(x̄), q(x̄)),

ξ ∈ N lim
X (x̄)

⎫
⎪⎬

⎪⎭
.

Observing that η ∈ M̃(x) is equivalent to (η, 0, 0) ∈ M̂(x), (2.5) obviously implies
(2.4). In order to show the converse relation, we assume that (2.4) holds and fix
(η, α, β) ∈ lim supx→x̄ M̂(x). Then we find sequences {xk}, {ξ k}, {ηk} ⊂ X, {λk} ⊂
R
m1 , {ρk} ⊂ R

m2 , and {μk}, {μ̃k}, {νk}, {ν̃k} ⊂ R
m3 such that xk → x̄ , ηk → η,

−μ̃k + μk → α, −ν̃k + νk → β, and ηk = L(xk, λk, ρk, μ̃k, ν̃k, ξ k), 0 ≤ λk ⊥
g(x̄), (μk, νk) ∈ N lim

T̃
(p(x̄), q(x̄)), as well as ξ k ∈ N lim

X (x̄) for all k ∈ N. Setting

αk := −μ̃k + μk and βk := −ν̃k + νk , we find ηk + p′(xk)∗αk + q ′(xk)∗βk =
L(xk, λk, ρk, μk, νk, ξ k) for each k ∈ N, and due to αk → α and βk → β, validity of
(2.4) yields η + p′(x̄)∗α +q ′(x̄)∗β ∈ M̃(x̄), i.e., the existence of λ ∈ R

m1 , ρ ∈ R
m2 ,

μ, ν ∈ R
m3 , and ξ ∈ X such that η + p′(x̄)∗α + q ′(x̄)∗β = L(x̄, λ, ρ, μ, ν, ξ),

0 ≤ λ ⊥ g(x̄), (μ, ν) ∈ N lim
T̃

(p(x̄), q(x̄)), and ξ ∈ N lim
X (x̄). Thus, setting μ̃ := μ−α

and ν̃ := ν − β, we find (η, α, β) ∈ M̂(x̄) showing (2.5). ��
Let us specify these findings for MPCCs which can be stated in the form (P) via

Setting 2.5. Taking Lemmas 2.8 and 2.9 into account, AM-regularity corresponds to
the so-called MPCC cone continuity property from [61, Definition 3.9]. The latter
has been shown to be strictly weaker than MPCC-RCPLD, see [61, Definition 4.1,
Theorem 4.2, Example 4.3] for a definition and this result. A similar reasoning can
be used in order to show that problem-tailored versions of RCPLD associated with
other classes of disjunctive programs are sufficient for the respective AM-regularity.
This, to some extend, recovers our result from Lemma 2.7 although we need to admit
that, exemplary, RCPLD from Definition 2.6 applied to MPCC in Setting 2.5 does not
correspond to MPCC-RCPLD.

The above considerations underline that AM-regularity is a comparatively weak
constraint qualification for (P). Exemplary, for standard nonlinear problems and for
MPCCs, this follows from the above comments and the considerations in [7, 61]. For
other types of disjunctive programs, the situation is likely to be similar, see e.g. [50,
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An augmented Lagrangian method for structured optimization 1377

Figure 3] for the setting of switching-constrained optimization. It remains a topic of
future research to find further sufficient conditions for AM-regularity which can be
checked in terms of initial problem data, particularly, in situations where C and D
are of particular structure like in semidefinite or second-order cone programming, see
e.g. [6, Section 6]. Let us mention that the provably weakest constraint qualification
which guarantees that local minimizers of a geometrically constrained program are
M-stationary is slightly weaker than validity of the pre-image rule for the computation
of the limiting normal cone to the constraint region of (P), see [34, Section 3] for a
discussion, but the latter cannot be checked in practice. Due to [54, Theorem 3.16],
AM-regularity indeed implies validity of this pre-image rule.

3 A spectral gradient method for nonconvex sets

In this section, we discuss a solution method for constrained optimization problems
which applies whenever projections onto the feasible set are easy to find. Exemplary,
ourmethod can be used in situations where the feasible set has a disjunctive nonconvex
structure.

To motivate the method, first consider the unconstrained optimization problem

min
w

ϕ(w) s.t. w ∈ R
n

with a continuously differentiable objective function ϕ : R
n → R, and let w j be a

current estimate for a solution of this problem. Computing the next iterate w j+1 as
the unique minimizer of the local quadratic model

min
w

ϕ(w j ) + ∇ϕ(w j )�(w − w j ) + γ j

2
||w − w j ||2

for some γ j > 0 leads to the explicit expression

w j+1 := w j − 1

γ j
∇ϕ(w j ),

i.e., we get a steepest descent method with stepsize t j := 1/γ j . Classical approaches
compute t j using a suitable stepsize rule such that ϕ(w j+1) < ϕ(w j ). On the other
hand, one can view the update formula as a special instance of a quasi-Newton scheme

w j+1 := w j − B−1
j ∇ϕ(w j )

with the very simple quasi-Newton matrix Bj := γ j I as an estimate of the (not nec-
essarily existing) Hessian ∇2ϕ(w j ). Then the corresponding quasi-Newton equation

Bj+1s
j = y j with s j := w j+1 − w j , y j := ∇ϕ(w j+1) − ∇ϕ(w j ),
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1378 X. Jia et al.

see [28], reduces to the linear system γ j+1s j = y j . Solving this overdetermined
system in a least squares sense, we then obtain the stepsize

γ j+1 := (s j )�y j/(s j )�s j

introduced byBarzilai andBorwein [10]. This stepsize often leads to very good numer-
ical results, butmaynot yield amonotonedecrease in the functionvalue.Aconvergence
proof for general nonlinear programs is therefore difficult, even if the choice of γ j is
safeguarded in the sense that it is projected onto some box [γmin, γmax] for suitable
constants 0 < γmin < γmax.

Raydan [62] then suggested to control this nonmonotone behavior by combining
the Barzilai–Borwein stepsize with the nonmonotone linesearch strategy introduced
by Grippo et al. [32]. This, in particular, leads to a global convergence theory for
general unconstrained optimization problems.

This idea was then generalized by Birgin et al. [19] to constrained optimization
problems

min
w

ϕ(w) s.t. w ∈ W

with a nonempty, closed, and convex set W ⊂ R
n and is called the nonmonotone

spectral gradient method. Here, we extend their approach to minimization problems

min
w

ϕ(w) s.t. w ∈ D (3.1)

with a continuously differentiable function ϕ : W → R and some nonempty, closed
set D ⊂ W, where W is an arbitrary Euclidean space. Let us emphasize that neither
ϕ nor D need to be convex in our subsequent considerations. A detailed description
of the corresponding generalized spectral gradient is given in Algorithm 3.1.

Algorithm 3.1: General Spectral Gradient Method

Data: τ > 1, σ ∈ (0, 1), 0 < γmin ≤ γmax < ∞,m ∈ N, w0 ∈ D
1 for j ← 0 to ∞ do
2 Set m j := min( j,m), i ← 0 and choose γ 0

j ∈ [γmin, γmax];
3 repeat
4 Set i ← i + 1, γ j ,i := τ i−1γ 0

j and compute a solution w j,i of

min
w

ϕ(w j ) + 〈∇ϕ(w j ), w − w j 〉 + γ j ,i

2
||w − w j ||2 s.t. w ∈ D; (Q( j, i))

5 if w j,i satisfies a termination criterion then
6 return w j ,i ;
7 end
8 until ϕ(w j,i ) ≤ maxr=0,1,...,m j ϕ(w j−r ) + σ 〈∇ϕ(w j ), w j,i − w j 〉;
9 Set i j := i , γ j := γ j ,i , and w j+1 := w j ,i ;

10 end
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Particular instances of this approach with nonconvex sets D can already be found in
[13, 25, 26, 33]. Note that all iterates belong to the set D, that the subproblems (Q( j, i))
are always solvable, and that we have to compute only one solution, although their
solutions are not necessarily unique. We would like to emphasize that ∇ϕ(w j ) was
used in the formulation of (Q( j, i)) in order to underline that Algorithm 3.1 is a
projected gradient method. Indeed, simple calculations reveal that the global solutions
of (Q( j, i)) correspond to the projections of w j − γ −1

j,i ∇ϕ(w j ) onto D. Note also
that the acceptance criterion in Line 8 is the nonmonotone Armijo rule introduced
by Grippo et al. [32]. In particular, the parameter m j := min( j,m) controls the
nonmonotonicity. The choicem = 0 corresponds to the standard (monotone) method,
whereas m > 0 typically allows larger stepsizes and often leads to faster convergence
of the method.

We stress that the previous generalization of existing spectral gradient methods
plays a fundamental role in order to apply our subsequent augmented Lagrangian
technique to several interesting and difficult optimization problems, but the conver-
gence analysis ofAlgorithm3.1 can be carried out similar to the one given in [33]where
a more specific situation is discussed. We therefore skip the corresponding proofs in
this section, but for the reader’s convenience, we present them in Appendix A.

The goal of Algorithm 3.1 is the computation of a point which is approximately
M-stationary for (3.1). We recall that w is an M-stationary point of (3.1) if

0 ∈ ∇ϕ(w) + N lim
D (w)

holds, and that each locally optimal solution of (3.1) is M-stationary by [59, Theo-
rem 6.1]. Similarly, since w j,i solves the subproblem (), it satisfies the corresponding
M-stationarity condition

0 ∈ ∇ϕ(w j ) + γ j,i
(
w j,i − w j ) + N lim

D (w j,i ). (3.2)

Let us point the reader’s attention to the fact that strong stationarity, where the limiting
normal cone is replaced by the smaller regular normal cone in the stationarity system,
provides a more restrictive necessary optimality condition for (3.1) and the surrogate
(Q( j, i)), see [64, Definition 6.3, Theorem 6.12]. It is well known that the limiting
normal cone is the outer limit of the regular normal cone. In contrast to the limiting
normal cone, the regular one is not robust in the sense of (2.1), and since we are
interested in taking limits later on, one either way ends up with a stationarity systems
in terms of limiting normals at the end. Thus, we will rely on the limiting normal cone
and the associated concept of M-stationarity.

For the following theoretical results, we neglect the termination criterion in Line 5.
This means that Algorithm 3.1 does not terminate and performs either infinitely many
inner or infinitely many outer interations. The first result analyzes the inner loop.

Proposition 3.1 Consider a fixed (outer) iteration j in Algorithm 3.1. Then the inner
loop terminates (due to Line 8) or

||γ j,i
(
w j − w j,i ) + ∇ϕ(w j,i ) − ∇ϕ(w j )|| → 0 as i → ∞. (3.3)
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1380 X. Jia et al.

If the inner loop does not terminate, we get w j,i → w j and w j is M-stationary.

We refer to Appendix A for the proof. It remains to analyze the situation where the
inner loop always terminates. Let w0 ∈ D be the starting point from Algorithm 3.1,
and let

Sϕ(w0) := {
w ∈ D | ϕ(w) ≤ ϕ(w0)

}

denote the corresponding (feasible) sublevel set. Then the following observation holds,
see [32, 66] and Appendix A for the details.

Proposition 3.2 We assume that the inner loop in Algorithm 3.1 always terminates
(due to Line 8) and we denote by {w j } the infinite sequence of (outer) iterates. Assume
that ϕ is bounded from below and uniformly continuous on Sϕ(w0). Then we have
||w j+1 − w j || → 0 as j → ∞.

The previous result allows to prove the following main convergence result for
Algorithm 3.1, see, again, Appendix A for a complete proof.

Proposition 3.3 Weassume that the inner loop inAlgorithm3.1always terminates (due
to Line 8) and we denote by {w j } the infinite sequence of (outer) iterates. Assume that
ϕ is bounded from below and uniformly continuous on Sϕ(w0). Suppose that w̄ is an
accumulation point of {w j }, i.e., w j →K w̄ along a subsequence K . Then w̄ is an M-
stationary point of the optimization problem (3.1), andwehaveγ j

(
w j+1−w j

) →K 0.

From the proof of Proposition 3.2, it can be easily seen that the iterates of Algo-
rithm 3.1 belong to the sublevel set Sϕ(w0) although the associated sequence of
function values does not need to be monotonically decreasing. Hence, whenever this
sublevel set is bounded, e.g., if ϕ is coercive or if D is bounded, the existence of
an accumulation point as in Proposition 3.3 is ensured. Moreover, the boundedness
of Sϕ(w0) implies that this set is compact. Hence, ϕ is automatically bounded from
below and uniformly continuous on Sϕ(w0) in this situation.

By combining Propositions 3.1 and 3.3 we get the following convergence result.

Theorem 3.4 We consider Algorithm 3.1 without termination in Line 5 and assume
that Sϕ(w0) is bounded. Then exactly one of the following situations occurs.

(i) The inner loop does not terminate in the outer iteration j ,w j,i → w j as i → ∞,
w j is M-stationary, and (3.3) holds.

(ii) The inner loop always terminates. The infinite sequence {w j } of outer iterates
possesses convergent subsequences {w j }K and every convergent subsequence
satisfies w j →K w̄, w̄ is M-stationary, and γ j

(
w j+1 − w j

) →K 0.

This result shows that the infinite sequence of (inner or outer) iterates of Algorithm 3.1
always converges towards M-stationary points (along subsequences). Note that the
boundedness of Sϕ(w0) can be replaced by the assumptions on ϕ of Proposition 3.3,
but then the outer iterates {w j } might fail to possess accumulation points.

In what follows, we show that these theoretical results also give rise to a reasonable
and applicable termination criterion which can be used in Line 5. To this end, we note
that the optimality condition (3.2) is equivalent to

γ j,i
(
w j − w j,i ) + ∇ϕ(w j,i ) − ∇ϕ(w j ) ∈ ∇ϕ(w j,i ) + N lim

D (w j,i ).

123
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This motivates the usage of

||γ j,i
(
w j − w j,i ) + ∇ϕ(w j,i ) − ∇ϕ(w j )|| ≤ εtol (3.4)

(or a similar condition), with εtol > 0, as a termination criterion in Line 5. Indeed,
Proposition 3.1 implies that the inner loop always terminates if (3.4) is used.Moreover,
the termination criterion (3.4) directly encodes thatw j,i is approximatelyM-stationary
for (3.1). This is very desirable since the goal of Algorithm 3.1 is the computation of
approximately M-stationary points.

Furthermore,we can check that condition (3.4) always ensures the finite termination
of Algorithm 3.1 if the mild assumptions of Theorem 3.4 (or the even weaker assump-
tions of Proposition 3.3) are satisfied. Indeed, due to γ j = γ j,i j andw j+1 = w j,i j , we
haveγ j,i j

(
w j−w j,i j

) = γ j
(
w j−w j+1

) →K 0.Usingw j+1, w j →K w̄ and the con-
tinuity of∇ϕ : W → W shows∇ϕ(w j,i j )−∇ϕ(w j ) = ∇ϕ(w j+1)−∇ϕ(w j ) →K 0.
Thus, the left-hand side of (3.4)with i = i j is arbitrarily small if j ∈ K is large enough.
Thus, Algorithm 3.1 with the termination criterion (3.4) terminates in finitely many
steps.

Let us mention that the above convergence theory differs from the one provided in
[25, 26] since no Lipschitzianity of ∇ϕ : W → W is needed. In the particular setting
of complementarity-constrained optimization, related results have been obtained in
[33, Section 4]. Our findings substantially generalize the theory from [33] to arbitrary
set constraints.

4 An augmented Lagrangian approach for structured geometric
constraints

Sect. 4.1 contains a detailed statement of our augmented Lagrangianmethod applied to
the general class of problems (P) together with several explanations. The convergence
theory is then presented in Sect. 4.2.

4.1 Statement of the algorithm

We now consider the optimization problem (P) under the given smoothness and con-
vexity assumptions stated there (recall that D is not necessarily convex). This section
presents a safeguarded augmented Lagrangian approach for the solution of (P). The
method penalizes the constraints G(w) ∈ C , but leaves the possibly complicated con-
dition w ∈ D explicitly in the constraints. Hence, the resulting subproblems that have
to be solved in the augmented Lagrangian framework have exactly the structure of the
(simplified) optimization problems discussed in Sect. 3.

To be specific, consider the (partially) augmented Lagrangian

Lρ(w, λ) := f (w) + ρ

2
d2C

(
G(w) + λ

ρ

)
(4.1)
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of (P), where ρ > 0 denotes the penalty parameter. Note that the squared distance
function of a nonempty, closed, and convex set is always continuously differentiable,
see e.g. [11, Corollary 12.30], which yields that Lρ(·, λ) is a continuously differen-
tiable mapping. Using the definition of the distance, we can alternatively write this
(partially) augmented Lagrangian as

Lρ(w, λ) = f (w) + ρ

2

∥∥
∥∥G(w) + λ

ρ
− PC

(
G(w) + λ

ρ

) ∥∥
∥∥

2

.

In order to control the update of the penalty parameter, we also introduce the auxiliary
function

Vρ(w, u) :=
∥∥∥∥G(w) − PC

(
G(w) + u

ρ

)∥∥∥∥. (4.2)

This function Vρ can also be used to obtain a meaningful termination criterion, see
the discussion after (4.4) below. The overall method is stated in Algorithm 4.1.

Algorithm 4.1: Safeguarded Augmented LagrangianMethod for Geometric Con-
straints
Data: ρ0 > 0, β > 1, η ∈ (0, 1), w0 ∈ D, nonempty and bounded set U ⊂ Y

1 for k ← 0 to ∞ do
2 if wk satisfies a termination criterion then
3 return wk ;
4 end
5 Choose uk ∈ U ;

6 Compute an approximately M-stationary point wk+1 of the subproblem

min
w

Lρk (w, uk ) s.t. w ∈ D,

i.e., for some suitable (sufficiently small) vector εk+1 ∈ W, wk+1 needs to satisfy

εk+1 ∈ ∇wLρk (w
k+1, uk ) + N lim

D (wk+1);

7 Set λk+1 := ρk
[
G(wk+1) + uk/ρk − PC

(
G(wk+1) + uk/ρk

)]
;

8 if k = 0 or Vρk (w
k+1, uk ) ≤ ηVρk−1 (w

k , uk−1) then
9 ρk+1 := ρk ;

10 else
11 ρk+1 := βρk ;
12 end
13 end

Line 6 of Algorithm 4.1, in general, contains the main computational effort since
we have to “solve” a constrained nonlinear program at each iteration. Due to the
nonconvexity of this subproblem, we only require to compute an M-stationary point
of this program. In fact, we allow the computation of an approximately M-stationary
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point, with the vector εk+1 measuring the degree of inexactness. The choice εk+1 = 0
corresponds to an exactM-stationary point. Note that the subproblems arising in Line 6
have precisely the structure of the problem investigated in Sect. 3, hence, the spectral
gradient method discussed there is a canonical candidate for the solution of these
subproblems (note also that the objective function Lρk (·, uk) is once, but usually not
twice continuously differentiable).

Note that Algorithm 4.1 is called a safeguarded augmented Lagrangian method due
to the appearance of the auxiliary sequence {uk} ⊂ U where U is a bounded set. In
fact, if we would replace uk by λk in Line 6 of Algorithm 4.1 (and the corresponding
subsequent formulas), we would obtain the classical augmented Lagrangian method.
However, the safeguarded version has superior global convergence properties, see
[18] for a general discussion and [48] for an explicit (counter-) example. In practice,
uk is typically chosen to be equal to λk as long as this vector belongs to the set U ,
otherwise uk is taken as the projection of λk onto this set. In situations where Y is
equipped with some (partial) order relation �, a typical choice for U is given by
the box [umin, umax] := {

u ∈ Y | umin � u � umax
}
where umin, umax ∈ Y are given

bounds satisfying umin � umax.
In order to understand the update of the Lagrange multiplier estimate in Line 7

of Algorithm 4.1, recall that the augmented Lagrangian is differentiable, with its
derivative given by

∇wLρ(w, λ) = ∇ f (w) + ρG ′(w)∗
[
G(w) + λ

ρ
− PC

(
G(w) + λ

ρ

)]
,

see [11, Corollary 12.30] again. Hence, if we denote the usual (partial) Lagrangian of
(P) by

L(w, λ) := f (w) + 〈λ,G(w)〉,

we obtain from Line 7 that

∇wLρk (w
k+1, uk) = ∇ f (wk+1) + G ′(wk+1)∗λk+1 = ∇wL(wk+1, λk+1). (4.3)

This formula is actually the motivation for the precise update used in Line 7.
The particular updating rule in Lines 8 to 12 of Algorithm 4.1 is quite common,

but other formulas might also be possible. In particular, one can use a different norm
in the definition (4.2) of Vρ . Exemplary, we exploited the maximum-norm for our
experiments in Sect. 6 whereW is a space of real vectors or matrices. Let us emphasize
that increasing the penalty parameter ρk based on a pure infeasibility measure does
not work in Algorithm 4.1. One usually has to take into account both the infeasibility
of the current iterate (w.r.t. the constraint G(w) ∈ C) and a kind of complementarity
condition (i.e., λ ∈ NC (G(w))).

For the discussion of a suitable termination criterion, we define

zk := G(wk) − PC

(
G(wk) + uk−1

ρk−1

)
.
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Using (4.3) and the update formula for λk , Algorithm 4.1 ensures

εk ∈ ∇ f (wk) + G ′(wk)∗λk + N lim
D (wk), (4.4a)

λk ∈ NC (G(wk) − zk), (4.4b)

and this corresponds to the definition of AM-stationary points, see Definition 2.2.
Thus, it is reasonable to require εk → 0 and to use

||zk || = Vρk−1(w
k, uk−1) ≤ εtol (4.5)

for some εtol > 0 as a termination criterion. In practical implementations of Algo-
rithm 4.1, a maximum number of iterations should also be incorporated into the
termination criterion.

4.2 Convergence

Throughout our convergence analysis, we assume implicitly that Algorithm 4.1 does
not stop after finitely many iterations.

Like all penalty-typemethods in the setting of nonconvex programming, augmented
Lagrangian methods suffer from the drawback that they generate accumulation points
which are not necessarily feasible for the given optimization problem (P). The follow-
ing (standard) result therefore presents some conditions under which it is guaranteed
that limit points are feasible.

Proposition 4.1 Each accumulation point w̄ of a sequence {wk} generated by Algo-
rithm 4.1 is feasible for the optimization problem (P) if one of the following conditions
holds:

(a) {ρk} is bounded, or
(b) there exists some B ∈ R such that Lρk (w

k+1, uk) ≤ B holds for all k ∈ N.

Proof Let w̄ be an arbitrary accumulation point of {wk} and, say, {wk+1}K a corre-
sponding subsequence with wk+1 →K w̄.

We start with the proof under validity of condition (a). Since {ρk} is bounded,
Lines 8 to 12 of Algorithm 4.1 imply that Vρk (w

k+1, uk) → 0 for k → ∞. This
implies

dC (G(wk+1)) ≤
∥∥
∥∥G(wk+1) − PC

(
G(wk+1) + uk

ρk

) ∥∥
∥∥ = Vρk (w

k+1, uk) → 0.

A continuity argument yields dC (G(w̄)) = 0. Since C is a closed set, this implies
G(w̄) ∈ C . Furthermore, by construction, we have wk+1 ∈ D for all k ∈ N, so that
the closedness of D also yields w̄ ∈ D. Altogether, this shows that w̄ is feasible for
the optimization problem (P).
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Let us now prove the result in presence of (b). In view of (a), it suffices to consider
the situation where ρk → ∞. By assumption, we have

f (wk+1) + ρk

2
d2C

(
G(wk+1) + uk

ρk

)
≤ B ∀k ∈ N.

Rearranging terms yields

d2C

(
G(wk+1) + uk

ρk

)
≤ 2(B − f (wk+1))

ρk
∀k ∈ N. (4.6)

Taking the limit k →K ∞ in (4.6) and using the boundedness of {uk}, we obtain

d2C (G(w̄)) = lim
k→K∞ d2C

(
G(wk+1) + uk

ρk

)
= 0

by a continuity argument. Similar to part (a), this implies feasibility of w̄. ��
The two conditions (a) and (b) of Proposition 4.1 are, of course, difficult to check

a priori. Nevertheless, in the situation where each iterate wk+1 is actually a global
minimizer of the subproblem in Line 6 of Algorithm 4.1 and w denotes any feasible
point of the optimization problem (P), we have

Lρk (w
k+1, uk) ≤ Lρk (w, uk) ≤ f (w) + ||uk ||2

2ρk
≤ f (w) + ||uk ||2

2ρ0
≤ B

for some suitable constant B due to the boundedness of the sequence {uk}. The same
argument also works if wk+1 is only an inexact global minimizer.

The next result shows that, even in the case where a limit point is not necessarily
feasible, it still contains some useful information in the sense that it is at least a
stationary point for the constraint violation. In general, this is the best that one can
expect.

Proposition 4.2 Suppose that the sequence {εk} in Algorithm 4.1 is bounded. Then
each accumulation point w̄ of a sequence {wk} generated by Algorithm 4.1 is an
M-stationary point of the so-called feasibility problem

min
w

1
2d

2
C (G(w)) s.t. w ∈ D. (4.7)

Proof In view of Proposition 4.1, if {ρk} is bounded, then each accumulation point
is a global minimum of the feasibility problem (4.7) and, therefore, an M-stationary
point of this problem.

Hence, it remains to consider the case where {ρk} is unbounded, i.e., we have
ρk → ∞ as k → ∞. In view of Lines 6 and 7 of Algorithm 4.1, see also (4.3), we
have

εk+1 ∈ ∇ f (wk+1) + G ′(wk+1)∗λk+1 + N lim
D (wk+1)
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withλk+1 as in Line 7.Dividing this inclusion byρk and using the fact thatN lim
D (wk+1)

is a cone, we therefore get

εk+1

ρk
∈∇ f (wk+1)

ρk
+G ′(wk+1)∗

[
G(wk+1)+uk

ρk
−PC

(
G(wk+1)+uk

ρk

)]
+N lim

D (wk+1).

Now, let w̄ be an accumulation point and {wk+1}K be a subsequence satisfying
wk+1 →K w̄. Then the sequences {εk+1}K , {uk}K , and {∇ f (wk+1)}K are bounded.
Thus, taking the limit k →K ∞ yields

0 ∈ G ′(w̄)∗
[
G(w̄) − PC (G(w̄))

] + N lim
D (w̄)

by the outer semicontinuity of the limiting normal cone. Since we also have w̄ ∈ D
and due to

∇( 1
2d

2
C ◦ G

)
(w̄) = G ′(w̄)∗

[
G(w̄) − PC (G(w̄))

]
,

see, once more, [11, Corollary 12.30], it follows that w̄ is an M-stationary point of the
feasibility problem (4.7). ��

We next investigate suitable properties of feasible limit points. The following may
be viewed as themain observation in that respect and shows that any such accumulation
point is automatically an AM-stationary point in the sense of Definition 2.2.

Theorem 4.3 Suppose that the sequence {εk} in Algorithm 4.1 satisfies εk → 0. Then
each feasible accumulation point w̄ of a sequence {wk} generated by Algorithm 4.1 is
an AM-stationary point.

Proof Let {wk+1}K denote a subsequence such that wk+1 →K w̄. Define

sk+1 := PC

(
G(wk+1) + uk

ρk

)
and zk+1 := G(wk+1) − sk+1

for each k ∈ N. We claim that the four (sub-) sequences {wk+1}K , {zk+1}K , {εk+1}K ,
and {λk+1}K generated by Algorithm 4.1 or defined in the above way satisfy the
properties from Definition 2.2 and therefore show that w̄ is an AM-stationary point.
By construction, we have wk+1 →K w̄ and εk+1 →K 0. Further, from Line 6 of
Algorithm 4.1 and (4.3), we obtain

εk+1 ∈ ∇wLρk (w
k+1, uk) + N lim

D (wk+1)

= ∇ f (wk+1) + G ′(wk+1)∗λk+1 + N lim
D (wk+1).
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Since NC (sk+1) is a cone, the relationbetween PC andNC togetherwith the definitions
of sk+1, λk+1, and zk+1 yield

λk+1 = ρk

[
G(wk+1) + uk

ρk
− sk+1

]
∈ NC (sk+1) = NC (G(wk+1) − zk+1).

Hence, it remains to show zk+1 →K 0. To this end, we consider two cases, namely
whether {ρk} stays bounded or is unbounded. In the bounded case, Lines 8 to 12
of Algorithm 4.1 imply that Vρk (w

k+1, uk) → 0 for k → ∞. The corresponding
definitions therefore yield

||zk+1|| = ||G(wk+1) − sk+1|| = Vρk (w
k+1, uk) → 0 for k →K ∞.

On the other hand, if {ρk} is unbounded, we have ρk → ∞. Since {uk} is bounded
by construction, the continuity of the projection operator together with the assumed
feasibility of w̄ implies

sk+1 = PC

(
G(wk+1) + uk

ρk

)
→ PC (G(w̄)) = G(w̄) for k →K ∞.

Consequently, we obtain zk+1 = G(wk+1)−sk+1 →K 0 also in this case. Altogether,
this implies that w̄ is AM-stationary. ��

We point out that the proof of Theorem 4.3 even shows the convergence ||zk+1|| =
Vρk (w

k+1, uk) →K 0, i.e., the stopping criterion (4.5) will be satisfied after finitely
many steps.

Recalling that, by definition, each AM-stationary point of (P) which is AM-regular
must already be M-stationary, we obtain the following corollary.

Corollary 4.4 Suppose that the sequence {εk} in Algorithm 4.1 satisfies εk → 0. Then
each feasible and AM-regular accumulation point w̄ of a sequence {wk} generated by
Algorithm 4.1 is an M-stationary point.

Keeping our discussions after Lemma 2.9 in mind, this result generalizes [33,
Theorem 3] which addresses a similar MPCC-tailored augmented Lagrangian method
and exploits MPCC-RCPLD.

5 Realizations

Let k be a fixed iteration of Algorithm 4.1. For the (approximate) solution of the ALM-
subproblem in Line 6 of Algorithm 4.1, we may use Algorithm 3.1. Recall that, given
an outer iteration j of Algorithm 3.1, we need to solve the subproblem

min
w

Lρk (w
j , uk) + 〈∇wLρk (w

j , uk), w − w j 〉 + γ j,i

2
||w − w j ||2 s.t. w ∈ D
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with some given w j and γ j,i > 0 in the inner iteration i of Algorithm 3.1. As pointed
out in Sect. 3, the above problem possesses the same solutions as

min
w

∥∥∥∥w −
(

w j − 1

γ j,i
∇wLρk (w

j , uk)

)∥∥∥∥

2

s.t. w ∈ D,

i.e., we need to be able to compute elements of the (possibly multi-valued) projection
ΠD

(
w j − 1

γ j,i
∇wLρk (w

j , uk)
)
. Boiling this requirement down to its essentials, we

have to be in position to find projections of arbitrary points onto the set D in an efficient
way. Subsequently, this will be discussed in the context of several practically relevant
settings.

5.1 The disjunctive programming case

We consider (P) in the special Setting 2.5 with X := R
n and X := [�, u] where

�, u ∈ R
n satisfy −∞ ≤ �i < ui ≤ ∞ for i = 1, . . . , n. Recall that the set D is given

by

D = {
(x, y, z) ∈ R

n × R
m3 × R

m3 | x ∈ [�, u], (yi , zi ) ∈ T ∀i ∈ {
1, . . . ,m3

} }
(5.1)

in this situation. For given w̄ = (x̄, ȳ, z̄) ∈ R
n × R

m3 × R
m3 , we want to characterize

the elements of ΠD(w̄). Therefore, we consider the optimization problem

min
w

1
2 ||w − w̄||2 s.t. w = (x, y, z) ∈ D. (5.2)

We observe that the latter can be decomposed into the n one-dimensional optimization
problems

min
xi

1
2 (xi − x̄i )

2 s.t. xi ∈ [�i , ui ],

i = 1, . . . , n, possessing the respective solution P[�i ,ui ](x̄i ), as well as into m3 two-
dimensional optimization problems

min
yi ,zi

1
2 (yi − ȳi )

2 + 1
2 (zi − z̄i )

2 s.t. (yi , zi ) ∈ T , (5.3)

i = 1, . . . ,m3. Due to T = T1 ∪ T2, each of these problems on its own can be
decomposed into the two two-dimensional subproblems

min
yi ,zi

1
2 (yi − ȳi )

2 + 1
2 (zi − z̄i )

2 s.t. (yi , zi ) ∈ Tj , (R(i, j))

j = 1, 2. In most of the popular settings from disjunctive programming, (R(i, j))
can be solved with ease. By a simple comparison of the associated objective function
values, we find the solutions of (5.3). Putting the solutions of the subproblems together,
we find the solutions of (5.2), i.e., the elements of ΠD(w̄).
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Fig. 1 Geometric illustrations of box-switching, switching, complementarity, and relaxed reformulated
cardinality constraints (from left to right), respectively

In the remainder of this section, we consider a particularly interesting instance of
this setting where T is given by

T := {(s, t) | s ∈ [σ1, σ2], t ∈ [τ1, τ2], st = 0} . (5.4)

Here, −∞ ≤ σ1, τ1 ≤ 0 and 0 < σ2, τ2 ≤ ∞ are given constants. Particularly, we
find the decomposition

T1 := [σ1, σ2] × {0}, T2 := {0} × [τ1, τ2]

of T in this case. Due to the geometrical shape of the set T , one might be tempted to
refer to this setting as “box-switching constraints”. Note that it particularly covers

– switching constraints (σ1 = τ1 := −∞, σ2 = τ2 := ∞), see [44, 57],
– complementarity constraints (σ1 = τ1 := 0, σ2 = τ2 := ∞), see [52, 60], and
– relaxed reformulated cardinality constraints (σ1 := −∞, σ2 := ∞, τ1 := 0,

τ2 := 1), see [21, 23].

We refer the reader to Fig. 1 for a visualization of these types of constraints.
One can easily check that the solutions of (R(i, 1)) and (R(i, 2)) are given by

(P[σ1,σ2](ȳi ), 0) and (0, P[τ1,τ2](z̄i )), respectively. This yields the following result.

Proposition 5.1 Consider the set D from (5.1) where T is given as in (5.4). For given
w̄ = (x̄, ȳ, z̄) ∈ R

n × R
m3 × R

m3 , we have ŵ := (x̂, ŷ, ẑ) ∈ ΠD(w̄) if and only if
x̂ = P[�,u](x̄) and

(ŷi , ẑi ) ∈

⎧
⎪⎨

⎪⎩

{(P[σ1,σ2](ȳi ), 0)} if φs(ȳi , z̄i ) < φt (ȳi , z̄i ),

{(0, P[τ1,τ2](z̄i ))} if φs(ȳi , z̄i ) > φt (ȳi , z̄i ),

{(P[σ1,σ2](ȳi ), 0), (0, P[τ1,τ2](z̄i ))} if φs(ȳi , z̄i ) = φt (ȳi , z̄i )

for all i = 1, . . . ,m3, where we used

φs(a, b) := (P[σ1,σ2](a) − a)2 + b2, φt (a, b) := a2 + (P[τ1,τ2](b) − b)2.

Particularly, it turns out that in order to compute the projections onto the set D
under consideration, one basically needs to compute n + 2m3 projections onto real
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intervals. In the specific setting of complementarity-constrained programming, this
already has been observed in [33, Section 4].

Let us briefly mention that other popular instances of disjunctive programs like
vanishing- and or-constrained optimization problems, see e.g. [1, 55], where T is
given by

T := {(s, t) | st ≤ 0, t ≥ 0} or T := {(s, t) | min(s, t) ≤ 0} ,

respectively, can be treated in an analogous fashion. Furthermore, an analogous proce-
dure applies to more general situations where T is the union of finitely many convex,
polyhedral sets.

5.2 The sparsity-constrained case

We fix W := R
n and some κ ∈ N with 1 ≤ κ ≤ n − 1. Consider the set

Sκ := {
w ∈ R

n
∣
∣||w||0 ≤ κ

}

with ||w||0 being the number of nonzero entries of the vectorw. This set plays a promi-
nent role in sparse optimization and for problems with cardinality constraints. Since
Sκ is nonempty and closed, projections of some vector w ∈ R

n (w.r.t. the Euclidean
norm) onto this set exist (but may not be unique), and are known to consist of those
vectors y ∈ R

n such that the nonzero entries of y are precisely the κ largest (in absolute
value) components of w (which may not be unique), see e.g. [12, Proposition 3.6].

Hence, within our augmented Lagrangian framework, we may take D := Sκ and
then get an explicit formula for the solutions of the corresponding subproblems arising
within the spectral gradient method. However, typical implementations of augmented
Lagrangian methods (like ALGENCAN, see [2]) do not penalize box constraints, i.e.,
they leave the box constraints explicitly as constraints when solving the correspond-
ing subproblems. Hence, let us assume that we have some lower and upper bounds
satisfying −∞ ≤ �i < ui ≤ ∞ for all i = 1, . . . , n. We are then forced to compute
projections onto the set

D := Sκ ∩ [�, u]. (5.5)

It turns out that there exists an explicit formula for this projection. Before presenting
the result, let us first assume, for notational simplicity, that

0 ∈ [�i , ui ] ∀i = 1, . . . , n. (5.6)

We mention that this assumption is not restrictive. Indeed, let us assume that, e.g.,
0 /∈ [�1, u1]. Then the first component of w ∈ D cannot be zero, and this shows

D = Sκ ∩ [�, u] = [�1, u1] × (
Ŝκ−1 ∩ [�̂, û]), (5.7)
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where Ŝκ−1 := {
w ∈ R

n−1 | ||w||0 ≤ κ − 1
}
and the vectors �̂, û ∈ R

n−1 are obtained
from �, u by dropping the first component, respectively. For the computation of the
projection onto Sκ , we can now exploit the product structure (5.7). Similarly, we can
remove all remaining components i = 2, . . . , n with 0 /∈ [�i , ui ] from D. Thus, we
can assume (5.6) without loss of generality.

We begin with a simple observation.

Lemma 5.2 Let w ∈ R
n be arbitrary. Then, for each y ∈ ΠD(w), where D is the set

from (5.5), we have

yi ∈ {
0, P[�i ,ui ](wi )

} ∀i = 1, . . . , n.

Proof To the contrary, assume that yi �= 0 and yi �= P[�i ,ui ](wi ) hold for some index
i ∈ {1, . . . , n}. Define the vector q ∈ R

n by q j := y j for j �= i and qi := P[�i ,ui ](wi ).
Due to yi �= 0, we have ||q||0 ≤ ||y||0 ≤ κ , i.e., q ∈ Sκ . Additionally, q ∈ [�, u]
is clear from y ∈ [�, u] and qi = P[�i ,ui ](wi ). Thus, we find q ∈ D. Furthermore,
||q − w|| < ||y − w|| since qi = P[�i ,ui ](wi ) �= yi . This contradicts the fact that y is
a projection of w onto D. ��

Due to the above lemma, we only have two choices for the value of the components
associated with projections to D from (5.5). Thus, for an arbitrary index set I ⊂
{1, . . . , n} and an arbitrary vector w ∈ R

n , we define pI (w) ∈ R
n via

pIi (w) :=
{
P[�i ,ui ](wi ) if i ∈ I ,

0 otherwise
∀i = 1, . . . , n.

It remains to characterize those index sets I which ensure that pI (w) is a projection
of w onto D. To this end, we define an auxiliary vector d(w) ∈ R

n via

di (w) := w2
i − (

P[�i ,ui ](wi ) − wi
)2 ∀i = 1, . . . , n.

Note that this definition directly yields

||pI (w) − w||2 = ||w||2 −
∑

i∈I
di (w). (5.8)

We state the following simple observation.

Lemma 5.3 Fix w ∈ R
n and assume that (5.6) is valid. Then the following statements

hold:

(a) di (w) ≥ 0 for all i = 1, . . . , n,
(b) di (w) = 0 ⇐⇒ P[�i ,ui ](wi ) = 0.

Proof (a) Since 0 ∈ [�i , ui ], we obtain

di (w) = (wi − 0)2 − (
wi − P[�i ,ui ](wi )

)2 ≥ 0
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by definition of the (one-dimensional) projection.

(b) If P[�i ,ui ](wi ) = 0 holds, we immediately obtain di (w) = 0. Conversely, let
di (w) = 0. Then

0 = w2
i − (

wi − P[�i ,ui ](wi )
)2 = P[�i ,ui ](wi )

(
2wi − P[�i ,ui ](wi )

)
.

Hence, we find P[�i ,ui ](wi ) = 0 or P[�i ,ui ](wi ) = 2wi . In the first case, we are done.
In the second case, we have {0, 2wi } ⊂ [�i , ui ]. By convexity, this giveswi ∈ [�i , ui ].
Consequently, wi = P[�i ,ui ](wi ) = 2wi . This implies P[�i ,ui ](wi ) = 0. ��

Observe that the second assertion of the above lemma implies

||pI (w)||0 = ∣
∣{i ∈ I | P[�i ,ui ](wi ) �= 0

}∣∣ = |{i ∈ I | di (w) �= 0}| (5.9)

for all w ∈ R
n . This can be used to characterize the set of projections onto the set D

from (5.5).

Proposition 5.4 Let D be the set from (5.5) and assume that (5.6) holds. Then, for
each w ∈ R

n, y ∈ ΠD(w) holds if and only if there exists an index set I ⊂ {1, . . . , n}
with |I | = κ such that

di (w) ≥ d j (w) ∀i ∈ I , ∀ j /∈ I (5.10)

and y = pI (w) hold.

Proof If y ∈ ΠD(w) holds, then y = pJ (w) is valid for some index set J , see
Lemma 5.2. Thus, it remains to check that pJ (w) is a projection onto D if and only
if pJ (w) = pI (w) holds for some index set I satisfying |I | = κ and (5.10).

Note that pJ (w) is a projection if and only if J minimizes ||pI (w) − w|| over all
I ⊂ {1, . . . , n} satisfying ||pI (w)||0 ≤ κ . This can be reformulated via d(w) by using
(5.8) and (5.9). In particular, pJ (w) is a projection if and only if J solves

max
I

∑

i∈I
di (w) s.t. I ⊂ {1, . . . , n} , |{i ∈ I | di (w) �= 0}| ≤ κ. (5.11)

It is clear that index sets I with |I | = κ and (5.10) are solutions of this problem. This
shows the direction ⇐�.

To prove the converse direction �⇒, let pJ (w) be a projection. Thus, J solves
(5.11). We note that the solutions of this problem are invariant under addition and
removal of indices i with di (w) = 0. Due to Lemma 5.3 (b), these operations also
do not alter the associated pI (w). Thus, for each projection pJ (w), we can add or
remove indices i with di (w) = 0, to obtain a set I with pI (w) = pJ (w) and |I | = κ .
It is also clear that (5.10) holds for such a choice of I . ��

Below, we comment on the result of Proposition 5.4.
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Remark 5.5 (a) Let y = pI (w) be a projection of w ∈ R
n onto D from (5.5) such

that (5.6) holds. Observe that yi = 0 may also hold for some indices i ∈ I .
(b) In the unconstrained case [�, u] = R

n , we find di (w) = w2
i for each w ∈ R

n and
all i = 1, . . . , n. Thus, Proposition 5.4 recovers the well-known characterization
of the projection onto the set Sκ which can be found in [12, Proposition 3.6].

We want to close this section with some brief remarks regarding the variational
geometry of D = Sκ ∩ [�, u] from (5.5). Observing that the sets Sκ and [�, u] are
both polyhedral in the sense that they can be represented as the union of finitely many
polyhedrons, the normal cone intersection rule

N lim
D (w) = N lim

Sκ∩[�,u](w) ⊂ N lim
Sκ

(w) + N lim[�,u](w) = N lim
Sκ

(w) + N[�,u](w)

applies for eachw ∈ D by means of [38, Corollary 4.2] and [63, Proposition 1]. While
the evaluation of N[�,u](w) is standard, a formula for N lim

Sκ
(w) can be found in [12,

Theorem 3.9].

5.3 Low-rank approximation

5.3.1 General low-rank approximations

For natural numbers m, n ∈ N with m, n ≥ 2, we fix W := R
m×n . Equipped with

the standard Frobenius inner product, W indeed is a Euclidean space. Now, for fixed
κ ∈ N satisfying 1 ≤ κ ≤ min(m, n) − 1, let us investigate the set

D := {W ∈ W | rankW ≤ κ} .

Constraint systems involving rank constraints of type W ∈ D can be used to model
numerous practically relevant problems in computer vision, machine learning, com-
puter algebra, signal processing, or model order reduction, see [53, Section 1.3] for an
overview.Nowadays, one of themost popular applications behind low-rank constraints
is the so-called low-rank matrix completion, particularly, the “Netflix-problem”, see
[22] for details.

Observe that the variational geometry of D has been explored recently in [40].
Particularly, a formula for the limiting normal cone to this set can be found in [40,
Theorem 3.1]. Using the singular value decomposition of a given matrix W̃ ∈ W, one
can easily construct an element of ΠD(W̃ ) by means of the so-called Eckart–Young–
Mirsky theorem, see e.g. [53, Theorem 2.23].

Proposition 5.6 For a given matrix W̃ ∈ W, let W̃ = UΣV� be its singular value
decomposition with orthogonal matrices U ∈ R

m×m and V ∈ R
n×n as well as a

diagonal matrix Σ ∈ R
m×n whose diagonal entries are in non-increasing order. Let

Û ∈ R
m×κ and V̂ ∈ R

n×κ be the matrices resulting from U and V by deleting the
last m − κ and n − κ columns, respectively. Furthermore, let Σ̂ ∈ R

κ×κ be the top
left κ × κ block of Σ . Then we have ÛΣ̂ V̂� ∈ ΠD(W̃ ).
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Note that the projection formulas from the previous sections allow a very efficient
computation of the corresponding projections, which is in contrast to the projection
provided by Proposition 5.6. Though the formula given there is conceptually very
simple, its realization requires to compute the singular value decomposition of the
given matrix.

5.3.2 Symmetric low-rank approximation

Given n ∈ N with n ≥ 2, we consider the set of symmetric matrices W := R
n×n
sym , still

equippedwith the Frobenius inner product. Now, for fixed κ ∈ N satisfying 1 ≤ κ ≤ n,
let us investigate the set

D := {W ∈ W |W � 0, rankW ≤ κ} .

Above, the constraint W � 0 is used to abbreviate that W has to be positive semidefi-
nite. Constraint systems involving rank constraints of type W ∈ D arise frequently in
several different mathematical models of data science, see [49] for an overview, and
Sect. 6.3 for an application.Note that κ := n covers the setting of pure semidefiniteness
constraints.

Exploiting the eigenvalue decomposition of a given matrix W̃ ∈ W, one can easily
construct an element of ΠD(W̃ ).

Proposition 5.7 For a given matrix W̃ ∈ W, we denote by W̃ = ∑n
i=1 λiviv

�
i its

(orthonormal) eigenvalue decomposition with non-increasingly ordered eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn and associated pairwise orthonormal eigenvectors v1, . . . , vn.
Then we have Ŵ := ∑κ

i=1 max(λi , 0)viv�
i ∈ ΠD(W̃ ).

Proof We define the positive and negative part W̃± := ∑n
i=1 max(±λi , 0)viv�

i . This
yields W̃ = W̃+−W̃− and 〈W̃+, W̃−〉 = trace(W̃+W̃−) = 0. Thus, for each positive
semidefinite B ∈ W, we have

||W̃ − B||2 = ||W̃+ − B||2 + ||W̃−||2 + 2〈W̃−, B〉 ≥ ||W̃+ − B||2 + ||W̃−||2.

Since the singular value decomposition of W̃+ coincides with the eigenvalue decom-
position, the right-hand side is minimized by B = Ŵ , see Proposition 5.6 while noting
that we have Ŵ = W̃+ in case κ = n. Due to 〈W̃−, Ŵ 〉 = 0, B = Ŵ also minimizes
the left-hand side. ��

It is clear that the computation of the κ largest eigenvalues of W̃ ∈ W is sufficient
to compute an element from the projection ΠD(W̃ ). This can be done particularly
efficient for small κ (note that κ = 1 holds in our application from Sect. 6.3).
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5.4 Extension to nonsmooth objectives

For some lower semicontinuous functional q : W → R, we consider the optimization
problem

min
w

f (w) + q(w) s.t. G(w) ∈ C . (5.12)

Particularly, we do not assume that q is continuous. Exemplary, let us mention the spe-
cial cases where q is the indicator function of a closed set, counts the nonzero entries of
the argument vector (in caseW := R

n), or encodes the rank of the argument matrix (in
case W := R

m×n). In this regard, (5.12) can be used to model real-world applications
from e.g. image restoration or signal processing. Necessary optimality conditions and
qualification conditions addressing (5.12) can be found in [35]. In [25], the authors
suggest to handle (5.12) numerically with the aid of an augmented Lagrangian method
(without safeguarding) based on the (partially) augmented Lagrangian function (4.1)
and the subproblems

min
w

Lρk (w, λk) + q(w) s.t. w ∈ W

which are solved with a nonmonotone proximal gradient method inspired by [66]. In
this regard, the solution approach to (5.12) described in [25] possesses some parallels
to our strategy for the numerical solution of (P). The authors in [25] were able to prove
convergence of their method to reasonable stationary points of (5.12) under a variant
of the basic qualification condition and RCPLD. Let us mention that the authors in
[25, 35] only considered standard inequality and equality constraints, but the theory
in these papers can be easily extended to the more general constraints considered in
(5.12) doing some nearby adjustments.

We note that (P) can be interpreted as a special instance of (5.12) where q plays the
role of the indicator function of the set D. Then the nonmonotone proximal gradient
method from [25] reduces to the spectral gradient method from Sect. 3. However,
the authors in [25] did not challenge their method with discontinuous functionals q
and, thus, cut away some of the more reasonable applications behind the model (P).
Furthermore, we would like to mention that (5.12) can be reformulated (by using the
epigraph epi q := {(w, α) | q(w) ≤ α} of q) as

min
w,α

f (w) + α s.t. G(w) ∈ C, (w, α) ∈ epi q (5.13)

which is a problem of type (P). One can easily check that (5.12) and (5.13) are equiv-
alent in the sense that w̄ ∈ W is a local/global minimizer of (5.12) if and only if
(w̄, q(w̄)) is a local/global minimizer of (5.13). Problem (5.13) can be handled with
Algorithm 4.1 as soon as the computation of projections onto D := epi q is possible
in an efficient way. Our result from Corollary 4.4 shows that Algorithm 4.1 applied to
(5.13) computes M-stationary points of (5.12) under AM-regularity (associated with
(5.13) at (w̄, q(w̄))), i.e., we are in position to find points satisfying
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0 ∈ ∇ f (w̄) + ∂q(w̄) + G ′(w̄)∗NC (G(w̄))

under a very mild condition which enhances [25, Theorem 3.1]. Here, we used the
limiting subdifferential of q given by

∂q(w) := {
ξ ∈ W | (ξ,−1) ∈ N lim

epi q(w, q(w))
}
.

6 Numerical results

We implemented Algorithm 4.1, based on the underlying subproblem solver Algo-
rithm 3.1, in MATLAB (R2021b) and tested it on three classes of difficult problems
which are discussed in Sects. 6.1 to 6.3. All test runs use the following parameters:

τ := 2, σ := 10−4, β := 10, η := 0.8, m := 10, γmin := 10−10, γmax := 1010.

In iteration k of Algorithm 4.1, we terminate Algorithm 3.1 if the inner iterates w j,i

satisfy

||γ j,i
(
w j − w j,i ) + ∇ϕ(w j,i ) − ∇ϕ(w j )||∞ ≤ 10−4

√
k + 1

,

where || · ||∞ stands for the maximum-norm for both W equal to R
n and equal to

R
n×n
sym (other Euclidean spaces do not occur in the subsequent applications), see (3.4).

Similarly, we use the infinity norm in the definition (4.2) of Vρ . Algorithm 4.1 is
terminated as soon as (4.5) is satisfied with εtol := 10−4. These two termination
criteria ensure that the final iteratewk together with the multiplier λk is approximately
M-stationary, see (4.4).

Given an arbitrary (possibly random) starting pointw0, we note that we first project
this point onto the set D and then use this projected point as the true starting point, so
that all iterates wk generated by Algorithm 4.1 belong to D. The choice of the initial
penalty parameter is similar to the rule in [18, p. 153] and given by

ρ0 := P[10−3,103]

(

10
max(1, f (w0))

max
(
1, 1

2d
2
C (G(w0))

)

)

.

In all our examples, the space Y is given by R
m as in Setting 2.4. This allows us to

choose the safeguarded multiplier estimate uk as the projection of the current value λk

onto a given box [umin, umax], where this box is (in componentwise fashion) chosen to
be [−1020, 1020] for all equality constraints and [0, 1020] for all inequality constraints.
In thisway,we basically guarantee that the safeguarded augmentedLagrangianmethod
fromAlgorithm4.1 coincideswith the classical approach as long as boundedmultiplier
estimates λk are generated.
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6.1 MPCC examples

The specification of Algorithm 4.1 to MPCCs is essentially the method discussed in
[33], where extensive numerical results (including comparisons with other methods)
are presented. We therefore keep this section short and consider only two particular
examples in order to illustrate certain aspects of our method.

Example 6.1 Here, for w := (y, z) ∈ R
2, we consider the two-dimensional MPCC

given by

min
w

1
2 (y − 1)2 + 1

2 (z − 1)2 s.t. y + z ≤ 2, y ≥ 0, z ≥ 0, yz = 0,

which is essentially the example from [65] with an additional (inactive) inequality
constraint in order to have at least one standard constraint, so that Algorithm 4.1 does
not automatically reduce to the spectral gradient method. The problem possesses two
global minimizers at (0, 1) and (1, 0) which are M-stationary (in fact, they are even
strongly stationary in the MPCC-terminology). Moreover, it has a local maximizer at
(0, 0) which is a point of attraction for many MPCC solvers since it can be shown to
be C-stationary, see e.g. [39] for the corresponding definitions and some convergence
results to C- and M-stationary points. Due to Lemma 2.8, each feasible point of the
problem is AM-regular.

In view of our convergence theory, Algorithm 4.1 should not converge to the ori-
gin. To verify this statement numerically, we generated 1000 random starting points
(uniformly distributed) from the box [−10, 10]2 and then applied Algorithm 4.1 to
the above example. As expected, the method converges for all 1000 starting points to
one of the two minima. Moreover, we can even start our method at the origin, and the
method still converges to the point (1, 0) or (0, 1). The limit point itself depends on
our choice of the projection which is not unique for iterates (yk, zk)with yk = zk > 0.

The next example is used to illustrate a limitation of our approach which is based
on the fact that we exploit the spectral gradient method as a subproblem solver. There
are examples where this spectral gradient method reduces the number of iterations
even for two-dimensional problems from more than 100000 to just a few iterations.
Nevertheless, in the end, the spectral gradient method is a projected gradient method,
which exploits a different stepsize selection, but which eventually reduces to a stan-
dard projected gradient method if there are a number of consecutive iterations with
very small progress, i.e., with almost identical function values during the last few iter-
ations so that the maximum term in the nonmonotone line search is almost identical
to the current function value used in the monotone version. This situation typically
happens for problems which are ill-conditioned, and we illustrate this observation by
the following example.

Example 6.2 We consider the optimal control of a discretized obstacle problem as
investigated in [36, Section 7.4]. Using w := (x, y, z), in our notation, the problem is
given by
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Table 1 Numerical results for Example 6.2

k j jcum f -ev. f (wk ) Vk t j ρk

0 0 0 1 32.0000000 – – 320

1 4889 4889 8561 −30.2322093 0.017885 0.00019214 320

2 2765 7654 13, 171 −29.5693079 0.010772 0.00019553 320

3 2959 10, 613 18, 148 −29.1713687 0.008367 0.00019264 320

4 2734 13, 347 23, 001 −28.8787629 0.007077 0.00020241 3200

5 16, 380 29, 727 51, 233 −27.6160751 0.003845 0.00001961 3200

6 16, 412 46, 139 80, 229 −26.8702076 0.002675 0.00001967 3200

7 17, 708 63, 847 111, 596 −26.4929700 0.002437 0.00003231 32000

8 128, 146 191, 993 333, 580 −25.3129057 0.002357 0.00000196 320000

9 596, 930 788, 923 1364, 773 −13.1312431 0.000868 0.00000021 320000

10 756, 029 1544, 952 2686, 144 −5.3024263 0.000316 0.00000020 320000

11 911, 019 2455, 971 4320, 526 −2.0002217 0.000115 0.00000020 320000

12 1084, 340 3540, 311 6367, 887 −0.7376656 0.000042 0.00000020 320000

min
w

f (w) := 1
2 ||x ||2 − e�y + 1

2 ||y||2

s.t. x ≥ 0, −Ay − x + z = 0, y ≥ 0, z ≥ 0, y�z = 0.

Here, A is a tridiagonal matrix which arises from a discretization of the negative
Laplace operator in one dimension, i.e., aii = 2 for all i and ai j = −1 for all i = j±1.
Furthermore, e denotes the all-one vector of appropriate size.Wenote that w̄ := 0 is the
global minimizer as well as an M-stationary point of this program. Again, Lemma 2.8
shows that each feasible point is AM-regular. Viewing the constraint x ≥ 0 as a box
constraint, taking a moderate discretization with A ∈ R

64×64, and using the all-one
vector as a starting point, we obtain the results from Table 1. The number of (outer)
iterations is denoted by k, j is the number of inner iterations, jcum the accumulated
number of inner iterations, f -ev. provides the number of function evaluations (note
that, due to the stepsize rule, we might have several function evaluations in a single
inner iteration, hence, f -ev. is always an upper bound for jcum), f (wk) denotes the
current function value, the column titled “Vk” contains Vρk−1(w

k, uk−1), t j := 1/γ j

is the stepsize, and ρk denotes the penalty parameter at iteration k.
The method terminates after 12 outer iterations, which is a reasonable number,

especially taking into account that the final penalty parameter ρk is relatively large, so
that several subproblems with different values of ρk have to be solved in the interme-
diate steps. On the other hand, the number of inner iterations j (at each outer iteration
k) is very large. In the final step, the method requires more than one million inner
iterations. This is a typical behavior of gradient-type methods and indicates that the
underlying subproblems are ill-conditioned. This is also reflected by the fact that the
stepsize t j tends to zero.

There are two types of difficulties in Example 6.2: there are challenging constraints
(the complementarity constraints), and there is an ill-conditioning. The difficult con-
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straints are treated by Algorithm 4.1 successfully, but the ill-conditioning causes some
problems when solving the resulting subproblems. In principle, this difficulty can be
circumvented by using another subproblem solver (like a semismoothNewtonmethod,
see [36]), but then it is no longer guaranteed that we obtain M-stationary points at the
limit.

Despite the fact that the ill-conditioning causes some difficulties, we stress again
that each iteration of the spectral gradient method is extremely cheap. Moreover, for
all test problems in the subsequent sections, we put an upper bound of 50000 inner
iterations (as a safeguard), and this upper bound was not reached in any of these
examples.

6.2 Cardinality-constrained problems

We first consider an artificial example to illustrate the convergence behavior of Algo-
rithm 4.1 for cardinality-constrained problems.

Example 6.3 Consider the example

min
w

f (w) := 1
2w

�Qw + c�w s.t. e�w ≤ 8, ||w||0 ≤ 2,

where Q := E + I with E ∈ R
5×5 being the all one matrix, I ∈ R

5×5 the identity
matrix, and c := −(3, 2, 3, 12, 5)� ∈ R

5. Clearly, by Lemma 2.8, all feasible points
are AM-regular. This is a minor modification of an example from [13], to which we
added an (inactive) inequality constraint for the same reason as in Example 6.1. Taking
into account that there are

(5
2

)
possibilities to choose two possibly nonzero components

of w, an elementary calculation shows that there are exactly 10 M-stationary points
w̄1, . . . , w̄10 which are given in Table 2 together with the corresponding function
values. It follows that w̄6 is the global minimizer. The points w̄3, w̄8, and w̄10 have
function values which are not too far away from f (w̄6), whereas all otherM-stationary
points have significantly larger function values. We then took 1000 random starting
points from the box [−10, 10]5 (uniformly distributed) and applied Algorithm 4.1 to
this example. Surprisingly, the method converged, for all 1000 starting points, to the
global minimizer w̄6.We then changed the example by putting an upper boundw4 ≤ 0
to the fourth component. This excludes the four most interesting points w̄3, w̄6, w̄8,

and w̄10. Among the remaining points, the three vectors w̄4, w̄7, and w̄9 have identical
function values. Running our program again using 1000 randomly generated starting
points, we obtain convergence to w̄4 in 589 cases, convergence to w̄7 in 350 situations,
whereas in 61 instances only we observe convergence to the non-optimal point w̄2.

We next consider a class of cardinality-constrained problems of the form

min
w

1
2w

�Qw s.t. μ�w ≥ �, e�w = 1, 0 ≤ w ≤ u, ||w||0 ≤ κ. (6.1)

This is a classical portfolio optimizationproblem,whereQ andμdenote the covariance
matrix and the mean of n possible assets, respectively, while � is some lower bound
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Table 2 M-stationary points and corresponding function values for Example 6.3

w̄i f (w̄i ) w̄i f (w̄i )

w̄1 := (
4/3, 1/3, 0, 0, 0

)� −2.33 w̄6 := (
0,−8/3, 0, 22/3, 0

)� −41.33

w̄2 := (
1, 0, 1, 0, 0

)� −3.00 w̄7 := (
0,−1/3, 0, 0, 8/3

)� −6.33

w̄3 := ( − 2, 0, 0, 7, 0
)� −39.00 w̄8 := (

0, 0, −2, 7, 0
)� −39.00

w̄4 := (
1/3, 0, 0, 0, 7/3

)� −6.33 w̄9 := (
0, 0, 1/3, 0, 7/3

)� −6.33

w̄5 := (
0, 1/3, 4/3, 0, 0

)� −2.33 w̄10 := (
0, 0, 0, 19/3,−2/3

)� −36.33

for the expected return. Furthermore, u provides an upper bound for the individual
assets within the portfolio. The affine structure of the constraints in (6.1) implies that
all feasible points are AM-regular, see Lemma 2.8. The data Q, μ, �, u were randomly
created by the test problemcollection [30],which is available from thewebpage https://
commalab.di.unipi.it/datasets/MV/. Here, we used all 30 test instances of dimension
n := 200 and three different values κ ∈ {5, 10, 20} for each problem. We apply three
different methods:

(a) Algorithm 4.1 with starting point w0 := 0,
(b) a boosted version of Algorithm 4.1, and
(c) a CPLEX solver [41] to a reformulation of the portfolio optimization problem as

a mixed integer quadratic program.

The CPLEX solver is used to (hopefully) identify the global optimum of the opti-
mization problem (6.1). Note that we put a time limit of 0.5 hours for each test
problem. Method (a) applies our augmented Lagrangian method to (6.1) using the set
D := {w ∈ [0, u] | ||w||0 ≤ κ}. Projections onto D are computed using the analytic
formula from Proposition 5.4. Finally, the boosted version of Algorithm 4.1 is the
following: We first delete the cardinality constraint from the portfolio optimization
problem. The resulting quadratic program is then convex and can therefore be solved
easily. Afterwards, we apply Algorithm 4.1 to a sequence of relaxations of (6.1) in
which the cardinality is recursively decreased by 10 in each step (starting with n−10)
as long as the desired value κ ∈ {5, 10, 20} is not undercut. For κ = 5, a final call of
Algorithm 4.1 with the correct cardinality is necessary since, otherwise, the procedure
would terminate with cardinality level 10. In each outer iteration, the projection of the
solution of the previous iteration onto the set D is used as a starting point.

The corresponding results are summarized in Fig. 2 for the three different values
κ ∈ {5, 10, 20}. This figure compares the optimal function values obtained by the
above three methods for each of the 30 test problems. The optimal function values
produced by CPLEX are used here as a reference value in order to judge the quality of
the results obtained by the other approaches. The main observations are the following:
The optimal function value computed by CPLEX is (not surprisingly) always the
best one. On the other hand, the corresponding values computed by method (a) are
usually not too far away from the optimal ones. Moreover, for all test problems, the
boosted version (b) generates even better function values which are usually very close
to the ones computed by CPLEX. Of course, if κ is taken smaller, the problems
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Fig. 2 Optimal function values obtained by Algorithm 4.1 (red), Algorithm 4.1 with boosting technique
(yellow), and CPLEX (blue), applied to the portfolio optimization problem (6.1) with cardinality κ = 20,
κ = 10, and κ = 5 (top to bottom)

are getting more demanding and are therefore more difficult to solve (in general).
Nevertheless, also for κ = 5, especially the boosted algorithm still computes rather
good points. In this context, one should also note that our methods always terminate
with a (numerically) feasible point, hence, the final iterate computed by our method
can actually be used as a (good) approximation of the global minimizer.We also would
like tomention that ourMATLAB implementation of Algorithm 4.1 typically requires,
on an Intel Core i7-8700 processor, only a CPU time of about 0.1 seconds for each
of the test problems, whereas the boosted version requires roughly two seconds CPU
time in average.
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6.3 MAXCUT problems

This section considers the famous MAXCUT problem as an application of our algo-
rithm to problems with rank constraints. To this end, let G = (V , E) be an undirected
graph with vertex set V = {1, . . . , n} and edges ei j between vertices i, j ∈ V . We
assume that we have a weighted graph, with ai j = a ji denoting the nonnegative
weights of the edge ei j . Since we allow zero weights, we can assume without loss of
generality that G is a complete graph. Now, given a subset S ⊂ V with complement
Sc, the cut defined by S is the set δ(S) := {ei j | i ∈ S, j ∈ Sc} of all edges such that
one end point belongs to S and the other one to Sc. The corresponding weight of this
cut is defined by

w(S) :=
∑

ei j∈δ(S)

ai j .

TheMAXCUT problem looks for the maximum cut, i.e., a cut with maximumweight.
This graph-theoretical problem is known to be NP-hard, thus very difficult to solve.

Let A := (ai j ) and define L := diag(Ae)− A. Then it is well known, see e.g. [31],
that the MAXCUT problem can be reformulated as

max
W

1
4 trace(LW ) s.t. diagW = e, W � 0, rankW = 1, (6.2)

where the variableW is chosen from the spaceW := R
n×n
sym .Due to the linear constraint

diagW = e, it follows that this problem is equivalent to

max
W

1
4 trace(LW ) s.t. diagW = e, W � 0, rankW ≤ 1. (6.3)

Deleting the difficult rank constraint, one gets the (convex) relaxation

max
W

1
4 trace(LW ) s.t. diagW = e, W � 0, (6.4)

which is a famous test problem for semidefinite programs.
Here, we directly deal with (6.3) by taking D := {W ∈ W |W � 0, rankW ≤ 1}

as the complicated set. Then GMFCQ holds at all feasible matrices of (6.3), see
Appendix B. Particularly, AM-regularity is valid at all feasible points of (6.3). Projec-
tions onto D can be calculated via Proposition 5.7: Let W ∈ W denote an arbitrary
symmetricmatrix withmaximum eigenvalue λ and corresponding (normalized) eigen-
vector v (note that λ and v are not necessarily unique), then max(λ, 0)vv� is a
projection of W onto D. In particular, the computation of this projection does not
require the full spectral decomposition. However, it is not clear whether a projection
onto the feasible set of (6.3) can be computed efficiently. Consequently, we penalize
the linear constraint diagW = e by the augmented Lagrangian approach.

Throughout this section, we take the zero matrix as the starting point. In order to
illustrate the performance of our method, we begin with the simple graph from Fig. 3.
Algorithm 4.1 applied to this example using the reformulation (6.3) (more precisely,
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Fig. 3 Example of a complete
graph for the MAXCUT
problem

Table 3 Numerical results for MAXCUT associated to the graph from Fig. 3

k j jcum f -ev. f (Wk ) Vk t j ρ j

0 0 0 1 0.0000000 — — 4

1 11 11 16 19.6691638 0.839210 1.25237254 4

2 9 20 27 12.0395829 0.027365 0.63395340 4

3 5 25 34 12.0097591 0.006361 1.25001275 4

4 3 28 38 12.0023821 0.001553 0.62522386 4

5 3 31 42 12.0005415 0.000382 0.62504390 4

6 3 34 46 12.0001534 0.000097 0.62502107 4

the corresponding minimization problem) together with the previous specifications
yields the iterations shown in Table 3. The meaning of the columns is the same as for
Table 1.

Note that the penalty parameter stays constant for this example. The feasibility
measure tends to zero, and we terminate at iteration k = 6 since this measure becomes
less than 10−4, i.e., we stop successfully. The associated function value is (approxi-
mately) 12 which actually corresponds to the maximum cut S := {1, 3} for the graph
from Fig. 3, i.e., our method is able to solve the MAXCUT problem for this particular
instance.

We next apply our method to two test problem collections that can be downloaded
from http://biqmac.aau.at/biqmaclib.html, namely the rudy and the ising collec-
tion. The first class of problems consists of 130 instances, whereas the second one
includes 48 problems. The optimal function value fopt of all these examples is known.
The details of the corresponding results obtained by our method are given in [43].
Here, we summarize the main observations.

All 130+ 48 test problems were solved successfully by our method since the stan-
dard termination criterion was satisfied after finitely many iterations, i.e., we stop with
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Fig. 4 Summary of the results from the rudy collection

an iterateWk which is feasible (within the given tolerance). Hence, the corresponding
optimal function value fALM is a lower bound for the optimal value fopt. For the sake
of completeness, we also solved the (convex) relaxed problem from (6.4), using again
our augmented Lagrangian method with D := {W ∈ W |W � 0}. The corresponding
function value is denoted by fSDP. Since the feasible set of (6.4) is larger than the one
of (6.3), we have the inequalities fALM ≤ fopt ≤ fSDP. The corresponding details for
the solution of the SDP-relaxation are provided in [43] for the rudy collection.

The bar charts from Figs. 4 and 5 summarize the results for the rudy and ising
collections, respectively, in a very condensed way. They basically show that the func-
tion value fALM obtained by our method is very close to the optimal value fopt. More
precisely, the interpretation is as follows: For each test problem, we take the quotient
fALM/ fopt ∈ [0, 1]. If this quotient is equal to, say, 0.91, we count this example as
one where we reach 91% of the optimal function value. Figure 4 then says that all 130
test problems were solved with at least 88% of the optimal function value. There are
still 106 test examples which are solved with a precision of at least 95%. Almost one
third of the test examples, namely 43 problems, are even solved with an accuracy of
at least 99%. For two examples (pm1d_80.9, and pw01_100.8), we actually get the
exact global maximum.

Figure 5 has a similar meaning for the ising collection: Though there is no
example which is solved exactly, almost one half of the problems reaches an accuracy
of at least 99%, and even in the worst case, we obtain a precision of 94%.

Altogether, this shows that we obtain a very good lower bound for the optimal
function value. Moreover, since we are always feasible (in particular, all iterates are
matrices of rank one), the final matrix can be used to create a cut through the given
graph, i.e., the method provides a constructive way to create cuts which seem to be
close to the optimal cuts. Note that this is in contrast to the semidefinite relaxation
(6.4) which gives an upper bound, but the solution associated with this upper bound is
usually not feasible for theMAXCUTproblem since the rank constraint is violated (the
results in [43] show that the solutions of the relaxed programs for the rudy collection
are matrices of rank between 4 and 7). In particular, these matrices can, in general,
not be used to compute a cut for the graph and, therefore, are less constructive than
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Fig. 5 Summary of the results from the ising collection

the outputs of our method. Moreover, it is interesting to observe that fALM is usually
much closer to fopt than fSDP. In any case, both techniques together might be useful
tools in a branch-and-bound-type method for solving MAXCUT problems.

7 Concluding remarks

In this paper, we demonstrated how M-stationary points of optimization problems
with structured geometric constraints can be computed with the aid of an augmented
Lagrangian method. The fundamental idea was to keep the complicated constraints
out of the augmented Lagrangian function and to treat them directly in the associated
subproblemswhich are solved bymeans of a nonmonotone projected gradient method.
This way, the handling of challenging variational structures is encapsulated within the
efficient computation of projections. This also puts a natural limit for the applicability.
In contrast to several other approaches from the literature, the convergence guarantees
for our method, which are valid in the presence of a comparatively weak asymptotic
constraint qualification, remain true if the appearing subproblems are solved inexactly.
Extensive numerical experiments visualized the quantitative qualities of this approach.

Despite our observations in Example 6.2, it might be interesting to think about
extensions of these ideas to infinite-dimensional situations. In [20], an augmented
Lagrangian method for the numerical solution of (P) in the context of Banach spaces
has been consideredwhere the set Dwas assumed to be convex, and the subproblems in
the resulting algorithm are of the same type as in our paper. Furthermore, convergence
of the method to KKT points was shown under validity of a problem-tailored version
of asymptotic regularity. As soon as D becomes nonconvex, one has to face some
uncomfortable properties of the appearing limiting normal cone which turns out to be
comparatively large since weak-∗-convergence is used for its definition as a set limit in
the dual space, see [37, 58]. That it why the associated M-stationarity conditions are,
in general, too weak in order to yield a reasonable stationarity condition. However,
this issue might be surpassed by investigating the smaller strong limiting normal cone
which is based on strong convergence in the dual space but possesses very limited
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calculus. It remains open whether reasonable asymptotic regularity conditions w.r.t.
this variational object can be formulated. Furthermore, in order to exploit the smallness
of the strong limiting normal cone in the resulting algorithm, one has to make sure
(amongst others) that the (primal) sequence {wk} possesses strong accumulation points
while the (dual) measures of inexactness {εk} need to be strongly convergent as well.
This might be restrictive. Furthermore, it has to be clarified how the subproblems can
be solved to approximate strong M-stationarity.
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A Proofs

In this appendix, we provide the proofs which were left out in Sect. 3.

Proof of Proposition 3.1 Recall that w j,i is a solution of (Q( j, i)) with γ j,i = τ i−1γ 0
j .

Since w j ∈ D, the optimality of w j,i for (Q( j, i)) yields

〈∇ϕ(w j ), w j,i − w j 〉 + γ j,i

2
||w j,i − w j ||2 ≤ 0 ∀i ∈ N. (A.1)

The Cauchy–Schwarz inequality therefore gives

γ j,i

2
||w j,i − w j || ≤ ||∇ϕ(w j )|| ∀i ∈ N.

This implies that w j,i → w j for i → ∞. Now, we distinguish two cases. First, we
consider that

lim sup
i→∞

γ j,i ||w j,i − w j || > 0. (A.2)

Hence, there exist a sequence il → ∞ and a constant ρ > 0 such that

γ j,il ||w j,il − w j || ≥ ρ ∀l ∈ N.
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Consequently, we obtain from (A.1) that

ρ

2
||w j,il − w j || ≤ γ j,il

2
||w j,il − w j ||2 ≤ −〈∇ϕ(w j ), w j,il − w j 〉.

Together with a Taylor expansion, we therefore get

ϕ
(
w j,il

) − max
r=0,1,...,m j

ϕ(w j−r ) ≤ ϕ
(
w j,il

) − ϕ(w j )

= 〈∇ϕ(w j ), w j,il − w j 〉 + o
(||w j,il − w j ||)

≤ σ 〈∇ϕ(w j ), w j,il − w j 〉

for all l sufficiently large, i.e., the inner loop terminates.
In the second case, (A.2) is not satisfied, i.e., γ j,i ||w j,i − w j || → 0. By continuity

of ∇ϕ, this yields (3.3). Together with w j,i → w j and by using the continuity of
∇ϕ as well as (2.1) we can pass to the limit i → ∞ in (3.2) and obtain that w j is
M-stationary. ��

Proof of Proposition 3.2 Let l( j) ∈ { j − m j , . . . , j} be an index such that

ϕ(wl( j)) = max
r=0,1,...,m j

ϕ(w j−r ) ∀ j ∈ N.

Then the nonmonotone Armijo rule from Line 8 in Algorithm 3.1 can be rewritten as

ϕ(w j+1) ≤ ϕ(wl( j)) + σ 〈∇ϕ(w j ), w j+1 − w j 〉. (A.3)

Since w j+1 solves

min
w

ϕ(w j ) + 〈∇ϕ(w j ), w − w j 〉 + γ j

2
||w − w j ||2 s.t. w ∈ D, (A.4)

we have

〈∇ϕ(w j ), w j+1 − w j 〉 + γ j

2
||w j+1 − w j ||2 ≤ 0,

i.e.,

〈∇ϕ(w j ), w j+1 − w j 〉 ≤ −γ j

2
||w j+1 − w j ||2.

Hence, (A.3) implies

ϕ(w j+1) ≤ ϕ(wl( j)) − γ j
σ

2
||w j+1 − w j ||2. (A.5)
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Wefirst note that the sequence {ϕ(wl( j))} j ismonotonically decreasing.Usingm j+1 ≤
m j + 1, this follows from

ϕ(wl( j+1)) = max
r=0,1,...,m j+1

ϕ(w j+1−r )

≤ max
r=0,1,...,m j+1

ϕ(w j+1−r )

= max

(
max

r=0,1,...,m j
ϕ(w j−r ), ϕ(w j+1)

)

= max
(
ϕ(wl( j)), ϕ(w j+1)

)

= ϕ(wl( j)),

where the last equality follows from (A.5). Sinceϕ is bounded frombelow, this implies

lim
j→∞ ϕ(wl( j)) = ϕ∗ (A.6)

for some finite ϕ∗ ∈ R. Applying (A.5) with j replaced by l( j) − 1 and rearranging
terms yields

ϕ(wl( j)) − ϕ(wl(l( j)−1)) ≤ −γl( j)−1
σ

2
||wl( j) − wl( j)−1||2 ≤ 0.

Taking the limit j → ∞ and using (A.6) therefore implies

lim
j→∞ γl( j)−1||wl( j) − wl( j)−1||2 = 0.

Since γ j ≥ γmin > 0 for all j ∈ N, we get

lim
j→∞ dl( j)−1 = 0, (A.7)

where, for simplicity, we set d j := w j+1 − w j for all j ∈ N. Using (A.6) and (A.7),
we then obtain

ϕ∗ = lim
j→∞ ϕ(wl( j)) = lim

j→∞ ϕ
(
wl( j)−1 + dl( j)−1) = lim

j→∞ ϕ(wl( j)−1), (A.8)

where the last equality takes into account the uniform continuity of ϕ. We will now
prove, by induction, that

lim
j→∞ dl( j)−r = 0 and lim

j→∞ ϕ(wl( j)−r ) = ϕ∗ ∀r ∈ N. (A.9)

We already know from (A.7) and (A.8) that (A.9) holds for r = 1. Suppose that (A.9)
holds for some r ≥ 1. We need to show that it holds for r + 1. Using (A.5) with j
replaced by l( j) − r − 1, we have
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ϕ(wl( j)−r ) ≤ ϕ(wl(l( j)−r−1)) − γl( j)−r−1
σ

2
||dl( j)−r−1||2

(here we assume implicitly that j is large enough such that no negative indices l( j) −
r − 1 occur). Rearranging this expression and using γ j ≥ γmin for all j yields

||dl( j)−r−1||2 ≤ 2

γminσ

(
ϕ(wl(l( j)−r−1)) − ϕ(wl( j)−r )

)
.

Taking the limit j → ∞ while using (A.6) as well as the induction hypothesis, it
follows that

lim
j→∞ dl( j)−r−1 = 0, (A.10)

which proves the induction step for the first limit in (A.9). The second limit follows
from

lim
j→∞ ϕ

(
wl( j)−(r+1)) = lim

j→∞ ϕ
(
wl( j)−(r+1) + dl( j)−(r+1)) = lim

j→∞ ϕ
(
wl( j)−r ) = ϕ∗,

where the first equation follows from (A.10) together with the uniform continuity of
ϕ, whereas the final equation is the induction hypothesis.

In the final step of our proof, we now show that lim j→∞ d j = 0. Suppose that this
is not true. Then there is a (suitably shifted, for notational simplicity) subsequence
{d j−m−1}K and a constant ρ > 0 such that

||d j−m−1|| ≥ ρ ∀ j ∈ K . (A.10)

Now, for each j ∈ K , the corresponding index l( j) is one of the indices
j − m, j − m + 1, . . . , j . Hence, we can write j − m − 1 = l( j) − r j for some
index r j ∈ {1, 2, . . . ,m + 1}. Since there are only finitely many possible indices r j ,
we may assume without loss of generality that r j = r holds for some fixed index r .
Then (A.9) implies

lim
j→K∞ d j−m−1 = lim

j→K∞ dl( j)−r = 0.

This contradicts (A.10) and therefore completes the proof. ��
Proof of Proposition 3.3 Let w̄ be an arbitrary accumulation point, and let {w j }K be a
subsequence such that w j →K w̄.

We start by showing γ j
(
w j+1 − w j

) →K 0. In the case that {γ j }K is bounded,
this follows from Proposition 3.2. In the case that {γ j }K is unbounded, we find a
subsequence K ′ ⊂ K with γ j →K ′ ∞ and γ j > γmax for all j ∈ K ′. Then γ̂ j :=
γ j/τ = τ i j−1γ 0

j = γ j,i j−1 also converges to infinity. Due to γ j > γmax, we have i j >

0. Therefore, ŵ j+1 := w j,i j−1 (which solves (Q( j, i j−1))) violates the nonmonotone
Armijo-type condition from Line 8 in Algorithm 3.1, i.e., we have
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ϕ
(
ŵ j+1) > max

r=0,1,...,m j
ϕ(w j−r ) + σ 〈∇ϕ(w j ), ŵ j+1 − w j 〉 (A.12)

for all j ∈ K ′ sufficiently large. We now argue similar to the proof of Proposition 3.1
(except that j is not fixed now). Since ŵ j+1 solves the subproblem (Q( j, i j − 1)), we
obtain

〈∇ϕ(w j ), ŵ j+1 − w j 〉 + γ̂ j

2
||ŵ j+1 − w j ||2 ≤ 0, (A.13)

which implies that

γ̂ j

2
||ŵ j+1 − w j || ≤ ||∇ϕ(w j )||.

Since w j →K ′ w̄, this yields ŵ j+1 − w j →K ′ 0. Hence, we also get ŵ j+1 →K ′ w̄.
For each j ∈ K ′, themean value theorem yields the existence of ξ j on the line segment
between ŵ j+1 and w j such that

ϕ
(
ŵ j+1) − ϕ(w j ) = 〈∇ϕ(ξ j ), ŵ j+1 − w j 〉.

Due to ŵ j+1, w j →K ′ w̄, we find ∇ϕ(ξ j ) − ∇ϕ(w j ) →K ′ 0. Using (A.12), we get

σ 〈∇ϕ(w j ), ŵ j+1 − w j 〉 < ϕ
(
ŵ j+1) − max

r=0,1,...,m j
ϕ(w j−r )

≤ ϕ
(
ŵ j+1) − ϕ(w j )

≤ 〈∇ϕ(w j ), ŵ j+1 − w j 〉
+ ||∇ϕ(ξ j ) − ∇ϕ(w j )|| ||ŵ j+1 − w j ||.

Together with (A.13), we achieve

γ̂ j

2
||ŵ j+1 − w j ||2 ≤ −〈∇ϕ(w j ), ŵ j+1 − w j 〉

≤ ||∇ϕ(ξ j ) − ∇ϕ(w j )||
1 − σ

||ŵ j+1 − w j ||.

Thus, γ̂ j ||ŵ j+1 − w j || →K ′ 0. Using the optimality of ŵ j+1 and w j+1 for
(Q( j, i j − 1)) and (Q( j, i j )), respectively, we find

γ j ||w j+1 − w j || = τ γ̂ j ||w j+1 − w j || ≤ τ γ̂ j ||ŵ j+1 − w j || →K ′ 0.

Now, one can use a standard subsequence-subsequence argument to conclude that
γ j ||w j+1 − w j || →K 0 holds along the entire subsequence K .
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It remains to verify M-stationarity of w̄. Since w j+1 solves the subproblem (A.4),
the corresponding optimality condition yields

0 ∈ ∇ϕ(w j ) + γ j
(
w j+1 − w j ) + N lim

D (w j+1).

Due to Proposition 3.2, we also have w j+1 →K w̄. Hence, taking the limit j →K ∞
and exploiting once again the upper semicontinuity of the limiting normal cone, we
obtain

0 ∈ ∇ϕ(w̄) + N lim
D (w̄),

i.e., w̄ is an M-stationary point of (3.1). ��

B Constraint regularity of theMAXCUT problem

Here, we show that all feasible points of (6.3) with

D :=
{
W ∈ R

n×n
sym |W � 0, rankW ≤ 1

}

satisfy GMFCQ. Note that we use G : R
n×n
sym → R

n given by G(W ) := diagW ,
W ∈ R

n×n
sym , and C := {e} here in order to model the feasible set of (6.3) in the form

given in (P).
Let us fix a feasiblematrixW ∈ R

n×n
sym of (6.3). Thenwefind a vector u ∈ {±n−1/2}n

such that W = nuu�, i.e., W possesses the non-zero eigenvalue n and the associated
eigenvector u.

First, we will show that

N lim
D (W ) ⊂

{
Y ∈ R

n×n
sym

∣∣ Yu = 0
}

. (B.1)

For Y ∈ N lim
D (W ), we find sequences {Wk}, {Y k} ⊂ R

n×n
sym and {αk} ⊂ [0,∞) such

that Wk → W , Y k → Y , and Y k ∈ αk(Wk − ΠD(Wk)) for all k ∈ N. For each
k ∈ N, let Wk = ∑n

i=1 μk
i u

k
i (u

k
i )

� be an (orthonormal) eigenvalue decomposition
with non-increasingly ordered eigenvalues μk

1 ≥ μk
2 ≥ . . . ≥ μk

n and associated
pairwise orthonormal eigenvectors uk1, . . . , u

k
n . Due to Wk → W , we find μk

1 → n,
μk
2, . . . , μ

k
n → 0, and (along a subsequence without relabeling) uk1 → ±u. For suffi-

ciently large k ∈ N, this implies ΠD(Wk) = {μk
1u

k
1(u

k
1)

�}, see [51, Proposition 3.4]
and Proposition 5.7. Hence, for any such k ∈ N, we find Y k = αk

∑n
i=2 μk

i u
k
i (u

k
i )

�.
Particularly, this gives Y kuk1 = 0 for large enough k ∈ N, so that Yu = 0 follows by
taking the limit k → ∞.

Second, suppose that there are a vector λ ∈ NC (G(W )) = R
n and a matrix

Y ∈ N lim
D (W ) such that diag λ + Y = 0. In order to prove validity of GMFCQ,

λ = 0 has to be shown. From (B.1), we find λ • u = −Yu = 0 where • represents
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the entrywise product operation. Observing that the components of u are all different
from zero, λ = 0 follows.
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