
Mathematical Programming (2023) 200:739–780
https://doi.org/10.1007/s10107-022-01862-z

FULL LENGTH PAPER

Series B

Complexity of optimizing over the integers

Amitabh Basu1

Received: 8 December 2021 / Accepted: 4 July 2022 / Published online: 22 July 2022
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2022

Abstract
In the first part of this paper, we present a unified framework for analyzing the algo-
rithmic complexity of any optimization problem, whether it be continuous or discrete
in nature. This helps to formalize notions like “input”, “size” and “complexity” in the
context of general mathematical optimization, avoiding context dependent definitions
which is one of the sources of difference in the treatment of complexity within continu-
ous and discrete optimization. In the second part of the paper, we employ the language
developed in the first part to study information theoretic and algorithmic complexity
of mixed-integer convex optimization, which contains as a special case continuous
convex optimization on the one hand and pure integer optimization on the other. We
strive for the maximum possible generality in our exposition. We hope that this paper
contains material that both continuous optimizers and discrete optimizers find new and
interesting, even though almost all of the material presented is common knowledge in
one or the other community. We see the main merit of this paper as bringing together
all of this information under one unifying umbrella with the hope that this will act as
yet another catalyst for more interaction across the continuous-discrete divide. In fact,
our motivation behind Part I of the paper is to provide a common language for both
communities.

Mathematics Subject Classification 90C10 · 90C11 · 90C25 · 68Q11 · 68Q17 · 68Q25

Part I

A general framework for complexity in optimization

1 The setup

This paper dealswith theoretical complexity analyses for optimization problemswhere
some or all decision variables are constrained to take integer values. This means that

B Amitabh Basu
basu.amitabh@jhu.edu

1 Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01862-z&domain=pdf
http://orcid.org/0000-0002-1070-2626

740 A. Basu

we will look at provable upper and lower bounds on the efficiency of algorithms
that solve these problems. We will consider the standard Turing machine model of
computation, and we will study algorithms that receive an optimization problem as
“input” and we wish to study the efficiency of the algorithm as a function of the
“size” of the problem. Moreover, we wish to develop a framework that can seamlessly
handle discrete optimization and continuous optimization. In particular, the focus of
this paper will be on so-called mixed-integer convex optimization, which includes as
special cases continuous, nonlinear convex optimization on the one hand and integer
linear optimization on the other which can model problems with a combinatorial and
discrete nature. Therefore, it is imperative to have a general setup that can formally
make sense of “writing down” an optimization problem as “input” to an algorithm and
the related “size” of the optimization problem, no matter whether it is combinatorial
or numerical in nature.

For instance, most optimization problems with a combinatorial or discrete nature
have a well defined, universally accepted notion of “encoding” and therefore of “size”
(such as the Matching Problem or Traveling Salesperson Problem (TSP) on graphs, or
linear programming (LP) over the rationals). Things are more tricky with continuous
optimization problems. What is the “size” of a general optimization problem of the
form min{ f (x) : gi (x) ≤ 0, i = 1, . . . ,m}, where I and gi are smooth, nonlinear
functions defined on R

n? If these functions have a particular algebraic form (e.g.,
polynomial optimization), then there is usually no controversy because one considers
the encoding of the coefficients appearing in the polynomials. What if the functions
are given via evaluation and gradient oracles?

In fact, the question can be raised whether the Turing machine model is even appro-
priate in this setting, because it only allows for computation over a finite set of symbols
and numerical/scientific computation problems may require a more general model of
computation. Several proposals have been put forward to address this issue; see [1, 24,
27, 70, 94, 101, 116, 126] as a representative list. It turns out that all of the discussion
in this Part I of this paper will hold true in any of these different models of computa-
tion. For concreteness, we will assume a computational framework that works within
the standard framework of the Turing machine model of computation augmented with
appropriate oracles [94, 101] and has its roots in the constructive philosophy of math-
ematics [17, 21]. We include the formal definition here for completeness of this article
and the reader is referred to [94, 101] for a fuller discussion.

Definition 1.1 An oracle implementing a real number α ∈ R takes as input a rational
number ε > 0 and outputs a rational number r such that |r − α| ≤ ε. Moreover, there
exists a constant k (independent of ε) such that the bit encoding size of r is at most k
times the encoding size of ε. The size of the oracle is k.

If the real number α implemented by an oracle is rational, then a second constant
k′ is added to the size of the oracle with the guarantee that the bit encoding size of α

is at most k′.

A study of general optimization methods in the 70s and 80s led to the insight that
all such procedures (whether combinatorial or analytical in nature) can be understood
in a unified framework which we present now. Our exposition is a summary of ideas
put forth in several works and giving a complete survey of this literature is difficult.

123

Complexity of optimizing over the integers 741

With apologies for our omissions, we list two references that we personally found to
be most illuminating [108, 125].

The overall idea, roughly speaking, is that one gathers information about an opti-
mization problem which tells the optimizer which instance needs to be solved within
a problem class, and then computations are performed on the information gathered to
arrive at a solution (possibly approximate, with guaranteed bounds on error). Let us
formalize this idea in a way that encompasses both discrete and continuous optimiza-
tion [125].

Definition 1.2 (General optimization problem)An optimization problem class is given
by a set I of instances, a set G of possible solutions, and a solution operator

S : I × R+ → 2G ∪ {I N FE AS} ∪ {UNBND},

where 2G denotes the power set of G and the operator S satisfies three properties:

1. S(I , 0) �= ∅ for all I ∈ I, and
2. For any two nonnegative real numbers ε1 < ε2 and any I ∈ I, we have S(I , ε1) ⊆

S(I , ε2).
3. If I N FE AS ∈ S(I , ε) (or UNBND ∈ S(I , ε)) for some I ∈ I and ε ≥ 0, then

S(I , ε) = {I N FE AS} (or S(I , ε) = {UNBND} respectively).
4. If UNBND ∈ S(I , 0) for some I ∈ I, then S(I , ε) = {UNBND} for all ε ≥ 0.

The interpretation of the above definition is simple: I is the set of optimization
problem instances we wish to study, G is the space of solutions to the problems, and
for any instance I ∈ I and ε ≥ 0, S(I , ε) is the set of ε-approximate solutions with
the understanding that S(I , ε) = {I N FE AS} encodes the fact that I is an infeasible
instance (with respect to ε error; see examples below) and S(I , ε) = UNBND
encodes the fact that the objective value for I is unbounded. The advantage of this
definition is that there is no need to assume any structure in the set G; for example, it
could be some Euclidean space, or it could just as well be some combinatorial set like
the set of edges in a graph. Linear Programming in R

n would set G = R
n while the

Traveling Salesperson Problem on n cities corresponds to setting G to be all tours in
the complete graph Kn . It is also not hard to encode optimization problems in varying
“dimensions” in this framework, e.g., G is allowed to be

⋃
n∈N R

n . Also, the notion
of “ε-approximate” does not require any kind of norm or distance structure on G.
Property 2 simply requires that as we allow more error, we obtain more solutions.
Thus, Definition 1.2 captures discrete and continuous optimization in a clean, unified
framework while allowing for a very flexible notion of an “ε-approximate” solution
for ε > 0.

Example 1.3 We now present some concrete examples.

1. Traveling Salesperson Problem (TSP). For any natural number n ∈ N, the (sym-
metric) traveling salesperson problem for n cities seeks to find a tour of minimum
length that visits all cities, given pairwise intercity distances. To model this in the
above framework, one defines En , for any natural number n ∈ N, to be the set of
all unordered pairs in {1, . . . , n}. Let G = ∪n∈N2En , i.e., each element of G is a

123

742 A. Basu

subset of unordered pairs (these are edges in the tour). I is the family of all TSPs
with given intercity distances. We allow any number n of cities; of course, for a
particular instance I there is a fixed number of cities. S(I , ε) can be taken to be the
set of all tours in the complete graph Kn that are within an additive ε error or within
a multiplicative (1 + ε) factor of the optimal tour length in I . ε = 0 corresponds
to the set of all optimal tours.
One could also fix a natural number n ∈ N and simply consider only the problems
on n cities. In this case, G = 2En and I would consist of all possible tours on n
cities, i.e., where only the intercity distances are changed, but the number of cities
is fixed.

2. Mixed-integer linear programming (MILP).

• (Fixed dimension) Let n, d ∈ N be fixed. G = R
n × R

d , I is the set of all
mixed-integer linear programs defined by matrices A ∈ R

m×n, B ∈ R
m×d ,

and vectors b ∈ R
m, c1 ∈ R

n, c2 ∈ R
d , where m ∈ N can be chosen as any

natural number (thus, I contains all MILPs with any number of constraints for
m = 1, 2, . . ., but the total number of variables is fixed):

max{cT1 x + cT2 y : Ax + By ≤ b, x ∈ Z
n, y ∈ R

d}.
S(I , ε) may be defined to be all solutions (x, y) ∈ G to an MILP instance I
such that cT1 x + cT2 y is within an additive ε error of the optimal value for I .
Taking ε = 0 would mean we are considering the exact optimal solution(s).
Alternatively, one may define S(I , ε) to be the set of (x, y) ∈ G such that there
is an optimal solution to I within ε distance to (x, y).

• (Variable dimension) We can consider the family of all MILPs with a fixed
number of integer variables, but allowing for any number of continuous vari-
ables. Here n ∈ N is fixed andG = ⋃

d∈N(Rn×R
d). Everything else is defined

as above. Similarly, we may also allow the number of integer variables to vary
by letting G = ⋃

n∈N,d∈N(Rn × R
d).

Fixing n = 0 in the above settings would give us (pure) linear programming.
3. Nonlinear Optimization. In a similar fashion as above, we may model nonlinear

optimization problems of the form

min{ f (x) : gi (x) ≤ 0 i = 1, . . . ,m}. (1.1)

The class I may restrict the structure of the objective and constraint functions (e.g.,
convex, twice continuously differentiable, nonsmooth etc.). As before, S(I , ε)may
correspond to all solutions that are within an ε error of the true optimal value, or
solutions within ε distance of the set of optimal solutions, or the set of points
where the norm of the gradient is at most ε in the unconstrained case, or any other
notion of ε-approximate solutions commonly studied in the nonlinear optimization
literature. One may also allow ε slack in the constraints, i.e., gi (x) ≤ ε for any
x ∈ S(I , ε).

Next, we discuss the notion of an oracle that permits us to figure out which problem
instance we need to solve.

123

Complexity of optimizing over the integers 743

Definition 1.4 An oracle for an optimization problem class I is given by a family Q
of possible queries and a set H of possible answers. Each query q ∈ Q is an operator
q : I → H . We say that q(I) ∈ H is the answer to the query q on the instance I ∈ I.
Example 1.5 We now consider some standard oracles for the settings considered in
Example 1.3.

1. For the TSP, the typical oracle uses two types of queries. One is the dimension query
qdim, which returns the number qdim(I) of cities in the instance I , and the queries
qi j (I) which returns the intercity distance between cities i, j (with appropriate
error exceptions if i or j are not in the range {1, . . . , qdim(I)}).

2. ForMILP, the typical oracle uses the following queries: the dimension queries for n
and d (unless one or both of them are fixed and known), a query q A

i j (I) that reports
the entry of matrix A in row i and column j for the instance I , and similar queries
qB
i j , q

b
i , qcj for the matrix B, and vectors b, c (with appropriate error exceptions if

the queried index is out of bounds).
3. For Nonlinear Optimization, the most commonly used oracles return function val-

ues, gradient/subgradient values, Hessian or higher order derivative values at a
queried point. Thus, we have queries such as q f ,x

0 (I) which returns f (x) for the
objective function f in an instance of (1.1) where x is a point in the appropriate
domain of f , or the query q f ,x

1 (I)which returns the gradient∇ f (x). Similarly, one
has queries for the constraints. Often the set version of these oracles are assumed
instead, specially in convex optimization, where one is given a separation oracle
for the feasible region and the epigraph of the objective function; see [78, 101] for
a well developed theory and applications in this setting.
If the problem class I has an algebraic form, e.g., polynomial optimization, then
the oracle queries may be set up to return the values of the coefficients appearing
in the polynomial.

One can seamlessly accommodate oracles with error in the above set-up. For
example, the weak separation oracles in [78] can be modeled with no change in the
definitions just like strong/exact separation oracles. We will only work with deter-
ministic oracles in this paper. See [28, 108] for a discussion of stochastic oracles in
the context of continuous convex optimization. We next recall the notion of an oracle
Turing machine.

Definition 1.6 An oracle Turing machine with access to an oracle (Q, H) is a Turing
machine that has the enhanced ability to pose any query q ∈ Q and use the answer
in H in its computations. The queries it poses may depend on its internal states and
computations, i.e., it can query adaptively during its processing.

We now have everything in place to define what we mean by an optimization
algorithm/procedure. Since we focus on the (oracle) Turing machine model and any
algorithm will process elements of the solution set G and set of answers H from an
oracle, we assume that the elements of these sets can be represented by binary strings or
appropriate real number oracles (see Definition 1.1). If one wishes to adopt a different
model of computation, then these sets will need representations within that computing
paradigm. This clearly affects what class of problems and oracles are permissible. We

123

744 A. Basu

will not delve into these subtle questions; rather we will stick to our Turing machine
model and assume that the class of problems we are dealing with has appropriate
representations for G and H .

Definition 1.7 Let (I,G, S) be an optimization problem class and let (Q, H) be an
oracle for I. For any ε ≥ 0, an ε-approximation algorithm for (I,G, S) using (Q, H)

is an oracle Turing machine with access to (Q, H) that starts its computations with
the empty string as input and, for any I ∈ I, ends its computation with an element of
S(I , ε), when it receives the answer q(I) for any query q ∈ Q it poses to the oracle.

IfA is such an ε-approximation algorithm,wedefine the total complexity compA(I)
to be the number of elementary operations performed byA during its run on an instance
I (meaning that it receives q(I) as the answers to any query q it poses to the oracle),
where each oracle query counts as an elementary operation (reading the answer of a
query may require more than one elementary operation, depending on its length). If
A makes queries q1, . . . , qk during its run on an instance I , we say the information
complexity icompA(I) is |q1(I)| + . . . + |qk(I)|, where |qi (I)| denotes the length of
the binary string or size of the real number oracle (see Definition 1.1) representing the
answer qi (I).

Following standard conventions, the (worst case) complexity of the algorithm A
for the problem class (I,G, S) is defined as

compA := supI∈I compA(I),

and the (worst case) information complexity is defined as

icompA := supI∈I icompA(I),

Remark 1.8 One can assume that any algorithm that poses a query q reads the entire
answer q(I) for an instance I . Indeed, if it ignores some part of the answer, then one
can instead consider the queries that simply probe the corresponding bits that are used
by the algorithm (and we may assume our oracles to have this completeness property).
We will assume this to be the case in the rest of the paper. Such an assumption can
also be made without loss of generality in any other reasonable model of computation.

This implies that the information complexity icompA(I) is less than or equal to the
total complexity compA(I) of any algorithm A running on any instance I .

An important notion of complexity that we will not discuss in depth in this paper
is that of space complexity. This is defined as the maximum amount of information
(from the oracle queries) and auxiliary computational memory that is maintained by
the algorithm (oracle Turing machine) during its entire run. As in Definition 1.7, one
can define the total space complexity and the information space complexity. Both
notions can be quite different from compA and icompA respectively, since one keeps
track of only the amount of information and auxiliary data held inmemory at any given
stage of the computation, as opposed to the overall amount of information or auxiliary
memory used. In many optimization algorithms, it is not necessary to maintain all
of the answers to previous queries or computations in memory. A classic example
of this is the (sub)gradient descent algorithm where only the current function values

123

Complexity of optimizing over the integers 745

and (sub)gradients are stored in memory for computations, and they are not needed in
subsequent iterations.

2 Oracle ambiguity and lower bounds on complexity

For many settings, especially problems in numerical optimization, a finite number
of oracle queries may not pin down the exact problem one is facing. For example,
consider (I,G, S) to be the problem class of the form (1.1) where f , g1, . . . , gm can
be any convex, continuously differentiable functions, and suppose the oracle (Q, H)

allows function evaluation and gradient queries. Given any finite number of queries,
there are infinitely many instances that give the same answers to those queries.

Definition 2.1 Let (I,G, S) be an optimization problem class and let (Q, H) be an
oracle for I. For any subset Q ⊆ Q of queries, define an equivalence relation on I
as follows: I ∼Q I ′ if q(I) = q(I ′) for all q ∈ Q. For any instance I , let V (I , Q)

denote the equivalence class that I falls in, i.e.,

V (I , Q) = {I ′ : q(I) = q(I ′) ∀q ∈ Q}.

The above definition formalizes the fact that if one only knows the answers to
queries in Q, then one has a course-grained view of I. This is why the notion of an
ε-approximate solution becomes especially pertinent. The following theorem gives a
necessary condition on the nature of queries used by any ε-approximation algorithm.

Theorem 2.2 Let (I,G, S) be an optimization problem class and let (Q, H) be an
oracle for I. If A is an ε-approximation algorithm for this optimization problem for
some ε ≥ 0, then

⋂

I ′∈V (I ,Q(I))

S(I ′, ε) �= ∅ ∀I ∈ I,

where Q(I) is the set of queries used by A when processing instance I .

Proof IfA is a correct ε-approximation algorithm, then suppose it returns x ∈ S(I , ε)
for instance I . Since the answers to its queries are the same for all I ′ ∈ V (I , Q(I)),
it will also return x when the answers it receives are q(I ′) for q ∈ Q(I) and I ′ ∈
V (I , Q(I)). Therefore, x ∈ S(I ′, ε) for all I ′ ∈ V (I , Q(I)). ��

This leads us to the following definition.

Definition 2.3 Let (I,G, S) be an optimization problem class and let (Q, H) be an
oracle for I. Let 2(Q×H) denote the collection of all finite sets of pairs (q, h) ∈ Q×H .

An adaptive query strategy is a function D : 2(Q×H) → Q. The transcript
�(D, I) of a strategy D on an instance I is the sequence of query and response
pairs (qi , qi (I)), i = 1, 2, . . . obtained when one applies D on I , i.e., q1 = D(∅) and
qi = D({(q1, q1(I)), . . . , (qi−1, qi−1(I))}) for i ≥ 2. �k(D, I) will denote the trun-
cation of �(D, I) to the first k terms, k ∈ N. We will use Q(D, I) (and Qk(D, I)) to

123

746 A. Basu

denote the set of queries in the transcript�(D, I) (and�k(D, I)). Similarly, R(D, I)
(and Rk(D, I)) will denote the set of responses in the transcript.
The ε-information complexity of an instance I for an adaptive strategy D is defined
as

icomp ε(D, I) := inf
{∑

r∈Rk (D,I) |r | : k ∈ N such that
⋂

I ′∈V (I ,Qk (D,I)) S(I ′, ε) �= ∅
}

= inf
{∑

r∈Rk (D,I) |r | : k ∈ N such that
⋂

I ′ :�k (D,I ′)=�k (D,I) S(I ′, ε) �= ∅
}

The ε-information complexity of an adaptive strategy D for the problemclass (I,G, S)

is defined as

icomp ε(D) := supI∈I icomp ε(D, I)

The ε-information complexity of the problem class (I,G, S) with respect to oracle
(Q, H) is defined as

icomp ε := infD icomp ε(D),

where the infimum is over all possible adaptive queries.

Remark 2.4 In the definitions above, one could restrict adaptive query strategies to be
computable, or even polynomial time computable (in the size of the previous query-
response pairs).We are not aware of any existing research where such restrictions have
been studied to get a more refined analysis of ε-information complexity. The typical
lower bounding techniques directly lower bound icompε defined above.One advantage
of this is that one does not have to rely on any complexity theory assumptions such as
P �= N P and the lower bounds are unconditional.

We can now formally state the results for lower bounding algorithmic complexity.
Remark 1.8 and Theorem 2.2 imply the following.

Corollary 2.5 Let (I,G, S) be an optimization problem class and let (Q, H) be an
oracle for I. If A is an ε-approximation algorithm for (I,G, S) using (Q, H) for
some ε ≥ 0, then

icomp ε ≤ icompA ≤ compA .

Remark 2.6 If S, S′ are two different solution operators for I,G such that S(I , ε) ⊆
S′(I , ε) for all I ∈ I and ε ≥ 0, i.e., the operator S is stricter than S′, then the
complexity measures with respect to S are at least as large as the corresponding
measures with respect to S′.

Remark 2.7 In the literature, icompε is often referred to as the analytical complexity of
the problem class (see, e.g., [109]). We prefer the phrase information complexity since
we wish to have a unified framework for continuous and discrete optimization and
“analytical” suggests problems that are numerical in nature or involve the continuum.
Another term that is used in the literature is oracle complexity. This is better, in our

123

Complexity of optimizing over the integers 747

opinion, but still has the possibility to suggest the complexity of implementing the
oracle, rather than the complexity of the queries. Since icompε is very much inspired
by information theory ideas, we follow the trend [28, 31, 107, 125, 129] of using the
term information complexity (with respect to an oracle).

compA is sometimes referred to as arithmetic complexity [109] or combinatorial
complexity [125] ofA. We prefer to stick to the more standard terminology of simply
(worst case) complexity of the algorithm A.

3 What is the size of an optimization problem?

3.1 Size hierarchies

The notions of complexity defined so far are either too fine or too course. At one
extreme is the instance dependent notions compA(I), icompA(I) and icompε(D, I),
and at the other extreme are the worst case notions compA, icompA and icompε . It is
almost always impossible give a fine tuned analysis of the instance based complexity
notions; on the other hand, the worst case notions give too little information, at best
as a function of ε, and in the worst case, these values are actually ∞ for most problem
classes of interest. Typically, a middle path is taken where a countable hierarchy of
the problem class is defined and the complexity is analyzed as a function of the levels
in the hierarchy.

Definition 3.1 Let (I,G, S) be an optimization problem class. A size hierarchy is
a countable, increasing sequence I1 ⊆ I2 ⊆ I3 ⊆ . . . of subsets of I such that
I = ⋃

k∈N Ik . The size of any instance I with respect to a size hierarchy is the
smallest k ∈ N such that I ∈ Ik .

The (worst case) complexity of any algorithm A for the problem, with respect to
the size hierarchy, is defined naturally as

compA(k) := supI∈Ik compA(I).

Similarly, the (worst case) information complexity of any algorithm A for the
problem, with respect to the size hierarchy, is defined as

icompA(k) := supI∈Ik icompA(I),

and the (worst case) ε-information complexity of the problem class, with respect to
the size hierarchy, is defined as

icomp ε(k) := infD supI∈Ik icomp ε(D, I),

where the infimum is taken over all adaptive strategies D.

Example 3.2 We review the standard size hierarchies for the problems considered in
Example 1.3.

123

748 A. Basu

1. In the TSP problem class defined in Example 1.3, the standard “binary encoding”
size hierarchy defines Ik to be all instances such that

∑n
i, j=1�log(di j)� ≤ k (so k

must be at least n2), where di j ∈ Z+ are the intercity distances. If one works with
real numbers as distances, the size is defined using the sizes of the real number
oracles (seeDefinition1.1). If one focuses on the so-calledEuclideanTSP instances,
then one can define a different size hierarchy based on the number of bits needed
to encode the coordinates of the cities (or sizes of the real number oracles).
Another alternative is to simply define Ik to be all instances with at most k cities.

2. For MILPs, the standard “binary encoding” size hierarchy defines Ik to be all
instances such that the total number of bits (or sizes of real number oracles) needed
to encode all the entries of A, B, b, c is at most k. Another alternative is to simply
define Ik as those instances where m(n + d) ≤ k, or even simply those instances
with n + d ≤ k.

3. For nonlinear optimization problems of the form (1.1), often the notion of “binary
encoding” is not meaningful. Consider, for example, the problem of minimizing
a linear function f (x) = cT x over a full-dimensional, compact convex body C
given via a separation oracle. A size hierarchy that has been commonly used in this
setting defines Ik as follows: An instance I ∈ Ik if there exist rational numbers
R, r such that C is contained in the ball of radius R around the origin, C also
contains a ball of radius r inside it (the center may not be the origin), and the total
number of bits needed to encode R, r and the coordinates of c is at most k. See
[78, 101] for a fuller discussion and other variants.

The idea of a size hierarchy is meant to formalize the notion that problems with
larger size are “harder” to solve in the sense that it should take an algorithm longer
to solve them. This obviously is often a subjective matter, and as discussed in the
above examples, different size hierarchies may be defined for the same optimization
problem class. The complexity measures as a function of size is very much dependent
on this choice (and also on themodel of computation because differentmodelsmeasure
complexity in ways that are different from the oracle Turing machine model).

Evenwithin theTuringmachinemodel of computation, a classical example ofwhere
different size hierarchies are considered is the optimization problem class of knapsack
problems. Here, one is given n items with weights w1, . . . , wn ∈ Z+ and values
v1, . . . , vn ∈ Z+, and the goal is to find the subset of items with maximum value with
total weight bounded by a given budget W ∈ Z. The standard “binary encoding” size
hierarchy defines the level Ik to be all problems where

∑n
i=1(�logwi� + �log vi�) +

�logW� ≤ k. However, one can also stratify the problems by defining Ik to be all
problems where

∑n
i=1(�logwi� + �log vi�) + W ≤ k. The well-known dynamic

programming based algorithm has complexity compA(k) which is exponential in k
with respect to the first size hierarchy, while it is polynomial in k with respect to the
second size hierarchy.

The standard “binary encoding” size hierarchies are the most commonly used ones,
motivated by the fact that one needs these many bits to “write down the problem” for
the Turing machine to solve. As we see above, if one develops a unified theory for
discrete and continuous optimization based on oracle Turing machines (or other more
flexible models of computation), the “binary encoding” idea loses some of its appeal.

123

Complexity of optimizing over the integers 749

And even within the realm of discrete optimization on conventional Turing machines,
there is no absolute objective/mathematical principle that dictates the choice of a size
hierarchy and, in our opinion, there is subjectivity in this choice. Therefore, complexity
measures as a function of the size hierarchy have this subjectivity inherent in them.

3.2 More fine-grained parameterizations

The approach of a size hierarchy as discussed in the previous section parameterizes
the instances in a one-dimensional way using the natural numbers. One may choose to
stratify instances using more than one parameter and define the complexity measures
as functions of these parameters. This is especially useful in continuous, numerical
optimization settings where the standard “binary encoding” is unavailable to define a
canonical size hierarchy as in the case of discrete optimization problems. For exam-
ple, consider the problems of the form (1.1) where the functions f , g1, . . . , gm are
convex, with the solution operator S(I , ε) consisting of those solutions that satisfy
the constraints up to ε slack, i.e., gi (x) ≤ ε and have objective value f (x) within ε

of the optimal value. We also consider access to a first-order oracle for these func-
tions (see Example 1.5, part 3.). We now create a semi-smooth parameterization of
the family of instances using three parameters d ∈ N and R, M ∈ R: Id,R,M are
those instances such that 1) the domains of the functions is R

d , 2) the feasible region
{x ∈ R

d : gi (x) ≤ 0 i = 1, . . . ,m} is contained in the box {x ∈ R
d : ‖x‖∞ ≤ R},

and 3) f , g1, . . . , gm are Lipschitz continuous with Lipschitz constant M on this
box (a convex function is Lipschitz continuous on any compact set). One can then
define the complexity measures compA(d, R, M) and icompA(d, R, M) for any
ε-approximation algorithm A, and the algorithm independent complexity measure
icompε(d, R, M), as functions of these three parameters (as well as ε, of course). As
an example one can show icompε(d, M, R) ∈ �(d log(MR

ε
)); see Sect. 4.

As in the case of size hierarchies, the goal is to tread a middle path between the
two extremes of very fine-grained instance dependent measures, or worst case values
over all instances (as a function of ε). Parameterizing the problem class with more
than one parameter gives a little more information. Several examples of such param-
eterizations for classes of convex optimization problems is presented in [108]. Our
discussion in the next part will involve similar parameterizations of mixed-integer
optimization problems. See also the related area of computational complexity theory
of parameterized complexity and fixed-parameter tractability (FPT) [63].

Part II

Complexity of mixed-integer convex optimization

After setting up the framework in Part I, we now derive concrete results for the class
of mixed-integer convex optimization problems. More precisely, we will consider
problems of the form

123

750 A. Basu

inf{ f (x, y) : (x, y) ∈ C, (x, y) ∈ Z
n × R

d}. (3.1)

where f : R
n×R

d → R is a convex (possibly nonsmooth) function andC ⊆ R
n×R

d

is a closed, convex set, i.e., an instance I is given by f ,C .Wewill consider the solution
operator S(I , ε) to be all feasible solutions inC that have value at most ε more than the
optimal value. One could allow solutions within ε distance of C and all of the results
given below can be modified accordingly, but we will consider only truly feasible
solutions.

The following definition will be useful in what follows.

Definition 3.3 A fiber box in Z
n × R

d is a set of the form {x}× [�1, u1]× . . . [�d , ud]
where x ∈ Z

n and �i , ui ∈ R for i = 1, . . . , d. The length of the box in coordinate j
is u j − � j . The width of such a fiber box is the minimum of u j − � j , j = 1, . . . , d.
If n = 0, a fiber box is simply a hypercuboid in R

d . A fiber box is the empty set if
ui < �i for some i = 1, . . . , d. If all �i = −∞ and all ui = ∞, then the set is simply
called a fiber over x .

4 �-information complexity

In this section, we establish the best-known lower and upper bounds on the ε-
information complexity of (3.1) in the literature. To get the tightest bounds, we will
restrict our attention to problems with bounded feasible regions and therefore a mini-
mum solution exists. Moreover, we will also focus on “strictly feasible” instances.

Definition 4.1 We parameterize the instances using five parameters n, d ∈ N and
R, M, ρ ∈ R. In,d,R,M,ρ are those instances such that

1. The domain of f and C are both subsets of R
n × R

d .
2. C is contained in the box {z ∈ R

n × R
d : ‖z‖∞ ≤ R}, and

3. f is Lipschitz continuous with respect to the ‖ · ‖∞-norm with Lipschitz constant
M on any fiber box of the form {x} × [−R, R]d with x ∈ [−R, R]n ∩ Z

n , i.e., for
any (x, y), (x, y′) with ‖y − y′‖∞ ≤ R, | f (x, y) − f (x, y′)| ≤ M‖y − y′‖∞.

4. If (x�, y�) is the optimum solution, then there exists ŷ ∈ R
d and 0 < ρ ≤ 1

such that {(x�, y) : ‖y − ŷ‖∞ ≤ ρ} ⊆ C , i.e., there is a “strictly feasible” point
(x�, ŷ) in the same fiber as the optimum (x�, y�) with a fiber box of width ρ

in R
d (the continuous space) around (x�, ŷ) contained in C . Note that if d = 0

(the pure integer case), then this requirement becomes vacuous; consequently, the
bounds below in Theorem 4.2 for the pure integer case do not involve ρ. Also, the
assumption ρ ≤ 1 is not restrictive in the sense that if the condition is satisfied for
some ρ > 0, then it is also satisfied for min{ρ, 1}. Thus, one could alternatively
leave this condition out, and the stated bounds below will be modified by replacing
ρ with min{ρ, 1}.

Table 1 gives a synopsis.

In the statement of the result, we will ignore the sizes of the subgradients, function
values and separating hyperplanes reported in the answers to oracle queries (which is

123

Complexity of optimizing over the integers 751

Table 1 Parameters of the problem instance used to state the complexity bounds

Parameter Meaning

n Number of integer variables

d Number of continuous variables

R Boundedness parameter for the feasible region

ρ Strict feasibility parameter for the feasible region

M Lipschitz constant for the objective function

technically included in our definition of icompε). Thus, we will give lower and upper
bounds on the number of oracle queries only. Taking the sizes of the subgradients
and real numbers involved in the answers leads to several interesting questions which,
to the best of our knowledge, have not been fully worked out in detail. To keep the
discussion aligned with the focus in the literature, we leave these subtleties out of
this presentation. This obviously has implications for space information complexity
as well.

The bounds below for the mixed-integer case n, d ≥ 1 are minor adaptations of
arguments that first appeared in [14, 111]. The main difference is that our presentation
here uses themore general information theoretic language developed in Part I, whereas
the results in [14, 111] were stated for a certain class of algorithms called cutting plane
algorithms (see Sect. 5.3).

Theorem 4.2 Let the oracle access to an instance f ,C of for (3.1) in In,d,R,M,ρ from
Definition 4.1 be through a separation oracle for C, and a first-order oracle for f ,
i.e., one can query the function value and the subdifferential for f at any point. As a
quick legend: n
Lower bounds

• If n, d ≥ 1,

icomp ε(n, d, R, M, ρ) ∈ 	
(
d2n log

(
R
ρ

))
.

• If d = 0,

icomp ε(n, d, R, M, ρ) ∈ 	(2n log (R)) .

• If n = 0,

icomp ε(n, d, R, M, ρ) ∈ 	
(
d log

(
MR
ρε

))
.

Upper bounds

• If n, d ≥ 1

icomp ε(n, d, R, M, ρ) ∈ O
(
(n + d)d2n log

(
MR
ρε

))
.

123

752 A. Basu

• If d = 0

icomp ε(n, d, R, M, ρ) ∈ O (n2n log(R)) .

• If n = 0

icomp ε(n, d, R, M, ρ) ∈ O
(
d log

(
MR
ρε

))
.

Note that when n = 0, i.e., we consider continuous convex optimization with no

integer variables, we have icomp ε(n, d, R, M, ρ) = �
(
d log

(
MR
ρε

))
, giving a tight

characterization of the complexity. In fact, these results can be obtained for a much
broader class of oracles that include first-order/separation oracles as special cases; see
[28, 107–109].

For pure integer optimization with d = 0, our upper and lower bounds are off
by a linear factor in the dimension, which is of much lower order compared to the
dominating term of 2n log(R). Put another way, both bounds are 2O(n) log(R). The
lower bounds come from the feasibility question (see the proofs below). Additionally,
since the strict feasibility assumption is vacuous and for small enough ε > 0, S(I , ε)
is the set of exact optimum solutions, M, ε and ρ do not play a role in the upper and
lower bounds; in particular, they are the bounds for obtaining exact solutions (ε = 0)
as well.

There seems to be scope for nontrivial improvement in the bounds presented for
the mixed-integer case, i.e., n, d ≥ 1:

1. It would be nice to unify the lower bound for n = 0 (the continuous case) and
n ≥ 1 (the truly mixed-integer case). The proof below for n, d ≥ 1 is based on the
feasibility question, which is whyM and ε do not appear in the lower bound. This is
inspired by the proof technique in [14]. We do not see a similar way to incorporate
the objective function parameters to match the upper bound. We suspect that one

should be able to prove the stronger lower bound of 	
(
d2n log

(
MR
ρε

))
, but at

present we do not see how to do this and we are not aware of any existing literature
that achieves this.

2. When one plugs in n = 0 in the mixed-integer upper bound (n, d ≥ 1), one does
not recover the tight upper bound for n = 0; instead, the bound is off by a fac-
tor of d. We believe this can likely be improved, for example, if Conjecture 4.6
below is proved to be true in the future. Then one would have an upper bound of

O
(
(n + d)2n log

(
MR
ρε

))
in the mixed-integer case that more accurately general-

izes both the pure continuous (n = 0) and pure integer (d = 0) upper bounds.

4.1 Proof of the lower bounds in Theorem 4.2

The general strategy is the following: Given any adaptive query sequence D, we
will construct two instances (f1,C1), (f2,C2) ∈ In,d,R,M,ρ such that the transcripts
�k(D, (f1,C1)) and �k(D, (f2,C2)) are equal for any k less than the lower bound,
but S((f1,C1), ε) ∩ S((f2,C2), ε) = ∅.

123

Complexity of optimizing over the integers 753

The mixed-integer case (n, d ≥ 1). We will show that icomp ε(n, d, R, M, ρ) ≥
d2n log2

(
R
3ρ

)
. We construct C1,C2 ⊆ R

n ×R
d such that C1 ∩C2 ∩ (Zn ×R

d) = ∅,
both sets satisfy the strict feasibility condition dictated by ρ, and any separation oracle
query from D on C1 and C2 has the same answer. Our instances will consist of these
two sets as feasible regions and f1 = f2 as constant functions, thus any first-order
oracle query in D will simply return this constant value and 0 as a subgradient. Since
there is no common feasible point, S((f1,C1), ε) ∩ S((f2,C2), ε) = ∅ as required.

The construction of C1 and C2 goes as follows. Since the function oracle calls are
superfluous, we may assume the k (adaptive) queries {q1, . . . , qk} to be all separation
oracle queries. Begin with X0 = [0, 1]n × [0, R]d . We create a nested sequence
X0 ⊇ X1 ⊇ X2 ⊇ . . . ⊇ Xk such that Xi ∩ ({x}×R

d) is a fiber box (possibly empty)
for any x ∈ {0, 1}n . Xi is defined inductively from Xi−1, using the query qi . For every
x̃ ∈ {0, 1}n , we maintain a counter #x̃(i)which will keep track of howmany q j , j ≤ i
queried a point of the form (x̃, y) inside X j−1 for some y ∈ R

d .
If qi queries (xi , yi) /∈ Xi−1, then we simply report any hyperplane separating

(xi , yi) from Xi−1 as the answer to qi and define Xi = Xi−1. If qi queries (xi , yi) ∈
Xi−1 \ (Zn × R

d) (i.e., xi /∈ Z
n), we define Xi = Xi−1 and the answer to the query

qi is that (xi , yi) is in the set.

Suppose now (xi , yi) ∈ Xi−1 ∩ (Zn × R
d). If #xi (i − 1) ≥ d log2

(
R
3ρ

)
then

we report a halfspace H that separates Xi−1 ∩ ({xi } × R
d) from the rest of the fibers

Xi−1∩({x}×R
d) for x �= xi , and define Xi = Xi−1∩H . If #xi (i−1) < d log2

(
R
3ρ

)

then select the coordinate j = (#xi (i − 1) mod d) + 1 and define the hyperplane
{(x, y) ∈ R

n × R
d : y j = yij }. Let B denote the fiber box Xi−1 ∩ ({xi } × R

d).

Consider the separation with a halfspace Ĥ with this hyperplane such that B ∩ Ĥ
has length in coordinate j to be at least half of the length B in coordinate j . We now
rotate this hyperplane and halfspace Ĥ to obtain a halfspace H such that Xi−1 ∩ H
has the same intersection as Xi−1 with ({x}×R

d) for x �= xi . In other words, all other
mixed-integer fibers in Xi−1 are maintained. Define Xi = Xi−1 ∩ H and H as the
separating halfspace for query qi . Update #xi (i) = #xi (i−1)+1. Note that the above
construction ensures inductively that for any i ∈ {1, . . . , k}, the set Xi ∩ ({x} × R

d)

is a fiber box for x ∈ {0, 1}n .
Since

∑
x∈{0,1}n #x(k) ≤ k < 2n · d log2

(
R
3ρ

)
, we observe that Xk contains a fiber

box B of width at least 3ρ. Thus, we can select two fiber boxes B1, B2 ⊆ B such that
B1∩B2 = ∅, and B1 and B2 have width ρ. For i = 1, 2, defineCi to be the convex hull
of Bi and all the points queried by D that were reported to be in the set. We observe
that Ci ∩ (Zn × R

d) = Bi for i = 1, 2 and thus we have no common feasible points
in C1,C2. This completes the proof for d ≥ 1.

The pure integer case (d = 0). The proof proceeds in a similar manner to the mixed-
integer case (n, d ≥ 1) with X0 = [0, 1]n−1 × [0, �R�] ⊆ R

n . The “fibers” are now
{x} × {0, 1, . . . , �R�}. If k < 2n log2(R), one can again construct C1,C2 ⊆ X0 such
that C1 ∩ C2 ∩ Z

n = ∅ by an inductive argument based on the queries from D, and
take f1, f2 as constant functions.

123

754 A. Basu

The pure continuous case (n = 0). We omit the proof as this has appeared in many
different places in the literature [28, 107–109]. The idea is very similar to what was
presented above for the general mixed-integer case. One proves that

icomp ε(d, R, M, ρ) ≥ max
{
d log2

(
R
3ρ

)
, d log2

(MR
8ε

)}

≥ d log2
(

R
3ρ

)
+d log2

(
MR
8ε

)

2

∈ 	
(
d log

(
MR
ρε

))
.

If k < d log2
(

R
3ρ

)
one can appeal to the mixed-integer case above. In fact, there is

no rotation of halfspaces necessary as there are no integer fibers. If k < d log2
(MR

8ε

)
,

one constructs two different convex functions f1, f2 while the feasible region can be
taken to be [0, R]d in both cases. The details are a little more complicated than the
separation oracle case, since the function values and the subgradients have to be more
carefully engineered.We refer the reader to the references cited above for the details.��

4.2 Proof of the upper bounds in Theorem 4.2

The idea of the upper bound hinges on a geometric concept that has appeared in several
different areas of mathematics, including convex geometry, statistics and theoretical
computer science.

Definition 4.3 For any S ⊆ Z
n × R

d with d ≥ 1, ν(S) will denote the mixed-integer
volume of S, i.e.,

ν(S) :=
∑

x∈Zn

μd(S ∩ ({x} × R
d)),

where μd is the standard Lebesgue measure (volume) in R
d . If d = 0, we overload

notation and use ν(S) to denote the number of integer points in S, i.e., the counting
measure on Z

n .

Note that if S = C ∩ (Zn × R
d) for a compact convex set C ⊆ R

n × R
d , then ν(S)

is finite.

Definition 4.4 For any S ⊆ Z
n × R

d and x ∈ R
n × R

d , define

hS(x) := inf
halfspace H :

x ∈ H

ν(S ∩ H).

The set of centerpoints of S is defined as C(S) := argmaxx∈S hS(x).
The above concept was first defined in TimmOertel’s Ph.D. thesis [111] and exten-

sions were introduced in [14]. We refer the reader to the thesis and the cited paper,
and the references therein for structural properties of hS and C(S). For our purposes,
we will simply need the following result.

123

Complexity of optimizing over the integers 755

Theorem 4.5 Let C ⊆ R
n×R

d be any compact, convex set and let S = C∩(Zn×R
d).

Then C(S) is nonempty and hS(x̂) ≥ 1
2n(d+1) ν(S) for any centerpoint x̂ . If n = 0, then

hS(x̂) ≥
(

d
d+1

)d
ν(S) ≥ 1

e ν(S).

The first bound in Theorem 4.5 was first established in [111] and is a special case
of a general result involving Helly numbers [14, Theorem 3.3]. The second bound
(n = 0) is due to Grünbaum [79]. There is clearly a gap in the two cases and the
following sharper lower bound is conjectured to be true [14, 111]; a matching upper
bound is given by S = {0, 1}n ×�d , where�d is the standard d-dimensional simplex.

Conjecture 4.6 Under the hypothesis of Theorem 4.5, hS(x̂) ≥ 1
2n

(
d

d+1

)d
ν(S) ≥

1
2n

1
e ν(S) for any n, d ≥ 0 (both not both 0) for any centerpoint x̂ .

The final piece we need is the following consequence of a “strict feasibility” type
assumption.

Lemma 4.7 Let 1 ≤ p ≤ ∞. Let C ⊆ R
k be a closed, convex set such that {z ∈

R
k : ‖z − a‖p ≤ ρ} ⊆ C ⊆ {z ∈ R

k : ‖z‖p ≤ R}, for some R, ρ ∈ R+ and
a ∈ R

k . Let f : R
k → R be a convex function that is Lipschitz continuous over

{z ∈ R
k : ‖z‖p ≤ R} with respect to the ‖ · ‖p-norm with Lipschitz constant M. For

any ε ≤ 2MR and for any z� ∈ C, the set {z ∈ C : f (z) ≤ f (z�) + ε} contains an
‖ · ‖p ball of radius

ερ
2MR with center lying on the line segment between z� and a.

Proof Since C ⊆ {z : ‖z‖p ≤ R}, we must have C ⊆ {z : ‖z − z�‖p ≤ 2R}. By
convexity of C and the fact that ε

2MR ≤ 1, z� + ε
2MR (C − z�) ⊆ C . Hence,

z� + ε

2MR
(C − z�) ⊆ {z ∈ C : ‖z − z�‖p ≤ ε

M
} ⊆ {z ∈ C : f (z) ≤ f � + ε},

where the second containment follows from the Lipschitz property of f . Since C
contains an ‖ · ‖p ball of radius ρ centered at a, the set z� + ε

2MR (C − z�) (i.e., the
ε

2MR scaling of C about z�) must contain a ball of radius ερ
2MR centered at a point on

the line segment between z� and a. ��
We now proceed with the proof of the upper bounds in Theorem 4.2.

The mixed-integer case with n, d ≥ 1. We consider the following adaptive search
strategy. For any finite subset T ⊆ Q × H (possibly empty), where Q is the set of
all possible first-order or separation oracle queries in [−R, R]n+d and H is the set
of possible responses to such queries, define D(T) as follows. Let z1, . . . , zq be the
points queried in T where either a first-order oracle call to a function was made, or a
separation oracle call was made that returned a separating hyperplane (i.e., the point
is not in the set queried). Let h j be the subgradient or normal vector to the separating
hyperplane returned at z j , j = 1, . . . , q. Define vmin to be the minimum function
value seen so far (+∞ if no first order query exists in T).

The next query for D will be at the centerpoint ẑ of the set

{

z ∈ Z
n × R

d : 〈hi , z − zi 〉 ≤ 0 i = 1, . . . , q,

‖x‖∞ ≤ R

}

123

756 A. Basu

If T is the transcript on an instance f ,C , then the “search space” polyhedron P
defined by the above inequalities contains C ∩ {z : f (z) ≤ vmin}. D now queries
the centerpoint of P ∩ (Zn × R

d) so that any separating hyperplane or subgradient
inequality can remove a guaranteed fraction of themixed-integer volume of the current
search space. More formally, D first queries the separation oracle for C at ẑ. If the
separation oracle says ẑ is in C , then D queries the first-order oracle for f at ẑ.

Consider any instance I = (f ,C) ∈ In,d,R,M,ρ and any natural number

k ≥ 2 ·
(

logb

((
2R + 1

ρ

)n+d
)

+ logb

((
M(2R + 1)

ε

)n+d
))

,

where b = 2n(d+1)
2n(d+1)−1 . We claim that at least one first-order oracle query appears in the

transcript �k(D, I) and zmin ∈ S(I ′, ε) for every instance I ′ such that �k(D, I ′) =
�k(D, I), where zmin is a point queried in the transcript �k(D, I) with the minimum
function value amongst all points queried with a first-order query on f in �k(D, I).
In other words, for any instance I ′ = (f ′,C ′) such that �k(D, I ′) = �k(D, I), we
have zmin ∈ C ′ and f ′(zmin) − OPT ≤ ε where OPT is the minimum value of f ′
on C ′. This will prove the result since

2 ·
(

logb

((
2R+1

ρ

)n+d
)

+ logb

((
M(2R+1)

ε

)n+d
))

= 2(n + d) logb
(
M(2R+1)2

ρε

)

= 2(n + d) ln
(
M(2R+1)2

ρε

)
/ ln(b)

≤ 2(n + d)2n(d + 1) ln
(
M(2R+1)2

ρε

)

∈ O
(
(n + d)d2n log

(
MR
ρε

))

First, let k′ be the number of queries in �k(D, I) that were either first-order oracle
queries on f or separation oracle queries on C that returned a separating hyperplane,
i.e., we ignore the separation oracle queries on points inside C . Observe that k′ ≥
k/2 ≥ logb

((
2R+1

ρ

)n+d
)

+ logb

((
M(2R+1)

ε

)n+d
)

since a query on any point in C

is immediately followed by a first order query on the same point. Theorem 4.5 implies
that each of these k′ queries reduces the mixed-integer volume of the current search
space by at least 1/b. Recall that we start with a mixed-integer volume of at most
(2R + 1)n+d and C contains a fiber box of mixed-integer volume at least ρd ≥ ρn+d

(since ρ ≤ 1). Thus, at most logb

((
2R+1

ρ

)n+d
)

queries can be separation oracle

queries and we have at least logb

((
M(2R+1)

ε

)n+d
)

first-order queries to f at points

insideC∩(Zn ×R
d). Let k′′ denote the number of such queries, queried at z1, . . . , zk′′

with responses h1, . . . , hk′′ as the subgradients and v1, . . . , vk′′ as the function values.
Let vmin be the minimum of these function values, corresponding to the query point
zmin. Since zmin is feasible toC , if f ′,C ′ is any other instance with the same responses
to all queries in �k(D, I), then zmin is feasible to C ′ as well. In fact, all the points

123

Complexity of optimizing over the integers 757

z1, . . . , zk′′ are in C ′. We now verify that f ′(zmin) ≤ OPT + ε where OPT is the
minimum value of f ′ on C ′ ∩ (Zn × R

d) attained at, say z� = (x�, y�).
Let C ′′ = C ′ ∩ ({x�} × R

d) be the intersection of C ′ with the fiber containing z�.
Consider the polyhedron

P̃ := {z : 〈h j , z − z j 〉 ≤ 0 j = 1, . . . , k′′}.

Since we have been reducing the mixed-integer volume at a rate of 1/b, C ′ ∩ P̃
has mixed-integer volume at most (2R + 1)n+d/bk

′
and therefore C ′′ ∩ P̃ has d-

dimensional volume at most (2R + 1)n+d/bk
′
. Since k′ ≥ logb

((
2R+1

ρ

)n+d
)

+

logb

((
M(2R+1)

ε

)n+d
)

, we must have bk
′ ≥

(
2R+1

ρ

)n+d ·
(
M(2R+1)

ε

)n+d
. Thus,C ′′ ∩

P̃ has d-dimensional volume at most
(

ρε
M(2R+1)

)n+d
. We may assume ε

2MR ≤ 1,

otherwise any feasible solution is an ε approximate solution, and so is zmin. Since

ρ ≤ 1 as well, this means ρε
M(2R+1) ≤ 1. Therefore,

(
ρε

M(2R+1)

)n+d ≤
(

ρε
M(2R+1)

)d
<

(
ρε

2MR

)d . From Lemma 4.7, {z ∈ C ′′ : f ′(z) ≤ f ′(z�) + ε} has volume at least
(

ρε
2MR

)d . Thus, at least one point ẑ in {z ∈ C ′′ : f ′(z) ≤ OPT + ε} must be outside
C ′′ ∩ P̃ . Such a point must violate one of the subgradient inequalities defining P̃ ,
say corresponding to index j̃ . In other words, 〈h j̃ , ẑ − z j̃ 〉 > 0. This means f ′(ẑ) ≥
f ′(v j̃) + 〈h j̃ , ẑ − z j̃ 〉 > f ′(v j̃). Thus, f

′(zmin) ≤ f ′(v j̃) < f ′(ẑ) ≤ OPT + ε.

The pure integer case with d = 0. The proof proceeds in a very similar manner
except that one can stop when we have at most one integer point left in the polyhedral
search space. Thus, we start from the box [−R, R]n containing (2R + 1)n integer
points and end with at most a single integer point, removing at least 1

2n fraction of
integer points every time by Theorem 4.5.

The pure continuous case with n = 0. The proof is very similar and the only
difference is that we can use the stronger bound on the centerpoints due to Grünbaum
from Theorem 4.5. In other words, b can be taken to be the Euler’s constant while
mimicking the proof of the n, d ≥ 1 case above. ��

Remark 4.8 The upper and lower bounds achieved above are roughly a consequence
of the concept of Helly numbers [7, 18, 62, 81, 85, 122]. For any subset S ⊆ R

k ,
we say K1, . . . , Kt is a critical family of convex sets with respect to S (of size t) if
K1∩ . . .∩Kt ∩ S = ∅, but for any i ∈ {1, . . . , t},∩ j �=i K j ∩ S �= ∅. TheHelly number
of S is the size of the largest critical family with respect to S (possibly +∞). It turns
out that the Helly number of Z

n × R
d ⊆ R

n+d is 2n(d + 1) and there exists a critical
family of halfspaces H1, . . . , H2n(d+1) of this size [7, 85]. Now consider the family
of 2n(d + 1) polyhedra ∩ j �=i H j for i = 1, . . . , 2n(d + 1), along with the polyhedron

∩2n(d+1)
j=1 Hj . If one makes less than 2n(d + 1) separation oracle queries, then every

time we can simply report the halfspace Hj that does not contain a mixed-integer

query point (such a halfspace exists since ∩2n(d+1)
j=1 Hj ∩ (Zn × R

d) = ∅), and if the

123

758 A. Basu

query point is not in Z
n × R

d , we truthfully report if it is in ∩2n(d+1)
j=1 Hj or not. The

intersection of these reported halfspaces still contains a point from Z
n × R

d since it
is a critical family and we have less than 2n(d + 1) queries. Therefore, we are unable
to distinguish between the case ∩2n(d+1)

j=1 Hj which has no point from Z
n ×R

d and the
nonempty case. This gives a lower bound of 2n(d + 1). As we saw in the proof of the
upper bound above, the key result is Theorem 4.5 which is based on Helly numbers
again [14, 79, 111].

5 Algorithmic complexity

Theupper bounds on ε-information complexity presented inSect. 4 donot immediately
give upper bounds on algorithmic complexity, unless we can provide an algorithm for
computing centerpoints. This is computationally extremely challenging [14, 111].
The best known algorithms for mixed-integer convex optimization do not match the
ε-information complexity bounds presented, even in terms of the informational bound
icompA (see Definition 1.7).Wewill present an ε-approximation algorithm formixed-
integer convex optimization in this section whose information complexity bound is
the closest known to the algorithm independent ε-information complexity bound from
the previous section. In the case of pure continuous optimization, i.e., n = 0, the
algorithm’s information complexity is larger than the corresponding ε-information
complexity bound in Theorem 4.2 by a factor that is linear1 in the dimension d.
In the case of pure integer optimization, i.e., d = 0, the algorithm’s information
complexity bound is 2O(n log n) log(R). Compared to the ε-information complexity
bound of 2O(n) log(R) from Theorem 4.2, there seems to be a significant gap. It
remains a major open question in integer optimization whether the gap between 2O(n)

and 2O(n log n) can be closed or not by designing a better algorithm.
The overall complexity (including the computational complexity) of the algorithm

(see Definition 1.7) will be seen to be a low degree polynomial factor larger than its
information complexity.

5.1 Enumeration and cutting planes

Algorithms for mixed-integer convex optimization are based on two main ideas. The
first one, called branching, is a way to systematically explore different parts of the
feasible region. The second aspect, that of cutting planes, is usefulwhen one isworking
with a relaxation (superset) of the feasible region and uses separating hyperplanes to
remove parts of the relaxation that do not contain feasible points.

Definition 5.1 A disjunction for Z
n × R

d is a union of polyhedra D = Q1 ∪ . . . ∪ Qk

such that Z
n × R

d ⊆ D.
For any set X in some Euclidean space, a cutting plane for X is a halfspace H such

that X ⊆ H . If X is of the form C ∩ (Zn × R
d), then the cutting plane is trivial if

C ⊆ H , while it is said to be nontrivial otherwise.

1 There is also a factor of log(d) which shows up due to technical reasons of using ‖ · ‖2 instead of ‖ · ‖∞.

123

Complexity of optimizing over the integers 759

The words “trivial” and “nontrivial” are used here in a purely technical sense. For a
complicated convex setC , wemay have a simple polyhedral relaxation R ⊇ C such as
those used in the proofs of upper bounds in Theorem 4.2, and the separation oracle for
C can return trivial cutting planes that shave off parts of R. But if the oracle is difficult
to implement, there may be nothing trivial about obtaining such a cutting plane. Our
terminology comes from settings where C has a simple description and separating
from C is not a big deal; rather, the interesting work is in removing parts of C that do
not contain any point from X = C ∩ (Zn × R

d). We hope the reader will indulge us
in our purely technical use of the terms trivial and nontrivial cutting planes.

Example 5.2 1. Awell-knownexample of disjunctions forZn×R
d is the family of split

disjunctions that are of the form {x ∈ R
n+d : 〈π, x〉 ≤ π0}∪{x ∈ R

n+d : 〈π, x〉 ≥
π0 + 1}, where π ∈ Z

n × {0}d and π0 ∈ Z. When the first n coordinates of π

correspond to a standard unit vector, we get variable disjunctions, i.e., disjunctions
of the form {x : xi ≤ π0}∪{x : xi ≥ π0+1}, for i = 1, . . . , n. Several researchers
in this area have also considered the intersection of t different split disjunctions to
get a disjunction [46, 47, 99]; these are known as t-branch split disjunctions.

2. As mentioned above, for any convex set C contained in a polyhedron P , the sepa-
ration oracle for C can return trivial cutting planes if a point from P \C is queried.
Examples of nontrivial cutting planes for sets of the form C ∩ (Zn × R

d) include
Chvátal-Gomory cutting planes [123, Chapter 23] and split cutting planes [39].
These will be discussed in more detail below.

5.2 The“Lenstra-style” algorithm

Cutting plane based algorithmswere designed in continuous convex optimization quite
early in the development of the subject [109]. In the 80s, these ideas were combined
with techniques from algorithmic geometry of numbers and the idea of branching on
split disjunctions to design algorithms for the mixed-integer case as well [78, 90, 98].
There has been a steady line of work since then with sustained improvements; see [41,
80, 83, 92] for a representative sample. We will present here an algorithm based on
these ideas whose complexity is close to the best known algorithmic complexity for
the general mixed-integer case.

We first introduce some preliminary concepts and results.

Definition 5.3 Given a positive definite matrix A ∈ R
k×k , the norm defined by A on

R
k is ‖x‖A := √

xT A−1x . The unit ball of this norm EA := {x : xT A−1x ≤ 1} is
called an ellipsoid defined by A. The orthonormal eigenvectors of A are called the
principal axes.

The following result, due to Yudin and Nemirovski [129], is a foundational building
block for the algorithm.

Theorem 5.4 [78, Lemma 3.3.21] Let A ∈ R
k×k be a positive definite matrix. For

any halfspace H and any 0 ≤ β < 1
k such that H does not contain βEA, there exists

another positive definite matrix A′ and c ∈ R
k such that EA ∩ H ⊆ c + EA′ and

123

760 A. Basu

vol(EA′) ≤ e− (1−βk)2

5k vol(EA),

where vol(·) denotes the k-dimensional volume. Moreover, c and A′ can be computed
from A by an algorithm with complexity O(k2).

We will also need the following fundamental result in geometry of numbers.

Theorem 5.5 (Khinchine’s flatness theorem for ellipsoids) [8, 9, 121] Let E ⊆ R
k be

an ellipsoid and c ∈ R
k such that (c + E) ∩ Z

k = ∅. Then there exists w ∈ Z
k \ {0}

such that

max
v∈E 〈w, v〉 − min

v∈E 〈w, v〉 ≤ k.

The final piece we will need is the following algorithmic breakthrough achieved at
the beginning of the previous decade [2, 3, 104, 105]. We state the result in a way that
will be most convenient for us.

Theorem 5.6 Let A ∈ R
k×k be a positive definite matrix. Then there exist algorithms

with worst case complexity 2O(k) poly(size(A)) that solve the following optimization
problems:

min
v∈Zk\{0}

‖v‖A (Shortest Vector Problem (SVP))

and for any given vector c ∈ R
k ,

min
v∈Zk

‖v − c‖A (Closest Vector Problem (CVP))

We are now ready to describe our algorithm. We begin with a feasibility algorithm
before discussing optimization. Given a closed, convex set, the algorithm either cor-
rectly computes a mixed-integer point in the convex set, or reports that there is no
mixed-integer point “deep inside” the set. Thus, the algorithm is not an exact feasibil-
ity algorithm. Nevertheless, this will suffice to design an ε-approximation algorithm
for the problem class (3.1) parameterized by n, d, M, R, ρ, as studied in Sect. 4. How-
ever, since we work with ellipsoids, the parameters R, ρ and the Lipschitz constant
M will all use the ‖ · ‖2 norm instead of the ‖ · ‖∞ norm as in Sect. 4. Moreover, M
is defined with respect to the full space R

n × R
d , as opposed to just R

d .

Theorem 5.7 Let R ≥ 0. There exists an algorithm A, i.e., oracle Turing machine,
such that for any closed, convex set C ⊆ {z ∈ R

n × R
d : ‖z‖2 ≤ R} equipped with

a separation oracle that A can access, and any δ > 0, either correctly computes a
point in C ∩ (Zn × R

d), or correctly reports that there is no point z ∈ C ∩ (Zn × R
d)

such that the Euclidean ball of radius δ around z is contained in C.
Moreover,

icompA(n, d, R, δ) ≤ 2O(n log(n+d)) log
(R

δ

)

123

Complexity of optimizing over the integers 761

and

compA(n, d, R, δ) ≤ 2O(n log(n+d)) poly
(
log

(
R(n+d)

δ

))

Proof The algorithm uses recursion on the “integer dimension” n.
Let c0 = 0 and E0 = {z : ‖z‖2 ≤ R}. The algorithm will either iteratively compute

ci ∈ R
n × R

d and ellipsoid Ei ⊆ R
n × R

d from ci−1, Ei−1 for i = 1, 2, . . . such
that the invariant C ⊆ ci + Ei is maintained, or the algorithm will recurse on lower
dimensional problems.

If vol(Ei−1) less than the volume of a Euclidean ball of radius δ, then we report
that there is no point z ∈ C∩(Zn ×R

d) such that the Euclidean ball of radius δ around
z is contained in C .

Otherwise, we either compute a “test point” (x̂, ŷ) ∈ Z
n ×R

d and generate the new
ci , Ei based on properties of this point (Cases 1 and 2a below), or recurse on lower
dimensional subproblems (Case 2b below).
Case 1: n = 0. Define (x̂, ŷ) to be ci−1. We query the separation oracle of C at
(x̂, ŷ). If this point is in C , we are done. Else, we obtain a separating halfspace H .
Applying Theorem 5.4 with k = n + d and β = 0, we can construct ci and Ei such

that (ci−1 + Ei−1) ∩ H ⊆ ci + Ei and vol(Ei) ≤ e− 1
5(n+d) vol(Ei−1). Note that this

ensures C ⊆ ci + Ei since inductively we know C ⊆ (ci−1 + Ei−1) ∩ H .
Case 2: n ≥ 1. We compute the projections c′, E ′ of ci−1, Ei−1 onto the coordinates
corresponding to the integers, i.e., R

n . This is easy to do for ci−1 (simply drop the
other coordinates) and given the matrix Ai−1 defining Ei−1, the submatrix A′ of Ai−1
whose rows and columns correspond to the integer coordinates is such that EA′ is the
projection of Ei−1. We now solve the closest vector problem (CVP) for c′ ∈ R

n and
the norm given by A′ ∈ R

n×n using the algorithm in Theorem 5.6 to obtain x̂ ∈ Z
n .

Case 2a: ‖x̂ − c′‖A′ ≤ 1
n+d+1 . In other words, x̂ ∈ c′ + 1

n+d+1 E
′. Since c′, E ′

are projections of ci−1, Ei−1 respectively, c′ + 1
n+d+1 E

′ is the projection of ci−1 +
1

n+d+1 Ei−1 by linearity of the projection map. Hence, there must be ŷ ∈ R
d such that

(x̂, ŷ) ∈ ci−1+ 1
n+d+1 Ei−1. Therefore, if we compute argminy∈Rd ‖(x̂, y)−ci−1‖Ai−1

which amounts to computing the minimizer of an explicit convex quadratic function
in R

d (which can be done analytically or via methods like conjugate gradient), we can
find a point (x̂, ŷ) in ci−1 + 1

n+d+1 Ei−1.
We query the separation oracle ofC at (x̂, ŷ). If this point is inC , we are done. Else,

we obtain a separating halfspace H . Since (x̂, ŷ) is in ci−1 + 1
n+d+1 Ei−1, this means

ci−1 + 1
n+d+1 Ei−1 is not contained in H . Applying Theorem 5.4 with k = n + d

and β = 1
n+d+1 , we can construct ci and Ei such that (ci−1 + Ei−1) ∩ H ⊆ ci + Ei

and vol(Ei) ≤ e
− 1

5(n+d)(n+d+1)2 vol(Ei−1). Note that this ensures C ⊆ ci + Ei since
inductively we know C ⊆ (ci−1 + Ei−1) ∩ H .

Case 2b: ‖x̂ − c′‖A′ > 1
n+d+1 . In other words, x̂ /∈ c′ + 1

n+d+1 E
′ which implies

that c′ + 1
n+d+1 E

′ has no integer points since x̂ is the closest integer point to c′
in the norm ‖ · ‖A′ . Theorem 5.5 implies that there exists w ∈ Z

n \ {0} such that
maxx∈E ′ 〈w, x〉 − minx∈E ′ 〈w, x〉 ≤ n(n + d + 1). Rearranging, this says that
maxx,x ′∈E ′ 〈w, x − x ′〉 ≤ n(n + d + 1) and therefore

123

762 A. Basu

max
p∈2E ′〈w, p〉 = max

p∈E ′+E ′〈w, p〉 = max
p∈E ′−E ′〈w, p〉 ≤ n(n + d + 1),

where the equalities follow from the fact that E ′ is convex and centrally symmetric
about the origin. Standard results in convex analysis involving polarity imply that
‖w‖ Ã = maxp∈2E ′ 〈w, p〉 where Ã := 1

4 A
′−1. We therefore compute the shortest

vector w� ∈ Z
n \ {0} by the algorithm in Theorem 5.6 with respect to the norm ‖ · ‖ Ã

and we are guaranteed that

max
x∈E ′ 〈w�, x〉 − min

x∈E ′ 〈w�, x〉 ≤ n(n + d + 1).

All mixed-integer points must lie on the hyperplanes {(x, y) ∈ R
n×R

d : 〈w�, x〉 ∈
Z}. Moreover, since C ⊆ E and E ′ is the projection of E , it suffices to search over the
“slices” of C given by C ∩ {(x, y) ∈ R

n × R
d : 〈w�, x〉 = m} for m = �〈w�, c′〉 −

n(n + d + 1)�, �〈w�, c′〉 − n(n + d + 1)� + 1, . . . , �〈w�, c′〉 + n(n + d + 1)�. By a
change of coordinates in the integer constrained variables, these slices involve n − 1
integer variables and we recurse on these subproblems.We also note that if there exists
z ∈ C ∩ (Zn × R

d) with a ball of radius δ around z contained in C , then the slice
containing z will also have the same property. Thus, if the algorithm fails on all the
slices, then the algorithm will indeed report correctly that there is no such point in C .2

Number of oracle calls and overall complexity. Within any particular level of the

recursion, the algorithm makes at most 5(n + d)(n + d + 1)2 ln
((R

δ

)n+d
)
iterations

of constructing new ellipsoids in Case 1 or Case 2a. This is because we start with a
ball of radius R, stop after the volume of the ellipsoid gets smaller than the volume

of a ball of radius δ, and the volume is reduced by a factor of at least e
− 1

5(n+d)(n+d+1)2

every time. Thus, at most 5(n + d)(n + d + 1)2 ln
((R

δ

)n+d
)
oracle calls are made

within every level of the recursion. The recursion over 2n(n + d + 1) subproblems
leads to at most (2n(n + d + 1))n = 2O(n log(n+d)) subproblems. Putting everything
together we obtain the bound stated in the theorem on the number of separation oracle
calls.

There are two computation intensive steps beyond the separation oracle calls: 1)
Computing ci , Ei from ci−1, Ei−1 based on Theorem 5.4, and 2) Solving closest
vector and shortest vector problems using the algorithm in Theorem 5.6. The first has
complexity O(n+d)2 and the second has complexity 2O(n) times a polynomial factor
of the sizes of the matrices involved. Both 1) and 2) above may result in irrational
numbers if we perform exact computations. Since we wish to remain in the Turing
machine model of computation, one has to make sure that we can round these to a
polynomial number of bits and the sizes of the numbers do not grow exponentially.
We omit these technical details from this presentation and refer the reader to [78].
Once all of this is taken into account, we obtain the bound on the overall complexity
of the algorithm stated in the theorem. Using these careful approximation techniques,

2 A subtlety here is to make sure that one has access to a separation oracle for the lower dimensional
subproblems. This is not hard to implement given access to a separation oracle for C : given a point in the
new space, one maps back to R

n × R
d and queries the separation oracle there.

123

Complexity of optimizing over the integers 763

the space complexity of the algorithm can in fact be bounded by a polynomial in
the parameters of the problem (note that the computational (time) complexity is not
polynomial) [69, 78]. ��
Theorem 5.8 Consider the family of problems of the form (3.1) such that if (x�, y�) ∈
Z
n × R

d is the optimum solution, then there exists ŷ ∈ R
d and ρ > 0 such that

{(x, y) : ‖(x, y)− (x�, ŷ)‖2 ≤ ρ} ⊆ C, i.e., there is a “strictly feasible” point (x�, ŷ)
in the same fiber as the optimum (x�, y�) with a Euclidean ball of radius ρ in R

n ×R
d

around (x�, ŷ) contained in C. Let In,d,R,M,ρ be defined as in Sect. 4 for this family,
except that ‖ · ‖2 is used instead of ‖ · ‖∞ in the definition of the parameters R, M, ρ,
and M is defined with respect to the full space R

n × R
d , as opposed to just R

d .
Let the oracle access to an instance f ,C in In,d,R,M,ρ be through a separation

oracle for C and a first-order oracle for f . Then for every ε > 0, there exists an
ε-approximation algorithm A for this problem class with

icompA(n, d, R, M, ρ) ≤ 2O(n log(n+d))
(
log

(
MR
ρε

))2

and

compA(n, d, R, M, ρ) ≤ 2O(n log(n+d)) poly
(
log

(
MR(n+d)

ρε

))

Proof If ε > 2MR, then any feasible solution is an ε-approximate solution, so we
may simply run the feasibility algorithm from Theorem 5.7 with δ := ρ. Thus, we
assume that ε

2MR ≤ 1.
We use a standard binary search technique to reduce the problem to a feasibility

problem. In particular, we use the algorithm in Theorem 5.7 to test if C ∩ {z : f (z) ≤
γ } = ∅ for some guess γ of the optimum value OPT . Lemma 4.7 implies that for
γ ≥ OPT + ε

2 , the set C ∩ {z : f (z) ≤ γ } contains a Euclidean ball of radius
δ := ρε

4MR centered at a mixed-integer point in Z
n ×R

d (note that because of our strict
feasbiility assumption both z� and a can be taken as mixed-integer points in the same
fiber when applying Lemma 4.7). Thus, for γ ∈ [OPT + ε

2 , OPT +ε], the algorithm
in Theorem 5.7 will compute ẑ ∈ C ∩ (Zn × R

d) with f (ẑ) ≤ γ ≤ OPT + ε.
Since the difference between the maximum and the minimum values of f over

the Euclidean ball of radius R is at most 2MR, we need to make at most log
(4MR

ε

)

guesses for γ in the binary search. The result now follows from the complexity bounds
in Theorem 5.7. ��
Remark 5.9 For ease of exposition, we first presented a feasibility algorithm in The-
orem 5.7 and then reduced the optimization problem to the feasibility problem using
binary search in Theorem 5.8. One can do away with the binary search in the follow-
ing way. If ε > 2MR, then any feasible solution is an ε-approximate solution, so we
may simply run the feasibility algorithm from Theorem 5.7 with δ := ρ. Otherwise,
we follow the feasibility algorithm from Theorem 5.7 with δ := ρε

2MR . Since δ ≤ ρ,
the algorithm is guaranteed to visit feasible points in Case 1 or 2a of the proof of
Theorem 5.7. Once we find a feasible point, we can query the first-order oracle of the

123

764 A. Basu

objective function f at this feasible point. Any subgradient inequality/halfspace that
shaves off this point satisfies the condition in Theorem 5.4, similar to the analysis of
Case 1 or 2a in Theorem 5.7. One appeals to Theorem 5.4 to obtain a new ellipsoid
with reduced volume and the algorithm continues with this new ellipsoid. At the end,
the algorithm selects the feasible point with the smallest objective value amongst all
the feasible points it visits. This is similar to the idea in the proof of the upper bound
in Theorem 4.2. Since the binary search is eliminated, one obtains a slightly better

information complexity of icompA(n, d, R, M, ρ) ≤ 2O(n log(n+d)) log
(
MR
ρε

)
.

Remark 5.10 (Pure continuous case) Stronger results can be obtained in the pure con-
tinuous case, i.e., n = 0. First, in Case 1 of the algorithm, we use β = 0 instead of

β = 1
n+d+1 , reducing the volume of the ellipsoid by a factor e− 1

5(n+d) every time. Thus
wemake a factor of (n+d+1)2 less number of iterations in Case 1 of the proof of The-
orem 5.7.Moreover, there is no recursion needed and thus, the algorithm’s information

complexity is O
(
d2 log

(
MR
ρε

))
with an additional computational overhead of O(d2)

for computing the new ellipsoids. This is the classical ellipsoid algorithm for convex
optimization. Thus, one obtains an ε-approximation algorithm for the optimization
problem that differs only by a factor of the dimension d from the ε-information com-
plexity bound given in Theorem 4.23. Vaidya [127] designed an algorithm whose
information complexity matches Theorem 4.2’s ε-information complexity bound of

O
(
d log

(
MR
ρε

))
, with the same overall complexity as the ellipsoid algorithm. See [4,

89, 97] for improvements on the overall complexity of Vaidya’s algorithm. Lemma 5.4
with β > 0 is also used in continuous convex optimization under the name of the shal-
low cut ellipsoid method; see [78] for details.

Remark 5.11 (Pure integer case) For the pure integer case, i.e., d = 0 one can
strengthen both Theorems 5.7 and 5.8 by removing the “strict feasibility” type assump-
tions. In particular, one can prove a variant of Theorem 5.7 with an exact feasibility
algorithm that either reports a point in C ∩ Z

n or correctly decides that C ∩ Z
n = ∅.

One observes that if the volume of the ellipsoid in Case 2a falls below 1
n! , one can be

sure that all integer points in C lie on a single hyperplane. This is because otherwise
there are affinely independent points x1, . . . , xn+1 ∈ C ∩ Z

n and the convex hull of
these points has volume at least 1

n! . Thus, we can recurse on the lower dimensional
problem. For more details see [41]. Another approach is to simply stop the itera-
tions in Case 2a when the ellipsoid has volume less than 1. Then one can show that
there is a translate of this ellipsoid that does not intersect Z

n . Applying Theorem 5.5,
one can again find n lower dimensional slices to recurse on. This idea was explored in
[112] for polyhedral outer and inner approximations.We thus obtain an exact optimiza-
tion algorithmwith information complexity 2O(n log(n)) log(R) and overall complexity
2O(n log(n)) poly(log(nR)).

3 There is a slight discrepancy because of the use of the ‖ · ‖∞-norm for the information complexity bound
(see Theorem 4.2), and the use of ‖ · ‖2-norm here. This adds a log(d) factor to the complexity of the
ellipsoid algorithm, compared to the information complexity bound. We are not aware of any work that
resolves this discrepancy.

123

Complexity of optimizing over the integers 765

Remark 5.12 The information or overall complexity bounds presented inTheorems 5.7
and 5.8 are not the best possible ones. There is a general consensus in the discrete

optimization community that the right bound is 2O(n log n) poly
(
d, log

(
MR
ρε

))
. Thus,

the dependence on the dimensions n (number of integer variables) and d (number of
continuous variables) is 2O(n log n) poly(d) instead of 2n log(n+d) = (n + d)O(n). In
other words, the degree of the polynomial function of d is independent of n in the new
stated bound.

Howcan this be achieved?Observe that if one couldworkwith simply the projection
of the convex set on to the space of the integer variables, then one can reduce the
problem to the pure integer case discussed in Remark 5.11 (assuming one has at
least some integer constrained variables; otherwise, one defaults to Remark 5.10 for
the continuous case). Indeed, this was the idea originally presented for the mixed-
integer linear case in Lenstra’s paper [98]. In the general nonlinear setting, this can
be achieved if one can design a separation oracle for projections of convex sets, given
access to separation oracles for the original set, that runs in time polynomial in n, d.
This can be done via a result that is colloquially called “equivalence of separation
and optimization”. This circle of ideas roughly says the following: given access to a
separation oracle to a convex set, one can optimize linear functions over it in time
that is polynomial in the dimension of the convex set (and the parameters R, ρ, ε and
the objective vector size), and conversely, if one can optimize over the set one can
implement a separation oracle by making polynomially many calls to the optimization
oracle. The first part of this equivalence is simply a restatement of Theorems 5.7 and
5.8 ; in fact, one is only concerned with the continuous case. We refer the reader
to [78, 101] for details on the full equivalence. Coming back to projections: using
the separation oracle for the original set, one can implement an optimization oracle
for it. This optimization oracle gives an optimization oracle over the projection since
optimizing a linear function over the projection is the same as optimizing over the
original set. Using the equivalence, this gives a separation oracle for the projection.
Now one can appeal to the arguments in Remark 5.11.

However, all of these arguments are quite delicate and necessarily require very
careful approximations. Thus, while these arguments should in principle work, the
author is not aware of any source in the literaturewhere all the tedious details have been
fully worked out, except in the rational, linear case from Lenstra’s original paper [98].
Our exposition here is considerably simpler because it avoids these technicalities, but
this is at the expense of the weaker bounds stated in Theorems 5.7 and 5.8 . In Lenstra’s
original way of doing this, the equivalence of separation and optimization is not needed
since he works directly with an optimization oracle for (rational) linear programming
for which an exact polynomial time algorithm has been known since Khachiyan’s
work [91], which builds on the ellipsoid algorithm discussed in Remark 5.10. See [98]
for more details.

Brief historical comments. The ideas presented in this section are refinements and
improvements over seminal ideas of Lenstra [98], and hence our tribute in the title of
this section. His original 1983 paper investigated the mixed-integer linear case, i.e.,
when C is a polytope and f is a linear function [98]. His insights were soon extended
to handle the general nonlinear case in [78]. Kannan [90] achieved a breakthrough in

123

766 A. Basu

the complexity bounds – improving from 2O(n3) dependence on the number of integer
variables to 2O(n log n) – by modifying the algorithm to recurse over lower dimensional
affine spaces, as opposed to hyperplanes as discussed above.We refer to [41, 80, 83, 92]
for a representative sample of important papers since then. See also Fritz Eisenbrand’s
excellent survey chapter in [64]. To the best of the author’s knowledge, in the pure
integer case the sharpest constant in the exponent of 2O(n log n) is derived in Daniel
Dadush’s Ph.D. thesis. This requires the use of highly original and technically deep
ideas [41].

5.3 Pruning, nontrivial cutting planes and branch-and-cut

The algorithm presented in Sect. 5.2 utilizes only trivial cutting planes (see Defini-
tion 5.1) and solves the optimization problemby reducing to the feasibility problemvia
binary search.Modern solvers for mixed-integer optimization utilize nontrivial cutting
planes and also use a crucial ingredient called pruning. We now present the general
framework of branch-and-cut methods which incorporate both these techniques. The
algorithms in Sect. 5.2 will then be seen to be essentially special instances of such
methods.

Definition 5.13 A family D of disjunctions is called a branching scheme. A cutting
plane paradigm is a map CP that takes as input any closed, convex set C and CP(C)

is a family of cutting planes for C ∩ (Zn × R
d). CP(C) may contain trivial and/or

nontrivial cutting planes, and may even be empty for certain inputs C .

Example 5.14 1. Chvátal-Gomory cutting plane paradigm:Given any convex setC ⊆
R
n × R

d , define

CP(C) := {H ′ : H ′ = conv(H ∩ (Zn × R
d)), H rational halfspace with H ⊇ C}.

H ′ ∈ CP(C) is nontrivial if and only if H is of the form {(x, y) ∈ Z
n × R

d :
〈a, x〉 ≤ b} for some a ∈ Z

n with relatively prime coordinates and b /∈ Z, in which
case H ′ = {(x, y) ∈ Z

n × R
d : 〈a, x〉 ≤ �b�}.

2. Disjunctive cuts: Given any family of disjunctions (branching scheme) D, the
disjunctive cutting plane paradigm based on D is defined as

CP(C) := {H ′ halfspace : H ′ ⊇ C ∩ D, D ∈ D}.

The collection of halfspaces H ′ valid for C ∩ D are said to be the cutting planes
derived from the disjunction D. These are valid cutting planes since Z

n × R
d ⊆ D

by definition of a disjunction, and therefore C ∩ (Zn × R
d) ⊆ C ∩ D ⊆ H ′. A

disjunction D produces nontrivial cutting planes for a compact, convex setC if and
only if at least one extreme point of C is not contained in D.

Remark 5.15 We obtain a specific branch-and-cut procedure once we specify the fol-
lowing things in the framework outlined in Table 2 below.

123

Complexity of optimizing over the integers 767

Table 2 General framework for a branch-and-cut algorithm

Branch-and-cut framework based on a branching scheme D and cutting plane paradigm CP

Input: A closed, convex set C ⊆ R
n × R

d , a convex function f : R
n × R

d → R, error guarantee ε > 0,

and a relaxation X ⊆ R
n × R

d which is closed, convex and contains C .

Output: A point z� ∈ C ∩ (Zn × R
d) such that f (z�) ≤ OPT + ε, where OPT = inf{ f (z) : z ∈ C}.

1. Initialize a set L = {X}. Initialize UB = +∞.

2. While L �= ∅ do:

a. [Node selection] Select an element N ∈ L and update L := L \ {N }.
b. [Pruning] If it can be verified that inf{ f (z) : z ∈ C ∩ N } ≥ UB − ε, then continue the While loop.

Else, select a test point ẑ in N .

c. If ẑ ∈ C ∩ (Zn × R
d), obtain a subgradient h ∈ ∂ f (ẑ) and add the subgradient halfspace

H = {z : 〈h, z − ẑ〉 ≤ 0} to all the elements in L , i.e., update N := N ∩ H for all N ∈ L .

Additionally, if f (ẑ) < UB, then update UB = f (ẑ) and z� = ẑ.

d. If ẑ /∈ C ∩ (Zn × R
d), decide whether to BRANCH or CUT.

If BRANCH, then choose a disjunction D = Q1 ∪ . . . ∪ Qk in D such that ẑ /∈ D.

Select sets (relaxations) N1, . . . , N2 such that N ∩ Qi ⊆ Ni .

Update L := L ∪ {N1, . . . , Nk }.
If CUT, then choose a cutting plane H ∈ CP(C ∩ N) such that ẑ /∈ H .

Select a set N ′ such that N ∩ H ⊆ N ′. Update L := L ∪ {N ′}.

1. In Step 2a., we must decide on a strategy to select an element from L . In the case
of the algorithms presented in Sect. 5.2, this would be the choice of a “slice” to
recurse on.

2. InStep 2b.,wemust decide on a strategy to verify the condition inf{ f (z) : z ∈ N } ≥
UB − ε. In the case of the algorithms presented in Sect. 5.2, this is determined
by a volume condition on N (which is an ellipsoid). Another common strategy
is used in linear integer optimization, where C ∩ N is a polyhedron and linear
optimization methods like the simplex method or an interior-point algorithm is
used to determine inf{ f (z) : z ∈ C ∩N }. More generally, one could have a convex
optimization subroutine suitable for the class of problems under study.

3. In Step 2b., inf{ f (z) : z ∈ C∩N } < UB−ε and onemust select a test point ẑ ∈ N
and one must have a procedure/subroutine for this. In the algorithms presented in
Sect. 5.2, this was chosen as the center of the ellipsoid in Step I, and in Step II
it was chosen using the CVP subroutine (and a convex quadratic minimization
over the corresponding fiber if the CVP returned a point in the inner ellipsoid). In
most solvers, this test point is taken as an optimal or ε-approximate solution to the
convex optimization problem inf{ f (z) : z ∈ C ∩ N } or inf{ f (z) : z ∈ N }.

4. In Step 2d., one must have a strategy for deciding whether to branch or to cut,
and in either case have a strategy for selecting a disjunction or a cutting plane.
The decision to branch might fail because there is no disjunction D in the chosen
branching scheme D that does not contain ẑ. In such a case, we simply continue
the While loop. In the algorithms from Sect. 5.2, the disjunction family used was

123

768 A. Basu

the split disjunctions defined in Example 5.2: the “slices” can be seen as branching
on the disjunctions {(x, y) : 〈w, x〉 ≤ j} ∪ {(x, y) : 〈w, x〉 ≥ j + 1}.
If the decision is to add a cutting plane, one may add a trivial cutting plane valid for
C∩N , as was done in the algorithms in Sect. 5.2. Onemay also fail to find a cutting
plane that removes ẑ, because either the cutting plane paradigm can produce no
such cutting plane, i.e., CP(C ∩ N) = ∅, or because the strategy chosen fails to
find such a cutting plane in CP(C ∩ N) even though one exists. In such a case, we
simply continue the While loop.
Finally, in Step 2d., we must have a strategy to select the relaxations N1, . . . , Nk

if the decision is to branch, or we must have a strategy to select a relaxation N ′ if
the decision is to cut. In the algorithms in Sect. 5.2, these relaxations were taken
as ellipsoids.

5. If an algorithm based on the branch-and-cut framework above decides never to
branch in Step 2d., it is called a pure cutting plane algorithm. If an algorithm
decides never to use cutting planes in Step 2d., it is called a pure branch-and-
bound algorithm.

Remark 5.16 In most solvers, the relaxations Ni are simply taken to be N ∩ Qi in a
decision to branch, and the relaxation N ′ is simply taken to be N ∩ H in a decision to
cut. However, as mentioned above, in the algorithms from Sect. 5.2 we consider ellip-
soidal relaxations of the N ∩ H after a (trivial) cutting plane is added, and ellipsoidal
relaxations of the “slices”.

Does this help? In practice, pruning and nontrivial cutting planes make a huge differ-
ence [22, 23, 100]. Turning these off will bring most of the solvers to a grinding halt on
even small scale problems. Nevertheless, from a theoretical perspective, researchers
have not been able to improve on the 2O(n log(n+d)) algorithm from Sect. 5.2 by uti-
lizing pruning and nontrivial cutting planes for the general problem; see [12, 60, 106]
for examples of positive results in restricted settings. Another empirical fact is that if
branching is completely turned off and only cutting planes are used, then again the
solvers’ performance degrades massively. Recently, some results have been obtained
that provide some theoretical basis to these empirical observations that the combi-
nation of branching and cutting planes performs significantly better than branching
alone or using cutting planes alone. We present some of these results now.

The next definition is inspired by the following simple intuition. It has been estab-
lished that certain branching schemes can be simulated by certain cutting plane
paradigms in the sense that for the problem class under consideration, if we have
a pure branch-and-bound algorithm based on the branching scheme, then there exists
a pure cutting plane algorithm for the same class that has complexity at most a poly-
nomial factor worse than the branch-and-bound algorithm. Similarly, there are results
that establish the reverse. See [10, 11, 16, 43, 44, 67], for example. In such situa-
tions, combining branching and cutting planes into branch-and-cut is likely to give no
substantial improvement since one method can always do the job of the other, up to
polynomial factors.

Definition 5.17 Let I be a family of mixed-integer convex optimization problems of
the form (3.1), along with a size hierarchy (see Definition 3.1). To make the following

123

Complexity of optimizing over the integers 769

discussion easier, we assume that the objective function is linear. This is without loss
of generality since we can introduce an auxiliary variable v, introduce the epigraph
constraint f (z) ≤ v and use the linear objective “inf v”.

A cutting plane paradigm CP and a branching scheme D are complementary for
I if there is a family of instances ICP>D ⊆ I such that there is a pure cutting plane
algorithm based on CP that has polynomial (in the size of the instances) complexity
and any branch-and-bound algorithm based on D is exponential (in the size of the
instances), and there is another family of instances ICP<D ⊆ I where D gives a
polynomial complexity pure branch-and-bound algorithmwhile any pure cutting plane
algorithm based on CP is exponential.

We wish to formalize the intuition that branch-and-cut is expected to be exponen-
tially better than branch-and-bound or cutting planes alone for complementary pairs
of branching schemes and cutting plane paradigms. But we need to make some mild
assumptions about the branching schemes and cutting plane paradigms. All known
branching schemes and cutting plane methods from the literature satisfy the following
conditions.

Definition 5.18 A branching scheme is said to be regular if no disjunction involves a
continuous variable, i.e., each polyhedron in the disjunction is described using inequal-
ities that involve only the integer constrained variables.

A branching scheme D is said to be embedding closed if disjunctions from higher
dimensions can be applied to lower dimensions. More formally, let n1, n2, d1, d2 ∈ N.
If D ∈ D is a disjunction in R

n1 × R
d1 × R

n2 × R
d2 with respect to Z

n1 × R
d1 ×

Z
n2 × R

d2 , then the disjunction D ∩ (Rn1 × R
d1 × {0}n2 × {0}d2), interpreted as a set

in R
n1 × R

d1 , is also in D for the space R
n1 × R

d1 with respect to Z
n1 × R

d1 (note
that D ∩ (Rn1 × R

d1 × {0}n2 × {0}d2), interpreted as a set in R
n1 × R

d1 , is certainly
a disjunction with respect to Z

n1 × R
d1 ; we want D to be closed with respect to such

restrictions).
A cutting plane paradigm CP is said to be regular if it has the following property,

which says that adding “dummy variables” to the formulation of the instance should
not change the power of the paradigm. Formally, let C ⊆ R

n × R
d be any closed,

convex set and letC ′ = {(x, t) ∈ R
n×R

d×R : x ∈ C, t = 〈 f , x〉} for some f ∈ R
n .

Then if a cutting plane 〈a, x〉 ≤ b is derived by CP applied to C , i.e., this inequality
is in CP(C), then it should also be in CP(C ′), and conversely, if 〈a, x〉 + μt ≤ b is in
CP(C ′), then the equivalent inequality 〈a + μ f , x〉 ≤ b should be in CP(C).

A cutting plane paradigm CP is said to be embedding closed if cutting planes
from higher dimensions can be applied to lower dimensions. More formally, let
n1, n2, d1, d2 ∈ N. Let C ⊆ R

n1 × R
d1 be any closed, convex set. If the inequality

〈c1, x1〉+〈a1, y1〉+〈c2, x2〉+〈a2, y2〉 ≤ γ is a cutting plane forC×{0}n2 ×{0}d2 with
respect toZ

n1×R
d1×Z

n2×R
d2 that can be derived by applyingCP toC×{0}n2×{0}d2 ,

then the cutting plane 〈c1, x1〉+ 〈a1, y1〉 ≤ γ that is valid for C ∩ (Zn1 × R
d1) should

also belong to CP(C).
A cutting plane paradigm CP is said to be inclusion closed, if for any two closed

convex sets C ⊆ C ′, we have CP(C ′) ⊆ CP(C). In other words, any cutting plane
derived for C ′ can also be derived for a subset C .

123

770 A. Basu

Theorem 5.19 [11, Theorem 1.12] Let D be a regular, embedding closed branching
scheme and let CP be a regular, embedding closed, and inclusion closed cutting
plane paradigm such that D includes all variable disjunctions and CP and D form a
complementary pair for a mixed-integer convex optimization problem class I. Then
there exists a family of instances in I such that there exists a polynomial complexity
branch-and-cut algorithm, whereas any branch-and-bound algorithm based onD and
any cutting plane algorithm based on CP are of exponential complexity.

The rough idea of the proof of Theorem 5.19 is to embed pairs of instances from
ICP>D and ICP<D as faces of a convex set such that a single variable disjunction
results in these instances as the subproblems in a branch-and-cut algorithm. On one
subproblem, one uses cutting planes and on the other subproblem one uses branching.
However, since CP and D are complementary, a pure cutting plane or pure branch-
and-bound algorithm takes exponential time in processing one or the other of the faces.
The details get technical and the reader is referred to [11].

Example 5.20 We now present a concrete example of a complementary pair that satis-
fies the other conditions of Theorem 5.19. Let I be the family of mixed-integer linear
optimization problems described in point 2. of Example 1.3, with standard “binary
encoding” oracles described in point 2. of Example 1.5 and size hierarchy as defined
in point 2. of Example 3.2. Let CP to be the Chvátal-Gomory paradigm (point 1. in
Example 5.14) andD to be the family of variable disjunctions (point 1. inExample 5.2).
They are both regular and D is embedding closed. The Chvátal-Gomory paradigm is
also embedding and inclusion closed.

Consider the so-called “Jeroslow instances”: For every n ∈ N, max{∑n
i=1 xi :∑n

i=1 xi ≤ n
2 , x ∈ [0, 1]n, x ∈ Z

n}. The single Chvátal-Gomory cut
∑n

i=1 xi ≤
� n
2 � proves optimality, whereas any branch-and-bound algorithm based on variable

disjunctions has complexity at least 2� n
2 � [88]. On the other hand, consider the set

Th ∈ R
2, where Th = conv{(0, 0), (1, 0), (12 , h)} and consider the family of problems

for h ∈ N: max{x2 : x ∈ T , x ∈ Z
2}. Any Chvátal-Gomory paradigm based

algorithm has exponential complexity in the size of the input, i.e., every proof has
length at least 	(h) [123]. On the other hand, a single disjunction on the variable x1
solves the problem.

Example 5.20 shows that the classical Chvátal-Gomory cuts and variable branching
are complementary and thus Theorem 5.19 implies that they give rise to a supe-
rior branch-and-cut routine when combined, compared to their stand-alone use. The
Chvátal-Gomory cutting plane paradigm and variable disjunctions are themost widely
used pairs in state-of-the-art branch-and-cut solvers. We thus have some theoretical
basis for explaining the success of this particular combination.

In [10, 11], the authors explorewhether certainwidely used cutting plane paradigms
and branching schemes form complementary pairs. We summarize their results here
in informal terms and refer the two papers cited for precise statements and proofs.

1. Lift-and-project cutting planes (disjunctive cutting planes based on variable dis-
junctions – see point 2. in Example 5.14) and variable disjunctions are not a
complementary pair for 0/1 pure integer convex optimization problems, i.e.,

123

Complexity of optimizing over the integers 771

C ⊆ [0, 1]n . Any branch-and-bound algorithm based on variable disjunctions can
be simulated by a cutting plane algorithm with the same complexity4. Moreover,
there are instances of graph stable set problems where there is a lift-and-project
cutting plane algorithm with polynomial complexity, but any branch-and-bound
algorithm based on variable disjunctions has exponential complexity. See Theo-
rems 2.1 and 2.2 in [10], and results in [43, 44].

2. Lift-and-project cutting planes and variable disjunctions do form a complementary
pair forgeneralmixed-integer convexoptimizationproblems, i.e.,C is not restricted
to be in the 0/1 hypercube5. See Theorems 2.2 and 2.9 in [10].

3. Split cutting planes (disjunctive cutting planes based on split disjunctions – see
point 2. in Example 5.14) and split disjunctions are not a complementary pair for
general pure integer convex problems. Any cutting plane algorithm based on split
cuts can be simulated by a branch-and-bound algorithm based on split disjunctions
with the same complexity (up to constant factors)6. See Theorem 1.8 in [11].

Connections to proof complexity. Obtaining concrete lower bounds for branch-and-
cut algorithms has a long history within the optimization, discrete mathematics and
computer science communities. In particular, there is a rich interplay of ideas between
optimization and proof complexity arising from the fact that branch-and-cut can be
used to certify emptiness of sets of the form P∩{0, 1}n , where P is a polyhedron. This
question is of fundamental importance in computer science because the satisfiability
question in logic can bemodeled in this way.We provide here a necessarily incomplete
but representative sample of references for the interested reader [16, 25, 26, 30, 32–38,
42–45, 61, 66, 67, 72, 73, 77, 86, 96, 117–120].

6 Discussion and open questions

Our presentation above necessarily selected a small subset of results in the vast
literature on the complexity of optimization algorithms, even restricted to convex
mixed-integer optimization. We briefly discuss three major areas that were left out of
the discussion above.

Mixed-integer linear optimization. If we consider the problem class discussed in
point 2. of Example 1.3, with algebraic oracles as described in point 2. of Example 1.5,
then our ε-information complexity bounds fromTheorem 4.2 to do not apply anymore.
Firstly, we have a much more restricted class of problems. Secondly, the algebraic
oracles seem to be more powerful than separation oracles in the following precise
sense. Using the standard size hierarchy on this class based on “binary encodings”
discussed in point 2. ofExample 3.2, a separation/first-order oracle canbe implemented

4 There is a technical problem that arises here between the notions of algorithm and proof. We have
omitted all discussions of cutting plane and branch-and-bound proofs here, which are powerful tools to
prove unconditional lower bounds on these algorithms. The precise statement is that any branch-and-bound
proof based on variable disjunctions can be replaced by a lift-and-project cutting plane proof of the same
size. See [10] for details.
5 “Lift-and-project cuts” here mean disjunctive cutting planes based on the variable disjunctions (typically
the phrase “lift-and-project” is reserved for 0/1 problems).
6 The same caveat as in point 1. regarding algorithms versus proofs applies.

123

772 A. Basu

easily with the standard algebraic oracle fromExample 1.5 in polynomial time, but it is
not clear if a separation oracle can implement the algebraic oracle in polynomial time
(see point 4. under “Open Problems” below). Moreover, the ε-information complexity
with respect to the algebraic oracle is bounded by the size of the instance, because once
we know all the entries of A, B, b, c, there is no ambiguity in the problem anymore.
Nevertheless, it is well-known that the problem class is N P-hard [71]. Therefore,
unless P = N P , the computational complexity of any algorithm for this class is not
polynomial and under the so-called exponential time hypothesis (ETH), it is expected
to be exponential.

Nevertheless, several rigorous complexity bounds have been obtained with respect
to difference parameterizations of this problem class. We summarize them here with
pointers to the references. We note here that the algorithms presented in Sect. 5.2 are
variants of an algorithm that was designed by Lenstra for this problem class of mixed-
integer linear optimization [98]. We discuss below approaches that are completely
different in nature.

1. Dynamic programming based algorithms. We restrict to pure integer instances,
i.e., d = 0 and assume all the entries of A, b, c are integer. We parameterize
such instances by three parameters n,m,�,W . Im,n,�,W are those instances with
dimension is at most n, where A has at most m rows, the absolute values of the
entries of A are bounded by �, and the absolute values of b are bounded by W .
In this setting, Papadimitriou designed a dynamic programming based algorithm
with complexity O((n + m)2m+2(m · max{�,W })(m+1)(2m+1)) [115]. This was
improved recently to O((m�)m · (n+m)3W) by Eisenbrand and Weismantel by a
clever use of the so-called Steinitz lemma [124]. Subsequent improvements were
achieved by Jansen and Rohwedder [87]. Matching lower bounds, subject to the
exponential time hypothesis, have been established in [68, 93].

2. Fixed subdeterminants. Restricting to pure integer instances with integer data as in
the previous point, another paramterization that has been considered is by n,m,�,
where Im,n,� are those instances with dimension is at most n, where A has at most
m rows, the absolute values of n × n subdeterminants of A are bounded by �.
When � = 1, a classical result in integer optimization shows that one can simply
solve the linear optimization problem to obtain the optimal integer solution [123].
In 2009, Veselov and Chirkov showed that the feasibility problem can be solved
in polynomial time when � = 2 [128], and the optimization version was resolved
using deep techniques from combinatorial optimization by Artmann, Weismantel
and Zenkulsen in [6]. See also related results for general � in [5, 13, 74–76, 114].

3. Parameterizations based on the structure of A.Over the past 25 years, a steady line
of research has used algebraic and combinatorial techniques to design algorithms
for pure integer optimization that exploit the structure of the constraint matrix
A. Several parameters of interest have been defined based on different structural
aspects of A. Listing all the literature here is impossible. Instead, we point to [19,
40, 48, 65, 102, 113] and the references therein as excellent summaries and starting
points for exploring this diverse field of research activity. An especially intriguing
aspect of these algorithms is that they search for the optimal solution by iteratively
moving from one feasible solution to a better one. In contrast, the “Lenstra-style”

123

Complexity of optimizing over the integers 773

algorithm presented in Sect. 5.2 approaches the optimal solution “from outside”
in a sense by constructing outer (ellipsoidal) approximations. Thus, the newer
algebraic and combinatorial algorithms are more in the spirit of interior point
methods in nonlinear optimization. Exploring the possibility of a unified “interior
point style” algorithm for convex mixed-integer optimization would contribute
further to bridging the continuous and discrete sides of mathematical optimization.

Mixed-integer polynomial optimization. Instead of linear constraints and objectives
as in MILPs, one can consider the problem with polynomial constraints and objective.
The standard oracle is algebraic as well in the sense that one can query for the value
of a coefficient in a constraint or the objective. The literature on this problem is vast
and touches on classical fields like algebraic geometry and diophantine equations.
In fact, Hilbert’s 10th problem in his famous list of 23 problems presented before
the International Congress of Mathematicians in 1900 asks for the construction of an
algorithm that solves polynomial equations in integer variables [82]. This problem
was proven to be undecidable in a line of work spanning several decades [103]. Thus,
while the completely general mixed-integer polynomial optimization problem cannot
be solved algorithmically, an enormous literature exists on restricted versions of the
problem. For example, with no integer variables we enter the realm of real algebraic
geometry or the existential theory of reals where the problem is decidable; see [15]
with references to a rich literature. Thus, if one has or can infer finite bounds on the
integer constrained decision variables, then the undecidability issues go away since
one can enumerate over the integer variables and reduce to the existential theory of
reals. The literature is too vast to summarize here; instead, we point the reader to the
excellent survey [95] and the textbook expositions in [19, 48, 113], along with the
references therein. Some recent progress has appeared in [20, 49–59, 84].

Continuous convex optimization. The information and algorithmic complexity of
continuous convex optimization presented in Sects. 4 and 5 barely touch the vast lit-
erature in this area. For instance, instead of parameterizing by d, M, R, ρ, modern
day emphasis is placed on “dimension independent” complexity. For instance, if one
focuses on unconstrained minimization instances and parameterizes the class with
only two parameters: a parameter M that is usually related to the Lipschitz constant
of the objective function or its derivatives (if we further restrict to (twice) differen-
tiable functions), and R is a parameter that says the optimal solution is contained in
a Euclidean ball of radius R. It is important to note that the dimension is not part of
the parameterization. In the nonsmooth case, one can establish matching upper and

lower bounds of O
(
MR
ε2

)
on the information complexity of a broad class of iterative

ε-approximation algorithms. These can be improved to O
(
MR√

ε

)
in the smooth case.

Wewill fail to do justice to this enormous and active area of research in this manuscript
and instead point the reader to the excellent monographs [29, 110].

Nonconvex continuous optimization. The complexity landspace for nonconvex con-
tinuous optimization has recently seen a lot of activity and has reached a level of
development paralleling the corresponding development in convex optimization com-
plexity. Here the solution operator S(I , ε) typically is defined as ε-approximate
stationary points or local minima; for instance, in the smooth unconstrained case,

123

774 A. Basu

S(I , ε) is the set of all points where the gradient norm is at most ε. We recommend the
recent thesis of Yair Carmon for a fantastic survey, pointers to literature and several
new breakthroughs [31].

Open Questions

1. As mentioned at the beginning of Sect. 5.2, a major open question in mixed-integer
optimization is to bridge the gap of 2O(n) log(R) tight bound on the information
complexity and the 2O(n log n) log(R) algorithmic complexity of Lenstra style algo-
rithms presented in Sect. 5.2, for pure integer optimization. It seems that radically
new ideas are needed and Lenstra style algorithms cannot escape the 2O(n log n)

barrier.
2. Closing the gap between the lower and the upper bounds for ε-information com-

plexity in Theorem 4.2 for the truly mixed-integer case, i.e., n, d ≥ 1 seems to
be a nontrivial problem. See the discussion after the statement of Theorem 4.2 for
the two different sources of discrepancy. In particular, Conjecture 4.6 seems to
be a very interesting question in pure convex/discrete geometry. It was first stated
in Timm Oertel’s thesis [111], and the thesis and [14] contain some partial results
towards resolving it. Further, taking into account the sizes of the responses to oracle
queries merits further study. To the best of our knowledge, tight lower and upper
bounds are not known when the size of the responses are taken into account, i.e.,
when one uses the strict definition of ε-information complexity as in Definition 1.7
of this paper. Finally, we believe that the study of ε-information complexity of
optimization with respect to oracles that are different from subgradient oracles is
worth investigation.

3. The mixed-integer linear optimization problem class (point 2. in Example 1.3) can
be accessed through two different oracles: the standard algebraic one described
in point 2. of Example 1.5, or a separation oracle. Assuming the standard size
hierarchy obtained from the binary encoding sizes, it is not hard to implement
a separation oracle using the algebraic oracle with polynomially many algebraic
oracle calls. However, it is not clear if the algebraic oracle can be implemented
in polynomial time by a separation oracle. Essentially, one has to enumerate the
facets of the polyhedral feasible region P ⊆ R

k , which is equivalent to enumer-
ating the vertices of the polar P� (after finding an appropriate center in P – see
[101, Lemma 2.2.6]). This can be done if we have an optimization oracle for
P� since one can iteratively enumerate the vertices by creating increasingly bet-
ter inner polyhedral approximations. Roughly speaking, one maintains the current
list of enumerated vertices v1, . . . , vt of P� and also an inequality description of
conv({v1, . . . , vt }). Nowwe optimize over P� in the direction of all the inequalities
describing conv({v1, . . . , vt }). If conv({v1, . . . , vt }) � P�, then at least one new
vertex will be discovered and we can continue the process after reconvexifying.
An optimization oracle for the polar P� can be implemented in polynomial time
because we have a separation oracle for P [78, 101, 123]. The only issue is that
conv({v1, . . . , vt }) may need tk inequalities in its description, which is not poly-
nomial unless we consider the dimension k to be fixed. It would be good to resolve

123

Complexity of optimizing over the integers 775

whether the separation and algebraic oracles for mixed-integer linear optimization
are polynomially equivalent.

4. Theorem 5.19 shows that a complementary pair of branching scheme and cutting
plane paradigm can lead to substantial gains when combined into a branch-and-cut
algorithm, as opposed to a pure branch-and-bound or pure cutting plane algorithm.
Is this a characterization of when branch-and-cut is provably better? In other words,
if a branching scheme and cutting plane paradigm are such that there exists a family
of instanceswhere branch-and-cut is exponentially better than branch-and-bound or
cutting planes alone, then is it true that the branching scheme and the cutting plane
paradigm are complementary? A result showing that branch-and-cut is superior if
and only if the branching scheme and cutting plane paradigm are complementary
would be a tight theoretical characterization of this important phenomenon. While
this general question remains open, a partial converse toTheorem5.19was obtained
in [11]:

Theorem 6.1 [11, Theorem 1.14] Let D be a branching scheme that includes all split
disjunctions and let CP be any cutting plane paradigm. Suppose that for every pure
integer instance and any cutting plane proof based on CP for this instance, there is a
branch-and-bound proof based on D of size at most a polynomial factor (in the size
of the instance) larger. Then for any branch-and-cut proof based on D and CP for
a pure integer instance, there exists a pure branch-and-bound proof based on D that
has size at most polynomially larger than the branch-and-cut proof.

Acknowledgements The author gratefully acknowledges support from Air Force Office of Scientific
Research (AFOSR) grant FA95502010341 and National Science Foundation (NSF) grants CCF2006587.
The author benefited greatly from discussions with Daniel Dadush at CWI, Amsterdam and Timm Oertel
at FAU, Erlangen-Nürmberg. Comments from two anonymous referees helped the author significantly to
consolidate the material, improve its presentation and make tighter connections to the existing literature on
the complexity of optimization.

References

1. Abramson, Fred G.: Effective computation over the real numbers. In 12th Annual Symposium on
Switching and Automata Theory (SWAT 1971), pages 33–37. IEEE Computer Society, (1971)

2. Aggarwal, Divesh, Dadush, Daniel, Regev, Oded, Stephens-Davidowitz, Noah: Solving the shortest
vector problem in 2n time using discrete gaussian sampling. In Proceedings of the forty-seventh
annual ACM Symposium on Theory of computing (STOC), pages 733–742. ACM, (2015)

3. Aggarwal, Divesh, Dadush, Daniel, Stephens-Davidowitz, Noah: Solving the closest vector problem
in 2n time–the discrete gaussian strikes again! In 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science (FOCS), pages 563–582. IEEE, (2015)

4. Anstreicher, Kurt M.: On Vaidya’s volumetric cutting plane method for convex programming. Math.
Oper. Res. 22(1), 63–89 (1997)

5. Artmann, Stephan, Eisenbrand, Friedrich,Glanzer, Christoph,Oertel, Timm,Vempala, Santosh,Weis-
mantel, Robert: A note on non-degenerate integer programs with small sub-determinants. Oper. Res.
Lett. 44(5), 635–639 (2016)

6. Artmann, Stephan,Weismantel, Robert, Zenklusen,Rico:A strongly polynomial algorithm for bimod-
ular integer linear programming. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 1206–1219. ACM, (2017)

7. Averkov, Gennadiy, Weismantel, Robert: Transversal numbers over subsets of linear spaces. Adv.
Geom. 12(1), 19–28 (2012)

123

776 A. Basu

8. Banaszczyk, Wojciech: Inequalities for convex bodies and polar reciprocal lattices in Rn II: Appli-
cation of K-convexity. Discrete & Computational Geometry 16(3), 305–311 (1996)

9. Banaszczyk, Wojciech, Litvak, Alexander E., Pajor, Alain, Szarek, Stanislaw J.: The flatness theorem
for nonsymmetric convex bodies via the local theory of Banach spaces. Math. Oper. Res. 24(3),
728–750 (1999)

10. Basu, Amitabh, Conforti, Michele, Di Summa, Marco, Jiang, Hongyi: Complexity of cutting plane
and branch-and-bound algorithms for mixed-integer optimization. To appear in Mathematical Pro-
gramming, (2019)

11. Basu, Amitabh, Conforti, Michele, Di Summa, Marco, Jiang, Hongyi: Complexity of cutting plane
and branch-and-bound algorithms for mixed-integer optimization–II. To appear in Combinatorica,
(2020)

12. Basu, Amitabh, Conforti, Michele, Di Summa, Marco, Jiang, Hongyi: Split cuts in the plane. SIAM
J. Optim. 31(1), 331–347 (2021)

13. Basu, Amitabh, Jiang, Hongyi: Enumerating integer points in polytopes with bounded subdetermi-
nants. SIAM J. Discret. Math. 36(1), 449–460 (2022)

14. Basu, Amitabh, Oertel, Timm: Centerpoints: A link between optimization and convex geometry.
SIAM J. Optim. 27(2), 866–889 (2017)

15. Basu, Saugata, Pollack, Richard, Roy, Marie-Françoise.: Algorithms in real algebraic geometry.
Springer Science & Business Media (2006)

16. Beame, Paul, Fleming, Noah, Impagliazzo, Russell, Kolokolova, Antonina, Pankratov, Denis, Pitassi,
Toniann, Robere, Robert: Stabbing Planes. In Anna R. Karlin, editor, 9th Innovations in Theoretical
Computer Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 10:1–10:20, Dagstuhl, Germany, (2018). Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik

17. Beeson, Michael J.: Foundations of constructive mathematics: Metamathematical studies, vol. 6.
Springer Science & Business Media, (2012)

18. Bell, David E.: A theorem concerning the integer lattice. Stud. Appl. Math. 56(2), 187–188 (1977)
19. Bertsimas, Dimitris, Weismantel, Robert: Optimization Over Integers. Dynamic Ideas, Belmont, MA

(2005)
20. Daniel Bienstock, Alberto Del Pia, and Robert Hildebrand. Complexity, exactness, and rationality

in polynomial optimization. In International Conference on Integer Programming and Combinatorial
Optimization, pages 58–72. Springer, (2021)

21. Bishop, Errett: Foundations of constructive analysis, volume 5. McGraw-Hill New York, (1967)
22. Bixby, Robert E.: A brief history of linear and mixed-integer programming computation. Documenta

Mathematica, pages 107–121, (2012)
23. Bixby, Robert E., Fenelon, Mary, Gu, Zonghao, Rothberg, Ed, Wunderling, Roland: Mixed inte-

ger programming: A progress report. In The Sharpest Cut, pages 309–325. MPS-SIAM Series on
Optimization, Philadelphia, PA, (2004)

24. Blum, Lenore, Shub, Mike, Smale, Steve: On a theory of computation and complexity over the real
numbers: W-completeness, recursive functions and universal machines. Bull. Amer. Math. Soc 21(1),
1–46 (1989)

25. Bockmayr, Alexander, Eisenbrand, Friedrich, Hartmann, Mark, Schulz, Andreas S.: On the Chvátal
rank of polytopes in the 0/1 cube. Discret. Appl. Math. 98(1–2), 21–27 (1999)

26. Bonet, Maria, Pitassi, Toniann, Raz, Ran: Lower bounds for cutting planes proofs with small coeffi-
cients. The Journal of Symbolic Logic 62(3), 708–728 (1997)

27. Borodin, Allan, Munro, Ian: The computational complexity of algebraic and numeric problems.
American Elsevier, New York (1975)

28. Braun, Gábor., Guzmán, Cristóbal, Pokutta, Sebastian: Lower bounds on the oracle complexity of
nonsmooth convex optimization via information theory. IEEE Trans. Inf. Theory 63(7), 4709–4724
(2017)

29. Bubeck, Sébastien: Convex optimization: Algorithms and complexity. arXiv preprint
arXiv:1405.4980, (2014)

30. Buss, Samuel R., Clote, Peter: Cutting planes, connectivity, and threshold logic. Arch. Math. Logic
35(1), 33–62 (1996)

31. Carmon, Yair: The Complexity of Optimization beyond Convexity. PhD thesis, Stanford University,
August (2020)

32. Chvátal, Va.šek: Hard knapsack problems. Oper. Res. 28(6), 1402–1411 (1980)

123

http://arxiv.org/abs/1405.4980

Complexity of optimizing over the integers 777

33. Chvátal, Va.šek: Cutting-plane proofs and the stability number of a graph, Report Number 84326-OR.
Universität Bonn, Bonn, Institut für Ökonometrie und Operations Research (1984)

34. Chvátal, Va.šek, Cook, William J., Hartmann, Mark: On cutting-plane proofs in combinatorial opti-
mization. Linear Algebra Appl. 114, 455–499 (1989)

35. Clote, Peter: Cutting planes and constant depth frege proofs. In Proceedings of the Seventh Annual
IEEE Symposium on Logic in Computer Science, pages 296–307, (1992)

36. Cook, William J., Coullard, Collette R., Turán, Gy.: On the complexity of cutting-plane proofs.
Discret. Appl. Math. 18(1), 25–38 (1987)

37. Cook,William J., Dash, Sanjeeb: On the matrix-cut rank of polyhedra. Math. Oper. Res. 26(1), 19–30
(2001)

38. Cook, William J., Hartmann, Mark: On the complexity of branch and cut methods for the traveling
salesman problem. Polyhedral Combinatorics 1, 75–82 (1990)

39. Cook, William J., Kannan, Ravindran, Schrijver, Alexander: Chvátal closures for mixed integer
programming problems. Math. Program. 47, 155–174 (1990)

40. Cunningham, William H., Geelen, Jim: On integer programming and the branch-width of the con-
straint matrix. In International Conference on Integer Programming and Combinatorial Optimization,
pages 158–166. Springer, (2007)

41. Dadush, Daniel: Integer programming, lattice algorithms, and deterministic volume estimation. Pro-
Quest LLC, Ann Arbor, MI, (2012). Thesis (Ph.D.)–Georgia Institute of Technology

42. Dadush, Daniel, Tiwari, Samarth: On the complexity of branching proofs. arXiv preprint
arXiv:2006.04124, (2020)

43. Dash, Sanjeeb: An exponential lower bound on the length of some classes of branch-and-cut proofs.
In International Conference on Integer Programming and Combinatorial Optimization (IPCO), pages
145–160. Springer, (2002)

44. Dash, Sanjeeb: Exponential lower bounds on the lengths of some classes of branch-and-cut proofs.
Math. Oper. Res. 30(3), 678–700 (2005)

45. Dash, Sanjeeb: On the complexity of cutting-plane proofs using split cuts. Oper. Res. Lett. 38(2),
109–114 (2010)

46. Dash, Sanjeeb, Dobbs, Neil B., Günlük, Oktay, Nowicki, Tomasz J., Świrszcz, Grzegorz M.: Lattice-
free sets, multi-branch split disjunctions, and mixed-integer programming. Math. Program. 145(1–2),
483–508 (2014)

47. Dash, Sanjeeb, Günlük, Oktay: On t-branch split cuts for mixed-integer programs. Math. Program.
141(1–2), 591–599 (2013)

48. De Loera, Jesús A.: Raymond Hemmecke, and Matthias Köppe. Algebraic and geometric ideas in
the theory of discrete optimization. SIAM, (2012)

49. Del Pia, Alberto: On approximation algorithms for concave mixed-integer quadratic programming.
Math. Program. 172(1), 3–16 (2018)

50. Del Pia, Alberto: Subdeterminants and concave integer quadratic programming. SIAM J. Optim.
29(4), 3154–3173 (2019)

51. Del Pia, Alberto, Dey, Santanu S., Molinaro, Marco: Mixed-integer quadratic programming is in np.
Math. Program. 162(1), 225–240 (2017)

52. Del Pia, Alberto, Di Gregorio, Silvia: On the complexity of binary polynomial optimization over
acyclic hypergraphs. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 2684–2699. SIAM, (2022)

53. Del Pia, Alberto, Hildebrand, Robert, Weismantel, Robert, Zemmer, Kevin: Minimizing cubic and
homogeneous polynomials over integers in the plane. Math. Oper. Res. 41(2), 511–530 (2016)

54. Del Pia, Alberto, Khajavirad, Aida: A polyhedral study of binary polynomial programs. Math. Oper.
Res. 42(2), 389–410 (2017)

55. Del Pia, Alberto, Khajavirad, Aida: Themultilinear polytope for acyclic hypergraphs. SIAM J. Optim.
28(2), 1049–1076 (2018)

56. Del Pia, Alberto, Khajavirad, Aida: The running intersection relaxation of the multilinear polytope.
Math. Oper. Res. 46(3), 1008–1037 (2021)

57. Del Pia, Alberto, Khajavirad, Aida, Sahinidis, Nikolaos V.: On the impact of running intersection
inequalities for globally solving polynomial optimization problems. Math. Program. Comput. 12(2),
165–191 (2020)

58. Del Pia, Alberto, Walter, Matthias: Simple odd β-cycle inequalities for binary polynomial optimiza-
tion. to appear in Proceedings of IPCO (2022)

123

http://arxiv.org/abs/2006.04124

778 A. Basu

59. Del Pia, Alberto, Weismantel, Robert: Integer quadratic programming in the plane. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 840–846, (2014)

60. Dey, SantanuS.,Dubey,Yatharth,Molinaro,Marco:Branch-and-bound solves randombinary packing
IPs in polytime. arXiv preprint arXiv:2007.15192, (2020)

61. Dey, Santanu S., Dubey, Yatharth, Molinaro, Marco: Lower bounds on the size of general branch-
and-bound trees. arXiv preprint arXiv:2103.09807, (2021)

62. Doignon, J.-P.: Convexity in cristallographical lattices. J. Geometry 3, 71–85 (1973)
63. Downey, Rodney G., Fellows, Michael R.: Parameterized Complexity. Springer Science & Business

Media. Berlin/Heidelberg, Germany (2012)
64. Eisenbrand, Friedrich: Integer programming and algorithmic geometry of numbers. In M. Jünger,

T. Liebling, D. Naddef, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey, editors, 50 Years of
Integer Programming 1958–2008. Springer-Verlag, (2010)

65. Eisenbrand, Friedrich, Hunkenschröder, Christoph, Klein, Kim-Manuel, Kouteckỳ, Martin, Levin,
Asaf, Onn, Shmuel: An algorithmic theory of integer programming. arXiv preprint arXiv:1904.01361,
(2019)

66. Eisenbrand, Friedrich, Schulz, Andreas S.: Bounds on the Chvátal rank of polytopes in the 0/1-cube.
Combinatorica 23(2), 245–261 (2003)

67. Fleming, Noah, Göös, Mika, Impagliazzo, Russell, Pitassi, Toniann, Robere, Robert, Tan, Li-Yang,
Wigderson, Avi: On the power and limitations of branch and cut. arXiv preprint arXiv:2102.05019,
(2021)

68. Fomin, Fedor V., Panolan, Fahad, Ramanujan, M. S., Saurabh, Saket: Fine-grained complexity of
integer programming: The case of bounded branch-width and rank. arXiv preprint arXiv:1607.05342,
(2016)

69. Frank, András, Tardos, Éva.: An application of simultaneous diophantine approximation in combi-
natorial optimization. Combinatorica 7(1), 49–65 (1987)

70. Friedman, Harvey: Algorithmic procedures, generalized turing algorithms, and elementary recursion
theory. In Studies in Logic and the Foundations of Mathematics, volume 61, pages 361–389. Elsevier,
(1971)

71. Garey, Michael R., Johnson, David S.: Computers and intractability. W. H. Freeman and Co., San
Francisco, Calif., 1979. A guide to the theory of NP-completeness, A Series of Books in the Mathe-
matical Sciences

72. Goerdt, Andreas: Cutting plane versus frege proof systems. In International Workshop on Computer
Science Logic, pages 174–194. Springer, (1990)

73. Goerdt, Andreas: The cutting plane proof system with bounded degree of falsity. In International
Workshop on Computer Science Logic, pages 119–133. Springer, (1991)

74. Gribanov, Dmitry V., Chirkov, Aleksandr Y.: The width and integer optimization on simplices with
bounded minors of the constraint matrices. Optimization Letters 10(6), 1179–1189 (2016)

75. Gribanov, Dmitry V., Malyshev, Dmitriy S., Pardalos, Panos M.: A note on the parametric inte-
ger programming in the average case: sparsity, proximity, and fpt-algorithms. arXiv preprint
arXiv:2002.01307, (2020)

76. Gribanov, Dmitry V., Veselov, Sergey I.: On integer programming with bounded determinants. Opti-
mization Letters 10(6), 1169–1177 (2016)

77. Grigoriev, Dima, Hirsch, Edward A., Pasechnik, Dmitrii V.: Complexity of semi-algebraic proofs. In
Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 419–430. Springer,
(2002)

78. Grötschel, Martin, Lovász, László., Schrijver, Alexander: Geometric Algorithms and Combinatorial
Optimization. Algorithms and Combinatorics: Study and Research Texts, vol. 2. Springer-Verlag,
Berlin (1988)

79. Grünbaum, Branko: Partitions of mass-distributions and of convex bodies by hyperplanes. Pacific J.
Math. 10, 1257–1261 (1960)

80. Heinz, Sebastian: Complexity of integer quasiconvex polynomial optimization. J. Complex. 21(4),
543–556 (2005)

81. Helly, Eduard: Über mengen konvexer körper mit gemeinschaftlichen punkte. Jahresber. Deutsch.
Math.-Verein. 32, 175–176 (1923)

82. Hilbert, David: Mathematische probleme. Nachrichten der Königliche Gesellschaft zur Wis-
senschaften zu Göttingen, Mathematische-physikalischen Klasse, vol. 3 (1900)

123

http://arxiv.org/abs/2007.15192
http://arxiv.org/abs/2103.09807
http://arxiv.org/abs/1904.01361
http://arxiv.org/abs/2102.05019
http://arxiv.org/abs/1607.05342
http://arxiv.org/abs/2002.01307

Complexity of optimizing over the integers 779

83. Hildebrand, Robert, Köppe, Matthias: A new lenstra-type algorithm for quasiconvex polynomial
integer minimization with complexity 2O(n log n). Discret. Optim. 10(1), 69–84 (2013)

84. Hildebrand,Robert,Weismantel,Robert, Zemmer,Kevin:An fptas forminimizing indefinite quadratic
forms over integers in polyhedra. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 1715–1723. SIAM, (2016)

85. Hoffman, Alan J.: Binding constraints and Helly numbers. Ann. N. Y. Acad. Sci. 319, 284–288 (1979)
86. Impagliazzo, Russell, Pitassi, Toniann, Urquhart, Alasdair: Upper and lower bounds for tree-like

cutting planes proofs. In Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science,
pages 220–228. IEEE, (1994)

87. Jansen, Klaus, Rohwedder, Lars: On integer programming, discrepancy, and convolution. arXiv
preprint arXiv:1803.04744, (2018)

88. Jeroslow, Robert G.: Trivial integer programs unsolvable by branch-and-bound. Math. Program. 6(1),
105–109 (1974)

89. Jiang, Haotian, Lee, Yin Tat, Song, Zhao, Wong, Sam Chiu-wai: An improved cutting plane method
for convex optimization, convex-concave games, and its applications. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, pages 944–953, (2020)

90. Kannan, Ravindran: Minkowski’s convex body theorem and integer programming. Math. Oper. Res.
12(3), 415–440 (1987)

91. Khachiyan, Leonid: A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244,
1093–1096 (1979)

92. Khachiyan, Leonid, Porkolab, Lorant: Integer optimization on convex semialgebraic sets. Discrete &
Computational Geometry 23(2), 207–224 (2000)

93. Knop, Dusan, Pilipczuk, Michal, Wrochna, Marcin: Tight complexity lower bounds for integer linear
programming with few constraints. ACM Transactions on Computation Theory (TOCT) 12(3), 1–19
(2020)

94. Ko, Ker-I.: Complexity theory of real functions. Boston Inc., Birkhauser (1991)
95. Köppe, Matthias: On the complexity of nonlinear mixed-integer optimization. In Mixed Integer Non-

linear Programming, pages 533–557. Springer, (2012)
96. Krajíček, Jan: Discretely orderedmodules as a first-order extension of the cutting planes proof system.

The Journal of Symbolic Logic 63(4), 1582–1596 (1998)
97. Lee, Yin Tat, Sidford, Aaron,Wong, SamChiu-wai: A faster cutting planemethod and its implications

for combinatorial and convex optimization. In 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science, pages 1049–1065. IEEE, (2015)

98. Lenstra, Hendrik W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res.
8(4), 538–548 (1983)

99. Li, Yanjun, Richard, Jean-Philippe P.: Cook, Kannan and Schrijver’s example revisited. Discret.
Optim. 5(4), 724–734 (2008)

100. Lodi, Andrea: Mixed integer programming computation. In 50 Years of Integer Programming 1958-
2008, pages 619–645. Springer, (2010)

101. Lovász, László: An algorithmic theory of numbers, graphs, and convexity, volume 50. SIAM, (1986)
102. Margulies, Susan, Ma, Jing, Hicks, Illya V.: The cunningham-geelen method in practice: branch-

decompositions and integer programming. INFORMS J. Comput. 25(4), 599–610 (2013)
103. Matiyasevich, Yuri: Hilbert’s 10th problem. MIT Press, Cambridge, Massachusetts, USA (1993)
104. Micciancio, Daniele, Voulgaris, Panagiotis: A deterministic single exponential time algorithm for

most lattice problems based on Voronoi cell computations [extended abstract]. In Proceedings of the
2010 ACM International Symposium on Theory of Computing (STOC), pages 351–358. ACM, New
York, (2010)

105. Micciancio, Daniele, Voulgaris, Panagiotis: A deterministic single exponential time algorithm for
most lattice problems based on Voronoi cell computations. SIAM J. Comput. 42(3), 1364–1391
(2013)

106. Naderi, Mohammad Javad, Buchanan, Austin, Walteros, Jose L: Worst-case analysis of clique MIPs.
http://www.optimization-online.org/DB_HTML/2021/01/8198.html, (2021)

107. Nemirovski, Arkadii: Efficient methods in convex programming. Lecture notes, (1994)
108. Nemirovski, Arkadii S., Yudin, David B.: Problem Complexity and Method Efficiency in Optimiza-

tion. John Wiley, Hoboken, New Jersey, USA (1983)
109. Nesterov, Yurii E.: Introductory Lectures on Convex Optimization. Applied Optimization, vol. 87.

Kluwer Academic Publishers, Boston (2004)

123

http://arxiv.org/abs/1803.04744
http://www.optimization-online.org/DB_HTML/2021/01/8198.html

780 A. Basu

110. Nesterov, Yurii E.: Lectures on Convex Optimization, vol. 137. Springer, Berlin (2018)
111. Oertel, Timm: Integer Convex Minimization in Low Dimensions. PhD thesis, Diss., Eidgenössische

Technische Hochschule ETH Zürich, Nr. 22288, (2014)
112. Oertel, Timm,Wagner, Christian,Weismantel, Robert: Integer convex minimization by mixed integer

linear optimization. Oper. Res. Lett. 42(6–7), 424–428 (2014)
113. Onn, Shmuel: Nonlinear discrete optimization. Zurich Lectures in AdvancedMathematics, European

Mathematical Society, (2010)
114. Paat, Joseph, Schlöter, Miriam, Weismantel, Robert: The integrality number of an integer program.

Mathematical Programming, pages 1–21, (2021)
115. Papadimitriou, Christos H.: On the complexity of integer programming. Journal of the ACM (JACM)

28(4), 765–768 (1981)
116. Pour-El, Marian Boykan, Richards, Ian: Computability and noncomputability in classical analysis.

Trans. Am. Math. Soc. 275(2), 539–560 (1983)
117. Pudlák, Pavel: Lower bounds for resolution and cutting plane proofs and monotone computations.

The Journal of Symbolic Logic 62(3), 981–998 (1997)
118. Pudlák, Pavel: On the complexity of the propositional calculus. LondonMathematical Society Lecture

Note Series, pages 197–218, (1999)
119. Razborov, Alexander A.: On the width of semialgebraic proofs and algorithms. Math. Oper. Res.

42(4), 1106–1134 (2017)
120. Rothvoß, Thomas, Sanità, Laura: 0/1 polytopes with quadratic Chvátal rank. In International Con-

ference on Integer Programming and Combinatorial Optimization (IPCO), pages 349–361. Springer,
(2013)

121. Rudelson,Mark: Distances between non-symmetric convex bodies and the MM∗-estimate. Positivity
4(2), 161–178 (2000)

122. Scarf, Herbert E.: An observation on the structure of production sets with indivisibilities. Proc. Natl.
Acad. Sci. 74(9), 3637–3641 (1977)

123. Schrijver, Alexander: Theory of Linear and Integer Programming. John Wiley and Sons, New York
(1986)

124. Steinitz, Ernst:Bedingt konvergente reihenundkonvexe systeme. Journal für die reine und angewandte
Mathematik, (1913)

125. Traub, Joseph Frederick,Wasilkowski, GrzegorzWłodzimierz.,Woźniakowski, Henryk: Information,
uncertainty, complexity. Addison-Wesley Reading, MA (1983)

126. Turing, AlanMathison: On computable numbers, with an application to the “entscheidungsproblem”.
a correction. Proc. Lond. Math. Soc. 43(2), 544–546 (1937)

127. Vaidya, Pravin M.: A new algorithm for minimizing convex functions over convex sets. Math. Pro-
gram. 73(3), 291–341 (1996)

128. Veselov, Sergey I., Chirkov, Aleksandr J.: Integer program with bimodular matrix. Discret. Optim.
6(2), 220–222 (2009)

129. Yudin, David B., Nemirovskii, Arkadii S.: Informational complexity and efficient methods for the
solution of convex extremal problems. Matekon 13(2), 22–45 (1976)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Complexity of optimizing over the integers
	Abstract
	Part I
	A general framework for complexity in optimization
	1 The setup
	2 Oracle ambiguity and lower bounds on complexity
	3 What is the size of an optimization problem?
	3.1 Size hierarchies
	3.2 More fine-grained parameterizations

	Part II
	Complexity of mixed-integer convex optimization
	4 ε-information complexity
	4.1 Proof of the lower bounds in Theorem 4.2
	4.2 Proof of the upper bounds in Theorem 4.2

	5 Algorithmic complexity
	5.1 Enumeration and cutting planes
	5.2 The ``Lenstra-style'' algorithm
	5.3 Pruning, nontrivial cutting planes and branch-and-cut

	6 Discussion and open questions
	Open Questions

	Acknowledgements
	References

